| //===- HexagonBitTracker.cpp ----------------------------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "HexagonBitTracker.h" |
| #include "Hexagon.h" |
| #include "HexagonInstrInfo.h" |
| #include "HexagonRegisterInfo.h" |
| #include "HexagonSubtarget.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstdlib> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| using BT = BitTracker; |
| |
| HexagonEvaluator::HexagonEvaluator(const HexagonRegisterInfo &tri, |
| MachineRegisterInfo &mri, |
| const HexagonInstrInfo &tii, |
| MachineFunction &mf) |
| : MachineEvaluator(tri, mri), MF(mf), MFI(mf.getFrameInfo()), TII(tii) { |
| // Populate the VRX map (VR to extension-type). |
| // Go over all the formal parameters of the function. If a given parameter |
| // P is sign- or zero-extended, locate the virtual register holding that |
| // parameter and create an entry in the VRX map indicating the type of ex- |
| // tension (and the source type). |
| // This is a bit complicated to do accurately, since the memory layout in- |
| // formation is necessary to precisely determine whether an aggregate para- |
| // meter will be passed in a register or in memory. What is given in MRI |
| // is the association between the physical register that is live-in (i.e. |
| // holds an argument), and the virtual register that this value will be |
| // copied into. This, by itself, is not sufficient to map back the virtual |
| // register to a formal parameter from Function (since consecutive live-ins |
| // from MRI may not correspond to consecutive formal parameters from Func- |
| // tion). To avoid the complications with in-memory arguments, only consi- |
| // der the initial sequence of formal parameters that are known to be |
| // passed via registers. |
| unsigned InVirtReg, InPhysReg = 0; |
| |
| for (const Argument &Arg : MF.getFunction().args()) { |
| Type *ATy = Arg.getType(); |
| unsigned Width = 0; |
| if (ATy->isIntegerTy()) |
| Width = ATy->getIntegerBitWidth(); |
| else if (ATy->isPointerTy()) |
| Width = 32; |
| // If pointer size is not set through target data, it will default to |
| // Module::AnyPointerSize. |
| if (Width == 0 || Width > 64) |
| break; |
| if (Arg.hasAttribute(Attribute::ByVal)) |
| continue; |
| InPhysReg = getNextPhysReg(InPhysReg, Width); |
| if (!InPhysReg) |
| break; |
| InVirtReg = getVirtRegFor(InPhysReg); |
| if (!InVirtReg) |
| continue; |
| if (Arg.hasAttribute(Attribute::SExt)) |
| VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::SExt, Width))); |
| else if (Arg.hasAttribute(Attribute::ZExt)) |
| VRX.insert(std::make_pair(InVirtReg, ExtType(ExtType::ZExt, Width))); |
| } |
| } |
| |
| BT::BitMask HexagonEvaluator::mask(unsigned Reg, unsigned Sub) const { |
| if (Sub == 0) |
| return MachineEvaluator::mask(Reg, 0); |
| const TargetRegisterClass &RC = *MRI.getRegClass(Reg); |
| unsigned ID = RC.getID(); |
| uint16_t RW = getRegBitWidth(RegisterRef(Reg, Sub)); |
| const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI); |
| bool IsSubLo = (Sub == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo)); |
| switch (ID) { |
| case Hexagon::DoubleRegsRegClassID: |
| case Hexagon::HvxWRRegClassID: |
| case Hexagon::HvxVQRRegClassID: |
| return IsSubLo ? BT::BitMask(0, RW-1) |
| : BT::BitMask(RW, 2*RW-1); |
| default: |
| break; |
| } |
| #ifndef NDEBUG |
| dbgs() << printReg(Reg, &TRI, Sub) << " in reg class " |
| << TRI.getRegClassName(&RC) << '\n'; |
| #endif |
| llvm_unreachable("Unexpected register/subregister"); |
| } |
| |
| uint16_t HexagonEvaluator::getPhysRegBitWidth(unsigned Reg) const { |
| assert(Register::isPhysicalRegister(Reg)); |
| |
| using namespace Hexagon; |
| const auto &HST = MF.getSubtarget<HexagonSubtarget>(); |
| if (HST.useHVXOps()) { |
| for (auto &RC : {HvxVRRegClass, HvxWRRegClass, HvxQRRegClass, |
| HvxVQRRegClass}) |
| if (RC.contains(Reg)) |
| return TRI.getRegSizeInBits(RC); |
| } |
| // Default treatment for other physical registers. |
| if (const TargetRegisterClass *RC = TRI.getMinimalPhysRegClass(Reg)) |
| return TRI.getRegSizeInBits(*RC); |
| |
| llvm_unreachable( |
| (Twine("Unhandled physical register") + TRI.getName(Reg)).str().c_str()); |
| } |
| |
| const TargetRegisterClass &HexagonEvaluator::composeWithSubRegIndex( |
| const TargetRegisterClass &RC, unsigned Idx) const { |
| if (Idx == 0) |
| return RC; |
| |
| #ifndef NDEBUG |
| const auto &HRI = static_cast<const HexagonRegisterInfo&>(TRI); |
| bool IsSubLo = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_lo)); |
| bool IsSubHi = (Idx == HRI.getHexagonSubRegIndex(RC, Hexagon::ps_sub_hi)); |
| assert(IsSubLo != IsSubHi && "Must refer to either low or high subreg"); |
| #endif |
| |
| switch (RC.getID()) { |
| case Hexagon::DoubleRegsRegClassID: |
| return Hexagon::IntRegsRegClass; |
| case Hexagon::HvxWRRegClassID: |
| return Hexagon::HvxVRRegClass; |
| case Hexagon::HvxVQRRegClassID: |
