blob: 39269269c244e7f90bb16099c9bb12b8b7ecdce2 [file] [log] [blame]
//===- OptimizationDiagnosticInfo.h - Optimization Diagnostic ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Optimization diagnostic interfaces. It's packaged as an analysis pass so
// that by using this service passes become dependent on BFI as well. BFI is
// used to compute the "hotness" of the diagnostic message.
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_OPTIMIZATIONDIAGNOSTICINFO_H
#define LLVM_IR_OPTIMIZATIONDIAGNOSTICINFO_H
#include "llvm/ADT/Optional.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Pass.h"
namespace llvm {
class DebugLoc;
class LLVMContext;
class Loop;
class Pass;
class Twine;
class Value;
/// The optimization diagnostic interface.
///
/// It allows reporting when optimizations are performed and when they are not
/// along with the reasons for it. Hotness information of the corresponding
/// code region can be included in the remark if DiagnosticHotnessRequested is
/// enabled in the LLVM context.
class OptimizationRemarkEmitter {
public:
OptimizationRemarkEmitter(Function *F, BlockFrequencyInfo *BFI)
: F(F), BFI(BFI) {}
/// \brief This variant can be used to generate ORE on demand (without the
/// analysis pass).
///
/// Note that this ctor has a very different cost depending on whether
/// F->getContext().getDiagnosticHotnessRequested() is on or not. If it's off
/// the operation is free.
///
/// Whereas if DiagnosticHotnessRequested is on, it is fairly expensive
/// operation since BFI and all its required analyses are computed. This is
/// for example useful for CGSCC passes that can't use function analyses
/// passes in the old PM.
OptimizationRemarkEmitter(Function *F);
OptimizationRemarkEmitter(OptimizationRemarkEmitter &&Arg)
: F(Arg.F), BFI(Arg.BFI) {}
OptimizationRemarkEmitter &operator=(OptimizationRemarkEmitter &&RHS) {
F = RHS.F;
BFI = RHS.BFI;
return *this;
}
/// The new interface to emit remarks.
void emit(DiagnosticInfoOptimizationBase &OptDiag);
/// Emit an optimization-applied message.
///
/// \p PassName is the name of the pass emitting the message. If -Rpass= is
/// given and \p PassName matches the regular expression in -Rpass, then the
/// remark will be emitted. \p Fn is the function triggering the remark, \p
/// DLoc is the debug location where the diagnostic is generated. \p V is the
/// IR Value that identifies the code region. \p Msg is the message string to
/// use.
void emitOptimizationRemark(const char *PassName, const DebugLoc &DLoc,
const Value *V, const Twine &Msg);
/// \brief Same as above but derives the IR Value for the code region and the
/// debug location from the Loop parameter \p L.
void emitOptimizationRemark(const char *PassName, Loop *L, const Twine &Msg);
/// \brief Same as above but derives the debug location and the code region
/// from the debug location and the basic block of \p Inst, respectively.
void emitOptimizationRemark(const char *PassName, Instruction *Inst,
const Twine &Msg) {
emitOptimizationRemark(PassName, Inst->getDebugLoc(), Inst->getParent(),
Msg);
}
/// Emit an optimization-missed message.
///
/// \p PassName is the name of the pass emitting the message. If
/// -Rpass-missed= is given and the name matches the regular expression in
/// -Rpass, then the remark will be emitted. \p DLoc is the debug location
/// where the diagnostic is generated. \p V is the IR Value that identifies
/// the code region. \p Msg is the message string to use. If \p IsVerbose is
/// true, the message is considered verbose and will only be emitted when
/// verbose output is turned on.
void emitOptimizationRemarkMissed(const char *PassName, const DebugLoc &DLoc,
const Value *V, const Twine &Msg,
bool IsVerbose = false);
/// \brief Same as above but derives the IR Value for the code region and the
/// debug location from the Loop parameter \p L.
void emitOptimizationRemarkMissed(const char *PassName, Loop *L,
const Twine &Msg, bool IsVerbose = false);
/// \brief Same as above but derives the debug location and the code region
/// from the debug location and the basic block of \p Inst, respectively.
void emitOptimizationRemarkMissed(const char *PassName, Instruction *Inst,
const Twine &Msg, bool IsVerbose = false) {
emitOptimizationRemarkMissed(PassName, Inst->getDebugLoc(),
Inst->getParent(), Msg, IsVerbose);
}
/// Emit an optimization analysis remark message.
///
/// \p PassName is the name of the pass emitting the message. If
/// -Rpass-analysis= is given and \p PassName matches the regular expression
/// in -Rpass, then the remark will be emitted. \p DLoc is the debug location
/// where the diagnostic is generated. \p V is the IR Value that identifies
/// the code region. \p Msg is the message string to use. If \p IsVerbose is
/// true, the message is considered verbose and will only be emitted when
/// verbose output is turned on.
void emitOptimizationRemarkAnalysis(const char *PassName,
const DebugLoc &DLoc, const Value *V,
const Twine &Msg, bool IsVerbose = false);
/// \brief Same as above but derives the IR Value for the code region and the
/// debug location from the Loop parameter \p L.
void emitOptimizationRemarkAnalysis(const char *PassName, Loop *L,
const Twine &Msg, bool IsVerbose = false);
/// \brief Same as above but derives the debug location and the code region
/// from the debug location and the basic block of \p Inst, respectively.
void emitOptimizationRemarkAnalysis(const char *PassName, Instruction *Inst,
const Twine &Msg,
bool IsVerbose = false) {
emitOptimizationRemarkAnalysis(PassName, Inst->getDebugLoc(),
Inst->getParent(), Msg, IsVerbose);
}
/// \brief This variant allows specifying what should be emitted for missed
/// and analysis remarks in one call.
