| //===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines an instruction selector for the Hexagon target. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Hexagon.h" |
| #include "HexagonISelDAGToDAG.h" |
| #include "HexagonISelLowering.h" |
| #include "HexagonMachineFunctionInfo.h" |
| #include "HexagonTargetMachine.h" |
| #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "hexagon-isel" |
| |
| static |
| cl::opt<bool> |
| EnableAddressRebalancing("isel-rebalance-addr", cl::Hidden, cl::init(true), |
| cl::desc("Rebalance address calculation trees to improve " |
| "instruction selection")); |
| |
| // Rebalance only if this allows e.g. combining a GA with an offset or |
| // factoring out a shift. |
| static |
| cl::opt<bool> |
| RebalanceOnlyForOptimizations("rebalance-only-opt", cl::Hidden, cl::init(false), |
| cl::desc("Rebalance address tree only if this allows optimizations")); |
| |
| static |
| cl::opt<bool> |
| RebalanceOnlyImbalancedTrees("rebalance-only-imbal", cl::Hidden, |
| cl::init(false), cl::desc("Rebalance address tree only if it is imbalanced")); |
| |
| static cl::opt<bool> CheckSingleUse("hexagon-isel-su", cl::Hidden, |
| cl::init(true), cl::desc("Enable checking of SDNode's single-use status")); |
| |
| //===----------------------------------------------------------------------===// |
| // Instruction Selector Implementation |
| //===----------------------------------------------------------------------===// |
| |
| #define GET_DAGISEL_BODY HexagonDAGToDAGISel |
| #include "HexagonGenDAGISel.inc" |
| |
| /// createHexagonISelDag - This pass converts a legalized DAG into a |
| /// Hexagon-specific DAG, ready for instruction scheduling. |
| /// |
| namespace llvm { |
| FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM, |
| CodeGenOpt::Level OptLevel) { |
| return new HexagonDAGToDAGISel(TM, OptLevel); |
| } |
| } |
| |
| void HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, const SDLoc &dl) { |
| SDValue Chain = LD->getChain(); |
| SDValue Base = LD->getBasePtr(); |
| SDValue Offset = LD->getOffset(); |
| int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue(); |
| EVT LoadedVT = LD->getMemoryVT(); |
| unsigned Opcode = 0; |
| |
| // Check for zero extended loads. Treat any-extend loads as zero extended |
| // loads. |
| ISD::LoadExtType ExtType = LD->getExtensionType(); |
| bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD); |
| bool IsValidInc = HII->isValidAutoIncImm(LoadedVT, Inc); |
| |
| assert(LoadedVT.isSimple()); |
| switch (LoadedVT.getSimpleVT().SimpleTy) { |
| case MVT::i8: |
| if (IsZeroExt) |
| Opcode = IsValidInc ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrub_io; |
| else |
| Opcode = IsValidInc ? Hexagon::L2_loadrb_pi : Hexagon::L2_loadrb_io; |
| break; |
| case MVT::i16: |
| if (IsZeroExt) |
| Opcode = IsValidInc ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadruh_io; |
| else |
| Opcode = IsValidInc ? Hexagon::L2_loadrh_pi : Hexagon::L2_loadrh_io; |
| break; |
| case MVT::i32: |
| case MVT::f32: |
| case MVT::v2i16: |
| case MVT::v4i8: |
| Opcode = IsValidInc ? Hexagon::L2_loadri_pi : Hexagon::L2_loadri_io; |
| break; |
| case MVT::i64: |
| case MVT::f64: |
| case MVT::v2i32: |
| case MVT::v4i16: |
| case MVT::v8i8: |
| Opcode = IsValidInc ? Hexagon::L2_loadrd_pi : Hexagon::L2_loadrd_io; |
| break; |
| case MVT::v64i8: |
| case MVT::v32i16: |
| case MVT::v16i32: |
| case MVT::v8i64: |
| case MVT::v128i8: |
| case MVT::v64i16: |
| case MVT::v32i32: |
| case MVT::v16i64: |
| if (isAlignedMemNode(LD)) { |
| if (LD->isNonTemporal()) |
| Opcode = IsValidInc ? Hexagon::V6_vL32b_nt_pi : Hexagon::V6_vL32b_nt_ai; |
| else |
| Opcode = IsValidInc ? Hexagon::V6_vL32b_pi : Hexagon::V6_vL32b_ai; |
| } else { |
| Opcode = IsValidInc ? Hexagon::V6_vL32Ub_pi : Hexagon::V6_vL32Ub_ai; |
| } |
| break; |
| default: |
| llvm_unreachable("Unexpected memory type in indexed load"); |
| } |
| |
| SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32); |
| MachineMemOperand *MemOp = LD->getMemOperand(); |
| |
| auto getExt64 = [this,ExtType] (MachineSDNode *N, const SDLoc &dl) |
| -> MachineSDNode* { |
| if (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD) { |
| SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); |
| return CurDAG->getMachineNode(Hexagon::A4_combineir, dl, MVT::i64, |
| Zero, SDValue(N, 0)); |
| } |
| if (ExtType == ISD::SEXTLOAD) |
| return CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64, |
| SDValue(N, 0)); |
| return N; |
| }; |
| |
| // Loaded value Next address Chain |
| SDValue From[3] = { SDValue(LD,0), SDValue(LD,1), SDValue(LD,2) }; |
| SDValue To[3]; |
| |
| EVT ValueVT = LD->getValueType(0); |
| if (ValueVT == MVT::i64 && ExtType != ISD::NON_EXTLOAD) { |
| // A load extending to i64 will actually produce i32, which will then |
| // need to be extended to i64. |
| assert(LoadedVT.getSizeInBits() <= 32); |
| ValueVT = MVT::i32; |
| } |
| |
| if (IsValidInc) { |
| MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, |
| MVT::i32, MVT::Other, Base, |
| IncV, Chain); |
| CurDAG->setNodeMemRefs(L, {MemOp}); |
| To[1] = SDValue(L, 1); // Next address. |
| To[2] = SDValue(L, 2); // Chain. |
| // Handle special case for extension to i64. |
| if (LD->getValueType(0) == MVT::i64) |
| L = getExt64(L, dl); |
| To[0] = SDValue(L, 0); // Loaded (extended) value. |
| } else { |
| SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); |
| MachineSDNode *L = CurDAG->getMachineNode(Opcode, dl, ValueVT, MVT::Other, |
| Base, Zero, Chain); |
| CurDAG->setNodeMemRefs(L, {MemOp}); |
| To[2] = SDValue(L, 1); // Chain. |
| MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32, |
| Base, IncV); |
| To[1] = SDValue(A, 0); // Next address. |
| // Handle special case for extension to i64. |
| if (LD->getValueType(0) == MVT::i64) |
| L = getExt64(L, dl); |
| To[0] = SDValue(L, 0); // Loaded (extended) value. |
| } |
| ReplaceUses(From, To, 3); |
| CurDAG->RemoveDeadNode(LD); |
| } |
| |
| MachineSDNode *HexagonDAGToDAGISel::LoadInstrForLoadIntrinsic(SDNode *IntN) { |
| if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN) |
| return nullptr; |
| |
| SDLoc dl(IntN); |
| unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue(); |
| |
| static std::map<unsigned,unsigned> LoadPciMap = { |
| { Intrinsic::hexagon_circ_ldb, Hexagon::L2_loadrb_pci }, |
| { Intrinsic::hexagon_circ_ldub, Hexagon::L2_loadrub_pci }, |
| { Intrinsic::hexagon_circ_ldh, Hexagon::L2_loadrh_pci }, |
| { Intrinsic::hexagon_circ_lduh, Hexagon::L2_loadruh_pci }, |
| { Intrinsic::hexagon_circ_ldw, Hexagon::L2_loadri_pci }, |
| { Intrinsic::hexagon_circ_ldd, Hexagon::L2_loadrd_pci }, |
| }; |
| auto FLC = LoadPciMap.find(IntNo); |
| if (FLC != LoadPciMap.end()) { |
| EVT ValTy = (IntNo == Intrinsic::hexagon_circ_ldd) ? MVT::i64 : MVT::i32; |
| EVT RTys[] = { ValTy, MVT::i32, MVT::Other }; |
| // Operands: { Base, Increment, Modifier, Chain } |
| auto Inc = cast<ConstantSDNode>(IntN->getOperand(5)); |
| SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), dl, MVT::i32); |
| MachineSDNode *Res = CurDAG->getMachineNode(FLC->second, dl, RTys, |
| { IntN->getOperand(2), I, IntN->getOperand(4), |
| IntN->getOperand(0) }); |
| return Res; |
| } |
| |
| return nullptr; |
| } |
| |
| SDNode *HexagonDAGToDAGISel::StoreInstrForLoadIntrinsic(MachineSDNode *LoadN, |
| SDNode *IntN) { |
| // The "LoadN" is just a machine load instruction. The intrinsic also |
| // involves storing it. Generate an appropriate store to the location |
| // given in the intrinsic's operand(3). |
| uint64_t F = HII->get(LoadN->getMachineOpcode()).TSFlags; |
| unsigned SizeBits = (F >> HexagonII::MemAccessSizePos) & |
| HexagonII::MemAccesSizeMask; |
| unsigned Size = 1U << (SizeBits-1); |
| |
| SDLoc dl(IntN); |
| MachinePointerInfo PI; |
| SDValue TS; |
| SDValue Loc = IntN->getOperand(3); |
| |
| if (Size >= 4) |
| TS = CurDAG->getStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, PI, |
| Size); |
| else |
| TS = CurDAG->getTruncStore(SDValue(LoadN, 2), dl, SDValue(LoadN, 0), Loc, |
| PI, MVT::getIntegerVT(Size * 8), Size); |
| |
| SDNode *StoreN; |
| { |
| HandleSDNode Handle(TS); |
| SelectStore(TS.getNode()); |
| StoreN = Handle.getValue().getNode(); |
| } |
| |
| // Load's results are { Loaded value, Updated pointer, Chain } |
| ReplaceUses(SDValue(IntN, 0), SDValue(LoadN, 1)); |
| ReplaceUses(SDValue(IntN, 1), SDValue(StoreN, 0)); |
| return StoreN; |
| } |
| |
| bool HexagonDAGToDAGISel::tryLoadOfLoadIntrinsic(LoadSDNode *N) { |
| // The intrinsics for load circ/brev perform two operations: |
| // 1. Load a value V from the specified location, using the addressing |
| // mode corresponding to the intrinsic. |
| // 2. Store V into a specified location. This location is typically a |
| // local, temporary object. |
| // In many cases, the program using these intrinsics will immediately |
| // load V again from the local object. In those cases, when certain |
| // conditions are met, the last load can be removed. |
| // This function identifies and optimizes this pattern. If the pattern |
| // cannot be optimized, it returns nullptr, which will cause the load |
| // to be selected separately from the intrinsic (which will be handled |
| // in SelectIntrinsicWChain). |
| |
| SDValue Ch = N->getOperand(0); |
| SDValue Loc = N->getOperand(1); |
| |
| // Assume that the load and the intrinsic are connected directly with a |
| // chain: |
| // t1: i32,ch = int.load ..., ..., ..., Loc, ... // <-- C |
| // t2: i32,ch = load t1:1, Loc, ... |
| SDNode *C = Ch.getNode(); |
| |
| if (C->getOpcode() != ISD::INTRINSIC_W_CHAIN) |
| return false; |
| |
| // The second load can only be eliminated if its extension type matches |