| return Hexagon::HvxWRRegClass; |
| default: |
| break; |
| } |
| #ifndef NDEBUG |
| dbgs() << "Reg class id: " << RC.getID() << " idx: " << Idx << '\n'; |
| #endif |
| llvm_unreachable("Unimplemented combination of reg class/subreg idx"); |
| } |
| |
| namespace { |
| |
| class RegisterRefs { |
| std::vector<BT::RegisterRef> Vector; |
| |
| public: |
| RegisterRefs(const MachineInstr &MI) : Vector(MI.getNumOperands()) { |
| for (unsigned i = 0, n = Vector.size(); i < n; ++i) { |
| const MachineOperand &MO = MI.getOperand(i); |
| if (MO.isReg()) |
| Vector[i] = BT::RegisterRef(MO); |
| // For indices that don't correspond to registers, the entry will |
| // remain constructed via the default constructor. |
| } |
| } |
| |
| size_t size() const { return Vector.size(); } |
| |
| const BT::RegisterRef &operator[](unsigned n) const { |
| // The main purpose of this operator is to assert with bad argument. |
| assert(n < Vector.size()); |
| return Vector[n]; |
| } |
| }; |
| |
| } // end anonymous namespace |
| |
| bool HexagonEvaluator::evaluate(const MachineInstr &MI, |
| const CellMapType &Inputs, |
| CellMapType &Outputs) const { |
| using namespace Hexagon; |
| |
| unsigned NumDefs = 0; |
| |
| // Sanity verification: there should not be any defs with subregisters. |
| for (const MachineOperand &MO : MI.operands()) { |
| if (!MO.isReg() || !MO.isDef()) |
| continue; |
| NumDefs++; |
| assert(MO.getSubReg() == 0); |
| } |
| |
| if (NumDefs == 0) |
| return false; |
| |
| unsigned Opc = MI.getOpcode(); |
| |
| if (MI.mayLoad()) { |
| switch (Opc) { |
| // These instructions may be marked as mayLoad, but they are generating |
| // immediate values, so skip them. |
| case CONST32: |
| case CONST64: |
| break; |
| default: |
| return evaluateLoad(MI, Inputs, Outputs); |
| } |
| } |
| |
| // Check COPY instructions that copy formal parameters into virtual |
| // registers. Such parameters can be sign- or zero-extended at the |
| // call site, and we should take advantage of this knowledge. The MRI |
| // keeps a list of pairs of live-in physical and virtual registers, |
| // which provides information about which virtual registers will hold |
| // the argument values. The function will still contain instructions |
| // defining those virtual registers, and in practice those are COPY |
| // instructions from a physical to a virtual register. In such cases, |
| // applying the argument extension to the virtual register can be seen |
| // as simply mirroring the extension that had already been applied to |
| // the physical register at the call site. If the defining instruction |
| // was not a COPY, it would not be clear how to mirror that extension |
| // on the callee's side. For that reason, only check COPY instructions |
| // for potential extensions. |
| if (MI.isCopy()) { |
| if (evaluateFormalCopy(MI, Inputs, Outputs)) |
| return true; |
| } |
| |
| // Beyond this point, if any operand is a global, skip that instruction. |
| // The reason is that certain instructions that can take an immediate |
| // operand can also have a global symbol in that operand. To avoid |
| // checking what kind of operand a given instruction has individually |
| // for each instruction, do it here. Global symbols as operands gene- |
| // rally do not provide any useful information. |
| for (const MachineOperand &MO : MI.operands()) { |
| if (MO.isGlobal() || MO.isBlockAddress() || MO.isSymbol() || MO.isJTI() || |
| MO.isCPI()) |
| return false; |
| } |
| |
| RegisterRefs Reg(MI); |
| #define op(i) MI.getOperand(i) |
| #define rc(i) RegisterCell::ref(getCell(Reg[i], Inputs)) |
| #define im(i) MI.getOperand(i).getImm() |
| |
| // If the instruction has no register operands, skip it. |
| if (Reg.size() == 0) |
| return false; |
| |
| // Record result for register in operand 0. |
| auto rr0 = [this,Reg] (const BT::RegisterCell &Val, CellMapType &Outputs) |
| -> bool { |
| putCell(Reg[0], Val, Outputs); |
| return true; |
| }; |
| // Get the cell corresponding to the N-th operand. |
| auto cop = [this, &Reg, &MI, &Inputs](unsigned N, |
| uint16_t W) -> BT::RegisterCell { |
| const MachineOperand &Op = MI.getOperand(N); |
| if (Op.isImm()) |
| return eIMM(Op.getImm(), W); |
| if (!Op.isReg()) |
| return RegisterCell::self(0, W); |
| assert(getRegBitWidth(Reg[N]) == W && "Register width mismatch"); |
| return rc(N); |
| }; |
| // Extract RW low bits of the cell. |
| auto lo = [this] (const BT::RegisterCell &RC, uint16_t RW) |
| -> BT::RegisterCell { |
| assert(RW <= RC.width()); |
| return eXTR(RC, 0, RW); |
| }; |
| // Extract RW high bits of the cell. |
| auto hi = [this] (const BT::RegisterCell &RC, uint16_t RW) |
| -> BT::RegisterCell { |
| uint16_t W = RC.width(); |
| assert(RW <= W); |
| return eXTR(RC, W-RW, W); |
| }; |
| // Extract N-th halfword (counting from the least significant position). |
| auto half = [this] (const BT::RegisterCell &RC, unsigned N) |
