| //===-- ARMSubtarget.h - Define Subtarget for the ARM ----------*- C++ -*--===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file declares the ARM specific subclass of TargetSubtargetInfo. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H |
| #define LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H |
| |
| #include "ARMBaseInstrInfo.h" |
| #include "ARMBaseRegisterInfo.h" |
| #include "ARMConstantPoolValue.h" |
| #include "ARMFrameLowering.h" |
| #include "ARMISelLowering.h" |
| #include "ARMSelectionDAGInfo.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/CodeGen/GlobalISel/CallLowering.h" |
| #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" |
| #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" |
| #include "llvm/CodeGen/GlobalISel/RegisterBankInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/MC/MCInstrItineraries.h" |
| #include "llvm/MC/MCSchedule.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <memory> |
| #include <string> |
| |
| #define GET_SUBTARGETINFO_HEADER |
| #include "ARMGenSubtargetInfo.inc" |
| |
| namespace llvm { |
| |
| class ARMBaseTargetMachine; |
| class GlobalValue; |
| class StringRef; |
| |
| class ARMSubtarget : public ARMGenSubtargetInfo { |
| protected: |
| enum ARMProcFamilyEnum { |
| Others, |
| |
| CortexA12, |
| CortexA15, |
| CortexA17, |
| CortexA32, |
| CortexA35, |
| CortexA5, |
| CortexA53, |
| CortexA55, |
| CortexA57, |
| CortexA7, |
| CortexA72, |
| CortexA73, |
| CortexA75, |
| CortexA8, |
| CortexA9, |
| CortexM3, |
| CortexR4, |
| CortexR4F, |
| CortexR5, |
| CortexR52, |
| CortexR7, |
| Exynos, |
| Krait, |
| Kryo, |
| Swift |
| }; |
| enum ARMProcClassEnum { |
| None, |
| |
| AClass, |
| MClass, |
| RClass |
| }; |
| enum ARMArchEnum { |
| ARMv2, |
| ARMv2a, |
| ARMv3, |
| ARMv3m, |
| ARMv4, |
| ARMv4t, |
| ARMv5, |
| ARMv5t, |
| ARMv5te, |
| ARMv5tej, |
| ARMv6, |
| ARMv6k, |
| ARMv6kz, |
| ARMv6m, |
| ARMv6sm, |
| ARMv6t2, |
| ARMv7a, |
| ARMv7em, |
| ARMv7m, |
| ARMv7r, |
| ARMv7ve, |
| ARMv81a, |
| ARMv82a, |
| ARMv83a, |
| ARMv84a, |
| ARMv85a, |
| ARMv8a, |
| ARMv8mBaseline, |
| ARMv8mMainline, |
| ARMv8r |
| }; |
| |
| public: |
| /// What kind of timing do load multiple/store multiple instructions have. |
| enum ARMLdStMultipleTiming { |
| /// Can load/store 2 registers/cycle. |
| DoubleIssue, |
| /// Can load/store 2 registers/cycle, but needs an extra cycle if the access |
| /// is not 64-bit aligned. |
| DoubleIssueCheckUnalignedAccess, |
| /// Can load/store 1 register/cycle. |
| SingleIssue, |
| /// Can load/store 1 register/cycle, but needs an extra cycle for address |
| /// computation and potentially also for register writeback. |
| SingleIssuePlusExtras, |
| }; |
| |
| protected: |
| /// ARMProcFamily - ARM processor family: Cortex-A8, Cortex-A9, and others. |
| ARMProcFamilyEnum ARMProcFamily = Others; |
| |
| /// ARMProcClass - ARM processor class: None, AClass, RClass or MClass. |
| ARMProcClassEnum ARMProcClass = None; |
| |
| /// ARMArch - ARM architecture |
| ARMArchEnum ARMArch = ARMv4t; |
| |
| /// HasV4TOps, HasV5TOps, HasV5TEOps, |
| /// HasV6Ops, HasV6MOps, HasV6KOps, HasV6T2Ops, HasV7Ops, HasV8Ops - |
| /// Specify whether target support specific ARM ISA variants. |
| bool HasV4TOps = false; |
| bool HasV5TOps = false; |
| bool HasV5TEOps = false; |
| bool HasV6Ops = false; |
| bool HasV6MOps = false; |
| bool HasV6KOps = false; |
| bool HasV6T2Ops = false; |
| bool HasV7Ops = false; |
| bool HasV8Ops = false; |
| bool HasV8_1aOps = false; |
| bool HasV8_2aOps = false; |
| bool HasV8_3aOps = false; |
| bool HasV8_4aOps = false; |
| bool HasV8_5aOps = false; |
| bool HasV8MBaselineOps = false; |
| bool HasV8MMainlineOps = false; |
| |
| /// HasVFPv2, HasVFPv3, HasVFPv4, HasFPARMv8, HasNEON - Specify what |