| // that of the load instruction corresponding to the intrinsic. The user |
| // can provide an address of an unsigned variable to store the result of |
| // a sign-extending intrinsic into (or the other way around). |
| ISD::LoadExtType IntExt; |
| switch (cast<ConstantSDNode>(C->getOperand(1))->getZExtValue()) { |
| case Intrinsic::hexagon_circ_ldub: |
| case Intrinsic::hexagon_circ_lduh: |
| IntExt = ISD::ZEXTLOAD; |
| break; |
| case Intrinsic::hexagon_circ_ldw: |
| case Intrinsic::hexagon_circ_ldd: |
| IntExt = ISD::NON_EXTLOAD; |
| break; |
| default: |
| IntExt = ISD::SEXTLOAD; |
| break; |
| } |
| if (N->getExtensionType() != IntExt) |
| return false; |
| |
| // Make sure the target location for the loaded value in the load intrinsic |
| // is the location from which LD (or N) is loading. |
| if (C->getNumOperands() < 4 || Loc.getNode() != C->getOperand(3).getNode()) |
| return false; |
| |
| if (MachineSDNode *L = LoadInstrForLoadIntrinsic(C)) { |
| SDNode *S = StoreInstrForLoadIntrinsic(L, C); |
| SDValue F[] = { SDValue(N,0), SDValue(N,1), SDValue(C,0), SDValue(C,1) }; |
| SDValue T[] = { SDValue(L,0), SDValue(S,0), SDValue(L,1), SDValue(S,0) }; |
| ReplaceUses(F, T, array_lengthof(T)); |
| // This transformation will leave the intrinsic dead. If it remains in |
| // the DAG, the selection code will see it again, but without the load, |
| // and it will generate a store that is normally required for it. |
| CurDAG->RemoveDeadNode(C); |
| return true; |
| } |
| return false; |
| } |
| |
| // Convert the bit-reverse load intrinsic to appropriate target instruction. |
| bool HexagonDAGToDAGISel::SelectBrevLdIntrinsic(SDNode *IntN) { |
| if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN) |
| return false; |
| |
| const SDLoc &dl(IntN); |
| unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue(); |
| |
| static const std::map<unsigned, unsigned> LoadBrevMap = { |
| { Intrinsic::hexagon_L2_loadrb_pbr, Hexagon::L2_loadrb_pbr }, |
| { Intrinsic::hexagon_L2_loadrub_pbr, Hexagon::L2_loadrub_pbr }, |
| { Intrinsic::hexagon_L2_loadrh_pbr, Hexagon::L2_loadrh_pbr }, |
| { Intrinsic::hexagon_L2_loadruh_pbr, Hexagon::L2_loadruh_pbr }, |
| { Intrinsic::hexagon_L2_loadri_pbr, Hexagon::L2_loadri_pbr }, |
| { Intrinsic::hexagon_L2_loadrd_pbr, Hexagon::L2_loadrd_pbr } |
| }; |
| auto FLI = LoadBrevMap.find(IntNo); |
| if (FLI != LoadBrevMap.end()) { |
| EVT ValTy = |
| (IntNo == Intrinsic::hexagon_L2_loadrd_pbr) ? MVT::i64 : MVT::i32; |
| EVT RTys[] = { ValTy, MVT::i32, MVT::Other }; |
| // Operands of Intrinsic: {chain, enum ID of intrinsic, baseptr, |
| // modifier}. |
| // Operands of target instruction: { Base, Modifier, Chain }. |
| MachineSDNode *Res = CurDAG->getMachineNode( |
| FLI->second, dl, RTys, |
| {IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(0)}); |
| |
| MachineMemOperand *MemOp = cast<MemIntrinsicSDNode>(IntN)->getMemOperand(); |
| CurDAG->setNodeMemRefs(Res, {MemOp}); |
| |
| ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0)); |
| ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1)); |
| ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2)); |
| CurDAG->RemoveDeadNode(IntN); |
| return true; |
| } |
| return false; |
| } |
| |
| /// Generate a machine instruction node for the new circlar buffer intrinsics. |
| /// The new versions use a CSx register instead of the K field. |
| bool HexagonDAGToDAGISel::SelectNewCircIntrinsic(SDNode *IntN) { |
| if (IntN->getOpcode() != ISD::INTRINSIC_W_CHAIN) |
| return false; |
| |
| SDLoc DL(IntN); |
| unsigned IntNo = cast<ConstantSDNode>(IntN->getOperand(1))->getZExtValue(); |
| SmallVector<SDValue, 7> Ops; |
| |
| static std::map<unsigned,unsigned> LoadNPcMap = { |
| { Intrinsic::hexagon_L2_loadrub_pci, Hexagon::PS_loadrub_pci }, |
| { Intrinsic::hexagon_L2_loadrb_pci, Hexagon::PS_loadrb_pci }, |
| { Intrinsic::hexagon_L2_loadruh_pci, Hexagon::PS_loadruh_pci }, |
| { Intrinsic::hexagon_L2_loadrh_pci, Hexagon::PS_loadrh_pci }, |
| { Intrinsic::hexagon_L2_loadri_pci, Hexagon::PS_loadri_pci }, |
| { Intrinsic::hexagon_L2_loadrd_pci, Hexagon::PS_loadrd_pci }, |
| { Intrinsic::hexagon_L2_loadrub_pcr, Hexagon::PS_loadrub_pcr }, |
| { Intrinsic::hexagon_L2_loadrb_pcr, Hexagon::PS_loadrb_pcr }, |
| { Intrinsic::hexagon_L2_loadruh_pcr, Hexagon::PS_loadruh_pcr }, |
| { Intrinsic::hexagon_L2_loadrh_pcr, Hexagon::PS_loadrh_pcr }, |
| { Intrinsic::hexagon_L2_loadri_pcr, Hexagon::PS_loadri_pcr }, |
| { Intrinsic::hexagon_L2_loadrd_pcr, Hexagon::PS_loadrd_pcr } |
| }; |
| auto FLI = LoadNPcMap.find (IntNo); |
| if (FLI != LoadNPcMap.end()) { |
| EVT ValTy = MVT::i32; |
| if (IntNo == Intrinsic::hexagon_L2_loadrd_pci || |
| IntNo == Intrinsic::hexagon_L2_loadrd_pcr) |
| ValTy = MVT::i64; |
| EVT RTys[] = { ValTy, MVT::i32, MVT::Other }; |
| // Handle load.*_pci case which has 6 operands. |
| if (IntN->getNumOperands() == 6) { |
| auto Inc = cast<ConstantSDNode>(IntN->getOperand(3)); |
| SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32); |
| // Operands: { Base, Increment, Modifier, Start, Chain }. |
| Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5), |
| IntN->getOperand(0) }; |
| } else |
| // Handle load.*_pcr case which has 5 operands. |
| // Operands: { Base, Modifier, Start, Chain }. |
| Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4), |
| IntN->getOperand(0) }; |
| MachineSDNode *Res = CurDAG->getMachineNode(FLI->second, DL, RTys, Ops); |
| ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0)); |
| ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1)); |
| ReplaceUses(SDValue(IntN, 2), SDValue(Res, 2)); |
| CurDAG->RemoveDeadNode(IntN); |
| return true; |
| } |
| |
| static std::map<unsigned,unsigned> StoreNPcMap = { |
| { Intrinsic::hexagon_S2_storerb_pci, Hexagon::PS_storerb_pci }, |
| { Intrinsic::hexagon_S2_storerh_pci, Hexagon::PS_storerh_pci }, |
| { Intrinsic::hexagon_S2_storerf_pci, Hexagon::PS_storerf_pci }, |
| { Intrinsic::hexagon_S2_storeri_pci, Hexagon::PS_storeri_pci }, |
| { Intrinsic::hexagon_S2_storerd_pci, Hexagon::PS_storerd_pci }, |
| { Intrinsic::hexagon_S2_storerb_pcr, Hexagon::PS_storerb_pcr }, |
| { Intrinsic::hexagon_S2_storerh_pcr, Hexagon::PS_storerh_pcr }, |
| { Intrinsic::hexagon_S2_storerf_pcr, Hexagon::PS_storerf_pcr }, |
| { Intrinsic::hexagon_S2_storeri_pcr, Hexagon::PS_storeri_pcr }, |
| { Intrinsic::hexagon_S2_storerd_pcr, Hexagon::PS_storerd_pcr } |
| }; |
| auto FSI = StoreNPcMap.find (IntNo); |
| if (FSI != StoreNPcMap.end()) { |
| EVT RTys[] = { MVT::i32, MVT::Other }; |
| // Handle store.*_pci case which has 7 operands. |
| if (IntN->getNumOperands() == 7) { |
| auto Inc = cast<ConstantSDNode>(IntN->getOperand(3)); |
| SDValue I = CurDAG->getTargetConstant(Inc->getSExtValue(), DL, MVT::i32); |
| // Operands: { Base, Increment, Modifier, Value, Start, Chain }. |
| Ops = { IntN->getOperand(2), I, IntN->getOperand(4), IntN->getOperand(5), |
| IntN->getOperand(6), IntN->getOperand(0) }; |
| } else |
| // Handle store.*_pcr case which has 6 operands. |
| // Operands: { Base, Modifier, Value, Start, Chain }. |
| Ops = { IntN->getOperand(2), IntN->getOperand(3), IntN->getOperand(4), |
| IntN->getOperand(5), IntN->getOperand(0) }; |
| MachineSDNode *Res = CurDAG->getMachineNode(FSI->second, DL, RTys, Ops); |
| ReplaceUses(SDValue(IntN, 0), SDValue(Res, 0)); |
| ReplaceUses(SDValue(IntN, 1), SDValue(Res, 1)); |
| CurDAG->RemoveDeadNode(IntN); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void HexagonDAGToDAGISel::SelectLoad(SDNode *N) { |
| SDLoc dl(N); |
| LoadSDNode *LD = cast<LoadSDNode>(N); |
| |
| // Handle indexed loads. |
| ISD::MemIndexedMode AM = LD->getAddressingMode(); |
| if (AM != ISD::UNINDEXED) { |
| SelectIndexedLoad(LD, dl); |
| return; |
| } |
| |
| // Handle patterns using circ/brev load intrinsics. |
| if (tryLoadOfLoadIntrinsic(LD)) |
| return; |
| |
| SelectCode(LD); |
| } |
| |
| void HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, const SDLoc &dl) { |
| SDValue Chain = ST->getChain(); |
| SDValue Base = ST->getBasePtr(); |
| SDValue Offset = ST->getOffset(); |
| SDValue Value = ST->getValue(); |
| // Get the constant value. |
| int32_t Inc = cast<ConstantSDNode>(Offset.getNode())->getSExtValue(); |
| EVT StoredVT = ST->getMemoryVT(); |
| EVT ValueVT = Value.getValueType(); |
| |
| bool IsValidInc = HII->isValidAutoIncImm(StoredVT, Inc); |
| unsigned Opcode = 0; |
| |
| assert(StoredVT.isSimple()); |
| switch (StoredVT.getSimpleVT().SimpleTy) { |
| case MVT::i8: |
| Opcode = IsValidInc ? Hexagon::S2_storerb_pi : Hexagon::S2_storerb_io; |
| break; |
| case MVT::i16: |
| Opcode = IsValidInc ? Hexagon::S2_storerh_pi : Hexagon::S2_storerh_io; |
| break; |
| case MVT::i32: |
| case MVT::f32: |
| case MVT::v2i16: |
| case MVT::v4i8: |
| Opcode = IsValidInc ? Hexagon::S2_storeri_pi : Hexagon::S2_storeri_io; |
| break; |
| case MVT::i64: |
| case MVT::f64: |
| case MVT::v2i32: |
| case MVT::v4i16: |
| case MVT::v8i8: |
| Opcode = IsValidInc ? Hexagon::S2_storerd_pi : Hexagon::S2_storerd_io; |
| break; |
| case MVT::v64i8: |
| case MVT::v32i16: |
| case MVT::v16i32: |
| case MVT::v8i64: |
| case MVT::v128i8: |
| case MVT::v64i16: |
| case MVT::v32i32: |
| case MVT::v16i64: |
| if (isAlignedMemNode(ST)) { |
| if (ST->isNonTemporal()) |
| Opcode = IsValidInc ? Hexagon::V6_vS32b_nt_pi : Hexagon::V6_vS32b_nt_ai; |
| else |
| Opcode = IsValidInc ? Hexagon::V6_vS32b_pi : Hexagon::V6_vS32b_ai; |
| } else { |
| Opcode = IsValidInc ? Hexagon::V6_vS32Ub_pi : Hexagon::V6_vS32Ub_ai; |
| } |
| break; |
| default: |
| llvm_unreachable("Unexpected memory type in indexed store"); |
| } |
| |
| if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) { |
| assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store"); |
| Value = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo, |