| -> BT::RegisterCell { |
| assert(N*16+16 <= RC.width()); |
| return eXTR(RC, N*16, N*16+16); |
| }; |
| // Shuffle bits (pick even/odd from cells and merge into result). |
| auto shuffle = [this] (const BT::RegisterCell &Rs, const BT::RegisterCell &Rt, |
| uint16_t BW, bool Odd) -> BT::RegisterCell { |
| uint16_t I = Odd, Ws = Rs.width(); |
| assert(Ws == Rt.width()); |
| RegisterCell RC = eXTR(Rt, I*BW, I*BW+BW).cat(eXTR(Rs, I*BW, I*BW+BW)); |
| I += 2; |
| while (I*BW < Ws) { |
| RC.cat(eXTR(Rt, I*BW, I*BW+BW)).cat(eXTR(Rs, I*BW, I*BW+BW)); |
| I += 2; |
| } |
| return RC; |
| }; |
| |
| // The bitwidth of the 0th operand. In most (if not all) of the |
| // instructions below, the 0th operand is the defined register. |
| // Pre-compute the bitwidth here, because it is needed in many cases |
| // cases below. |
| uint16_t W0 = (Reg[0].Reg != 0) ? getRegBitWidth(Reg[0]) : 0; |
| |
| // Register id of the 0th operand. It can be 0. |
| unsigned Reg0 = Reg[0].Reg; |
| |
| switch (Opc) { |
| // Transfer immediate: |
| |
| case A2_tfrsi: |
| case A2_tfrpi: |
| case CONST32: |
| case CONST64: |
| return rr0(eIMM(im(1), W0), Outputs); |
| case PS_false: |
| return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::Zero), Outputs); |
| case PS_true: |
| return rr0(RegisterCell(W0).fill(0, W0, BT::BitValue::One), Outputs); |
| case PS_fi: { |
| int FI = op(1).getIndex(); |
| int Off = op(2).getImm(); |
| unsigned A = MFI.getObjectAlignment(FI) + std::abs(Off); |
| unsigned L = countTrailingZeros(A); |
| RegisterCell RC = RegisterCell::self(Reg[0].Reg, W0); |
| RC.fill(0, L, BT::BitValue::Zero); |
| return rr0(RC, Outputs); |
| } |
| |
| // Transfer register: |
| |
| case A2_tfr: |
| case A2_tfrp: |
| case C2_pxfer_map: |
| return rr0(rc(1), Outputs); |
| case C2_tfrpr: { |
| uint16_t RW = W0; |
| uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]); |
| assert(PW <= RW); |
| RegisterCell PC = eXTR(rc(1), 0, PW); |
| RegisterCell RC = RegisterCell(RW).insert(PC, BT::BitMask(0, PW-1)); |
| RC.fill(PW, RW, BT::BitValue::Zero); |
| return rr0(RC, Outputs); |
| } |
| case C2_tfrrp: { |
| uint16_t RW = W0; |
| uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]); |
| RegisterCell RC = RegisterCell::self(Reg[0].Reg, RW); |
| RC.fill(PW, RW, BT::BitValue::Zero); |
| return rr0(eINS(RC, eXTR(rc(1), 0, PW), 0), Outputs); |
| } |
| |
| // Arithmetic: |
| |
| case A2_abs: |
| case A2_absp: |
| // TODO |
| break; |
| |
| case A2_addsp: { |
| uint16_t W1 = getRegBitWidth(Reg[1]); |
| assert(W0 == 64 && W1 == 32); |
| RegisterCell CW = RegisterCell(W0).insert(rc(1), BT::BitMask(0, W1-1)); |
| RegisterCell RC = eADD(eSXT(CW, W1), rc(2)); |
| return rr0(RC, Outputs); |
| } |
| case A2_add: |
| case A2_addp: |
| return rr0(eADD(rc(1), rc(2)), Outputs); |
| case A2_addi: |
| return rr0(eADD(rc(1), eIMM(im(2), W0)), Outputs); |
| case S4_addi_asl_ri: { |
| RegisterCell RC = eADD(eIMM(im(1), W0), eASL(rc(2), im(3))); |
| return rr0(RC, Outputs); |
| } |
| case S4_addi_lsr_ri: { |
| RegisterCell RC = eADD(eIMM(im(1), W0), eLSR(rc(2), im(3))); |
| return rr0(RC, Outputs); |
| } |
| case S4_addaddi: { |
| RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0))); |
| return rr0(RC, Outputs); |
| } |
| case M4_mpyri_addi: { |
| RegisterCell M = eMLS(rc(2), eIMM(im(3), W0)); |
| RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0)); |
| return rr0(RC, Outputs); |
| } |
| case M4_mpyrr_addi: { |
| RegisterCell M = eMLS(rc(2), rc(3)); |
| RegisterCell RC = eADD(eIMM(im(1), W0), lo(M, W0)); |
| return rr0(RC, Outputs); |
| } |
| case M4_mpyri_addr_u2: { |
| RegisterCell M = eMLS(eIMM(im(2), W0), rc(3)); |
| RegisterCell RC = eADD(rc(1), lo(M, W0)); |
| return rr0(RC, Outputs); |
| } |
| case M4_mpyri_addr: { |
| RegisterCell M = eMLS(rc(2), eIMM(im(3), W0)); |
| RegisterCell RC = eADD(rc(1), lo(M, W0)); |
| return rr0(RC, Outputs); |
| } |
| case M4_mpyrr_addr: { |
| RegisterCell M = eMLS(rc(2), rc(3)); |
| RegisterCell RC = eADD(rc(1), lo(M, W0)); |
| return rr0(RC, Outputs); |
| } |
| case S4_subaddi: { |
| RegisterCell RC = eADD(rc(1), eSUB(eIMM(im(2), W0), rc(3))); |
| return rr0(RC, Outputs); |
| } |
| case M2_accii: { |
| RegisterCell RC = eADD(rc(1), eADD(rc(2), eIMM(im(3), W0))); |
| return rr0(RC, Outputs); |
| } |
| case M2_acci: { |
| RegisterCell RC = eADD(rc(1), eADD(rc(2), rc(3))); |
| return rr0(RC, Outputs); |
| } |
| case M2_subacc: { |
| RegisterCell RC = eADD(rc(1), eSUB(rc(2), rc(3))); |
| return rr0(RC, Outputs); |
| } |
| case S2_addasl_rrri: { |
| RegisterCell RC = eADD(rc(1), eASL(rc(2), im(3))); |
| return rr0(RC, Outputs); |
| } |
| case C4_addipc: { |
| RegisterCell RPC = RegisterCell::self(Reg[0].Reg, W0); |
| RPC.fill(0, 2, BT::BitValue::Zero); |
| return rr0(eADD(RPC, eIMM(im(2), W0)), Outputs); |
| } |
| case A2_sub: |
| case A2_subp: |
| return rr0(eSUB(rc(1), rc(2)), Outputs); |
| case A2_subri: |
