| ; Test the basic functionality of speculating around PHI nodes based on reduced |
| ; cost of the constant operands to the PHI nodes using the x86 cost model. |
| ; |
| ; REQUIRES: x86-registered-target |
| ; RUN: opt -S -passes=spec-phis < %s | FileCheck %s |
| |
| target triple = "x86_64-unknown-unknown" |
| |
| define i32 @test_basic(i1 %flag, i32 %arg) { |
| ; CHECK-LABEL: define i32 @test_basic( |
| entry: |
| br i1 %flag, label %a, label %b |
| ; CHECK: br i1 %flag, label %a, label %b |
| |
| a: |
| br label %exit |
| ; CHECK: a: |
| ; CHECK-NEXT: %[[SUM_A:.*]] = add i32 %arg, 7 |
| ; CHECK-NEXT: br label %exit |
| |
| b: |
| br label %exit |
| ; CHECK: b: |
| ; CHECK-NEXT: %[[SUM_B:.*]] = add i32 %arg, 11 |
| ; CHECK-NEXT: br label %exit |
| |
| exit: |
| %p = phi i32 [ 7, %a ], [ 11, %b ] |
| %sum = add i32 %arg, %p |
| ret i32 %sum |
| ; CHECK: exit: |
| ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ %[[SUM_A]], %a ], [ %[[SUM_B]], %b ] |
| ; CHECK-NEXT: ret i32 %[[PHI]] |
| } |
| |
| ; Check that we handle commuted operands and get the constant onto the RHS. |
| define i32 @test_commuted(i1 %flag, i32 %arg) { |
| ; CHECK-LABEL: define i32 @test_commuted( |
| entry: |
| br i1 %flag, label %a, label %b |
| ; CHECK: br i1 %flag, label %a, label %b |
| |
| a: |
| br label %exit |
| ; CHECK: a: |
| ; CHECK-NEXT: %[[SUM_A:.*]] = add i32 %arg, 7 |
| ; CHECK-NEXT: br label %exit |
| |
| b: |
| br label %exit |
| ; CHECK: b: |
| ; CHECK-NEXT: %[[SUM_B:.*]] = add i32 %arg, 11 |
| ; CHECK-NEXT: br label %exit |
| |
| exit: |
| %p = phi i32 [ 7, %a ], [ 11, %b ] |
| %sum = add i32 %p, %arg |
| ret i32 %sum |
| ; CHECK: exit: |
| ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ %[[SUM_A]], %a ], [ %[[SUM_B]], %b ] |
| ; CHECK-NEXT: ret i32 %[[PHI]] |
| } |
| |
| define i32 @test_split_crit_edge(i1 %flag, i32 %arg) { |
| ; CHECK-LABEL: define i32 @test_split_crit_edge( |
| entry: |
| br i1 %flag, label %exit, label %a |
| ; CHECK: entry: |
| ; CHECK-NEXT: br i1 %flag, label %[[ENTRY_SPLIT:.*]], label %a |
| ; |
| ; CHECK: [[ENTRY_SPLIT]]: |
| ; CHECK-NEXT: %[[SUM_ENTRY_SPLIT:.*]] = add i32 %arg, 7 |
| ; CHECK-NEXT: br label %exit |
| |
| a: |
| br label %exit |
| ; CHECK: a: |
| ; CHECK-NEXT: %[[SUM_A:.*]] = add i32 %arg, 11 |
| ; CHECK-NEXT: br label %exit |
| |
| exit: |
| %p = phi i32 [ 7, %entry ], [ 11, %a ] |
| %sum = add i32 %arg, %p |
| ret i32 %sum |
| ; CHECK: exit: |
| ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ %[[SUM_ENTRY_SPLIT]], %[[ENTRY_SPLIT]] ], [ %[[SUM_A]], %a ] |
| ; CHECK-NEXT: ret i32 %[[PHI]] |