| dl, MVT::i32, Value); |
| } |
| |
| SDValue IncV = CurDAG->getTargetConstant(Inc, dl, MVT::i32); |
| MachineMemOperand *MemOp = ST->getMemOperand(); |
| |
| // Next address Chain |
| SDValue From[2] = { SDValue(ST,0), SDValue(ST,1) }; |
| SDValue To[2]; |
| |
| if (IsValidInc) { |
| // Build post increment store. |
| SDValue Ops[] = { Base, IncV, Value, Chain }; |
| MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other, |
| Ops); |
| CurDAG->setNodeMemRefs(S, {MemOp}); |
| To[0] = SDValue(S, 0); |
| To[1] = SDValue(S, 1); |
| } else { |
| SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); |
| SDValue Ops[] = { Base, Zero, Value, Chain }; |
| MachineSDNode *S = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops); |
| CurDAG->setNodeMemRefs(S, {MemOp}); |
| To[1] = SDValue(S, 0); |
| MachineSDNode *A = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32, |
| Base, IncV); |
| To[0] = SDValue(A, 0); |
| } |
| |
| ReplaceUses(From, To, 2); |
| CurDAG->RemoveDeadNode(ST); |
| } |
| |
| void HexagonDAGToDAGISel::SelectStore(SDNode *N) { |
| SDLoc dl(N); |
| StoreSDNode *ST = cast<StoreSDNode>(N); |
| |
| // Handle indexed stores. |
| ISD::MemIndexedMode AM = ST->getAddressingMode(); |
| if (AM != ISD::UNINDEXED) { |
| SelectIndexedStore(ST, dl); |
| return; |
| } |
| |
| SelectCode(ST); |
| } |
| |
| void HexagonDAGToDAGISel::SelectSHL(SDNode *N) { |
| SDLoc dl(N); |
| SDValue Shl_0 = N->getOperand(0); |
| SDValue Shl_1 = N->getOperand(1); |
| |
| auto Default = [this,N] () -> void { SelectCode(N); }; |
| |
| if (N->getValueType(0) != MVT::i32 || Shl_1.getOpcode() != ISD::Constant) |
| return Default(); |
| |
| // RHS is const. |
| int32_t ShlConst = cast<ConstantSDNode>(Shl_1)->getSExtValue(); |
| |
| if (Shl_0.getOpcode() == ISD::MUL) { |
| SDValue Mul_0 = Shl_0.getOperand(0); // Val |
| SDValue Mul_1 = Shl_0.getOperand(1); // Const |
| // RHS of mul is const. |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Mul_1)) { |
| int32_t ValConst = C->getSExtValue() << ShlConst; |
| if (isInt<9>(ValConst)) { |
| SDValue Val = CurDAG->getTargetConstant(ValConst, dl, MVT::i32); |
| SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl, |
| MVT::i32, Mul_0, Val); |
| ReplaceNode(N, Result); |
| return; |
| } |
| } |
| return Default(); |
| } |
| |
| if (Shl_0.getOpcode() == ISD::SUB) { |
| SDValue Sub_0 = Shl_0.getOperand(0); // Const 0 |
| SDValue Sub_1 = Shl_0.getOperand(1); // Val |
| if (ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(Sub_0)) { |
| if (C1->getSExtValue() != 0 || Sub_1.getOpcode() != ISD::SHL) |
| return Default(); |
| SDValue Shl2_0 = Sub_1.getOperand(0); // Val |
| SDValue Shl2_1 = Sub_1.getOperand(1); // Const |
| if (ConstantSDNode *C2 = dyn_cast<ConstantSDNode>(Shl2_1)) { |
| int32_t ValConst = 1 << (ShlConst + C2->getSExtValue()); |
| if (isInt<9>(-ValConst)) { |
| SDValue Val = CurDAG->getTargetConstant(-ValConst, dl, MVT::i32); |
| SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl, |
| MVT::i32, Shl2_0, Val); |
| ReplaceNode(N, Result); |
| return; |
| } |
| } |
| } |
| } |
| |
| return Default(); |
| } |
| |
| // |
| // Handling intrinsics for circular load and bitreverse load. |
| // |
| void HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) { |
| if (MachineSDNode *L = LoadInstrForLoadIntrinsic(N)) { |
| StoreInstrForLoadIntrinsic(L, N); |
| CurDAG->RemoveDeadNode(N); |
| return; |
| } |
| |
| // Handle bit-reverse load intrinsics. |
| if (SelectBrevLdIntrinsic(N)) |
| return; |
| |
| if (SelectNewCircIntrinsic(N)) |
| return; |
| |
| unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); |
| if (IntNo == Intrinsic::hexagon_V6_vgathermw || |
| IntNo == Intrinsic::hexagon_V6_vgathermw_128B || |
| IntNo == Intrinsic::hexagon_V6_vgathermh || |
| IntNo == Intrinsic::hexagon_V6_vgathermh_128B || |
| IntNo == Intrinsic::hexagon_V6_vgathermhw || |
| IntNo == Intrinsic::hexagon_V6_vgathermhw_128B) { |
| SelectV65Gather(N); |
| return; |
| } |
| if (IntNo == Intrinsic::hexagon_V6_vgathermwq || |
| IntNo == Intrinsic::hexagon_V6_vgathermwq_128B || |
| IntNo == Intrinsic::hexagon_V6_vgathermhq || |
| IntNo == Intrinsic::hexagon_V6_vgathermhq_128B || |
| IntNo == Intrinsic::hexagon_V6_vgathermhwq || |
| IntNo == Intrinsic::hexagon_V6_vgathermhwq_128B) { |
| SelectV65GatherPred(N); |
| return; |
| } |
| |
| SelectCode(N); |
| } |
| |
| void HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) { |
| unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); |
| unsigned Bits; |
| switch (IID) { |
| case Intrinsic::hexagon_S2_vsplatrb: |
| Bits = 8; |
| break; |
| case Intrinsic::hexagon_S2_vsplatrh: |
| Bits = 16; |
| break; |
| case Intrinsic::hexagon_V6_vaddcarry: |
| case Intrinsic::hexagon_V6_vaddcarry_128B: |
| case Intrinsic::hexagon_V6_vsubcarry: |
| case Intrinsic::hexagon_V6_vsubcarry_128B: |
| SelectHVXDualOutput(N); |
| return; |
| default: |
| SelectCode(N); |
| return; |
| } |
| |
| SDValue V = N->getOperand(1); |
| SDValue U; |
| if (keepsLowBits(V, Bits, U)) { |
| SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0), |
| N->getOperand(0), U); |
| ReplaceNode(N, R.getNode()); |
| SelectCode(R.getNode()); |
| return; |
| } |
| SelectCode(N); |
| } |
| |
| // |
| // Map floating point constant values. |
| // |
| void HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) { |
| SDLoc dl(N); |
| auto *CN = cast<ConstantFPSDNode>(N); |
| APInt A = CN->getValueAPF().bitcastToAPInt(); |
| if (N->getValueType(0) == MVT::f32) { |
| SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i32); |
| ReplaceNode(N, CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::f32, V)); |
| return; |
| } |
| if (N->getValueType(0) == MVT::f64) { |
| SDValue V = CurDAG->getTargetConstant(A.getZExtValue(), dl, MVT::i64); |
| ReplaceNode(N, CurDAG->getMachineNode(Hexagon::CONST64, dl, MVT::f64, V)); |
| return; |
| } |
| |
| SelectCode(N); |
| } |
| |
| // |
| // Map boolean values. |
| // |
| void HexagonDAGToDAGISel::SelectConstant(SDNode *N) { |
| if (N->getValueType(0) == MVT::i1) { |
| assert(!(cast<ConstantSDNode>(N)->getZExtValue() >> 1)); |
| unsigned Opc = (cast<ConstantSDNode>(N)->getSExtValue() != 0) |
| ? Hexagon::PS_true |
| : Hexagon::PS_false; |
| ReplaceNode(N, CurDAG->getMachineNode(Opc, SDLoc(N), MVT::i1)); |
| return; |
| } |
| |
| SelectCode(N); |
| } |
| |
| void HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) { |
| MachineFrameInfo &MFI = MF->getFrameInfo(); |
| const HexagonFrameLowering *HFI = HST->getFrameLowering(); |
| int FX = cast<FrameIndexSDNode>(N)->getIndex(); |
| unsigned StkA = HFI->getStackAlignment(); |
| unsigned MaxA = MFI.getMaxAlignment(); |
| SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32); |
| SDLoc DL(N); |
| SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32); |
| SDNode *R = nullptr; |
| |
| // Use PS_fi when: |
| // - the object is fixed, or |
| // - there are no objects with higher-than-default alignment, or |
| // - there are no dynamically allocated objects. |
| // Otherwise, use PS_fia. |
| if (FX < 0 || MaxA <= StkA || !MFI.hasVarSizedObjects()) { |
| R = CurDAG->getMachineNode(Hexagon::PS_fi, DL, MVT::i32, FI, Zero); |
| } else { |
| auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>(); |
| unsigned AR = HMFI.getStackAlignBaseVReg(); |
| SDValue CH = CurDAG->getEntryNode(); |
| SDValue Ops[] = { CurDAG->getCopyFromReg(CH, DL, AR, MVT::i32), FI, Zero }; |
| R = CurDAG->getMachineNode(Hexagon::PS_fia, DL, MVT::i32, Ops); |
| } |
| |
| ReplaceNode(N, R); |
| } |
| |
| void HexagonDAGToDAGISel::SelectAddSubCarry(SDNode *N) { |
| unsigned OpcCarry = N->getOpcode() == HexagonISD::ADDC ? Hexagon::A4_addp_c |
| : Hexagon::A4_subp_c; |
| SDNode *C = CurDAG->getMachineNode(OpcCarry, SDLoc(N), N->getVTList(), |
| { N->getOperand(0), N->getOperand(1), |
| N->getOperand(2) }); |
| ReplaceNode(N, C); |
| } |
| |
| void HexagonDAGToDAGISel::SelectVAlign(SDNode *N) { |
| MVT ResTy = N->getValueType(0).getSimpleVT(); |
| if (HST->isHVXVectorType(ResTy, true)) |
| return SelectHvxVAlign(N); |
| |
| const SDLoc &dl(N); |
| unsigned VecLen = ResTy.getSizeInBits(); |
| if (VecLen == 32) { |
| SDValue Ops[] = { |
| CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32), |
| N->getOperand(0), |
| CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32), |
| N->getOperand(1), |
| CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32) |
| }; |
| SDNode *R = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, |
| MVT::i64, Ops); |
| |
| // Shift right by "(Addr & 0x3) * 8" bytes. |
| SDValue M0 = CurDAG->getTargetConstant(0x18, dl, MVT::i32); |
| SDValue M1 = CurDAG->getTargetConstant(0x03, dl, MVT::i32); |
| SDNode *C = CurDAG->getMachineNode(Hexagon::S4_andi_asl_ri, dl, MVT::i32, |
| M0, N->getOperand(2), M1); |
| SDNode *S = CurDAG->getMachineNode(Hexagon::S2_lsr_r_p, dl, MVT::i64, |
| SDValue(R, 0), SDValue(C, 0)); |
| SDValue E = CurDAG->getTargetExtractSubreg(Hexagon::isub_lo, dl, ResTy, |
| SDValue(S, 0)); |
| ReplaceNode(N, E.getNode()); |
| } else { |
| assert(VecLen == 64); |
| SDNode *Pu = CurDAG->getMachineNode(Hexagon::C2_tfrrp, dl, MVT::v8i1, |
| N->getOperand(2)); |
| SDNode *VA = CurDAG->getMachineNode(Hexagon::S2_valignrb, dl, ResTy, |
| N->getOperand(0), N->getOperand(1), |
| SDValue(Pu,0)); |
| ReplaceNode(N, VA); |
| } |
| } |
| |
| void HexagonDAGToDAGISel::SelectVAlignAddr(SDNode *N) { |
| const SDLoc &dl(N); |
| SDValue A = N->getOperand(1); |
| int Mask = -cast<ConstantSDNode>(A.getNode())->getSExtValue(); |
| assert(isPowerOf2_32(-Mask)); |
| |
| SDValue M = CurDAG->getTargetConstant(Mask, dl, MVT::i32); |
| SDNode *AA = CurDAG->getMachineNode(Hexagon::A2_andir, dl, MVT::i32, |
| N->getOperand(0), M); |
| ReplaceNode(N, AA); |