| return rr0(eSUB(eIMM(im(1), W0), rc(2)), Outputs); |
| case S4_subi_asl_ri: { |
| RegisterCell RC = eSUB(eIMM(im(1), W0), eASL(rc(2), im(3))); |
| return rr0(RC, Outputs); |
| } |
| case S4_subi_lsr_ri: { |
| RegisterCell RC = eSUB(eIMM(im(1), W0), eLSR(rc(2), im(3))); |
| return rr0(RC, Outputs); |
| } |
| case M2_naccii: { |
| RegisterCell RC = eSUB(rc(1), eADD(rc(2), eIMM(im(3), W0))); |
| return rr0(RC, Outputs); |
| } |
| case M2_nacci: { |
| RegisterCell RC = eSUB(rc(1), eADD(rc(2), rc(3))); |
| return rr0(RC, Outputs); |
| } |
| // 32-bit negation is done by "Rd = A2_subri 0, Rs" |
| case A2_negp: |
| return rr0(eSUB(eIMM(0, W0), rc(1)), Outputs); |
| |
| case M2_mpy_up: { |
| RegisterCell M = eMLS(rc(1), rc(2)); |
| return rr0(hi(M, W0), Outputs); |
| } |
| case M2_dpmpyss_s0: |
| return rr0(eMLS(rc(1), rc(2)), Outputs); |
| case M2_dpmpyss_acc_s0: |
| return rr0(eADD(rc(1), eMLS(rc(2), rc(3))), Outputs); |
| case M2_dpmpyss_nac_s0: |
| return rr0(eSUB(rc(1), eMLS(rc(2), rc(3))), Outputs); |
| case M2_mpyi: { |
| RegisterCell M = eMLS(rc(1), rc(2)); |
| return rr0(lo(M, W0), Outputs); |
| } |
| case M2_macsip: { |
| RegisterCell M = eMLS(rc(2), eIMM(im(3), W0)); |
| RegisterCell RC = eADD(rc(1), lo(M, W0)); |
| return rr0(RC, Outputs); |
| } |
| case M2_macsin: { |
| RegisterCell M = eMLS(rc(2), eIMM(im(3), W0)); |
| RegisterCell RC = eSUB(rc(1), lo(M, W0)); |
| return rr0(RC, Outputs); |
| } |
| case M2_maci: { |
| RegisterCell M = eMLS(rc(2), rc(3)); |
| RegisterCell RC = eADD(rc(1), lo(M, W0)); |
| return rr0(RC, Outputs); |
| } |
| case M2_mpysmi: { |
| RegisterCell M = eMLS(rc(1), eIMM(im(2), W0)); |
| return rr0(lo(M, 32), Outputs); |
| } |
| case M2_mpysin: { |
| RegisterCell M = eMLS(rc(1), eIMM(-im(2), W0)); |
| return rr0(lo(M, 32), Outputs); |
| } |
| case M2_mpysip: { |
| RegisterCell M = eMLS(rc(1), eIMM(im(2), W0)); |
| return rr0(lo(M, 32), Outputs); |
| } |
| case M2_mpyu_up: { |
| RegisterCell M = eMLU(rc(1), rc(2)); |
| return rr0(hi(M, W0), Outputs); |
| } |
| case M2_dpmpyuu_s0: |
| return rr0(eMLU(rc(1), rc(2)), Outputs); |
| case M2_dpmpyuu_acc_s0: |
| return rr0(eADD(rc(1), eMLU(rc(2), rc(3))), Outputs); |
| case M2_dpmpyuu_nac_s0: |
| return rr0(eSUB(rc(1), eMLU(rc(2), rc(3))), Outputs); |
| //case M2_mpysu_up: |
| |
| // Logical/bitwise: |
| |
| case A2_andir: |
| return rr0(eAND(rc(1), eIMM(im(2), W0)), Outputs); |
| case A2_and: |
| case A2_andp: |
| return rr0(eAND(rc(1), rc(2)), Outputs); |
| case A4_andn: |
| case A4_andnp: |
| return rr0(eAND(rc(1), eNOT(rc(2))), Outputs); |
| case S4_andi_asl_ri: { |
| RegisterCell RC = eAND(eIMM(im(1), W0), eASL(rc(2), im(3))); |
| return rr0(RC, Outputs); |
| } |
| case S4_andi_lsr_ri: { |
| RegisterCell RC = eAND(eIMM(im(1), W0), eLSR(rc(2), im(3))); |
| return rr0(RC, Outputs); |
| } |
| case M4_and_and: |
| return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs); |
| case M4_and_andn: |
| return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); |
| case M4_and_or: |
| return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs); |
| case M4_and_xor: |
| return rr0(eAND(rc(1), eXOR(rc(2), rc(3))), Outputs); |
| case A2_orir: |
| return rr0(eORL(rc(1), eIMM(im(2), W0)), Outputs); |
| case A2_or: |
| case A2_orp: |
| return rr0(eORL(rc(1), rc(2)), Outputs); |
| case A4_orn: |
| case A4_ornp: |
| return rr0(eORL(rc(1), eNOT(rc(2))), Outputs); |
| case S4_ori_asl_ri: { |
| RegisterCell RC = eORL(eIMM(im(1), W0), eASL(rc(2), im(3))); |
| return rr0(RC, Outputs); |
| } |
| case S4_ori_lsr_ri: { |
| RegisterCell RC = eORL(eIMM(im(1), W0), eLSR(rc(2), im(3))); |
| return rr0(RC, Outputs); |
| } |
| case M4_or_and: |
| return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs); |
| case M4_or_andn: |
| return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); |
| case S4_or_andi: |
| case S4_or_andix: { |
| RegisterCell RC = eORL(rc(1), eAND(rc(2), eIMM(im(3), W0))); |
| return rr0(RC, Outputs); |
| } |
| case S4_or_ori: { |
| RegisterCell RC = eORL(rc(1), eORL(rc(2), eIMM(im(3), W0))); |
| return rr0(RC, Outputs); |
| } |
| case M4_or_or: |
| return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs); |
| case M4_or_xor: |
| return rr0(eORL(rc(1), eXOR(rc(2), rc(3))), Outputs); |
| case A2_xor: |
| case A2_xorp: |
| return rr0(eXOR(rc(1), rc(2)), Outputs); |
| case M4_xor_and: |
| return rr0(eXOR(rc(1), eAND(rc(2), rc(3))), Outputs); |
| case M4_xor_andn: |
| return rr0(eXOR(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); |
| case M4_xor_or: |
| return rr0(eXOR(rc(1), eORL(rc(2), rc(3))), Outputs); |
| case M4_xor_xacc: |
| return rr0(eXOR(rc(1), eXOR(rc(2), rc(3))), Outputs); |
| case A2_not: |
| case A2_notp: |
| return rr0(eNOT(rc(1)), Outputs); |
| |
| case S2_asl_i_r: |
| case S2_asl_i_p: |
| return rr0(eASL(rc(1), im(2)), Outputs); |
| case A2_aslh: |
| return rr0(eASL(rc(1), 16), Outputs); |
| case S2_asl_i_r_acc: |