| /// floating point ISAs are supported. |
| bool HasVFPv2 = false; |
| bool HasVFPv3 = false; |
| bool HasVFPv4 = false; |
| bool HasFPARMv8 = false; |
| bool HasNEON = false; |
| |
| /// HasDotProd - True if the ARMv8.2A dot product instructions are supported. |
| bool HasDotProd = false; |
| |
| /// UseNEONForSinglePrecisionFP - if the NEONFP attribute has been |
| /// specified. Use the method useNEONForSinglePrecisionFP() to |
| /// determine if NEON should actually be used. |
| bool UseNEONForSinglePrecisionFP = false; |
| |
| /// UseMulOps - True if non-microcoded fused integer multiply-add and |
| /// multiply-subtract instructions should be used. |
| bool UseMulOps = false; |
| |
| /// SlowFPVMLx - If the VFP2 / NEON instructions are available, indicates |
| /// whether the FP VML[AS] instructions are slow (if so, don't use them). |
| bool SlowFPVMLx = false; |
| |
| /// HasVMLxForwarding - If true, NEON has special multiplier accumulator |
| /// forwarding to allow mul + mla being issued back to back. |
| bool HasVMLxForwarding = false; |
| |
| /// SlowFPBrcc - True if floating point compare + branch is slow. |
| bool SlowFPBrcc = false; |
| |
| /// InThumbMode - True if compiling for Thumb, false for ARM. |
| bool InThumbMode = false; |
| |
| /// UseSoftFloat - True if we're using software floating point features. |
| bool UseSoftFloat = false; |
| |
| /// UseMISched - True if MachineScheduler should be used for this subtarget. |
| bool UseMISched = false; |
| |
| /// DisablePostRAScheduler - False if scheduling should happen again after |
| /// register allocation. |
| bool DisablePostRAScheduler = false; |
| |
| /// UseAA - True if using AA during codegen (DAGCombine, MISched, etc) |
| bool UseAA = false; |
| |
| /// HasThumb2 - True if Thumb2 instructions are supported. |
| bool HasThumb2 = false; |
| |
| /// NoARM - True if subtarget does not support ARM mode execution. |
| bool NoARM = false; |
| |
| /// ReserveR9 - True if R9 is not available as a general purpose register. |
| bool ReserveR9 = false; |
| |
| /// NoMovt - True if MOVT / MOVW pairs are not used for materialization of |
| /// 32-bit imms (including global addresses). |
| bool NoMovt = false; |
| |
| /// SupportsTailCall - True if the OS supports tail call. The dynamic linker |
| /// must be able to synthesize call stubs for interworking between ARM and |
| /// Thumb. |
| bool SupportsTailCall = false; |
| |
| /// HasFP16 - True if subtarget supports half-precision FP conversions |
| bool HasFP16 = false; |
| |
| /// HasFullFP16 - True if subtarget supports half-precision FP operations |
| bool HasFullFP16 = false; |
| |
| /// HasFP16FML - True if subtarget supports half-precision FP fml operations |
| bool HasFP16FML = false; |
| |
| /// HasD16 - True if subtarget is limited to 16 double precision |
| /// FP registers for VFPv3. |
| bool HasD16 = false; |
| |
| /// HasHardwareDivide - True if subtarget supports [su]div in Thumb mode |
| bool HasHardwareDivideInThumb = false; |
| |
| /// HasHardwareDivideInARM - True if subtarget supports [su]div in ARM mode |
| bool HasHardwareDivideInARM = false; |
| |
| /// HasDataBarrier - True if the subtarget supports DMB / DSB data barrier |
| /// instructions. |
| bool HasDataBarrier = false; |
| |
| /// HasFullDataBarrier - True if the subtarget supports DFB data barrier |
| /// instruction. |
| bool HasFullDataBarrier = false; |
| |
| /// HasV7Clrex - True if the subtarget supports CLREX instructions |
| bool HasV7Clrex = false; |
| |
| /// HasAcquireRelease - True if the subtarget supports v8 atomics (LDA/LDAEX etc) |
| /// instructions |
| bool HasAcquireRelease = false; |
| |
| /// Pref32BitThumb - If true, codegen would prefer 32-bit Thumb instructions |
| /// over 16-bit ones. |
| bool Pref32BitThumb = false; |