| } |
| |
| // Handle these nodes here to avoid having to write patterns for all |
| // combinations of input/output types. In all cases, the resulting |
| // instruction is the same. |
| void HexagonDAGToDAGISel::SelectTypecast(SDNode *N) { |
| SDValue Op = N->getOperand(0); |
| MVT OpTy = Op.getValueType().getSimpleVT(); |
| SDNode *T = CurDAG->MorphNodeTo(N, N->getOpcode(), |
| CurDAG->getVTList(OpTy), {Op}); |
| ReplaceNode(T, Op.getNode()); |
| } |
| |
| void HexagonDAGToDAGISel::SelectP2D(SDNode *N) { |
| MVT ResTy = N->getValueType(0).getSimpleVT(); |
| SDNode *T = CurDAG->getMachineNode(Hexagon::C2_mask, SDLoc(N), ResTy, |
| N->getOperand(0)); |
| ReplaceNode(N, T); |
| } |
| |
| void HexagonDAGToDAGISel::SelectD2P(SDNode *N) { |
| const SDLoc &dl(N); |
| MVT ResTy = N->getValueType(0).getSimpleVT(); |
| SDValue Zero = CurDAG->getTargetConstant(0, dl, MVT::i32); |
| SDNode *T = CurDAG->getMachineNode(Hexagon::A4_vcmpbgtui, dl, ResTy, |
| N->getOperand(0), Zero); |
| ReplaceNode(N, T); |
| } |
| |
| void HexagonDAGToDAGISel::SelectV2Q(SDNode *N) { |
| const SDLoc &dl(N); |
| MVT ResTy = N->getValueType(0).getSimpleVT(); |
| // The argument to V2Q should be a single vector. |
| MVT OpTy = N->getOperand(0).getValueType().getSimpleVT(); (void)OpTy; |
| assert(HST->getVectorLength() * 8 == OpTy.getSizeInBits()); |
| |
| SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32); |
| SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C); |
| SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandvrt, dl, ResTy, |
| N->getOperand(0), SDValue(R,0)); |
| ReplaceNode(N, T); |
| } |
| |
| void HexagonDAGToDAGISel::SelectQ2V(SDNode *N) { |
| const SDLoc &dl(N); |
| MVT ResTy = N->getValueType(0).getSimpleVT(); |
| // The result of V2Q should be a single vector. |
| assert(HST->getVectorLength() * 8 == ResTy.getSizeInBits()); |
| |
| SDValue C = CurDAG->getTargetConstant(-1, dl, MVT::i32); |
| SDNode *R = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl, MVT::i32, C); |
| SDNode *T = CurDAG->getMachineNode(Hexagon::V6_vandqrt, dl, ResTy, |
| N->getOperand(0), SDValue(R,0)); |
| ReplaceNode(N, T); |
| } |
| |
| void HexagonDAGToDAGISel::Select(SDNode *N) { |
| if (N->isMachineOpcode()) |
| return N->setNodeId(-1); // Already selected. |
| |
| switch (N->getOpcode()) { |
| case ISD::Constant: return SelectConstant(N); |
| case ISD::ConstantFP: return SelectConstantFP(N); |
| case ISD::FrameIndex: return SelectFrameIndex(N); |
| case ISD::SHL: return SelectSHL(N); |
| case ISD::LOAD: return SelectLoad(N); |
| case ISD::STORE: return SelectStore(N); |
| case ISD::INTRINSIC_W_CHAIN: return SelectIntrinsicWChain(N); |
| case ISD::INTRINSIC_WO_CHAIN: return SelectIntrinsicWOChain(N); |
| |
| case HexagonISD::ADDC: |
| case HexagonISD::SUBC: return SelectAddSubCarry(N); |
| case HexagonISD::VALIGN: return SelectVAlign(N); |
| case HexagonISD::VALIGNADDR: return SelectVAlignAddr(N); |
| case HexagonISD::TYPECAST: return SelectTypecast(N); |
| case HexagonISD::P2D: return SelectP2D(N); |
| case HexagonISD::D2P: return SelectD2P(N); |
| case HexagonISD::Q2V: return SelectQ2V(N); |
| case HexagonISD::V2Q: return SelectV2Q(N); |
| } |
| |
| if (HST->useHVXOps()) { |
| switch (N->getOpcode()) { |
| case ISD::VECTOR_SHUFFLE: return SelectHvxShuffle(N); |
| case HexagonISD::VROR: return SelectHvxRor(N); |
| } |
| } |
| |
| SelectCode(N); |
| } |
| |
| bool HexagonDAGToDAGISel:: |
| SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID, |
| std::vector<SDValue> &OutOps) { |
| SDValue Inp = Op, Res; |
| |
| switch (ConstraintID) { |
| default: |
| return true; |
| case InlineAsm::Constraint_i: |
| case InlineAsm::Constraint_o: // Offsetable. |
| case InlineAsm::Constraint_v: // Not offsetable. |
| case InlineAsm::Constraint_m: // Memory. |
| if (SelectAddrFI(Inp, Res)) |
| OutOps.push_back(Res); |
| else |
| OutOps.push_back(Inp); |
| break; |
| } |
| |
| OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32)); |
| return false; |
| } |
| |
| |
| static bool isMemOPCandidate(SDNode *I, SDNode *U) { |
| // I is an operand of U. Check if U is an arithmetic (binary) operation |
| // usable in a memop, where the other operand is a loaded value, and the |
| // result of U is stored in the same location. |
| |
| if (!U->hasOneUse()) |
| return false; |
| unsigned Opc = U->getOpcode(); |
| switch (Opc) { |
| case ISD::ADD: |
| case ISD::SUB: |
| case ISD::AND: |
| case ISD::OR: |
| break; |
| default: |
| return false; |
| } |
| |
| SDValue S0 = U->getOperand(0); |
| SDValue S1 = U->getOperand(1); |
| SDValue SY = (S0.getNode() == I) ? S1 : S0; |
| |
| SDNode *UUse = *U->use_begin(); |
| if (UUse->getNumValues() != 1) |
| return false; |
| |
| // Check if one of the inputs to U is a load instruction and the output |
| // is used by a store instruction. If so and they also have the same |
| // base pointer, then don't preoprocess this node sequence as it |
| // can be matched to a memop. |
| SDNode *SYNode = SY.getNode(); |
| if (UUse->getOpcode() == ISD::STORE && SYNode->getOpcode() == ISD::LOAD) { |
| SDValue LDBasePtr = cast<MemSDNode>(SYNode)->getBasePtr(); |
| SDValue STBasePtr = cast<MemSDNode>(UUse)->getBasePtr(); |
| if (LDBasePtr == STBasePtr) |
| return true; |
| } |
| return false; |
| } |
| |
| |
| // Transform: (or (select c x 0) z) -> (select c (or x z) z) |
| // (or (select c 0 y) z) -> (select c z (or y z)) |
| void HexagonDAGToDAGISel::ppSimplifyOrSelect0(std::vector<SDNode*> &&Nodes) { |
| SelectionDAG &DAG = *CurDAG; |
| |
| for (auto I : Nodes) { |
| if (I->getOpcode() != ISD::OR) |
| continue; |
| |
| auto IsZero = [] (const SDValue &V) -> bool { |
| if (ConstantSDNode *SC = dyn_cast<ConstantSDNode>(V.getNode())) |
| return SC->isNullValue(); |
| return false; |
| }; |
| auto IsSelect0 = [IsZero] (const SDValue &Op) -> bool { |
| if (Op.getOpcode() != ISD::SELECT) |
| return false; |
| return IsZero(Op.getOperand(1)) || IsZero(Op.getOperand(2)); |
| }; |
| |
| SDValue N0 = I->getOperand(0), N1 = I->getOperand(1); |
| EVT VT = I->getValueType(0); |
| bool SelN0 = IsSelect0(N0); |
| SDValue SOp = SelN0 ? N0 : N1; |
| SDValue VOp = SelN0 ? N1 : N0; |
| |
| if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) { |
| SDValue SC = SOp.getOperand(0); |
| SDValue SX = SOp.getOperand(1); |
| SDValue SY = SOp.getOperand(2); |
| SDLoc DLS = SOp; |
| if (IsZero(SY)) { |
| SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp); |
| SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp); |
| DAG.ReplaceAllUsesWith(I, NewSel.getNode()); |
| } else if (IsZero(SX)) { |
| SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp); |
| SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr); |
| DAG.ReplaceAllUsesWith(I, NewSel.getNode()); |
| } |
| } |
| } |
| } |
| |
| // Transform: (store ch val (add x (add (shl y c) e))) |
| // to: (store ch val (add x (shl (add y d) c))), |
| // where e = (shl d c) for some integer d. |
| // The purpose of this is to enable generation of loads/stores with |
| // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift |
| // value c must be 0, 1 or 2. |
| void HexagonDAGToDAGISel::ppAddrReorderAddShl(std::vector<SDNode*> &&Nodes) { |
| SelectionDAG &DAG = *CurDAG; |
| |
| for (auto I : Nodes) { |
| if (I->getOpcode() != ISD::STORE) |
| continue; |
| |
| // I matched: (store ch val Off) |
| SDValue Off = I->getOperand(2); |
| // Off needs to match: (add x (add (shl y c) (shl d c)))) |
| if (Off.getOpcode() != ISD::ADD) |
| continue; |
| // Off matched: (add x T0) |
| SDValue T0 = Off.getOperand(1); |
| // T0 needs to match: (add T1 T2): |
| if (T0.getOpcode() != ISD::ADD) |
| continue; |
| // T0 matched: (add T1 T2) |
| SDValue T1 = T0.getOperand(0); |
| SDValue T2 = T0.getOperand(1); |
| // T1 needs to match: (shl y c) |
| if (T1.getOpcode() != ISD::SHL) |
| continue; |
| SDValue C = T1.getOperand(1); |
| ConstantSDNode *CN = dyn_cast<ConstantSDNode>(C.getNode()); |
| if (CN == nullptr) |
| continue; |
| unsigned CV = CN->getZExtValue(); |
| if (CV > 2) |
| continue; |
| // T2 needs to match e, where e = (shl d c) for some d. |
| ConstantSDNode *EN = dyn_cast<ConstantSDNode>(T2.getNode()); |
| if (EN == nullptr) |
| continue; |
| unsigned EV = EN->getZExtValue(); |
| if (EV % (1 << CV) != 0) |
| continue; |
| unsigned DV = EV / (1 << CV); |
| |
| // Replace T0 with: (shl (add y d) c) |
| SDLoc DL = SDLoc(I); |
| EVT VT = T0.getValueType(); |
| SDValue D = DAG.getConstant(DV, DL, VT); |
| // NewAdd = (add y d) |
| SDValue NewAdd = DAG.getNode(ISD::ADD, DL, VT, T1.getOperand(0), D); |
| // NewShl = (shl NewAdd c) |
| SDValue NewShl = DAG.getNode(ISD::SHL, DL, VT, NewAdd, C); |
| ReplaceNode(T0.getNode(), NewShl.getNode()); |
| } |
| } |
| |
| // Transform: (load ch (add x (and (srl y c) Mask))) |
| // to: (load ch (add x (shl (srl y d) d-c))) |
| // where |
| // Mask = 00..0 111..1 0.0 |
| // | | +-- d-c 0s, and d-c is 0, 1 or 2. |
| // | +-------- 1s |
| // +-------------- at most c 0s |
| // Motivating example: |
| // DAG combiner optimizes (add x (shl (srl y 5) 2)) |
| // to (add x (and (srl y 3) 1FFFFFFC)) |
| // which results in a constant-extended and(##...,lsr). This transformation |
| // undoes this simplification for cases where the shl can be folded into |
| // an addressing mode. |
| void HexagonDAGToDAGISel::ppAddrRewriteAndSrl(std::vector<SDNode*> &&Nodes) { |
| SelectionDAG &DAG = *CurDAG; |
| |
| for (SDNode *N : Nodes) { |
| unsigned Opc = N->getOpcode(); |
| if (Opc != ISD::LOAD && Opc != ISD::STORE) |
| continue; |
| SDValue Addr = Opc == ISD::LOAD ? N->getOperand(1) : N->getOperand(2); |
| // Addr must match: (add x T0) |
| if (Addr.getOpcode() != ISD::ADD) |
| continue; |
| SDValue T0 = Addr.getOperand(1); |