| case S2_asl_i_p_acc: |
| return rr0(eADD(rc(1), eASL(rc(2), im(3))), Outputs); |
| case S2_asl_i_r_nac: |
| case S2_asl_i_p_nac: |
| return rr0(eSUB(rc(1), eASL(rc(2), im(3))), Outputs); |
| case S2_asl_i_r_and: |
| case S2_asl_i_p_and: |
| return rr0(eAND(rc(1), eASL(rc(2), im(3))), Outputs); |
| case S2_asl_i_r_or: |
| case S2_asl_i_p_or: |
| return rr0(eORL(rc(1), eASL(rc(2), im(3))), Outputs); |
| case S2_asl_i_r_xacc: |
| case S2_asl_i_p_xacc: |
| return rr0(eXOR(rc(1), eASL(rc(2), im(3))), Outputs); |
| case S2_asl_i_vh: |
| case S2_asl_i_vw: |
| // TODO |
| break; |
| |
| case S2_asr_i_r: |
| case S2_asr_i_p: |
| return rr0(eASR(rc(1), im(2)), Outputs); |
| case A2_asrh: |
| return rr0(eASR(rc(1), 16), Outputs); |
| case S2_asr_i_r_acc: |
| case S2_asr_i_p_acc: |
| return rr0(eADD(rc(1), eASR(rc(2), im(3))), Outputs); |
| case S2_asr_i_r_nac: |
| case S2_asr_i_p_nac: |
| return rr0(eSUB(rc(1), eASR(rc(2), im(3))), Outputs); |
| case S2_asr_i_r_and: |
| case S2_asr_i_p_and: |
| return rr0(eAND(rc(1), eASR(rc(2), im(3))), Outputs); |
| case S2_asr_i_r_or: |
| case S2_asr_i_p_or: |
| return rr0(eORL(rc(1), eASR(rc(2), im(3))), Outputs); |
| case S2_asr_i_r_rnd: { |
| // The input is first sign-extended to 64 bits, then the output |
| // is truncated back to 32 bits. |
| assert(W0 == 32); |
| RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0); |
| RegisterCell RC = eASR(eADD(eASR(XC, im(2)), eIMM(1, 2*W0)), 1); |
| return rr0(eXTR(RC, 0, W0), Outputs); |
| } |
| case S2_asr_i_r_rnd_goodsyntax: { |
| int64_t S = im(2); |
| if (S == 0) |
| return rr0(rc(1), Outputs); |
| // Result: S2_asr_i_r_rnd Rs, u5-1 |
| RegisterCell XC = eSXT(rc(1).cat(eIMM(0, W0)), W0); |
| RegisterCell RC = eLSR(eADD(eASR(XC, S-1), eIMM(1, 2*W0)), 1); |
| return rr0(eXTR(RC, 0, W0), Outputs); |
| } |
| case S2_asr_r_vh: |
| case S2_asr_i_vw: |
| case S2_asr_i_svw_trun: |
| // TODO |
| break; |
| |
| case S2_lsr_i_r: |
| case S2_lsr_i_p: |
| return rr0(eLSR(rc(1), im(2)), Outputs); |
| case S2_lsr_i_r_acc: |
| case S2_lsr_i_p_acc: |
| return rr0(eADD(rc(1), eLSR(rc(2), im(3))), Outputs); |
| case S2_lsr_i_r_nac: |
| case S2_lsr_i_p_nac: |
| return rr0(eSUB(rc(1), eLSR(rc(2), im(3))), Outputs); |
| case S2_lsr_i_r_and: |
| case S2_lsr_i_p_and: |
| return rr0(eAND(rc(1), eLSR(rc(2), im(3))), Outputs); |
| case S2_lsr_i_r_or: |
| case S2_lsr_i_p_or: |
| return rr0(eORL(rc(1), eLSR(rc(2), im(3))), Outputs); |
| case S2_lsr_i_r_xacc: |
| case S2_lsr_i_p_xacc: |
| return rr0(eXOR(rc(1), eLSR(rc(2), im(3))), Outputs); |
| |
| case S2_clrbit_i: { |
| RegisterCell RC = rc(1); |
| RC[im(2)] = BT::BitValue::Zero; |
| return rr0(RC, Outputs); |
| } |
| case S2_setbit_i: { |
| RegisterCell RC = rc(1); |
| RC[im(2)] = BT::BitValue::One; |
| return rr0(RC, Outputs); |
| } |
| case S2_togglebit_i: { |
| RegisterCell RC = rc(1); |
| uint16_t BX = im(2); |
| RC[BX] = RC[BX].is(0) ? BT::BitValue::One |
| : RC[BX].is(1) ? BT::BitValue::Zero |
| : BT::BitValue::self(); |
| return rr0(RC, Outputs); |
| } |
| |
| case A4_bitspliti: { |
| uint16_t W1 = getRegBitWidth(Reg[1]); |
| uint16_t BX = im(2); |
| // Res.uw[1] = Rs[bx+1:], Res.uw[0] = Rs[0:bx] |
| const BT::BitValue Zero = BT::BitValue::Zero; |
| RegisterCell RZ = RegisterCell(W0).fill(BX, W1, Zero) |
| .fill(W1+(W1-BX), W0, Zero); |
| RegisterCell BF1 = eXTR(rc(1), 0, BX), BF2 = eXTR(rc(1), BX, W1); |
| RegisterCell RC = eINS(eINS(RZ, BF1, 0), BF2, W1); |
| return rr0(RC, Outputs); |
| } |
| case S4_extract: |
| case S4_extractp: |
| case S2_extractu: |
| case S2_extractup: { |
| uint16_t Wd = im(2), Of = im(3); |
| assert(Wd <= W0); |
| if (Wd == 0) |
| return rr0(eIMM(0, W0), Outputs); |
| // If the width extends beyond the register size, pad the register |
| // with 0 bits. |
| RegisterCell Pad = (Wd+Of > W0) ? rc(1).cat(eIMM(0, Wd+Of-W0)) : rc(1); |
| RegisterCell Ext = eXTR(Pad, Of, Wd+Of); |
| // Ext is short, need to extend it with 0s or sign bit. |
| RegisterCell RC = RegisterCell(W0).insert(Ext, BT::BitMask(0, Wd-1)); |
| if (Opc == S2_extractu || Opc == S2_extractup) |
| return rr0(eZXT(RC, Wd), Outputs); |
| return rr0(eSXT(RC, Wd), Outputs); |
| } |
| case S2_insert: |
| case S2_insertp: { |
| uint16_t Wd = im(3), Of = im(4); |
| assert(Wd < W0 && Of < W0); |
| // If Wd+Of exceeds W0, the inserted bits are truncated. |
| if (Wd+Of > W0) |
| Wd = W0-Of; |
| if (Wd == 0) |
| return rr0(rc(1), Outputs); |
| return rr0(eINS(rc(1), eXTR(rc(2), 0, Wd), Of), Outputs); |
| } |
| |
| // Bit permutations: |
| |
| case A2_combineii: |
| case A4_combineii: |
| case A4_combineir: |
| case A4_combineri: |
| case A2_combinew: |
| case V6_vcombine: |
| assert(W0 % 2 == 0); |
| return rr0(cop(2, W0/2).cat(cop(1, W0/2)), Outputs); |
| case A2_combine_ll: |
| case A2_combine_lh: |
| case A2_combine_hl: |
| case A2_combine_hh: { |
| assert(W0 == 32); |
| assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32); |