| |
| /// AvoidCPSRPartialUpdate - If true, codegen would avoid using instructions |
| /// that partially update CPSR and add false dependency on the previous |
| /// CPSR setting instruction. |
| bool AvoidCPSRPartialUpdate = false; |
| |
| /// CheapPredicableCPSRDef - If true, disable +1 predication cost |
| /// for instructions updating CPSR. Enabled for Cortex-A57. |
| bool CheapPredicableCPSRDef = false; |
| |
| /// AvoidMOVsShifterOperand - If true, codegen should avoid using flag setting |
| /// movs with shifter operand (i.e. asr, lsl, lsr). |
| bool AvoidMOVsShifterOperand = false; |
| |
| /// HasRetAddrStack - Some processors perform return stack prediction. CodeGen should |
| /// avoid issue "normal" call instructions to callees which do not return. |
| bool HasRetAddrStack = false; |
| |
| /// HasBranchPredictor - True if the subtarget has a branch predictor. Having |
| /// a branch predictor or not changes the expected cost of taking a branch |
| /// which affects the choice of whether to use predicated instructions. |
| bool HasBranchPredictor = true; |
| |
| /// HasMPExtension - True if the subtarget supports Multiprocessing |
| /// extension (ARMv7 only). |
| bool HasMPExtension = false; |
| |
| /// HasVirtualization - True if the subtarget supports the Virtualization |
| /// extension. |
| bool HasVirtualization = false; |
| |
| /// FPOnlySP - If true, the floating point unit only supports single |
| /// precision. |
| bool FPOnlySP = false; |
| |
| /// If true, the processor supports the Performance Monitor Extensions. These |
| /// include a generic cycle-counter as well as more fine-grained (often |
| /// implementation-specific) events. |
| bool HasPerfMon = false; |
| |
| /// HasTrustZone - if true, processor supports TrustZone security extensions |
| bool HasTrustZone = false; |
| |
| /// Has8MSecExt - if true, processor supports ARMv8-M Security Extensions |
| bool Has8MSecExt = false; |
| |
| /// HasSHA2 - if true, processor supports SHA1 and SHA256 |
| bool HasSHA2 = false; |
| |
| /// HasAES - if true, processor supports AES |
| bool HasAES = false; |
| |
| /// HasCrypto - if true, processor supports Cryptography extensions |
| bool HasCrypto = false; |
| |
| /// HasCRC - if true, processor supports CRC instructions |
| bool HasCRC = false; |
| |
| /// HasRAS - if true, the processor supports RAS extensions |
| bool HasRAS = false; |
| |
| /// If true, the instructions "vmov.i32 d0, #0" and "vmov.i32 q0, #0" are |
| /// particularly effective at zeroing a VFP register. |
| bool HasZeroCycleZeroing = false; |
| |
| /// HasFPAO - if true, processor does positive address offset computation faster |
| bool HasFPAO = false; |
| |
| /// HasFuseAES - if true, processor executes back to back AES instruction |
| /// pairs faster. |
| bool HasFuseAES = false; |
| |
| /// HasFuseLiterals - if true, processor executes back to back |
| /// bottom and top halves of literal generation faster. |
| bool HasFuseLiterals = false; |
| |
| /// If true, if conversion may decide to leave some instructions unpredicated. |
| bool IsProfitableToUnpredicate = false; |
| |
| /// If true, VMOV will be favored over VGETLNi32. |
| bool HasSlowVGETLNi32 = false; |
| |
| /// If true, VMOV will be favored over VDUP. |
| bool HasSlowVDUP32 = false; |
| |
| /// If true, VMOVSR will be favored over VMOVDRR. |
| bool PreferVMOVSR = false; |
| |
| /// If true, ISHST barriers will be used for Release semantics. |
| bool PreferISHST = false; |
| |
| /// If true, a VLDM/VSTM starting with an odd register number is considered to |
| /// take more microops than single VLDRS/VSTRS. |
| bool SlowOddRegister = false; |
| |
| /// If true, loading into a D subregister will be penalized. |
| bool SlowLoadDSubregister = false; |
| |