| } |
| |
| define i32 @test_no_spec_dominating_inst(i1 %flag, i32* %ptr) { |
| ; CHECK-LABEL: define i32 @test_no_spec_dominating_inst( |
| entry: |
| %load = load i32, i32* %ptr |
| br i1 %flag, label %a, label %b |
| ; CHECK: %[[LOAD:.*]] = load i32, i32* %ptr |
| ; CHECK-NEXT: br i1 %flag, label %a, label %b |
| |
| a: |
| br label %exit |
| ; CHECK: a: |
| ; CHECK-NEXT: %[[SUM_A:.*]] = add i32 %[[LOAD]], 7 |
| ; CHECK-NEXT: br label %exit |
| |
| b: |
| br label %exit |
| ; CHECK: b: |
| ; CHECK-NEXT: %[[SUM_B:.*]] = add i32 %[[LOAD]], 11 |
| ; CHECK-NEXT: br label %exit |
| |
| exit: |
| %p = phi i32 [ 7, %a ], [ 11, %b ] |
| %sum = add i32 %load, %p |
| ret i32 %sum |
| ; CHECK: exit: |
| ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ %[[SUM_A]], %a ], [ %[[SUM_B]], %b ] |
| ; CHECK-NEXT: ret i32 %[[PHI]] |
| } |
| |
| ; We have special logic handling PHI nodes, make sure it doesn't get confused |
| ; by a dominating PHI. |
| define i32 @test_no_spec_dominating_phi(i1 %flag1, i1 %flag2, i32 %x, i32 %y) { |
| ; CHECK-LABEL: define i32 @test_no_spec_dominating_phi( |
| entry: |
| br i1 %flag1, label %x.block, label %y.block |
| ; CHECK: entry: |
| ; CHECK-NEXT: br i1 %flag1, label %x.block, label %y.block |
| |
| x.block: |
| br label %merge |
| ; CHECK: x.block: |
| ; CHECK-NEXT: br label %merge |
| |
| y.block: |
| br label %merge |
| ; CHECK: y.block: |
| ; CHECK-NEXT: br label %merge |
| |
| merge: |
| %xy.phi = phi i32 [ %x, %x.block ], [ %y, %y.block ] |
| br i1 %flag2, label %a, label %b |
| ; CHECK: merge: |
| ; CHECK-NEXT: %[[XY_PHI:.*]] = phi i32 [ %x, %x.block ], [ %y, %y.block ] |
| ; CHECK-NEXT: br i1 %flag2, label %a, label %b |
| |
| a: |
| br label %exit |
| ; CHECK: a: |
| ; CHECK-NEXT: %[[SUM_A:.*]] = add i32 %[[XY_PHI]], 7 |
| ; CHECK-NEXT: br label %exit |
| |
| b: |
| br label %exit |
| ; CHECK: b: |
| ; CHECK-NEXT: %[[SUM_B:.*]] = add i32 %[[XY_PHI]], 11 |
| ; CHECK-NEXT: br label %exit |
| |
| exit: |
| %p = phi i32 [ 7, %a ], [ 11, %b ] |
| %sum = add i32 %xy.phi, %p |
| ret i32 %sum |
| ; CHECK: exit: |
| ; CHECK-NEXT: %[[SUM_PHI:.*]] = phi i32 [ %[[SUM_A]], %a ], [ %[[SUM_B]], %b ] |
| ; CHECK-NEXT: ret i32 %[[SUM_PHI]] |
| } |
| |
| ; Ensure that we will speculate some number of "free" instructions on the given |
| ; architecture even though they are unrelated to the PHI itself. |
| define i32 @test_speculate_free_insts(i1 %flag, i64 %arg) { |
| ; CHECK-LABEL: define i32 @test_speculate_free_insts( |
| entry: |
| br i1 %flag, label %a, label %b |
| ; CHECK: br i1 %flag, label %a, label %b |
| |
| a: |
