| //===- HotColdSplitting.cpp -- Outline Cold Regions -------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// |
| /// \file |
| /// The goal of hot/cold splitting is to improve the memory locality of code. |
| /// The splitting pass does this by identifying cold blocks and moving them into |
| /// separate functions. |
| /// |
| /// When the splitting pass finds a cold block (referred to as "the sink"), it |
| /// grows a maximal cold region around that block. The maximal region contains |
| /// all blocks (post-)dominated by the sink [*]. In theory, these blocks are as |
| /// cold as the sink. Once a region is found, it's split out of the original |
| /// function provided it's profitable to do so. |
| /// |
| /// [*] In practice, there is some added complexity because some blocks are not |
| /// safe to extract. |
| /// |
| /// TODO: Use the PM to get domtrees, and preserve BFI/BPI. |
| /// TODO: Reorder outlined functions. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/BlockFrequencyInfo.h" |
| #include "llvm/Analysis/BranchProbabilityInfo.h" |
| #include "llvm/Analysis/CFG.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/PostDominators.h" |
| #include "llvm/Analysis/ProfileSummaryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/BlockFrequency.h" |
| #include "llvm/Support/BranchProbability.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/IPO.h" |
| #include "llvm/Transforms/IPO/HotColdSplitting.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include "llvm/Transforms/Utils/CodeExtractor.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/ValueMapper.h" |
| #include <algorithm> |
| #include <cassert> |
| |
| #define DEBUG_TYPE "hotcoldsplit" |
| |
| STATISTIC(NumColdRegionsFound, "Number of cold regions found."); |
| STATISTIC(NumColdRegionsOutlined, "Number of cold regions outlined."); |
| |
| using namespace llvm; |
| |
| static cl::opt<bool> EnableStaticAnalyis("hot-cold-static-analysis", |
| cl::init(true), cl::Hidden); |
| |
| static cl::opt<int> |
| SplittingThreshold("hotcoldsplit-threshold", cl::init(2), cl::Hidden, |
| cl::desc("Base penalty for splitting cold code (as a " |
| "multiple of TCC_Basic)")); |
| |
| namespace { |
| // Same as blockEndsInUnreachable in CodeGen/BranchFolding.cpp. Do not modify |
| // this function unless you modify the MBB version as well. |
| // |
| /// A no successor, non-return block probably ends in unreachable and is cold. |
| /// Also consider a block that ends in an indirect branch to be a return block, |
| /// since many targets use plain indirect branches to return. |
| bool blockEndsInUnreachable(const BasicBlock &BB) { |
| if (!succ_empty(&BB)) |
| return false; |
| if (BB.empty()) |
| return true; |
| const Instruction *I = BB.getTerminator(); |
| return !(isa<ReturnInst>(I) || isa<IndirectBrInst>(I)); |
| } |
| |
| bool unlikelyExecuted(BasicBlock &BB) { |
| // Exception handling blocks are unlikely executed. |
| if (BB.isEHPad() || isa<ResumeInst>(BB.getTerminator())) |
| return true; |
| |
| // The block is cold if it calls/invokes a cold function. However, do not |
| // mark sanitizer traps as cold. |
| for (Instruction &I : BB) |
| if (auto CS = CallSite(&I)) |
| if (CS.hasFnAttr(Attribute::Cold) && !CS->getMetadata("nosanitize")) |
| return true; |
| |
| // The block is cold if it has an unreachable terminator, unless it's |
| // preceded by a call to a (possibly warm) noreturn call (e.g. longjmp). |
| if (blockEndsInUnreachable(BB)) { |
| if (auto *CI = |
| dyn_cast_or_null<CallInst>(BB.getTerminator()->getPrevNode())) |
| if (CI->hasFnAttr(Attribute::NoReturn)) |
| return false; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /// Check whether it's safe to outline \p BB. |
| static bool mayExtractBlock(const BasicBlock &BB) { |
| // EH pads are unsafe to outline because doing so breaks EH type tables. It |
| // follows that invoke instructions cannot be extracted, because CodeExtractor |
| // requires unwind destinations to be within the extraction region. |
| // |
| // Resumes that are not reachable from a cleanup landing pad are considered to |
| // be unreachable. It’s not safe to split them out either. |
| auto Term = BB.getTerminator(); |
| return !BB.hasAddressTaken() && !BB.isEHPad() && !isa<InvokeInst>(Term) && |
| !isa<ResumeInst>(Term); |
| } |
| |
| /// Mark \p F cold. Based on this assumption, also optimize it for minimum size. |
| /// If \p UpdateEntryCount is true (set when this is a new split function and |
| /// module has profile data), set entry count to 0 to ensure treated as cold. |
| /// Return true if the function is changed. |
| static bool markFunctionCold(Function &F, bool UpdateEntryCount = false) { |
| assert(!F.hasOptNone() && "Can't mark this cold"); |
| bool Changed = false; |
| if (!F.hasFnAttribute(Attribute::Cold)) { |
| F.addFnAttr(Attribute::Cold); |
| Changed = true; |
| } |
| if (!F.hasFnAttribute(Attribute::MinSize)) { |
| F.addFnAttr(Attribute::MinSize); |
| Changed = true; |
| } |