| /// If true, use a wider stride when allocating VFP registers. |
| bool UseWideStrideVFP = false; |
| |
| /// If true, the AGU and NEON/FPU units are multiplexed. |
| bool HasMuxedUnits = false; |
| |
| /// If true, VMOVS will never be widened to VMOVD. |
| bool DontWidenVMOVS = false; |
| |
| /// If true, splat a register between VFP and NEON instructions. |
| bool SplatVFPToNeon = false; |
| |
| /// If true, run the MLx expansion pass. |
| bool ExpandMLx = false; |
| |
| /// If true, VFP/NEON VMLA/VMLS have special RAW hazards. |
| bool HasVMLxHazards = false; |
| |
| // If true, read thread pointer from coprocessor register. |
| bool ReadTPHard = false; |
| |
| /// If true, VMOVRS, VMOVSR and VMOVS will be converted from VFP to NEON. |
| bool UseNEONForFPMovs = false; |
| |
| /// If true, VLDn instructions take an extra cycle for unaligned accesses. |
| bool CheckVLDnAlign = false; |
| |
| /// If true, VFP instructions are not pipelined. |
| bool NonpipelinedVFP = false; |
| |
| /// StrictAlign - If true, the subtarget disallows unaligned memory |
| /// accesses for some types. For details, see |
| /// ARMTargetLowering::allowsMisalignedMemoryAccesses(). |
| bool StrictAlign = false; |
| |
| /// RestrictIT - If true, the subtarget disallows generation of deprecated IT |
| /// blocks to conform to ARMv8 rule. |
| bool RestrictIT = false; |
| |
| /// HasDSP - If true, the subtarget supports the DSP (saturating arith |
| /// and such) instructions. |
| bool HasDSP = false; |
| |
| /// NaCl TRAP instruction is generated instead of the regular TRAP. |
| bool UseNaClTrap = false; |
| |
| /// Generate calls via indirect call instructions. |
| bool GenLongCalls = false; |
| |
| /// Generate code that does not contain data access to code sections. |
| bool GenExecuteOnly = false; |
| |
| /// Target machine allowed unsafe FP math (such as use of NEON fp) |
| bool UnsafeFPMath = false; |
| |
| /// UseSjLjEH - If true, the target uses SjLj exception handling (e.g. iOS). |
| bool UseSjLjEH = false; |
| |
| /// Has speculation barrier |
| bool HasSB = false; |
| |
| /// Implicitly convert an instruction to a different one if its immediates |
| /// cannot be encoded. For example, ADD r0, r1, #FFFFFFFF -> SUB r0, r1, #1. |
| bool NegativeImmediates = true; |
| |
| /// stackAlignment - The minimum alignment known to hold of the stack frame on |
| /// entry to the function and which must be maintained by every function. |
| unsigned stackAlignment = 4; |
| |
| /// CPUString - String name of used CPU. |
| std::string CPUString; |
| |
| unsigned MaxInterleaveFactor = 1; |
| |
| /// Clearance before partial register updates (in number of instructions) |
| unsigned PartialUpdateClearance = 0; |
| |
| /// What kind of timing do load multiple/store multiple have (double issue, |
| /// single issue etc). |
| ARMLdStMultipleTiming LdStMultipleTiming = SingleIssue; |
| |
| /// The adjustment that we need to apply to get the operand latency from the |
| /// operand cycle returned by the itinerary data for pre-ISel operands. |
| int PreISelOperandLatencyAdjustment = 2; |
| |
| /// What alignment is preferred for loop bodies, in log2(bytes). |
| unsigned PrefLoopAlignment = 0; |
| |
| /// IsLittle - The target is Little Endian |
| bool IsLittle; |
| |
| /// TargetTriple - What processor and OS we're targeting. |
| Triple TargetTriple; |
| |
| /// SchedModel - Processor specific instruction costs. |
| MCSchedModel SchedModel; |
| |
| /// Selected instruction itineraries (one entry per itinerary class.) |
| InstrItineraryData InstrItins; |
| |
| /// Options passed via command line that could influence the target |
| const TargetOptions &Options; |
| |
| const ARMBaseTargetMachine &TM; |
| |
| public: |
| /// This constructor initializes the data members to match that |