| br label %exit |
| ; CHECK: a: |
| ; CHECK-NEXT: %[[T1_A:.*]] = trunc i64 %arg to i48 |
| ; CHECK-NEXT: %[[T2_A:.*]] = trunc i48 %[[T1_A]] to i32 |
| ; CHECK-NEXT: %[[SUM_A:.*]] = add i32 %[[T2_A]], 7 |
| ; CHECK-NEXT: br label %exit |
| |
| b: |
| br label %exit |
| ; CHECK: b: |
| ; CHECK-NEXT: %[[T1_B:.*]] = trunc i64 %arg to i48 |
| ; CHECK-NEXT: %[[T2_B:.*]] = trunc i48 %[[T1_B]] to i32 |
| ; CHECK-NEXT: %[[SUM_B:.*]] = add i32 %[[T2_B]], 11 |
| ; CHECK-NEXT: br label %exit |
| |
| exit: |
| %p = phi i32 [ 7, %a ], [ 11, %b ] |
| %t1 = trunc i64 %arg to i48 |
| %t2 = trunc i48 %t1 to i32 |
| %sum = add i32 %t2, %p |
| ret i32 %sum |
| ; CHECK: exit: |
| ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ %[[SUM_A]], %a ], [ %[[SUM_B]], %b ] |
| ; CHECK-NEXT: ret i32 %[[PHI]] |
| } |
| |
| define i32 @test_speculate_free_phis(i1 %flag, i32 %arg1, i32 %arg2) { |
| ; CHECK-LABEL: define i32 @test_speculate_free_phis( |
| entry: |
| br i1 %flag, label %a, label %b |
| ; CHECK: br i1 %flag, label %a, label %b |
| |
| a: |
| br label %exit |
| ; CHECK: a: |
| ; CHECK-NEXT: %[[SUM_A:.*]] = add i32 %arg1, 7 |
| ; CHECK-NEXT: br label %exit |
| |
| b: |
| br label %exit |
| ; CHECK: b: |
| ; CHECK-NEXT: %[[SUM_B:.*]] = add i32 %arg2, 11 |
| ; CHECK-NEXT: br label %exit |
| |
| exit: |
| %p1 = phi i32 [ 7, %a ], [ 11, %b ] |
| %p2 = phi i32 [ %arg1, %a ], [ %arg2, %b ] |
| %sum = add i32 %p2, %p1 |
| ret i32 %sum |
| ; CHECK: exit: |
| ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ %[[SUM_A]], %a ], [ %[[SUM_B]], %b ] |
| ; We don't DCE the now unused PHI node... |
| ; CHECK-NEXT: %{{.*}} = phi i32 [ %arg1, %a ], [ %arg2, %b ] |
| ; CHECK-NEXT: ret i32 %[[PHI]] |
| } |
| |
| ; We shouldn't speculate multiple uses even if each individually looks |
| ; profitable because of the total cost. |
| define i32 @test_no_spec_multi_uses(i1 %flag, i32 %arg1, i32 %arg2, i32 %arg3) { |
| ; CHECK-LABEL: define i32 @test_no_spec_multi_uses( |
| entry: |
| br i1 %flag, label %a, label %b |
| ; CHECK: br i1 %flag, label %a, label %b |
| |
| a: |
| br label %exit |
| ; CHECK: a: |
| ; CHECK-NEXT: br label %exit |
| |
| b: |
| br label %exit |
| ; CHECK: b: |
| ; CHECK-NEXT: br label %exit |
| |
| exit: |
| %p = phi i32 [ 7, %a ], [ 11, %b ] |
| %add1 = add i32 %arg1, %p |
| %add2 = add i32 %arg2, %p |
| %add3 = add i32 %arg3, %p |
| %sum1 = add i32 %add1, %add2 |
| %sum2 = add i32 %sum1, %add3 |
| ret i32 %sum2 |
| ; CHECK: exit: |
| ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ 7, %a ], [ 11, %b ] |
| ; CHECK-NEXT: %[[ADD1:.*]] = add i32 %arg1, %[[PHI]] |