| // T0 must match: (and T1 Mask) |
| if (T0.getOpcode() != ISD::AND) |
| continue; |
| |
| // We have an AND. |
| // |
| // Check the first operand. It must be: (srl y c). |
| SDValue S = T0.getOperand(0); |
| if (S.getOpcode() != ISD::SRL) |
| continue; |
| ConstantSDNode *SN = dyn_cast<ConstantSDNode>(S.getOperand(1).getNode()); |
| if (SN == nullptr) |
| continue; |
| if (SN->getAPIntValue().getBitWidth() != 32) |
| continue; |
| uint32_t CV = SN->getZExtValue(); |
| |
| // Check the second operand: the supposed mask. |
| ConstantSDNode *MN = dyn_cast<ConstantSDNode>(T0.getOperand(1).getNode()); |
| if (MN == nullptr) |
| continue; |
| if (MN->getAPIntValue().getBitWidth() != 32) |
| continue; |
| uint32_t Mask = MN->getZExtValue(); |
| // Examine the mask. |
| uint32_t TZ = countTrailingZeros(Mask); |
| uint32_t M1 = countTrailingOnes(Mask >> TZ); |
| uint32_t LZ = countLeadingZeros(Mask); |
| // Trailing zeros + middle ones + leading zeros must equal the width. |
| if (TZ + M1 + LZ != 32) |
| continue; |
| // The number of trailing zeros will be encoded in the addressing mode. |
| if (TZ > 2) |
| continue; |
| // The number of leading zeros must be at most c. |
| if (LZ > CV) |
| continue; |
| |
| // All looks good. |
| SDValue Y = S.getOperand(0); |
| EVT VT = Addr.getValueType(); |
| SDLoc dl(S); |
| // TZ = D-C, so D = TZ+C. |
| SDValue D = DAG.getConstant(TZ+CV, dl, VT); |
| SDValue DC = DAG.getConstant(TZ, dl, VT); |
| SDValue NewSrl = DAG.getNode(ISD::SRL, dl, VT, Y, D); |
| SDValue NewShl = DAG.getNode(ISD::SHL, dl, VT, NewSrl, DC); |
| ReplaceNode(T0.getNode(), NewShl.getNode()); |
| } |
| } |
| |
| // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...) |
| // (op ... 1 ...)) |
| void HexagonDAGToDAGISel::ppHoistZextI1(std::vector<SDNode*> &&Nodes) { |
| SelectionDAG &DAG = *CurDAG; |
| |
| for (SDNode *N : Nodes) { |
| unsigned Opc = N->getOpcode(); |
| if (Opc != ISD::ZERO_EXTEND) |
| continue; |
| SDValue OpI1 = N->getOperand(0); |
| EVT OpVT = OpI1.getValueType(); |
| if (!OpVT.isSimple() || OpVT.getSimpleVT() != MVT::i1) |
| continue; |
| for (auto I = N->use_begin(), E = N->use_end(); I != E; ++I) { |
| SDNode *U = *I; |
| if (U->getNumValues() != 1) |
| continue; |
| EVT UVT = U->getValueType(0); |
| if (!UVT.isSimple() || !UVT.isInteger() || UVT.getSimpleVT() == MVT::i1) |
| continue; |
| if (isMemOPCandidate(N, U)) |
| continue; |
| |
| // Potentially simplifiable operation. |
| unsigned I1N = I.getOperandNo(); |
| SmallVector<SDValue,2> Ops(U->getNumOperands()); |
| for (unsigned i = 0, n = U->getNumOperands(); i != n; ++i) |
| Ops[i] = U->getOperand(i); |
| EVT BVT = Ops[I1N].getValueType(); |
| |
| SDLoc dl(U); |
| SDValue C0 = DAG.getConstant(0, dl, BVT); |
| SDValue C1 = DAG.getConstant(1, dl, BVT); |
| SDValue If0, If1; |
| |
| if (isa<MachineSDNode>(U)) { |
| unsigned UseOpc = U->getMachineOpcode(); |
| Ops[I1N] = C0; |
| If0 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0); |
| Ops[I1N] = C1; |
| If1 = SDValue(DAG.getMachineNode(UseOpc, dl, UVT, Ops), 0); |
| } else { |
| unsigned UseOpc = U->getOpcode(); |
| Ops[I1N] = C0; |
| If0 = DAG.getNode(UseOpc, dl, UVT, Ops); |
| Ops[I1N] = C1; |
| If1 = DAG.getNode(UseOpc, dl, UVT, Ops); |
| } |
| SDValue Sel = DAG.getNode(ISD::SELECT, dl, UVT, OpI1, If1, If0); |
| DAG.ReplaceAllUsesWith(U, Sel.getNode()); |
| } |
| } |
| } |
| |
| void HexagonDAGToDAGISel::PreprocessISelDAG() { |
| // Repack all nodes before calling each preprocessing function, |
| // because each of them can modify the set of nodes. |
| auto getNodes = [this] () -> std::vector<SDNode*> { |
| std::vector<SDNode*> T; |
| T.reserve(CurDAG->allnodes_size()); |
| for (SDNode &N : CurDAG->allnodes()) |
| T.push_back(&N); |
| return T; |
| }; |
| |
| // Transform: (or (select c x 0) z) -> (select c (or x z) z) |
| // (or (select c 0 y) z) -> (select c z (or y z)) |
| ppSimplifyOrSelect0(getNodes()); |
| |
| // Transform: (store ch val (add x (add (shl y c) e))) |
| // to: (store ch val (add x (shl (add y d) c))), |
| // where e = (shl d c) for some integer d. |
| // The purpose of this is to enable generation of loads/stores with |
| // shifted addressing mode, i.e. mem(x+y<<#c). For that, the shift |
| // value c must be 0, 1 or 2. |
| ppAddrReorderAddShl(getNodes()); |
| |
| // Transform: (load ch (add x (and (srl y c) Mask))) |
| // to: (load ch (add x (shl (srl y d) d-c))) |
| // where |
| // Mask = 00..0 111..1 0.0 |
| // | | +-- d-c 0s, and d-c is 0, 1 or 2. |
| // | +-------- 1s |
| // +-------------- at most c 0s |
| // Motivating example: |
| // DAG combiner optimizes (add x (shl (srl y 5) 2)) |
| // to (add x (and (srl y 3) 1FFFFFFC)) |
| // which results in a constant-extended and(##...,lsr). This transformation |
| // undoes this simplification for cases where the shl can be folded into |
| // an addressing mode. |
| ppAddrRewriteAndSrl(getNodes()); |
| |
| // Transform: (op ... (zext i1 c) ...) -> (select c (op ... 0 ...) |
| // (op ... 1 ...)) |
| ppHoistZextI1(getNodes()); |
| |
| DEBUG_WITH_TYPE("isel", { |
| dbgs() << "Preprocessed (Hexagon) selection DAG:"; |
| CurDAG->dump(); |
| }); |
| |
| if (EnableAddressRebalancing) { |
| rebalanceAddressTrees(); |
| |
| DEBUG_WITH_TYPE("isel", { |
| dbgs() << "Address tree balanced selection DAG:"; |
| CurDAG->dump(); |
| }); |
| } |
| } |
| |
| void HexagonDAGToDAGISel::EmitFunctionEntryCode() { |
| auto &HST = static_cast<const HexagonSubtarget&>(MF->getSubtarget()); |
| auto &HFI = *HST.getFrameLowering(); |
| if (!HFI.needsAligna(*MF)) |
| return; |
| |
| MachineFrameInfo &MFI = MF->getFrameInfo(); |
| MachineBasicBlock *EntryBB = &MF->front(); |
| unsigned AR = FuncInfo->CreateReg(MVT::i32); |
| unsigned MaxA = MFI.getMaxAlignment(); |
| BuildMI(EntryBB, DebugLoc(), HII->get(Hexagon::PS_aligna), AR) |
| .addImm(MaxA); |
| MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseVReg(AR); |
| } |
| |
| // Match a frame index that can be used in an addressing mode. |
| bool HexagonDAGToDAGISel::SelectAddrFI(SDValue &N, SDValue &R) { |
| if (N.getOpcode() != ISD::FrameIndex) |
| return false; |
| auto &HFI = *HST->getFrameLowering(); |
| MachineFrameInfo &MFI = MF->getFrameInfo(); |
| int FX = cast<FrameIndexSDNode>(N)->getIndex(); |
| if (!MFI.isFixedObjectIndex(FX) && HFI.needsAligna(*MF)) |
| return false; |
| R = CurDAG->getTargetFrameIndex(FX, MVT::i32); |
| return true; |
| } |
| |
| inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) { |
| return SelectGlobalAddress(N, R, false, 0); |
| } |
| |
| inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) { |
| return SelectGlobalAddress(N, R, true, 0); |
| } |
| |
| inline bool HexagonDAGToDAGISel::SelectAnyImm(SDValue &N, SDValue &R) { |
| return SelectAnyImmediate(N, R, 0); |
| } |
| |
| inline bool HexagonDAGToDAGISel::SelectAnyImm0(SDValue &N, SDValue &R) { |
| return SelectAnyImmediate(N, R, 0); |
| } |
| inline bool HexagonDAGToDAGISel::SelectAnyImm1(SDValue &N, SDValue &R) { |
| return SelectAnyImmediate(N, R, 1); |
| } |
| inline bool HexagonDAGToDAGISel::SelectAnyImm2(SDValue &N, SDValue &R) { |
| return SelectAnyImmediate(N, R, 2); |
| } |
| inline bool HexagonDAGToDAGISel::SelectAnyImm3(SDValue &N, SDValue &R) { |
| return SelectAnyImmediate(N, R, 3); |
| } |
| |
| inline bool HexagonDAGToDAGISel::SelectAnyInt(SDValue &N, SDValue &R) { |
| EVT T = N.getValueType(); |
| if (!T.isInteger() || T.getSizeInBits() != 32 || !isa<ConstantSDNode>(N)) |
| return false; |
| R = N; |
| return true; |
| } |
| |
| bool HexagonDAGToDAGISel::SelectAnyImmediate(SDValue &N, SDValue &R, |
| uint32_t LogAlign) { |
| auto IsAligned = [LogAlign] (uint64_t V) -> bool { |
| return alignTo(V, (uint64_t)1 << LogAlign) == V; |
| }; |
| |
| switch (N.getOpcode()) { |
| case ISD::Constant: { |
| if (N.getValueType() != MVT::i32) |
| return false; |
| int32_t V = cast<const ConstantSDNode>(N)->getZExtValue(); |
| if (!IsAligned(V)) |
| return false; |
| R = CurDAG->getTargetConstant(V, SDLoc(N), N.getValueType()); |
| return true; |
| } |
| case HexagonISD::JT: |
| case HexagonISD::CP: |
| // These are assumed to always be aligned at least 8-byte boundary. |
| if (LogAlign > 3) |
| return false; |
| R = N.getOperand(0); |
| return true; |
| case ISD::ExternalSymbol: |
| // Symbols may be aligned at any boundary. |
| if (LogAlign > 0) |
| return false; |
| R = N; |
| return true; |
| case ISD::BlockAddress: |
| // Block address is always aligned at least 4-byte boundary. |
| if (LogAlign > 2 || !IsAligned(cast<BlockAddressSDNode>(N)->getOffset())) |
| return false; |
| R = N; |
| return true; |
| } |
| |
| if (SelectGlobalAddress(N, R, false, LogAlign) || |
| SelectGlobalAddress(N, R, true, LogAlign)) |
| return true; |
| |
| return false; |
| } |
| |
| bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R, |
| bool UseGP, uint32_t LogAlign) { |
| auto IsAligned = [LogAlign] (uint64_t V) -> bool { |
| return alignTo(V, (uint64_t)1 << LogAlign) == V; |
| }; |
| |
| switch (N.getOpcode()) { |
| case ISD::ADD: { |
| SDValue N0 = N.getOperand(0); |
| SDValue N1 = N.getOperand(1); |
| unsigned GAOpc = N0.getOpcode(); |
| if (UseGP && GAOpc != HexagonISD::CONST32_GP) |
| return false; |
| if (!UseGP && GAOpc != HexagonISD::CONST32) |
| return false; |
| if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) { |
| SDValue Addr = N0.getOperand(0); |
| // For the purpose of alignment, sextvalue and zextvalue are the same. |
| if (!IsAligned(Const->getZExtValue())) |
| return false; |
| if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) { |
| if (GA->getOpcode() == ISD::TargetGlobalAddress) { |
| uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue(); |
| R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const), |
| N.getValueType(), NewOff); |