| /// of the specified triple. |
| /// |
| ARMSubtarget(const Triple &TT, const std::string &CPU, const std::string &FS, |
| const ARMBaseTargetMachine &TM, bool IsLittle); |
| |
| /// getMaxInlineSizeThreshold - Returns the maximum memset / memcpy size |
| /// that still makes it profitable to inline the call. |
| unsigned getMaxInlineSizeThreshold() const { |
| return 64; |
| } |
| |
| /// ParseSubtargetFeatures - Parses features string setting specified |
| /// subtarget options. Definition of function is auto generated by tblgen. |
| void ParseSubtargetFeatures(StringRef CPU, StringRef FS); |
| |
| /// initializeSubtargetDependencies - Initializes using a CPU and feature string |
| /// so that we can use initializer lists for subtarget initialization. |
| ARMSubtarget &initializeSubtargetDependencies(StringRef CPU, StringRef FS); |
| |
| const ARMSelectionDAGInfo *getSelectionDAGInfo() const override { |
| return &TSInfo; |
| } |
| |
| const ARMBaseInstrInfo *getInstrInfo() const override { |
| return InstrInfo.get(); |
| } |
| |
| const ARMTargetLowering *getTargetLowering() const override { |
| return &TLInfo; |
| } |
| |
| const ARMFrameLowering *getFrameLowering() const override { |
| return FrameLowering.get(); |
| } |
| |
| const ARMBaseRegisterInfo *getRegisterInfo() const override { |
| return &InstrInfo->getRegisterInfo(); |
| } |
| |
| const CallLowering *getCallLowering() const override; |
| const InstructionSelector *getInstructionSelector() const override; |
| const LegalizerInfo *getLegalizerInfo() const override; |
| const RegisterBankInfo *getRegBankInfo() const override; |
| |
| private: |
| ARMSelectionDAGInfo TSInfo; |
| // Either Thumb1FrameLowering or ARMFrameLowering. |
| std::unique_ptr<ARMFrameLowering> FrameLowering; |
| // Either Thumb1InstrInfo or Thumb2InstrInfo. |
| std::unique_ptr<ARMBaseInstrInfo> InstrInfo; |
| ARMTargetLowering TLInfo; |
| |
| /// GlobalISel related APIs. |
| std::unique_ptr<CallLowering> CallLoweringInfo; |
| std::unique_ptr<InstructionSelector> InstSelector; |
| std::unique_ptr<LegalizerInfo> Legalizer; |
| std::unique_ptr<RegisterBankInfo> RegBankInfo; |
| |
| void initializeEnvironment(); |
| void initSubtargetFeatures(StringRef CPU, StringRef FS); |
| ARMFrameLowering *initializeFrameLowering(StringRef CPU, StringRef FS); |
| |
| public: |
| void computeIssueWidth(); |
| |
| bool hasV4TOps() const { return HasV4TOps; } |
| bool hasV5TOps() const { return HasV5TOps; } |
| bool hasV5TEOps() const { return HasV5TEOps; } |
| bool hasV6Ops() const { return HasV6Ops; } |
| bool hasV6MOps() const { return HasV6MOps; } |
| bool hasV6KOps() const { return HasV6KOps; } |
| bool hasV6T2Ops() const { return HasV6T2Ops; } |
| bool hasV7Ops() const { return HasV7Ops; } |
| bool hasV8Ops() const { return HasV8Ops; } |
| bool hasV8_1aOps() const { return HasV8_1aOps; } |
| bool hasV8_2aOps() const { return HasV8_2aOps; } |
| bool hasV8_3aOps() const { return HasV8_3aOps; } |
| bool hasV8_4aOps() const { return HasV8_4aOps; } |
| bool hasV8_5aOps() const { return HasV8_5aOps; } |
| bool hasV8MBaselineOps() const { return HasV8MBaselineOps; } |
| bool hasV8MMainlineOps() const { return HasV8MMainlineOps; } |
| |
| /// @{ |
| /// These functions are obsolete, please consider adding subtarget features |
| /// or properties instead of calling them. |
| bool isCortexA5() const { return ARMProcFamily == CortexA5; } |
| bool isCortexA7() const { return ARMProcFamily == CortexA7; } |
| bool isCortexA8() const { return ARMProcFamily == CortexA8; } |
| bool isCortexA9() const { return ARMProcFamily == CortexA9; } |
| bool isCortexA15() const { return ARMProcFamily == CortexA15; } |
| bool isSwift() const { return ARMProcFamily == Swift; } |
| bool isCortexM3() const { return ARMProcFamily == CortexM3; } |