| ; CHECK-NEXT: %[[ADD2:.*]] = add i32 %arg2, %[[PHI]] |
| ; CHECK-NEXT: %[[ADD3:.*]] = add i32 %arg3, %[[PHI]] |
| ; CHECK-NEXT: %[[SUM1:.*]] = add i32 %[[ADD1]], %[[ADD2]] |
| ; CHECK-NEXT: %[[SUM2:.*]] = add i32 %[[SUM1]], %[[ADD3]] |
| ; CHECK-NEXT: ret i32 %[[SUM2]] |
| } |
| |
| define i32 @test_multi_phis1(i1 %flag, i32 %arg) { |
| ; CHECK-LABEL: define i32 @test_multi_phis1( |
| entry: |
| br i1 %flag, label %a, label %b |
| ; CHECK: br i1 %flag, label %a, label %b |
| |
| a: |
| br label %exit |
| ; CHECK: a: |
| ; CHECK-NEXT: %[[SUM_A1:.*]] = add i32 %arg, 1 |
| ; CHECK-NEXT: %[[SUM_A2:.*]] = add i32 %[[SUM_A1]], 3 |
| ; CHECK-NEXT: %[[SUM_A3:.*]] = add i32 %[[SUM_A2]], 5 |
| ; CHECK-NEXT: br label %exit |
| |
| b: |
| br label %exit |
| ; CHECK: b: |
| ; CHECK-NEXT: %[[SUM_B1:.*]] = add i32 %arg, 2 |
| ; CHECK-NEXT: %[[SUM_B2:.*]] = add i32 %[[SUM_B1]], 4 |
| ; CHECK-NEXT: %[[SUM_B3:.*]] = add i32 %[[SUM_B2]], 6 |
| ; CHECK-NEXT: br label %exit |
| |
| exit: |
| %p1 = phi i32 [ 1, %a ], [ 2, %b ] |
| %p2 = phi i32 [ 3, %a ], [ 4, %b ] |
| %p3 = phi i32 [ 5, %a ], [ 6, %b ] |
| %sum1 = add i32 %arg, %p1 |
| %sum2 = add i32 %sum1, %p2 |
| %sum3 = add i32 %sum2, %p3 |
| ret i32 %sum3 |
| ; CHECK: exit: |
| ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ %[[SUM_A3]], %a ], [ %[[SUM_B3]], %b ] |
| ; CHECK-NEXT: ret i32 %[[PHI]] |
| } |
| |
| ; Check that the order of the PHIs doesn't impact the behavior. |
| define i32 @test_multi_phis2(i1 %flag, i32 %arg) { |
| ; CHECK-LABEL: define i32 @test_multi_phis2( |
| entry: |
| br i1 %flag, label %a, label %b |
| ; CHECK: br i1 %flag, label %a, label %b |
| |
| a: |
| br label %exit |
| ; CHECK: a: |
| ; CHECK-NEXT: %[[SUM_A1:.*]] = add i32 %arg, 1 |
| ; CHECK-NEXT: %[[SUM_A2:.*]] = add i32 %[[SUM_A1]], 3 |
| ; CHECK-NEXT: %[[SUM_A3:.*]] = add i32 %[[SUM_A2]], 5 |
| ; CHECK-NEXT: br label %exit |
| |
| b: |
| br label %exit |
| ; CHECK: b: |
| ; CHECK-NEXT: %[[SUM_B1:.*]] = add i32 %arg, 2 |
| ; CHECK-NEXT: %[[SUM_B2:.*]] = add i32 %[[SUM_B1]], 4 |
| ; CHECK-NEXT: %[[SUM_B3:.*]] = add i32 %[[SUM_B2]], 6 |
| ; CHECK-NEXT: br label %exit |
| |
| exit: |
| %p3 = phi i32 [ 5, %a ], [ 6, %b ] |
| %p2 = phi i32 [ 3, %a ], [ 4, %b ] |
| %p1 = phi i32 [ 1, %a ], [ 2, %b ] |
| %sum1 = add i32 %arg, %p1 |
| %sum2 = add i32 %sum1, %p2 |
| %sum3 = add i32 %sum2, %p3 |
| ret i32 %sum3 |
| ; CHECK: exit: |
| ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ %[[SUM_A3]], %a ], [ %[[SUM_B3]], %b ] |
| ; CHECK-NEXT: ret i32 %[[PHI]] |
| } |
| |
| define i32 @test_no_spec_indirectbr(i1 %flag, i32 %arg) { |