| return true; |
| } |
| } |
| } |
| break; |
| } |
| case HexagonISD::CP: |
| case HexagonISD::JT: |
| case HexagonISD::CONST32: |
| // The operand(0) of CONST32 is TargetGlobalAddress, which is what we |
| // want in the instruction. |
| if (!UseGP) |
| R = N.getOperand(0); |
| return !UseGP; |
| case HexagonISD::CONST32_GP: |
| if (UseGP) |
| R = N.getOperand(0); |
| return UseGP; |
| default: |
| return false; |
| } |
| |
| return false; |
| } |
| |
| bool HexagonDAGToDAGISel::DetectUseSxtw(SDValue &N, SDValue &R) { |
| // This (complex pattern) function is meant to detect a sign-extension |
| // i32->i64 on a per-operand basis. This would allow writing single |
| // patterns that would cover a number of combinations of different ways |
| // a sign-extensions could be written. For example: |
| // (mul (DetectUseSxtw x) (DetectUseSxtw y)) -> (M2_dpmpyss_s0 x y) |
| // could match either one of these: |
| // (mul (sext x) (sext_inreg y)) |
| // (mul (sext-load *p) (sext_inreg y)) |
| // (mul (sext_inreg x) (sext y)) |
| // etc. |
| // |
| // The returned value will have type i64 and its low word will |
| // contain the value being extended. The high bits are not specified. |
| // The returned type is i64 because the original type of N was i64, |
| // but the users of this function should only use the low-word of the |
| // result, e.g. |
| // (mul sxtw:x, sxtw:y) -> (M2_dpmpyss_s0 (LoReg sxtw:x), (LoReg sxtw:y)) |
| |
| if (N.getValueType() != MVT::i64) |
| return false; |
| unsigned Opc = N.getOpcode(); |
| switch (Opc) { |
| case ISD::SIGN_EXTEND: |
| case ISD::SIGN_EXTEND_INREG: { |
| // sext_inreg has the source type as a separate operand. |
| EVT T = Opc == ISD::SIGN_EXTEND |
| ? N.getOperand(0).getValueType() |
| : cast<VTSDNode>(N.getOperand(1))->getVT(); |
| unsigned SW = T.getSizeInBits(); |
| if (SW == 32) |
| R = N.getOperand(0); |
| else if (SW < 32) |
| R = N; |
| else |
| return false; |
| break; |
| } |
| case ISD::LOAD: { |
| LoadSDNode *L = cast<LoadSDNode>(N); |
| if (L->getExtensionType() != ISD::SEXTLOAD) |
| return false; |
| // All extending loads extend to i32, so even if the value in |
| // memory is shorter than 32 bits, it will be i32 after the load. |
| if (L->getMemoryVT().getSizeInBits() > 32) |
| return false; |
| R = N; |
| break; |
| } |
| case ISD::SRA: { |
| auto *S = dyn_cast<ConstantSDNode>(N.getOperand(1)); |
| if (!S || S->getZExtValue() != 32) |
| return false; |
| R = N; |
| break; |
| } |
| default: |
| return false; |
| } |
| EVT RT = R.getValueType(); |
| if (RT == MVT::i64) |
| return true; |
| assert(RT == MVT::i32); |
| // This is only to produce a value of type i64. Do not rely on the |
| // high bits produced by this. |
| const SDLoc &dl(N); |
| SDValue Ops[] = { |
| CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID, dl, MVT::i32), |
| R, CurDAG->getTargetConstant(Hexagon::isub_hi, dl, MVT::i32), |
| R, CurDAG->getTargetConstant(Hexagon::isub_lo, dl, MVT::i32) |
| }; |
| SDNode *T = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE, dl, |
| MVT::i64, Ops); |
| R = SDValue(T, 0); |
| return true; |
| } |
| |
| bool HexagonDAGToDAGISel::keepsLowBits(const SDValue &Val, unsigned NumBits, |
| SDValue &Src) { |
| unsigned Opc = Val.getOpcode(); |
| switch (Opc) { |
| case ISD::SIGN_EXTEND: |
| case ISD::ZERO_EXTEND: |
| case ISD::ANY_EXTEND: { |
| const SDValue &Op0 = Val.getOperand(0); |
| EVT T = Op0.getValueType(); |
| if (T.isInteger() && T.getSizeInBits() == NumBits) { |
| Src = Op0; |
| return true; |
| } |
| break; |
| } |
| case ISD::SIGN_EXTEND_INREG: |
| case ISD::AssertSext: |
| case ISD::AssertZext: |
| if (Val.getOperand(0).getValueType().isInteger()) { |
| VTSDNode *T = cast<VTSDNode>(Val.getOperand(1)); |
| if (T->getVT().getSizeInBits() == NumBits) { |
| Src = Val.getOperand(0); |
| return true; |
| } |
| } |
| break; |
| case ISD::AND: { |
| // Check if this is an AND with NumBits of lower bits set to 1. |
| uint64_t Mask = (1 << NumBits) - 1; |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) { |
| if (C->getZExtValue() == Mask) { |
| Src = Val.getOperand(1); |
| return true; |
| } |
| } |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) { |
| if (C->getZExtValue() == Mask) { |
| Src = Val.getOperand(0); |
| return true; |
| } |
| } |
| break; |
| } |
| case ISD::OR: |
| case ISD::XOR: { |
| // OR/XOR with the lower NumBits bits set to 0. |
| uint64_t Mask = (1 << NumBits) - 1; |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) { |
| if ((C->getZExtValue() & Mask) == 0) { |
| Src = Val.getOperand(1); |
| return true; |
| } |
| } |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) { |
| if ((C->getZExtValue() & Mask) == 0) { |
| Src = Val.getOperand(0); |
| return true; |
| } |
| } |
| break; |
| } |
| default: |
| break; |
| } |
| return false; |
| } |
| |
| bool HexagonDAGToDAGISel::isAlignedMemNode(const MemSDNode *N) const { |
| return N->getAlignment() >= N->getMemoryVT().getStoreSize(); |
| } |
| |
| bool HexagonDAGToDAGISel::isSmallStackStore(const StoreSDNode *N) const { |
| unsigned StackSize = MF->getFrameInfo().estimateStackSize(*MF); |
| switch (N->getMemoryVT().getStoreSize()) { |
| case 1: |
| return StackSize <= 56; // 1*2^6 - 8 |
| case 2: |
| return StackSize <= 120; // 2*2^6 - 8 |
| case 4: |
| return StackSize <= 248; // 4*2^6 - 8 |
| default: |
| return false; |
| } |
| } |
| |
| // Return true when the given node fits in a positive half word. |
| bool HexagonDAGToDAGISel::isPositiveHalfWord(const SDNode *N) const { |
| if (const ConstantSDNode *CN = dyn_cast<const ConstantSDNode>(N)) { |
| int64_t V = CN->getSExtValue(); |
| return V > 0 && isInt<16>(V); |
| } |
| if (N->getOpcode() == ISD::SIGN_EXTEND_INREG) { |
| const VTSDNode *VN = dyn_cast<const VTSDNode>(N->getOperand(1)); |
| return VN->getVT().getSizeInBits() <= 16; |
| } |
| return false; |
| } |
| |
| bool HexagonDAGToDAGISel::hasOneUse(const SDNode *N) const { |
| return !CheckSingleUse || N->hasOneUse(); |
| } |
| |
| //////////////////////////////////////////////////////////////////////////////// |
| // Rebalancing of address calculation trees |
| |
| static bool isOpcodeHandled(const SDNode *N) { |
| switch (N->getOpcode()) { |
| case ISD::ADD: |
| case ISD::MUL: |
| return true; |
| case ISD::SHL: |
| // We only handle constant shifts because these can be easily flattened |
| // into multiplications by 2^Op1. |
| return isa<ConstantSDNode>(N->getOperand(1).getNode()); |
| default: |
| return false; |
| } |
| } |
| |
| /// Return the weight of an SDNode |
| int HexagonDAGToDAGISel::getWeight(SDNode *N) { |
| if (!isOpcodeHandled(N)) |
| return 1; |
| assert(RootWeights.count(N) && "Cannot get weight of unseen root!"); |
| assert(RootWeights[N] != -1 && "Cannot get weight of unvisited root!"); |
| assert(RootWeights[N] != -2 && "Cannot get weight of RAWU'd root!"); |
| return RootWeights[N]; |
| } |
| |
| int HexagonDAGToDAGISel::getHeight(SDNode *N) { |
| if (!isOpcodeHandled(N)) |
| return 0; |
| assert(RootWeights.count(N) && RootWeights[N] >= 0 && |
| "Cannot query height of unvisited/RAUW'd node!"); |
| return RootHeights[N]; |
| } |
| |
| namespace { |
| struct WeightedLeaf { |
| SDValue Value; |
| int Weight; |
| int InsertionOrder; |
| |
| WeightedLeaf() : Value(SDValue()) { } |
| |
| WeightedLeaf(SDValue Value, int Weight, int InsertionOrder) : |
| Value(Value), Weight(Weight), InsertionOrder(InsertionOrder) { |
| assert(Weight >= 0 && "Weight must be >= 0"); |
| } |
| |
| static bool Compare(const WeightedLeaf &A, const WeightedLeaf &B) { |
| assert(A.Value.getNode() && B.Value.getNode()); |
| return A.Weight == B.Weight ? |
| (A.InsertionOrder > B.InsertionOrder) : |
| (A.Weight > B.Weight); |
| } |
| }; |
| |
| /// A specialized priority queue for WeigthedLeaves. It automatically folds |
| /// constants and allows removal of non-top elements while maintaining the |
| /// priority order. |
| class LeafPrioQueue { |
| SmallVector<WeightedLeaf, 8> Q; |
| bool HaveConst; |
| WeightedLeaf ConstElt; |
| unsigned Opcode; |
| |
| public: |
| bool empty() { |
| return (!HaveConst && Q.empty()); |
| } |
| |
| size_t size() { |
| return Q.size() + HaveConst; |
| } |
| |
| bool hasConst() { |
| return HaveConst; |
| } |
| |
| const WeightedLeaf &top() { |
| if (HaveConst) |
| return ConstElt; |
| return Q.front(); |
| } |
| |
| WeightedLeaf pop() { |
| if (HaveConst) { |
| HaveConst = false; |
| return ConstElt; |
| } |
| std::pop_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); |
| return Q.pop_back_val(); |
| } |
| |
| void push(WeightedLeaf L, bool SeparateConst=true) { |
| if (!HaveConst && SeparateConst && isa<ConstantSDNode>(L.Value)) { |
| if (Opcode == ISD::MUL && |
| cast<ConstantSDNode>(L.Value)->getSExtValue() == 1) |
| return; |
| if (Opcode == ISD::ADD && |
| cast<ConstantSDNode>(L.Value)->getSExtValue() == 0) |
| return; |
| |
| HaveConst = true; |
| ConstElt = L; |
| } else { |
| Q.push_back(L); |
| std::push_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); |
| } |
| } |
| |
| /// Push L to the bottom of the queue regardless of its weight. If L is |
| /// constant, it will not be folded with other constants in the queue. |
| void pushToBottom(WeightedLeaf L) { |
| L.Weight = 1000; |
| push(L, false); |
| } |
| |
| /// Search for a SHL(x, [<=MaxAmount]) subtree in the queue, return the one of |
| /// lowest weight and remove it from the queue. |
| WeightedLeaf findSHL(uint64_t MaxAmount); |
| |
| WeightedLeaf findMULbyConst(); |
| |
| LeafPrioQueue(unsigned Opcode) : |
| HaveConst(false), Opcode(Opcode) { } |
| }; |
| } // end anonymous namespace |
| |
| WeightedLeaf LeafPrioQueue::findSHL(uint64_t MaxAmount) { |
| int ResultPos; |
| WeightedLeaf Result; |
| |