| bool isLikeA9() const { return isCortexA9() || isCortexA15() || isKrait(); } |
| bool isCortexR5() const { return ARMProcFamily == CortexR5; } |
| bool isKrait() const { return ARMProcFamily == Krait; } |
| /// @} |
| |
| bool hasARMOps() const { return !NoARM; } |
| |
| bool hasVFP2() const { return HasVFPv2; } |
| bool hasVFP3() const { return HasVFPv3; } |
| bool hasVFP4() const { return HasVFPv4; } |
| bool hasFPARMv8() const { return HasFPARMv8; } |
| bool hasNEON() const { return HasNEON; } |
| bool hasSHA2() const { return HasSHA2; } |
| bool hasAES() const { return HasAES; } |
| bool hasCrypto() const { return HasCrypto; } |
| bool hasDotProd() const { return HasDotProd; } |
| bool hasCRC() const { return HasCRC; } |
| bool hasRAS() const { return HasRAS; } |
| bool hasVirtualization() const { return HasVirtualization; } |
| |
| bool useNEONForSinglePrecisionFP() const { |
| return hasNEON() && UseNEONForSinglePrecisionFP; |
| } |
| |
| bool hasDivideInThumbMode() const { return HasHardwareDivideInThumb; } |
| bool hasDivideInARMMode() const { return HasHardwareDivideInARM; } |
| bool hasDataBarrier() const { return HasDataBarrier; } |
| bool hasFullDataBarrier() const { return HasFullDataBarrier; } |
| bool hasV7Clrex() const { return HasV7Clrex; } |
| bool hasAcquireRelease() const { return HasAcquireRelease; } |
| |
| bool hasAnyDataBarrier() const { |
| return HasDataBarrier || (hasV6Ops() && !isThumb()); |
| } |
| |
| bool useMulOps() const { return UseMulOps; } |
| bool useFPVMLx() const { return !SlowFPVMLx; } |
| bool hasVMLxForwarding() const { return HasVMLxForwarding; } |
| bool isFPBrccSlow() const { return SlowFPBrcc; } |
| bool isFPOnlySP() const { return FPOnlySP; } |
| bool hasPerfMon() const { return HasPerfMon; } |
| bool hasTrustZone() const { return HasTrustZone; } |
| bool has8MSecExt() const { return Has8MSecExt; } |
| bool hasZeroCycleZeroing() const { return HasZeroCycleZeroing; } |
| bool hasFPAO() const { return HasFPAO; } |
| bool isProfitableToUnpredicate() const { return IsProfitableToUnpredicate; } |
| bool hasSlowVGETLNi32() const { return HasSlowVGETLNi32; } |
| bool hasSlowVDUP32() const { return HasSlowVDUP32; } |
| bool preferVMOVSR() const { return PreferVMOVSR; } |
| bool preferISHSTBarriers() const { return PreferISHST; } |
| bool expandMLx() const { return ExpandMLx; } |
| bool hasVMLxHazards() const { return HasVMLxHazards; } |
| bool hasSlowOddRegister() const { return SlowOddRegister; } |
| bool hasSlowLoadDSubregister() const { return SlowLoadDSubregister; } |
| bool useWideStrideVFP() const { return UseWideStrideVFP; } |
| bool hasMuxedUnits() const { return HasMuxedUnits; } |
| bool dontWidenVMOVS() const { return DontWidenVMOVS; } |
| bool useSplatVFPToNeon() const { return SplatVFPToNeon; } |
| bool useNEONForFPMovs() const { return UseNEONForFPMovs; } |
| bool checkVLDnAccessAlignment() const { return CheckVLDnAlign; } |
| bool nonpipelinedVFP() const { return NonpipelinedVFP; } |
| bool prefers32BitThumb() const { return Pref32BitThumb; } |
| bool avoidCPSRPartialUpdate() const { return AvoidCPSRPartialUpdate; } |
| bool cheapPredicableCPSRDef() const { return CheapPredicableCPSRDef; } |
| bool avoidMOVsShifterOperand() const { return AvoidMOVsShifterOperand; } |
| bool hasRetAddrStack() const { return HasRetAddrStack; } |
| bool hasBranchPredictor() const { return HasBranchPredictor; } |
| bool hasMPExtension() const { return HasMPExtension; } |
| bool hasDSP() const { return HasDSP; } |
| bool useNaClTrap() const { return UseNaClTrap; } |
| bool useSjLjEH() const { return UseSjLjEH; } |
| bool hasSB() const { return HasSB; } |
| bool genLongCalls() const { return GenLongCalls; } |
| bool genExecuteOnly() const { return GenExecuteOnly; } |
| |