| // Low half in the output is 0 for _ll and _hl, 1 otherwise: |
| unsigned LoH = !(Opc == A2_combine_ll || Opc == A2_combine_hl); |
| // High half in the output is 0 for _ll and _lh, 1 otherwise: |
| unsigned HiH = !(Opc == A2_combine_ll || Opc == A2_combine_lh); |
| RegisterCell R1 = rc(1); |
| RegisterCell R2 = rc(2); |
| RegisterCell RC = half(R2, LoH).cat(half(R1, HiH)); |
| return rr0(RC, Outputs); |
| } |
| case S2_packhl: { |
| assert(W0 == 64); |
| assert(getRegBitWidth(Reg[1]) == 32 && getRegBitWidth(Reg[2]) == 32); |
| RegisterCell R1 = rc(1); |
| RegisterCell R2 = rc(2); |
| RegisterCell RC = half(R2, 0).cat(half(R1, 0)).cat(half(R2, 1)) |
| .cat(half(R1, 1)); |
| return rr0(RC, Outputs); |
| } |
| case S2_shuffeb: { |
| RegisterCell RC = shuffle(rc(1), rc(2), 8, false); |
| return rr0(RC, Outputs); |
| } |
| case S2_shuffeh: { |
| RegisterCell RC = shuffle(rc(1), rc(2), 16, false); |
| return rr0(RC, Outputs); |
| } |
| case S2_shuffob: { |
| RegisterCell RC = shuffle(rc(1), rc(2), 8, true); |
| return rr0(RC, Outputs); |
| } |
| case S2_shuffoh: { |
| RegisterCell RC = shuffle(rc(1), rc(2), 16, true); |
| return rr0(RC, Outputs); |
| } |
| case C2_mask: { |
| uint16_t WR = W0; |
| uint16_t WP = 8; // XXX Pred size: getRegBitWidth(Reg[1]); |
| assert(WR == 64 && WP == 8); |
| RegisterCell R1 = rc(1); |
| RegisterCell RC(WR); |
| for (uint16_t i = 0; i < WP; ++i) { |
| const BT::BitValue &V = R1[i]; |
| BT::BitValue F = (V.is(0) || V.is(1)) ? V : BT::BitValue::self(); |
| RC.fill(i*8, i*8+8, F); |
| } |
| return rr0(RC, Outputs); |
| } |
| |
| // Mux: |
| |
| case C2_muxii: |
| case C2_muxir: |
| case C2_muxri: |
| case C2_mux: { |
| BT::BitValue PC0 = rc(1)[0]; |
| RegisterCell R2 = cop(2, W0); |
| RegisterCell R3 = cop(3, W0); |
| if (PC0.is(0) || PC0.is(1)) |
| return rr0(RegisterCell::ref(PC0 ? R2 : R3), Outputs); |
| R2.meet(R3, Reg[0].Reg); |
| return rr0(R2, Outputs); |
| } |
| case C2_vmux: |
| // TODO |
| break; |
| |
| // Sign- and zero-extension: |
| |
| case A2_sxtb: |
| return rr0(eSXT(rc(1), 8), Outputs); |
| case A2_sxth: |
| return rr0(eSXT(rc(1), 16), Outputs); |
| case A2_sxtw: { |
| uint16_t W1 = getRegBitWidth(Reg[1]); |
| assert(W0 == 64 && W1 == 32); |
| RegisterCell RC = eSXT(rc(1).cat(eIMM(0, W1)), W1); |
| return rr0(RC, Outputs); |
| } |
| case A2_zxtb: |
| return rr0(eZXT(rc(1), 8), Outputs); |
| case A2_zxth: |
| return rr0(eZXT(rc(1), 16), Outputs); |
| |
| // Saturations |
| |
| case A2_satb: |
| return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs); |
| case A2_sath: |
| return rr0(eSXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs); |
| case A2_satub: |
| return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 8), Outputs); |
| case A2_satuh: |
| return rr0(eZXT(RegisterCell::self(0, W0).regify(Reg0), 16), Outputs); |
| |
| // Bit count: |
| |
| case S2_cl0: |
| case S2_cl0p: |
| // Always produce a 32-bit result. |
| return rr0(eCLB(rc(1), false/*bit*/, 32), Outputs); |
| case S2_cl1: |
| case S2_cl1p: |
| return rr0(eCLB(rc(1), true/*bit*/, 32), Outputs); |
| case S2_clb: |
| case S2_clbp: { |
| uint16_t W1 = getRegBitWidth(Reg[1]); |
| RegisterCell R1 = rc(1); |
| BT::BitValue TV = R1[W1-1]; |
| if (TV.is(0) || TV.is(1)) |
| return rr0(eCLB(R1, TV, 32), Outputs); |
| break; |
| } |
| case S2_ct0: |
| case S2_ct0p: |
| return rr0(eCTB(rc(1), false/*bit*/, 32), Outputs); |
| case S2_ct1: |
| case S2_ct1p: |
| return rr0(eCTB(rc(1), true/*bit*/, 32), Outputs); |
| case S5_popcountp: |
| // TODO |
| break; |
| |
| case C2_all8: { |
| RegisterCell P1 = rc(1); |
| bool Has0 = false, All1 = true; |
| for (uint16_t i = 0; i < 8/*XXX*/; ++i) { |
| if (!P1[i].is(1)) |
| All1 = false; |
| if (!P1[i].is(0)) |
| continue; |
| Has0 = true; |
| break; |
| } |
| if (!Has0 && !All1) |
| break; |
| RegisterCell RC(W0); |
| RC.fill(0, W0, (All1 ? BT::BitValue::One : BT::BitValue::Zero)); |
| return rr0(RC, Outputs); |
| } |
| case C2_any8: { |
| RegisterCell P1 = rc(1); |
| bool Has1 = false, All0 = true; |
| for (uint16_t i = 0; i < 8/*XXX*/; ++i) { |
| if (!P1[i].is(0)) |
| All0 = false; |
| if (!P1[i].is(1)) |
| continue; |
| Has1 = true; |
| break; |
| } |
| if (!Has1 && !All0) |
| break; |
| RegisterCell RC(W0); |
| RC.fill(0, W0, (Has1 ? BT::BitValue::One : BT::BitValue::Zero)); |
| return rr0(RC, Outputs); |
| } |
| case C2_and: |
| return rr0(eAND(rc(1), rc(2)), Outputs); |
| case C2_andn: |
| return rr0(eAND(rc(1), eNOT(rc(2))), Outputs); |
| case C2_not: |
| return rr0(eNOT(rc(1)), Outputs); |
| case C2_or: |
| return rr0(eORL(rc(1), rc(2)), Outputs); |
| case C2_orn: |
| return rr0(eORL(rc(1), eNOT(rc(2))), Outputs); |
| case C2_xor: |
| return rr0(eXOR(rc(1), rc(2)), Outputs); |
| case C4_and_and: |
| return rr0(eAND(rc(1), eAND(rc(2), rc(3))), Outputs); |
| case C4_and_andn: |
| return rr0(eAND(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); |
| case C4_and_or: |