| for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) { |
| const WeightedLeaf &L = Q[Pos]; |
| const SDValue &Val = L.Value; |
| if (Val.getOpcode() != ISD::SHL || |
| !isa<ConstantSDNode>(Val.getOperand(1)) || |
| Val.getConstantOperandVal(1) > MaxAmount) |
| continue; |
| if (!Result.Value.getNode() || Result.Weight > L.Weight || |
| (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder)) |
| { |
| Result = L; |
| ResultPos = Pos; |
| } |
| } |
| |
| if (Result.Value.getNode()) { |
| Q.erase(&Q[ResultPos]); |
| std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); |
| } |
| |
| return Result; |
| } |
| |
| WeightedLeaf LeafPrioQueue::findMULbyConst() { |
| int ResultPos; |
| WeightedLeaf Result; |
| |
| for (int Pos = 0, End = Q.size(); Pos != End; ++Pos) { |
| const WeightedLeaf &L = Q[Pos]; |
| const SDValue &Val = L.Value; |
| if (Val.getOpcode() != ISD::MUL || |
| !isa<ConstantSDNode>(Val.getOperand(1)) || |
| Val.getConstantOperandVal(1) > 127) |
| continue; |
| if (!Result.Value.getNode() || Result.Weight > L.Weight || |
| (Result.Weight == L.Weight && Result.InsertionOrder > L.InsertionOrder)) |
| { |
| Result = L; |
| ResultPos = Pos; |
| } |
| } |
| |
| if (Result.Value.getNode()) { |
| Q.erase(&Q[ResultPos]); |
| std::make_heap(Q.begin(), Q.end(), WeightedLeaf::Compare); |
| } |
| |
| return Result; |
| } |
| |
| SDValue HexagonDAGToDAGISel::getMultiplierForSHL(SDNode *N) { |
| uint64_t MulFactor = 1ull << N->getConstantOperandVal(1); |
| return CurDAG->getConstant(MulFactor, SDLoc(N), |
| N->getOperand(1).getValueType()); |
| } |
| |
| /// @returns the value x for which 2^x is a factor of Val |
| static unsigned getPowerOf2Factor(SDValue Val) { |
| if (Val.getOpcode() == ISD::MUL) { |
| unsigned MaxFactor = 0; |
| for (int i = 0; i < 2; ++i) { |
| ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(i)); |
| if (!C) |
| continue; |
| const APInt &CInt = C->getAPIntValue(); |
| if (CInt.getBoolValue()) |
| MaxFactor = CInt.countTrailingZeros(); |
| } |
| return MaxFactor; |
| } |
| if (Val.getOpcode() == ISD::SHL) { |
| if (!isa<ConstantSDNode>(Val.getOperand(1).getNode())) |
| return 0; |
| return (unsigned) Val.getConstantOperandVal(1); |
| } |
| |
| return 0; |
| } |
| |
| /// @returns true if V>>Amount will eliminate V's operation on its child |
| static bool willShiftRightEliminate(SDValue V, unsigned Amount) { |
| if (V.getOpcode() == ISD::MUL) { |
| SDValue Ops[] = { V.getOperand(0), V.getOperand(1) }; |
| for (int i = 0; i < 2; ++i) |
| if (isa<ConstantSDNode>(Ops[i].getNode()) && |
| V.getConstantOperandVal(i) % (1ULL << Amount) == 0) { |
| uint64_t NewConst = V.getConstantOperandVal(i) >> Amount; |
| return (NewConst == 1); |
| } |
| } else if (V.getOpcode() == ISD::SHL) { |
| return (Amount == V.getConstantOperandVal(1)); |
| } |
| |
| return false; |
| } |
| |
| SDValue HexagonDAGToDAGISel::factorOutPowerOf2(SDValue V, unsigned Power) { |
| SDValue Ops[] = { V.getOperand(0), V.getOperand(1) }; |
| if (V.getOpcode() == ISD::MUL) { |
| for (int i=0; i < 2; ++i) { |
| if (isa<ConstantSDNode>(Ops[i].getNode()) && |
| V.getConstantOperandVal(i) % ((uint64_t)1 << Power) == 0) { |
| uint64_t NewConst = V.getConstantOperandVal(i) >> Power; |
| if (NewConst == 1) |
| return Ops[!i]; |
| Ops[i] = CurDAG->getConstant(NewConst, |
| SDLoc(V), V.getValueType()); |
| break; |
| } |
| } |
| } else if (V.getOpcode() == ISD::SHL) { |
| uint64_t ShiftAmount = V.getConstantOperandVal(1); |
| if (ShiftAmount == Power) |
| return Ops[0]; |
| Ops[1] = CurDAG->getConstant(ShiftAmount - Power, |
| SDLoc(V), V.getValueType()); |
| } |
| |
| return CurDAG->getNode(V.getOpcode(), SDLoc(V), V.getValueType(), Ops); |
| } |
| |
| static bool isTargetConstant(const SDValue &V) { |
| return V.getOpcode() == HexagonISD::CONST32 || |
| V.getOpcode() == HexagonISD::CONST32_GP; |
| } |
| |
| unsigned HexagonDAGToDAGISel::getUsesInFunction(const Value *V) { |
| if (GAUsesInFunction.count(V)) |
| return GAUsesInFunction[V]; |
| |
| unsigned Result = 0; |
| const Function &CurF = CurDAG->getMachineFunction().getFunction(); |
| for (const User *U : V->users()) { |
| if (isa<Instruction>(U) && |
| cast<Instruction>(U)->getParent()->getParent() == &CurF) |
| ++Result; |
| } |
| |
| GAUsesInFunction[V] = Result; |
| |
| return Result; |
| } |
| |
| /// Note - After calling this, N may be dead. It may have been replaced by a |
| /// new node, so always use the returned value in place of N. |
| /// |
| /// @returns The SDValue taking the place of N (which could be N if it is |
| /// unchanged) |
| SDValue HexagonDAGToDAGISel::balanceSubTree(SDNode *N, bool TopLevel) { |
| assert(RootWeights.count(N) && "Cannot balance non-root node."); |
| assert(RootWeights[N] != -2 && "This node was RAUW'd!"); |
| assert(!TopLevel || N->getOpcode() == ISD::ADD); |
| |
| // Return early if this node was already visited |
| if (RootWeights[N] != -1) |
| return SDValue(N, 0); |
| |
| assert(isOpcodeHandled(N)); |
| |
| SDValue Op0 = N->getOperand(0); |
| SDValue Op1 = N->getOperand(1); |
| |
| // Return early if the operands will remain unchanged or are all roots |
| if ((!isOpcodeHandled(Op0.getNode()) || RootWeights.count(Op0.getNode())) && |
| (!isOpcodeHandled(Op1.getNode()) || RootWeights.count(Op1.getNode()))) { |
| SDNode *Op0N = Op0.getNode(); |
| int Weight; |
| if (isOpcodeHandled(Op0N) && RootWeights[Op0N] == -1) { |
| Weight = getWeight(balanceSubTree(Op0N).getNode()); |
| // Weight = calculateWeight(Op0N); |
| } else |
| Weight = getWeight(Op0N); |
| |
| SDNode *Op1N = N->getOperand(1).getNode(); // Op1 may have been RAUWd |
| if (isOpcodeHandled(Op1N) && RootWeights[Op1N] == -1) { |
| Weight += getWeight(balanceSubTree(Op1N).getNode()); |
| // Weight += calculateWeight(Op1N); |
| } else |
| Weight += getWeight(Op1N); |
| |
| RootWeights[N] = Weight; |
| RootHeights[N] = std::max(getHeight(N->getOperand(0).getNode()), |
| getHeight(N->getOperand(1).getNode())) + 1; |
| |
| LLVM_DEBUG(dbgs() << "--> No need to balance root (Weight=" << Weight |
| << " Height=" << RootHeights[N] << "): "); |
| LLVM_DEBUG(N->dump(CurDAG)); |
| |
| return SDValue(N, 0); |
| } |
| |
| LLVM_DEBUG(dbgs() << "** Balancing root node: "); |
| LLVM_DEBUG(N->dump(CurDAG)); |
| |
| unsigned NOpcode = N->getOpcode(); |
| |
| LeafPrioQueue Leaves(NOpcode); |
| SmallVector<SDValue, 4> Worklist; |
| Worklist.push_back(SDValue(N, 0)); |
| |
| // SHL nodes will be converted to MUL nodes |
| if (NOpcode == ISD::SHL) |
| NOpcode = ISD::MUL; |
| |
| bool CanFactorize = false; |
| WeightedLeaf Mul1, Mul2; |
| unsigned MaxPowerOf2 = 0; |
| WeightedLeaf GA; |
| |
| // Do not try to factor out a shift if there is already a shift at the tip of |
| // the tree. |
| bool HaveTopLevelShift = false; |
| if (TopLevel && |
| ((isOpcodeHandled(Op0.getNode()) && Op0.getOpcode() == ISD::SHL && |
| Op0.getConstantOperandVal(1) < 4) || |
| (isOpcodeHandled(Op1.getNode()) && Op1.getOpcode() == ISD::SHL && |
| Op1.getConstantOperandVal(1) < 4))) |
| HaveTopLevelShift = true; |
| |
| // Flatten the subtree into an ordered list of leaves; at the same time |
| // determine whether the tree is already balanced. |
| int InsertionOrder = 0; |
| SmallDenseMap<SDValue, int> NodeHeights; |
| bool Imbalanced = false; |
| int CurrentWeight = 0; |
| while (!Worklist.empty()) { |
| SDValue Child = Worklist.pop_back_val(); |
| |
| if (Child.getNode() != N && RootWeights.count(Child.getNode())) { |
| // CASE 1: Child is a root note |
| |
| int Weight = RootWeights[Child.getNode()]; |
| if (Weight == -1) { |
| Child = balanceSubTree(Child.getNode()); |
| // calculateWeight(Child.getNode()); |
| Weight = getWeight(Child.getNode()); |
| } else if (Weight == -2) { |
| // Whoops, this node was RAUWd by one of the balanceSubTree calls we |
| // made. Our worklist isn't up to date anymore. |
| // Restart the whole process. |
| LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n"); |
| return balanceSubTree(N, TopLevel); |
| } |
| |
| NodeHeights[Child] = 1; |
| CurrentWeight += Weight; |
| |
| unsigned PowerOf2; |
| if (TopLevel && !CanFactorize && !HaveTopLevelShift && |
| (Child.getOpcode() == ISD::MUL || Child.getOpcode() == ISD::SHL) && |
| Child.hasOneUse() && (PowerOf2 = getPowerOf2Factor(Child))) { |
| // Try to identify two factorizable MUL/SHL children greedily. Leave |
| // them out of the priority queue for now so we can deal with them |
| // after. |
| if (!Mul1.Value.getNode()) { |
| Mul1 = WeightedLeaf(Child, Weight, InsertionOrder++); |
| MaxPowerOf2 = PowerOf2; |
| } else { |
| Mul2 = WeightedLeaf(Child, Weight, InsertionOrder++); |
| MaxPowerOf2 = std::min(MaxPowerOf2, PowerOf2); |
| |
| // Our addressing modes can only shift by a maximum of 3 |
| if (MaxPowerOf2 > 3) |
| MaxPowerOf2 = 3; |
| |
| CanFactorize = true; |
| } |
| } else |
| Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++)); |
| } else if (!isOpcodeHandled(Child.getNode())) { |
| // CASE 2: Child is an unhandled kind of node (e.g. constant) |
| int Weight = getWeight(Child.getNode()); |
| |
| NodeHeights[Child] = getHeight(Child.getNode()); |
| CurrentWeight += Weight; |
| |
| if (isTargetConstant(Child) && !GA.Value.getNode()) |
| GA = WeightedLeaf(Child, Weight, InsertionOrder++); |
| else |
| Leaves.push(WeightedLeaf(Child, Weight, InsertionOrder++)); |
| } else { |
| // CASE 3: Child is a subtree of same opcode |
| // Visit children first, then flatten. |
| unsigned ChildOpcode = Child.getOpcode(); |
| assert(ChildOpcode == NOpcode || |
| (NOpcode == ISD::MUL && ChildOpcode == ISD::SHL)); |
| |
| // Convert SHL to MUL |
| SDValue Op1; |
| if (ChildOpcode == ISD::SHL) |
| Op1 = getMultiplierForSHL(Child.getNode()); |
| else |
| Op1 = Child->getOperand(1); |
| |