| bool hasFP16() const { return HasFP16; } |
| bool hasD16() const { return HasD16; } |
| bool hasFullFP16() const { return HasFullFP16; } |
| bool hasFP16FML() const { return HasFP16FML; } |
| |
| bool hasFuseAES() const { return HasFuseAES; } |
| bool hasFuseLiterals() const { return HasFuseLiterals; } |
| /// Return true if the CPU supports any kind of instruction fusion. |
| bool hasFusion() const { return hasFuseAES() || hasFuseLiterals(); } |
| |
| const Triple &getTargetTriple() const { return TargetTriple; } |
| |
| bool isTargetDarwin() const { return TargetTriple.isOSDarwin(); } |
| bool isTargetIOS() const { return TargetTriple.isiOS(); } |
| bool isTargetWatchOS() const { return TargetTriple.isWatchOS(); } |
| bool isTargetWatchABI() const { return TargetTriple.isWatchABI(); } |
| bool isTargetLinux() const { return TargetTriple.isOSLinux(); } |
| bool isTargetNaCl() const { return TargetTriple.isOSNaCl(); } |
| bool isTargetNetBSD() const { return TargetTriple.isOSNetBSD(); } |
| bool isTargetWindows() const { return TargetTriple.isOSWindows(); } |
| |
| bool isTargetCOFF() const { return TargetTriple.isOSBinFormatCOFF(); } |
| bool isTargetELF() const { return TargetTriple.isOSBinFormatELF(); } |
| bool isTargetMachO() const { return TargetTriple.isOSBinFormatMachO(); } |
| |
| // ARM EABI is the bare-metal EABI described in ARM ABI documents and |
| // can be accessed via -target arm-none-eabi. This is NOT GNUEABI. |
| // FIXME: Add a flag for bare-metal for that target and set Triple::EABI |
| // even for GNUEABI, so we can make a distinction here and still conform to |
| // the EABI on GNU (and Android) mode. This requires change in Clang, too. |
| // FIXME: The Darwin exception is temporary, while we move users to |
| // "*-*-*-macho" triples as quickly as possible. |
| bool isTargetAEABI() const { |
| return (TargetTriple.getEnvironment() == Triple::EABI || |
| TargetTriple.getEnvironment() == Triple::EABIHF) && |
| !isTargetDarwin() && !isTargetWindows(); |
| } |
| bool isTargetGNUAEABI() const { |
| return (TargetTriple.getEnvironment() == Triple::GNUEABI || |
| TargetTriple.getEnvironment() == Triple::GNUEABIHF) && |
| !isTargetDarwin() && !isTargetWindows(); |
| } |
| bool isTargetMuslAEABI() const { |
| return (TargetTriple.getEnvironment() == Triple::MuslEABI || |
| TargetTriple.getEnvironment() == Triple::MuslEABIHF) && |
| !isTargetDarwin() && !isTargetWindows(); |
| } |
| |
| // ARM Targets that support EHABI exception handling standard |
| // Darwin uses SjLj. Other targets might need more checks. |
| bool isTargetEHABICompatible() const { |
| return (TargetTriple.getEnvironment() == Triple::EABI || |
| TargetTriple.getEnvironment() == Triple::GNUEABI || |
| TargetTriple.getEnvironment() == Triple::MuslEABI || |
| TargetTriple.getEnvironment() == Triple::EABIHF || |
| TargetTriple.getEnvironment() == Triple::GNUEABIHF || |
| TargetTriple.getEnvironment() == Triple::MuslEABIHF || |
| isTargetAndroid()) && |
| !isTargetDarwin() && !isTargetWindows(); |
| } |
| |
| bool isTargetHardFloat() const; |
| |
| bool isTargetAndroid() const { return TargetTriple.isAndroid(); } |
| |
| bool isXRaySupported() const override; |
| |
| bool isAPCS_ABI() const; |
| bool isAAPCS_ABI() const; |
| bool isAAPCS16_ABI() const; |
| |
| bool isROPI() const; |
| bool isRWPI() const; |
| |
| bool useMachineScheduler() const { return UseMISched; } |
| bool disablePostRAScheduler() const { return DisablePostRAScheduler; } |
| bool useSoftFloat() const { return UseSoftFloat; } |
| bool isThumb() const { return InThumbMode; } |
| bool isThumb1Only() const { return InThumbMode && !HasThumb2; } |
| bool isThumb2() const { return InThumbMode && HasThumb2; } |
| bool hasThumb2() const { return HasThumb2; } |
| bool isMClass() const { return ARMProcClass == MClass; } |