///
/// \p PassName is the name of the pass emitting the message. If
/// -Rpass-missed= is given and \p PassName matches the regular expression, \p
/// MsgForMissedRemark is emitted.
///
/// If -Rpass-analysis= is given and \p PassName matches the regular
/// expression, \p MsgForAnalysisRemark is emitted.
///
/// The debug location and the code region is derived from \p Inst. If \p
/// IsVerbose is true, the message is considered verbose and will only be
/// emitted when verbose output is turned on.
void emitOptimizationRemarkMissedAndAnalysis(
const char *PassName, Instruction *Inst, const Twine &MsgForMissedRemark,
const Twine &MsgForAnalysisRemark, bool IsVerbose = false) {
emitOptimizationRemarkAnalysis(PassName, Inst, MsgForAnalysisRemark,
IsVerbose);
emitOptimizationRemarkMissed(PassName, Inst, MsgForMissedRemark, IsVerbose);
}
/// \brief Emit an optimization analysis remark related to floating-point
/// non-commutativity.
///
/// \p PassName is the name of the pass emitting the message. If
/// -Rpass-analysis= is given and \p PassName matches the regular expression
/// in -Rpass, then the remark will be emitted. \p Fn is the function
/// triggering the remark, \p DLoc is the debug location where the diagnostic
/// is generated.\p V is the IR Value that identifies the code region. \p Msg
/// is the message string to use.
void emitOptimizationRemarkAnalysisFPCommute(const char *PassName,
const DebugLoc &DLoc,
const Value *V,
const Twine &Msg);
/// \brief Emit an optimization analysis remark related to pointer aliasing.
///
/// \p PassName is the name of the pass emitting the message. If
/// -Rpass-analysis= is given and \p PassName matches the regular expression
/// in -Rpass, then the remark will be emitted. \p Fn is the function
/// triggering the remark, \p DLoc is the debug location where the diagnostic
/// is generated.\p V is the IR Value that identifies the code region. \p Msg
/// is the message string to use.
void emitOptimizationRemarkAnalysisAliasing(const char *PassName,
const DebugLoc &DLoc,
const Value *V, const Twine &Msg);
/// \brief Same as above but derives the IR Value for the code region and the
/// debug location from the Loop parameter \p L.
void emitOptimizationRemarkAnalysisAliasing(const char *PassName, Loop *L,
const Twine &Msg);
/// \brief Whether we allow for extra compile-time budget to perform more
/// analysis to produce fewer false positives.
///
/// This is useful when reporting missed optimizations. In this case we can
/// use the extra analysis (1) to filter trivial false positives or (2) to
/// provide more context so that non-trivial false positives can be quickly
/// detected by the user.
bool allowExtraAnalysis() const {
// For now, only allow this with -fsave-optimization-record since the -Rpass
// options are handled in the front-end.
return F->getContext().getDiagnosticsOutputFile();
}
private:
Function *F;
BlockFrequencyInfo *BFI;
/// If we generate BFI on demand, we need to free it when ORE is freed.
std::unique_ptr<BlockFrequencyInfo> OwnedBFI;
/// Compute hotness from IR value (currently assumed to be a block) if PGO is
/// available.
Optional<uint64_t> computeHotness(const Value *V);
/// Similar but use value from \p OptDiag and update hotness there.
void computeHotness(DiagnosticInfoOptimizationBase &OptDiag);
/// \brief Only allow verbose messages if we know we're filtering by hotness
/// (BFI is only set in this case).
bool shouldEmitVerbose() { return BFI != nullptr; }
OptimizationRemarkEmitter(const OptimizationRemarkEmitter &) = delete;
void operator=(const OptimizationRemarkEmitter &) = delete;
};
/// \brief Add a small namespace to avoid name clashes with the classes used in
/// the streaming interface. We want these to be short for better
/// write/readability.
namespace ore {
using NV = DiagnosticInfoOptimizationBase::Argument;
using setIsVerbose = DiagnosticInfoOptimizationBase::setIsVerbose;
using setExtraArgs = DiagnosticInfoOptimizationBase::setExtraArgs;
}
/// OptimizationRemarkEmitter legacy analysis pass
///
/// Note that this pass shouldn't generally be marked as preserved by other
/// passes. It's holding onto BFI, so if the pass does not preserve BFI, BFI
/// could be freed.
class OptimizationRemarkEmitterWrapperPass : public FunctionPass {
std::unique_ptr<OptimizationRemarkEmitter> ORE;
public:
OptimizationRemarkEmitterWrapperPass();
bool runOnFunction(Function &F) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
OptimizationRemarkEmitter &getORE() {
assert(ORE && "pass not run yet");
return *ORE;
}
static char ID;
};
class OptimizationRemarkEmitterAnalysis
: public AnalysisInfoMixin<OptimizationRemarkEmitterAnalysis> {
friend AnalysisInfoMixin<OptimizationRemarkEmitterAnalysis>;
static AnalysisKey Key;
public:
/// \brief Provide the result typedef for this analysis pass.
typedef OptimizationRemarkEmitter Result;
/// \brief Run the analysis pass over a function and produce BFI.
Result run(Function &F, FunctionAnalysisManager &AM);
};
}
#endif // LLVM_IR_OPTIMIZATIONDIAGNOSTICINFO_H