| if (!NodeHeights.count(Op1) || !NodeHeights.count(Child->getOperand(0))) { |
| assert(!NodeHeights.count(Child) && "Parent visited before children?"); |
| // Visit children first, then re-visit this node |
| Worklist.push_back(Child); |
| Worklist.push_back(Op1); |
| Worklist.push_back(Child->getOperand(0)); |
| } else { |
| // Back at this node after visiting the children |
| if (std::abs(NodeHeights[Op1] - NodeHeights[Child->getOperand(0)]) > 1) |
| Imbalanced = true; |
| |
| NodeHeights[Child] = std::max(NodeHeights[Op1], |
| NodeHeights[Child->getOperand(0)]) + 1; |
| } |
| } |
| } |
| |
| LLVM_DEBUG(dbgs() << "--> Current height=" << NodeHeights[SDValue(N, 0)] |
| << " weight=" << CurrentWeight |
| << " imbalanced=" << Imbalanced << "\n"); |
| |
| // Transform MUL(x, C * 2^Y) + SHL(z, Y) -> SHL(ADD(MUL(x, C), z), Y) |
| // This factors out a shift in order to match memw(a<<Y+b). |
| if (CanFactorize && (willShiftRightEliminate(Mul1.Value, MaxPowerOf2) || |
| willShiftRightEliminate(Mul2.Value, MaxPowerOf2))) { |
| LLVM_DEBUG(dbgs() << "--> Found common factor for two MUL children!\n"); |
| int Weight = Mul1.Weight + Mul2.Weight; |
| int Height = std::max(NodeHeights[Mul1.Value], NodeHeights[Mul2.Value]) + 1; |
| SDValue Mul1Factored = factorOutPowerOf2(Mul1.Value, MaxPowerOf2); |
| SDValue Mul2Factored = factorOutPowerOf2(Mul2.Value, MaxPowerOf2); |
| SDValue Sum = CurDAG->getNode(ISD::ADD, SDLoc(N), Mul1.Value.getValueType(), |
| Mul1Factored, Mul2Factored); |
| SDValue Const = CurDAG->getConstant(MaxPowerOf2, SDLoc(N), |
| Mul1.Value.getValueType()); |
| SDValue New = CurDAG->getNode(ISD::SHL, SDLoc(N), Mul1.Value.getValueType(), |
| Sum, Const); |
| NodeHeights[New] = Height; |
| Leaves.push(WeightedLeaf(New, Weight, Mul1.InsertionOrder)); |
| } else if (Mul1.Value.getNode()) { |
| // We failed to factorize two MULs, so now the Muls are left outside the |
| // queue... add them back. |
| Leaves.push(Mul1); |
| if (Mul2.Value.getNode()) |
| Leaves.push(Mul2); |
| CanFactorize = false; |
| } |
| |
| // Combine GA + Constant -> GA+Offset, but only if GA is not used elsewhere |
| // and the root node itself is not used more than twice. This reduces the |
| // amount of additional constant extenders introduced by this optimization. |
| bool CombinedGA = false; |
| if (NOpcode == ISD::ADD && GA.Value.getNode() && Leaves.hasConst() && |
| GA.Value.hasOneUse() && N->use_size() < 3) { |
| GlobalAddressSDNode *GANode = |
| cast<GlobalAddressSDNode>(GA.Value.getOperand(0)); |
| ConstantSDNode *Offset = cast<ConstantSDNode>(Leaves.top().Value); |
| |
| if (getUsesInFunction(GANode->getGlobal()) == 1 && Offset->hasOneUse() && |
| getTargetLowering()->isOffsetFoldingLegal(GANode)) { |
| LLVM_DEBUG(dbgs() << "--> Combining GA and offset (" |
| << Offset->getSExtValue() << "): "); |
| LLVM_DEBUG(GANode->dump(CurDAG)); |
| |
| SDValue NewTGA = |
| CurDAG->getTargetGlobalAddress(GANode->getGlobal(), SDLoc(GA.Value), |
| GANode->getValueType(0), |
| GANode->getOffset() + (uint64_t)Offset->getSExtValue()); |
| GA.Value = CurDAG->getNode(GA.Value.getOpcode(), SDLoc(GA.Value), |
| GA.Value.getValueType(), NewTGA); |
| GA.Weight += Leaves.top().Weight; |
| |
| NodeHeights[GA.Value] = getHeight(GA.Value.getNode()); |
| CombinedGA = true; |
| |
| Leaves.pop(); // Remove the offset constant from the queue |
| } |
| } |
| |
| if ((RebalanceOnlyForOptimizations && !CanFactorize && !CombinedGA) || |
| (RebalanceOnlyImbalancedTrees && !Imbalanced)) { |
| RootWeights[N] = CurrentWeight; |
| RootHeights[N] = NodeHeights[SDValue(N, 0)]; |
| |
| return SDValue(N, 0); |
| } |
| |
| // Combine GA + SHL(x, C<=31) so we will match Rx=add(#u8,asl(Rx,#U5)) |
| if (NOpcode == ISD::ADD && GA.Value.getNode()) { |
| WeightedLeaf SHL = Leaves.findSHL(31); |
| if (SHL.Value.getNode()) { |
| int Height = std::max(NodeHeights[GA.Value], NodeHeights[SHL.Value]) + 1; |
| GA.Value = CurDAG->getNode(ISD::ADD, SDLoc(GA.Value), |
| GA.Value.getValueType(), |
| GA.Value, SHL.Value); |
| GA.Weight = SHL.Weight; // Specifically ignore the GA weight here |
| NodeHeights[GA.Value] = Height; |
| } |
| } |
| |
| if (GA.Value.getNode()) |
| Leaves.push(GA); |
| |
| // If this is the top level and we haven't factored out a shift, we should try |
| // to move a constant to the bottom to match addressing modes like memw(rX+C) |
| if (TopLevel && !CanFactorize && Leaves.hasConst()) { |
| LLVM_DEBUG(dbgs() << "--> Pushing constant to tip of tree."); |
| Leaves.pushToBottom(Leaves.pop()); |
| } |
| |
| const DataLayout &DL = CurDAG->getDataLayout(); |
| const TargetLowering &TLI = *getTargetLowering(); |
| |
| // Rebuild the tree using Huffman's algorithm |
| while (Leaves.size() > 1) { |
| WeightedLeaf L0 = Leaves.pop(); |
| |
| // See whether we can grab a MUL to form an add(Rx,mpyi(Ry,#u6)), |
| // otherwise just get the next leaf |
| WeightedLeaf L1 = Leaves.findMULbyConst(); |
| if (!L1.Value.getNode()) |
| L1 = Leaves.pop(); |
| |
| assert(L0.Weight <= L1.Weight && "Priority queue is broken!"); |
| |
| SDValue V0 = L0.Value; |
| int V0Weight = L0.Weight; |
| SDValue V1 = L1.Value; |
| int V1Weight = L1.Weight; |
| |
| // Make sure that none of these nodes have been RAUW'd |
| if ((RootWeights.count(V0.getNode()) && RootWeights[V0.getNode()] == -2) || |
| (RootWeights.count(V1.getNode()) && RootWeights[V1.getNode()] == -2)) { |
| LLVM_DEBUG(dbgs() << "--> Subtree was RAUWd. Restarting...\n"); |
| return balanceSubTree(N, TopLevel); |
| } |
| |
| ConstantSDNode *V0C = dyn_cast<ConstantSDNode>(V0); |
| ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(V1); |
| EVT VT = N->getValueType(0); |
| SDValue NewNode; |
| |
| if (V0C && !V1C) { |
| std::swap(V0, V1); |
| std::swap(V0C, V1C); |
| } |
| |
| // Calculate height of this node |
| assert(NodeHeights.count(V0) && NodeHeights.count(V1) && |
| "Children must have been visited before re-combining them!"); |
| int Height = std::max(NodeHeights[V0], NodeHeights[V1]) + 1; |
| |
| // Rebuild this node (and restore SHL from MUL if needed) |
| if (V1C && NOpcode == ISD::MUL && V1C->getAPIntValue().isPowerOf2()) |
| NewNode = CurDAG->getNode( |
| ISD::SHL, SDLoc(V0), VT, V0, |
| CurDAG->getConstant( |
| V1C->getAPIntValue().logBase2(), SDLoc(N), |
| TLI.getScalarShiftAmountTy(DL, V0.getValueType()))); |
| else |
| NewNode = CurDAG->getNode(NOpcode, SDLoc(N), VT, V0, V1); |
| |
| NodeHeights[NewNode] = Height; |
| |
| int Weight = V0Weight + V1Weight; |
| Leaves.push(WeightedLeaf(NewNode, Weight, L0.InsertionOrder)); |
| |
| LLVM_DEBUG(dbgs() << "--> Built new node (Weight=" << Weight |
| << ",Height=" << Height << "):\n"); |
| LLVM_DEBUG(NewNode.dump()); |
| } |
| |
| assert(Leaves.size() == 1); |
| SDValue NewRoot = Leaves.top().Value; |
| |
| assert(NodeHeights.count(NewRoot)); |
| int Height = NodeHeights[NewRoot]; |
| |
| // Restore SHL if we earlier converted it to a MUL |
| if (NewRoot.getOpcode() == ISD::MUL) { |
| ConstantSDNode *V1C = dyn_cast<ConstantSDNode>(NewRoot.getOperand(1)); |
| if (V1C && V1C->getAPIntValue().isPowerOf2()) { |
| EVT VT = NewRoot.getValueType(); |
| SDValue V0 = NewRoot.getOperand(0); |
| NewRoot = CurDAG->getNode( |
| ISD::SHL, SDLoc(NewRoot), VT, V0, |
| CurDAG->getConstant( |
| V1C->getAPIntValue().logBase2(), SDLoc(NewRoot), |
| TLI.getScalarShiftAmountTy(DL, V0.getValueType()))); |
| } |
| } |
| |
| if (N != NewRoot.getNode()) { |
| LLVM_DEBUG(dbgs() << "--> Root is now: "); |
| LLVM_DEBUG(NewRoot.dump()); |
| |
| // Replace all uses of old root by new root |
| CurDAG->ReplaceAllUsesWith(N, NewRoot.getNode()); |
| // Mark that we have RAUW'd N |
| RootWeights[N] = -2; |
| } else { |
| LLVM_DEBUG(dbgs() << "--> Root unchanged.\n"); |
| } |
| |
| RootWeights[NewRoot.getNode()] = Leaves.top().Weight; |
| RootHeights[NewRoot.getNode()] = Height; |
| |
| return NewRoot; |
| } |
| |
| void HexagonDAGToDAGISel::rebalanceAddressTrees() { |
| for (auto I = CurDAG->allnodes_begin(), E = CurDAG->allnodes_end(); I != E;) { |
| SDNode *N = &*I++; |
| if (N->getOpcode() != ISD::LOAD && N->getOpcode() != ISD::STORE) |
| continue; |
| |
| SDValue BasePtr = cast<MemSDNode>(N)->getBasePtr(); |
| if (BasePtr.getOpcode() != ISD::ADD) |
| continue; |
| |
| // We've already processed this node |
| if (RootWeights.count(BasePtr.getNode())) |
| continue; |
| |
| LLVM_DEBUG(dbgs() << "** Rebalancing address calculation in node: "); |
| LLVM_DEBUG(N->dump(CurDAG)); |
| |
| // FindRoots |
| SmallVector<SDNode *, 4> Worklist; |
| |
| Worklist.push_back(BasePtr.getOperand(0).getNode()); |
| Worklist.push_back(BasePtr.getOperand(1).getNode()); |
| |
| while (!Worklist.empty()) { |
| SDNode *N = Worklist.pop_back_val(); |
| unsigned Opcode = N->getOpcode(); |
| |
| if (!isOpcodeHandled(N)) |
| continue; |
| |
| Worklist.push_back(N->getOperand(0).getNode()); |
| Worklist.push_back(N->getOperand(1).getNode()); |
| |
| // Not a root if it has only one use and same opcode as its parent |
| if (N->hasOneUse() && Opcode == N->use_begin()->getOpcode()) |
| continue; |
| |
| // This root node has already been processed |
| if (RootWeights.count(N)) |
| continue; |
| |
| RootWeights[N] = -1; |
| } |
| |
| // Balance node itself |
| RootWeights[BasePtr.getNode()] = -1; |
| SDValue NewBasePtr = balanceSubTree(BasePtr.getNode(), /*TopLevel=*/ true); |
| |
| if (N->getOpcode() == ISD::LOAD) |
| N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), |
| NewBasePtr, N->getOperand(2)); |
| else |
| N = CurDAG->UpdateNodeOperands(N, N->getOperand(0), N->getOperand(1), |
| NewBasePtr, N->getOperand(3)); |
| |
| LLVM_DEBUG(dbgs() << "--> Final node: "); |
| LLVM_DEBUG(N->dump(CurDAG)); |
| } |
| |
| CurDAG->RemoveDeadNodes(); |
| GAUsesInFunction.clear(); |
| RootHeights.clear(); |
| RootWeights.clear(); |
| } |