| bool isRClass() const { return ARMProcClass == RClass; } |
| bool isAClass() const { return ARMProcClass == AClass; } |
| bool isReadTPHard() const { return ReadTPHard; } |
| |
| bool isR9Reserved() const { |
| return isTargetMachO() ? (ReserveR9 || !HasV6Ops) : ReserveR9; |
| } |
| |
| bool useR7AsFramePointer() const { |
| return isTargetDarwin() || (!isTargetWindows() && isThumb()); |
| } |
| |
| /// Returns true if the frame setup is split into two separate pushes (first |
| /// r0-r7,lr then r8-r11), principally so that the frame pointer is adjacent |
| /// to lr. This is always required on Thumb1-only targets, as the push and |
| /// pop instructions can't access the high registers. |
| bool splitFramePushPop(const MachineFunction &MF) const { |
| return (useR7AsFramePointer() && |
| MF.getTarget().Options.DisableFramePointerElim(MF)) || |
| isThumb1Only(); |
| } |
| |
| bool useStride4VFPs(const MachineFunction &MF) const; |
| |
| bool useMovt(const MachineFunction &MF) const; |
| |
| bool supportsTailCall() const { return SupportsTailCall; } |
| |
| bool allowsUnalignedMem() const { return !StrictAlign; } |
| |
| bool restrictIT() const { return RestrictIT; } |
| |
| const std::string & getCPUString() const { return CPUString; } |
| |
| bool isLittle() const { return IsLittle; } |
| |
| unsigned getMispredictionPenalty() const; |
| |
| /// Returns true if machine scheduler should be enabled. |
| bool enableMachineScheduler() const override; |
| |
| /// True for some subtargets at > -O0. |
| bool enablePostRAScheduler() const override; |
| |
| /// Enable use of alias analysis during code generation (during MI |
| /// scheduling, DAGCombine, etc.). |
| bool useAA() const override { return UseAA; } |
| |
| // enableAtomicExpand- True if we need to expand our atomics. |
| bool enableAtomicExpand() const override; |
| |
| /// getInstrItins - Return the instruction itineraries based on subtarget |
| /// selection. |
| const InstrItineraryData *getInstrItineraryData() const override { |
| return &InstrItins; |
| } |
| |
| /// getStackAlignment - Returns the minimum alignment known to hold of the |
| /// stack frame on entry to the function and which must be maintained by every |
| /// function for this subtarget. |
| unsigned getStackAlignment() const { return stackAlignment; } |
| |
| unsigned getMaxInterleaveFactor() const { return MaxInterleaveFactor; } |
| |
| unsigned getPartialUpdateClearance() const { return PartialUpdateClearance; } |
| |
| ARMLdStMultipleTiming getLdStMultipleTiming() const { |
| return LdStMultipleTiming; |
| } |
| |
| int getPreISelOperandLatencyAdjustment() const { |
| return PreISelOperandLatencyAdjustment; |
| } |
| |
| /// True if the GV will be accessed via an indirect symbol. |
| bool isGVIndirectSymbol(const GlobalValue *GV) const; |
| |
| /// Returns the constant pool modifier needed to access the GV. |
| bool isGVInGOT(const GlobalValue *GV) const; |
| |
| /// True if fast-isel is used. |
| bool useFastISel() const; |
| |
| /// Returns the correct return opcode for the current feature set. |
| /// Use BX if available to allow mixing thumb/arm code, but fall back |
| /// to plain mov pc,lr on ARMv4. |
| unsigned getReturnOpcode() const { |
| if (isThumb()) |
| return ARM::tBX_RET; |
| if (hasV4TOps()) |
| return ARM::BX_RET; |
| return ARM::MOVPCLR; |
| } |
| |
| /// Allow movt+movw for PIC global address calculation. |
| /// ELF does not have GOT relocations for movt+movw. |
| /// ROPI does not use GOT. |
| bool allowPositionIndependentMovt() const { |
| return isROPI() || !isTargetELF(); |
| } |
| |
| unsigned getPrefLoopAlignment() const { |
| return PrefLoopAlignment; |
| } |
| }; |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_LIB_TARGET_ARM_ARMSUBTARGET_H |