| return rr0(eAND(rc(1), eORL(rc(2), rc(3))), Outputs); |
| case C4_and_orn: |
| return rr0(eAND(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs); |
| case C4_or_and: |
| return rr0(eORL(rc(1), eAND(rc(2), rc(3))), Outputs); |
| case C4_or_andn: |
| return rr0(eORL(rc(1), eAND(rc(2), eNOT(rc(3)))), Outputs); |
| case C4_or_or: |
| return rr0(eORL(rc(1), eORL(rc(2), rc(3))), Outputs); |
| case C4_or_orn: |
| return rr0(eORL(rc(1), eORL(rc(2), eNOT(rc(3)))), Outputs); |
| case C2_bitsclr: |
| case C2_bitsclri: |
| case C2_bitsset: |
| case C4_nbitsclr: |
| case C4_nbitsclri: |
| case C4_nbitsset: |
| // TODO |
| break; |
| case S2_tstbit_i: |
| case S4_ntstbit_i: { |
| BT::BitValue V = rc(1)[im(2)]; |
| if (V.is(0) || V.is(1)) { |
| // If instruction is S2_tstbit_i, test for 1, otherwise test for 0. |
| bool TV = (Opc == S2_tstbit_i); |
| BT::BitValue F = V.is(TV) ? BT::BitValue::One : BT::BitValue::Zero; |
| return rr0(RegisterCell(W0).fill(0, W0, F), Outputs); |
| } |
| break; |
| } |
| |
| default: |
| // For instructions that define a single predicate registers, store |
| // the low 8 bits of the register only. |
| if (unsigned DefR = getUniqueDefVReg(MI)) { |
| if (MRI.getRegClass(DefR) == &Hexagon::PredRegsRegClass) { |
| BT::RegisterRef PD(DefR, 0); |
| uint16_t RW = getRegBitWidth(PD); |
| uint16_t PW = 8; // XXX Pred size: getRegBitWidth(Reg[1]); |
| RegisterCell RC = RegisterCell::self(DefR, RW); |
| RC.fill(PW, RW, BT::BitValue::Zero); |
| putCell(PD, RC, Outputs); |
| return true; |
| } |
| } |
| return MachineEvaluator::evaluate(MI, Inputs, Outputs); |
| } |
| #undef im |
| #undef rc |
| #undef op |
| return false; |
| } |
| |
| bool HexagonEvaluator::evaluate(const MachineInstr &BI, |
| const CellMapType &Inputs, |
| BranchTargetList &Targets, |
| bool &FallsThru) const { |
| // We need to evaluate one branch at a time. TII::analyzeBranch checks |
| // all the branches in a basic block at once, so we cannot use it. |
| unsigned Opc = BI.getOpcode(); |
| bool SimpleBranch = false; |
| bool Negated = false; |
| switch (Opc) { |
| case Hexagon::J2_jumpf: |
| case Hexagon::J2_jumpfpt: |
| case Hexagon::J2_jumpfnew: |
| case Hexagon::J2_jumpfnewpt: |
| Negated = true; |
| LLVM_FALLTHROUGH; |
| case Hexagon::J2_jumpt: |
| case Hexagon::J2_jumptpt: |
| case Hexagon::J2_jumptnew: |
| case Hexagon::J2_jumptnewpt: |
| // Simple branch: if([!]Pn) jump ... |
| // i.e. Op0 = predicate, Op1 = branch target. |
| SimpleBranch = true; |
| break; |
| case Hexagon::J2_jump: |
| Targets.insert(BI.getOperand(0).getMBB()); |
| FallsThru = false; |
| return true; |
| default: |
| // If the branch is of unknown type, assume that all successors are |
| // executable. |
| return false; |
| } |
| |
| if (!SimpleBranch) |
| return false; |
| |
| // BI is a conditional branch if we got here. |
| RegisterRef PR = BI.getOperand(0); |
| RegisterCell PC = getCell(PR, Inputs); |
| const BT::BitValue &Test = PC[0]; |
| |
| // If the condition is neither true nor false, then it's unknown. |
| if (!Test.is(0) && !Test.is(1)) |
| return false; |
| |
| // "Test.is(!Negated)" means "branch condition is true". |
| if (!Test.is(!Negated)) { |
| // Condition known to be false. |
| FallsThru = true; |
| return true; |
| } |
| |
| Targets.insert(BI.getOperand(1).getMBB()); |
| FallsThru = false; |
| return true; |
| } |
| |
| unsigned HexagonEvaluator::getUniqueDefVReg(const MachineInstr &MI) const { |
| unsigned DefReg = 0; |
| for (const MachineOperand &Op : MI.operands()) { |
| if (!Op.isReg() || !Op.isDef()) |
| continue; |
| Register R = Op.getReg(); |
| if (!Register::isVirtualRegister(R)) |
| continue; |
| if (DefReg != 0) |
| return 0; |
| DefReg = R; |
| } |
| return DefReg; |
| } |
| |
| bool HexagonEvaluator::evaluateLoad(const MachineInstr &MI, |
| const CellMapType &Inputs, |
| CellMapType &Outputs) const { |
| using namespace Hexagon; |
| |
| if (TII.isPredicated(MI)) |
| return false; |
| assert(MI.mayLoad() && "A load that mayn't?"); |
| unsigned Opc = MI.getOpcode(); |
| |
| uint16_t BitNum; |
| bool SignEx; |
| |
| switch (Opc) { |
| default: |
| return false; |
| |
| #if 0 |
| // memb_fifo |
| case L2_loadalignb_pbr: |
| case L2_loadalignb_pcr: |
| case L2_loadalignb_pi: |
| // memh_fifo |
| case L2_loadalignh_pbr: |
| case L2_loadalignh_pcr: |
| case L2_loadalignh_pi: |
| // membh |
| case L2_loadbsw2_pbr: |
| case L2_loadbsw2_pci: |
| case L2_loadbsw2_pcr: |
| case L2_loadbsw2_pi: |
| case L2_loadbsw4_pbr: |
| case L2_loadbsw4_pci: |
| case L2_loadbsw4_pcr: |
| case L2_loadbsw4_pi: |
| // memubh |
| case L2_loadbzw2_pbr: |
| case L2_loadbzw2_pci: |
| case L2_loadbzw2_pcr: |
| case L2_loadbzw2_pi: |
| case L2_loadbzw4_pbr: |
| case L2_loadbzw4_pci: |
| case L2_loadbzw4_pcr: |
| case L2_loadbzw4_pi: |
| #endif |
| |
| case L2_loadrbgp: |
| case L2_loadrb_io: |
| case L2_loadrb_pbr: |
| case L2_loadrb_pci: |
| case L2_loadrb_pcr: |