| ; CHECK-LABEL: define i32 @test_no_spec_indirectbr( |
| entry: |
| br i1 %flag, label %a, label %b |
| ; CHECK: entry: |
| ; CHECK-NEXT: br i1 %flag, label %a, label %b |
| |
| a: |
| indirectbr i8* undef, [label %exit] |
| ; CHECK: a: |
| ; CHECK-NEXT: indirectbr i8* undef, [label %exit] |
| |
| b: |
| indirectbr i8* undef, [label %exit] |
| ; CHECK: b: |
| ; CHECK-NEXT: indirectbr i8* undef, [label %exit] |
| |
| exit: |
| %p = phi i32 [ 7, %a ], [ 11, %b ] |
| %sum = add i32 %arg, %p |
| ret i32 %sum |
| ; CHECK: exit: |
| ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ 7, %a ], [ 11, %b ] |
| ; CHECK-NEXT: %[[SUM:.*]] = add i32 %arg, %[[PHI]] |
| ; CHECK-NEXT: ret i32 %[[SUM]] |
| } |
| |
| declare void @g() |
| |
| declare i32 @__gxx_personality_v0(...) |
| |
| ; FIXME: We should be able to handle this case -- only the exceptional edge is |
| ; impossible to split. |
| define i32 @test_no_spec_invoke_continue(i1 %flag, i32 %arg) personality i8* bitcast (i32 (...)* @__gxx_personality_v0 to i8*) { |
| ; CHECK-LABEL: define i32 @test_no_spec_invoke_continue( |
| entry: |
| br i1 %flag, label %a, label %b |
| ; CHECK: entry: |
| ; CHECK-NEXT: br i1 %flag, label %a, label %b |
| |
| a: |
| invoke void @g() |
| to label %exit unwind label %lpad |
| ; CHECK: a: |
| ; CHECK-NEXT: invoke void @g() |
| ; CHECK-NEXT: to label %exit unwind label %lpad |
| |
| b: |
| invoke void @g() |
| to label %exit unwind label %lpad |
| ; CHECK: b: |
| ; CHECK-NEXT: invoke void @g() |
| ; CHECK-NEXT: to label %exit unwind label %lpad |
| |
| exit: |
| %p = phi i32 [ 7, %a ], [ 11, %b ] |
| %sum = add i32 %arg, %p |
| ret i32 %sum |
| ; CHECK: exit: |
| ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ 7, %a ], [ 11, %b ] |
| ; CHECK-NEXT: %[[SUM:.*]] = add i32 %arg, %[[PHI]] |
| ; CHECK-NEXT: ret i32 %[[SUM]] |
| |
| lpad: |
| %lp = landingpad { i8*, i32 } |
| cleanup |
| resume { i8*, i32 } undef |
| } |
| |
| define i32 @test_no_spec_landingpad(i32 %arg, i32* %ptr) personality i8* bitcast (i32 (...)* @__gxx_personality_v0 to i8*) { |
| ; CHECK-LABEL: define i32 @test_no_spec_landingpad( |
| entry: |
| invoke void @g() |
| to label %invoke.cont unwind label %lpad |
| ; CHECK: entry: |
| ; CHECK-NEXT: invoke void @g() |
| ; CHECK-NEXT: to label %invoke.cont unwind label %lpad |
| |
| invoke.cont: |
| invoke void @g() |
| to label %exit unwind label %lpad |
| ; CHECK: invoke.cont: |
| ; CHECK-NEXT: invoke void @g() |
| ; CHECK-NEXT: to label %exit unwind label %lpad |
| |
| lpad: |
| %p = phi i32 [ 7, %entry ], [ 11, %invoke.cont ] |
| %lp = landingpad { i8*, i32 } |
| cleanup |
| %sum = add i32 %arg, %p |
| store i32 %sum, i32* %ptr |
| resume { i8*, i32 } undef |
| ; CHECK: lpad: |
| ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ 7, %entry ], [ 11, %invoke.cont ] |
| |
| exit: |
| ret i32 0 |
| } |
| |
| declare i32 @__CxxFrameHandler3(...) |
| |
| define i32 @test_no_spec_cleanuppad(i32 %arg, i32* %ptr) personality i32 (...)* @__CxxFrameHandler3 { |
| ; CHECK-LABEL: define i32 @test_no_spec_cleanuppad( |
| entry: |
| invoke void @g() |
| to label %invoke.cont unwind label %lpad |
| ; CHECK: entry: |
| ; CHECK-NEXT: invoke void @g() |
| ; CHECK-NEXT: to label %invoke.cont unwind label %lpad |
| |
| invoke.cont: |
| invoke void @g() |
| to label %exit unwind label %lpad |
| ; CHECK: invoke.cont: |
| ; CHECK-NEXT: invoke void @g() |
| ; CHECK-NEXT: to label %exit unwind label %lpad |
| |
| lpad: |
| %p = phi i32 [ 7, %entry ], [ 11, %invoke.cont ] |
| %cp = cleanuppad within none [] |
| %sum = add i32 %arg, %p |
| store i32 %sum, i32* %ptr |
| cleanupret from %cp unwind to caller |
| ; CHECK: lpad: |
| ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ 7, %entry ], [ 11, %invoke.cont ] |
| |
| exit: |
| ret i32 0 |
| } |
| |
| ; Check that we don't fall over when confronted with seemingly reasonable code |
| ; for us to handle but in an unreachable region and with non-PHI use-def |
| ; cycles. |
| define i32 @test_unreachable_non_phi_cycles(i1 %flag, i32 %arg) { |
| ; CHECK-LABEL: define i32 @test_unreachable_non_phi_cycles( |
| entry: |
| ret i32 42 |
| ; CHECK: entry: |
| ; CHECK-NEXT: ret i32 42 |
| |
| a: |
| br label %exit |
| ; CHECK: a: |
| ; CHECK-NEXT: br label %exit |
| |
| b: |
| br label %exit |
| ; CHECK: b: |
| ; CHECK-NEXT: br label %exit |
| |
| exit: |
| %p = phi i32 [ 7, %a ], [ 11, %b ] |
| %zext = zext i32 %sum to i64 |
| %trunc = trunc i64 %zext to i32 |
| %sum = add i32 %trunc, %p |
| br i1 %flag, label %a, label %b |
| ; CHECK: exit: |
| ; CHECK-NEXT: %[[PHI:.*]] = phi i32 [ 7, %a ], [ 11, %b ] |
| ; CHECK-NEXT: %[[ZEXT:.*]] = zext i32 %[[SUM:.*]] to i64 |
| ; CHECK-NEXT: %[[TRUNC:.*]] = trunc i64 %[[ZEXT]] to i32 |
| ; CHECK-NEXT: %[[SUM]] = add i32 %[[TRUNC]], %[[PHI]] |
| ; CHECK-NEXT: br i1 %flag, label %a, label %b |
| } |
| |
| ; Check that we don't speculate in the face of an expensive immediate. There |
| ; are two reasons this should never speculate. First, even a local analysis |
| ; should fail because it makes some paths (%a) potentially more expensive due |
| ; to multiple uses of the immediate. Additionally, when we go to speculate the |