| case L2_loadrb_pi: |
| case PS_loadrbabs: |
| case L4_loadrb_ap: |
| case L4_loadrb_rr: |
| case L4_loadrb_ur: |
| BitNum = 8; |
| SignEx = true; |
| break; |
| |
| case L2_loadrubgp: |
| case L2_loadrub_io: |
| case L2_loadrub_pbr: |
| case L2_loadrub_pci: |
| case L2_loadrub_pcr: |
| case L2_loadrub_pi: |
| case PS_loadrubabs: |
| case L4_loadrub_ap: |
| case L4_loadrub_rr: |
| case L4_loadrub_ur: |
| BitNum = 8; |
| SignEx = false; |
| break; |
| |
| case L2_loadrhgp: |
| case L2_loadrh_io: |
| case L2_loadrh_pbr: |
| case L2_loadrh_pci: |
| case L2_loadrh_pcr: |
| case L2_loadrh_pi: |
| case PS_loadrhabs: |
| case L4_loadrh_ap: |
| case L4_loadrh_rr: |
| case L4_loadrh_ur: |
| BitNum = 16; |
| SignEx = true; |
| break; |
| |
| case L2_loadruhgp: |
| case L2_loadruh_io: |
| case L2_loadruh_pbr: |
| case L2_loadruh_pci: |
| case L2_loadruh_pcr: |
| case L2_loadruh_pi: |
| case L4_loadruh_rr: |
| case PS_loadruhabs: |
| case L4_loadruh_ap: |
| case L4_loadruh_ur: |
| BitNum = 16; |
| SignEx = false; |
| break; |
| |
| case L2_loadrigp: |
| case L2_loadri_io: |
| case L2_loadri_pbr: |
| case L2_loadri_pci: |
| case L2_loadri_pcr: |
| case L2_loadri_pi: |
| case L2_loadw_locked: |
| case PS_loadriabs: |
| case L4_loadri_ap: |
| case L4_loadri_rr: |
| case L4_loadri_ur: |
| case LDriw_pred: |
| BitNum = 32; |
| SignEx = true; |
| break; |
| |
| case L2_loadrdgp: |
| case L2_loadrd_io: |
| case L2_loadrd_pbr: |
| case L2_loadrd_pci: |
| case L2_loadrd_pcr: |
| case L2_loadrd_pi: |
| case L4_loadd_locked: |
| case PS_loadrdabs: |
| case L4_loadrd_ap: |
| case L4_loadrd_rr: |
| case L4_loadrd_ur: |
| BitNum = 64; |
| SignEx = true; |
| break; |
| } |
| |
| const MachineOperand &MD = MI.getOperand(0); |
| assert(MD.isReg() && MD.isDef()); |
| RegisterRef RD = MD; |
| |
| uint16_t W = getRegBitWidth(RD); |
| assert(W >= BitNum && BitNum > 0); |
| RegisterCell Res(W); |
| |
| for (uint16_t i = 0; i < BitNum; ++i) |
| Res[i] = BT::BitValue::self(BT::BitRef(RD.Reg, i)); |
| |
| if (SignEx) { |
| const BT::BitValue &Sign = Res[BitNum-1]; |
| for (uint16_t i = BitNum; i < W; ++i) |
| Res[i] = BT::BitValue::ref(Sign); |
| } else { |
| for (uint16_t i = BitNum; i < W; ++i) |
| Res[i] = BT::BitValue::Zero; |
| } |
| |
| putCell(RD, Res, Outputs); |
| return true; |
| } |
| |
| bool HexagonEvaluator::evaluateFormalCopy(const MachineInstr &MI, |
| const CellMapType &Inputs, |
| CellMapType &Outputs) const { |
| // If MI defines a formal parameter, but is not a copy (loads are handled |
| // in evaluateLoad), then it's not clear what to do. |
| assert(MI.isCopy()); |
| |
| RegisterRef RD = MI.getOperand(0); |
| RegisterRef RS = MI.getOperand(1); |
| assert(RD.Sub == 0); |
| if (!Register::isPhysicalRegister(RS.Reg)) |
| return false; |
| RegExtMap::const_iterator F = VRX.find(RD.Reg); |
| if (F == VRX.end()) |
| return false; |
| |
| uint16_t EW = F->second.Width; |
| // Store RD's cell into the map. This will associate the cell with a virtual |
| // register, and make zero-/sign-extends possible (otherwise we would be ex- |
| // tending "self" bit values, which will have no effect, since "self" values |
| // cannot be references to anything). |
| putCell(RD, getCell(RS, Inputs), Outputs); |
| |
| RegisterCell Res; |
| // Read RD's cell from the outputs instead of RS's cell from the inputs: |
| if (F->second.Type == ExtType::SExt) |
| Res = eSXT(getCell(RD, Outputs), EW); |
| else if (F->second.Type == ExtType::ZExt) |
| Res = eZXT(getCell(RD, Outputs), EW); |
| |
| putCell(RD, Res, Outputs); |
| return true; |
| } |
| |
| unsigned HexagonEvaluator::getNextPhysReg(unsigned PReg, unsigned Width) const { |
| using namespace Hexagon; |
| |
| bool Is64 = DoubleRegsRegClass.contains(PReg); |
| assert(PReg == 0 || Is64 || IntRegsRegClass.contains(PReg)); |
| |
| static const unsigned Phys32[] = { R0, R1, R2, R3, R4, R5 }; |
| static const unsigned Phys64[] = { D0, D1, D2 }; |
| const unsigned Num32 = sizeof(Phys32)/sizeof(unsigned); |
| const unsigned Num64 = sizeof(Phys64)/sizeof(unsigned); |
| |
| // Return the first parameter register of the required width. |
| if (PReg == 0) |
| return (Width <= 32) ? Phys32[0] : Phys64[0]; |
| |
| // Set Idx32, Idx64 in such a way that Idx+1 would give the index of the |
| // next register. |
| unsigned Idx32 = 0, Idx64 = 0; |
| if (!Is64) { |
| while (Idx32 < Num32) { |
| if (Phys32[Idx32] == PReg) |
| break; |
| Idx32++; |
| } |
| Idx64 = Idx32/2; |
| } else { |
| while (Idx64 < Num64) { |
| if (Phys64[Idx64] == PReg) |
| break; |
| Idx64++; |
| } |
| Idx32 = Idx64*2+1; |
| } |
| |
| if (Width <= 32) |
| return (Idx32+1 < Num32) ? Phys32[Idx32+1] : 0; |
| return (Idx64+1 < Num64) ? Phys64[Idx64+1] : 0; |
| } |
| |
| unsigned HexagonEvaluator::getVirtRegFor(unsigned PReg) const { |
| for (std::pair<unsigned,unsigned> P : MRI.liveins()) |
| if (P.first == PReg) |
| return P.second; |
| return 0; |
| } |