| ; instructions, their cost will also be too high. |
| ; FIXME: The goal is really to test the first property, but there doesn't |
| ; happen to be any way to use free-to-speculate instructions here so that it |
| ; would be the only interesting property. |
| define i64 @test_expensive_imm(i32 %flag, i64 %arg) { |
| ; CHECK-LABEL: define i64 @test_expensive_imm( |
| entry: |
| switch i32 %flag, label %a [ |
| i32 1, label %b |
| i32 2, label %c |
| i32 3, label %d |
| ] |
| ; CHECK: switch i32 %flag, label %a [ |
| ; CHECK-NEXT: i32 1, label %b |
| ; CHECK-NEXT: i32 2, label %c |
| ; CHECK-NEXT: i32 3, label %d |
| ; CHECK-NEXT: ] |
| |
| a: |
| br label %exit |
| ; CHECK: a: |
| ; CHECK-NEXT: br label %exit |
| |
| b: |
| br label %exit |
| ; CHECK: b: |
| ; CHECK-NEXT: br label %exit |
| |
| c: |
| br label %exit |
| ; CHECK: c: |
| ; CHECK-NEXT: br label %exit |
| |
| d: |
| br label %exit |
| ; CHECK: d: |
| ; CHECK-NEXT: br label %exit |
| |
| exit: |
| %p = phi i64 [ 4294967296, %a ], [ 1, %b ], [ 1, %c ], [ 1, %d ] |
| %sum1 = add i64 %arg, %p |
| %sum2 = add i64 %sum1, %p |
| ret i64 %sum2 |
| ; CHECK: exit: |
| ; CHECK-NEXT: %[[PHI:.*]] = phi i64 [ {{[0-9]+}}, %a ], [ 1, %b ], [ 1, %c ], [ 1, %d ] |
| ; CHECK-NEXT: %[[SUM1:.*]] = add i64 %arg, %[[PHI]] |
| ; CHECK-NEXT: %[[SUM2:.*]] = add i64 %[[SUM1]], %[[PHI]] |
| ; CHECK-NEXT: ret i64 %[[SUM2]] |
| } |
| |
| define i32 @test_no_spec_non_postdominating_uses(i1 %flag1, i1 %flag2, i32 %arg) { |
| ; CHECK-LABEL: define i32 @test_no_spec_non_postdominating_uses( |
| entry: |
| br i1 %flag1, label %a, label %b |
| ; CHECK: br i1 %flag1, label %a, label %b |
| |
| a: |
| br label %merge |
| ; CHECK: a: |
| ; CHECK-NEXT: %[[SUM_A:.*]] = add i32 %arg, 7 |
| ; CHECK-NEXT: br label %merge |
| |
| b: |
| br label %merge |
| ; CHECK: b: |
| ; CHECK-NEXT: %[[SUM_B:.*]] = add i32 %arg, 11 |
| ; CHECK-NEXT: br label %merge |
| |
| merge: |
| %p1 = phi i32 [ 7, %a ], [ 11, %b ] |
| %p2 = phi i32 [ 13, %a ], [ 42, %b ] |
| %sum1 = add i32 %arg, %p1 |
| br i1 %flag2, label %exit1, label %exit2 |
| ; CHECK: merge: |
| ; CHECK-NEXT: %[[PHI1:.*]] = phi i32 [ %[[SUM_A]], %a ], [ %[[SUM_B]], %b ] |
| ; CHECK-NEXT: %[[PHI2:.*]] = phi i32 [ 13, %a ], [ 42, %b ] |
| ; CHECK-NEXT: br i1 %flag2, label %exit1, label %exit2 |
| |
| exit1: |
| ret i32 %sum1 |
| ; CHECK: exit1: |
| ; CHECK-NEXT: ret i32 %[[PHI1]] |
| |
| exit2: |
| %sum2 = add i32 %arg, %p2 |
| ret i32 %sum2 |
| ; CHECK: exit2: |
| ; CHECK-NEXT: %[[SUM2:.*]] = add i32 %arg, %[[PHI2]] |
| ; CHECK-NEXT: ret i32 %[[SUM2]] |
| } |