| if (UpdateEntryCount) { |
| // Set the entry count to 0 to ensure it is placed in the unlikely text |
| // section when function sections are enabled. |
| F.setEntryCount(0); |
| Changed = true; |
| } |
| |
| return Changed; |
| } |
| |
| class HotColdSplittingLegacyPass : public ModulePass { |
| public: |
| static char ID; |
| HotColdSplittingLegacyPass() : ModulePass(ID) { |
| initializeHotColdSplittingLegacyPassPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<BlockFrequencyInfoWrapperPass>(); |
| AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| AU.addUsedIfAvailable<AssumptionCacheTracker>(); |
| } |
| |
| bool runOnModule(Module &M) override; |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Check whether \p F is inherently cold. |
| bool HotColdSplitting::isFunctionCold(const Function &F) const { |
| if (F.hasFnAttribute(Attribute::Cold)) |
| return true; |
| |
| if (F.getCallingConv() == CallingConv::Cold) |
| return true; |
| |
| if (PSI->isFunctionEntryCold(&F)) |
| return true; |
| |
| return false; |
| } |
| |
| // Returns false if the function should not be considered for hot-cold split |
| // optimization. |
| bool HotColdSplitting::shouldOutlineFrom(const Function &F) const { |
| if (F.hasFnAttribute(Attribute::AlwaysInline)) |
| return false; |
| |
| if (F.hasFnAttribute(Attribute::NoInline)) |
| return false; |
| |
| if (F.hasFnAttribute(Attribute::SanitizeAddress) || |
| F.hasFnAttribute(Attribute::SanitizeHWAddress) || |
| F.hasFnAttribute(Attribute::SanitizeThread) || |
| F.hasFnAttribute(Attribute::SanitizeMemory)) |
| return false; |
| |
| return true; |
| } |
| |
| /// Get the benefit score of outlining \p Region. |
| static int getOutliningBenefit(ArrayRef<BasicBlock *> Region, |
| TargetTransformInfo &TTI) { |
| // Sum up the code size costs of non-terminator instructions. Tight coupling |
| // with \ref getOutliningPenalty is needed to model the costs of terminators. |
| int Benefit = 0; |
| for (BasicBlock *BB : Region) |
| for (Instruction &I : BB->instructionsWithoutDebug()) |
| if (&I != BB->getTerminator()) |
| Benefit += |
| TTI.getInstructionCost(&I, TargetTransformInfo::TCK_CodeSize); |
| |
| return Benefit; |
| } |
| |
| /// Get the penalty score for outlining \p Region. |
| static int getOutliningPenalty(ArrayRef<BasicBlock *> Region, |
| unsigned NumInputs, unsigned NumOutputs) { |
| int Penalty = SplittingThreshold; |
| LLVM_DEBUG(dbgs() << "Applying penalty for splitting: " << Penalty << "\n"); |
| |
| // If the splitting threshold is set at or below zero, skip the usual |
| // profitability check. |
| if (SplittingThreshold <= 0) |
| return Penalty; |
| |
| // The typical code size cost for materializing an argument for the outlined |
| // call. |
| LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumInputs << " inputs\n"); |
| const int CostForArgMaterialization = TargetTransformInfo::TCC_Basic; |
| Penalty += CostForArgMaterialization * NumInputs; |
| |
| // The typical code size cost for an output alloca, its associated store, and |
| // its associated reload. |
| LLVM_DEBUG(dbgs() << "Applying penalty for: " << NumOutputs << " outputs\n"); |
| const int CostForRegionOutput = 3 * TargetTransformInfo::TCC_Basic; |
| Penalty += CostForRegionOutput * NumOutputs; |
| |
| // Find the number of distinct exit blocks for the region. Use a conservative |
| // check to determine whether control returns from the region. |
| bool NoBlocksReturn = true; |
| SmallPtrSet<BasicBlock *, 2> SuccsOutsideRegion; |
| for (BasicBlock *BB : Region) { |
| // If a block has no successors, only assume it does not return if it's |
| // unreachable. |
| if (succ_empty(BB)) { |
| NoBlocksReturn &= isa<UnreachableInst>(BB->getTerminator()); |
| continue; |
| } |
| |
| for (BasicBlock *SuccBB : successors(BB)) { |
| if (find(Region, SuccBB) == Region.end()) { |
| NoBlocksReturn = false; |
| SuccsOutsideRegion.insert(SuccBB); |
| } |
| } |
| } |
| |
| // Apply a `noreturn` bonus. |
| if (NoBlocksReturn) { |
| LLVM_DEBUG(dbgs() << "Applying bonus for: " << Region.size() |
| << " non-returning terminators\n"); |
| Penalty -= Region.size(); |
| } |
| |
| // Apply a penalty for having more than one successor outside of the region. |
| // This penalty accounts for the switch needed in the caller. |
| if (!SuccsOutsideRegion.empty()) { |
| LLVM_DEBUG(dbgs() << "Applying penalty for: " << SuccsOutsideRegion.size() |
| << " non-region successors\n"); |
| Penalty += (SuccsOutsideRegion.size() - 1) * TargetTransformInfo::TCC_Basic; |
| } |
| |
| return Penalty; |
| } |
| |
| Function *HotColdSplitting::extractColdRegion( |
| const BlockSequence &Region, const CodeExtractorAnalysisCache &CEAC, |
| DominatorTree &DT, BlockFrequencyInfo *BFI, TargetTransformInfo &TTI, |
| OptimizationRemarkEmitter &ORE, AssumptionCache *AC, unsigned Count) { |
| assert(!Region.empty()); |
| |
| // TODO: Pass BFI and BPI to update profile information. |
| CodeExtractor CE(Region, &DT, /* AggregateArgs */ false, /* BFI */ nullptr, |
| /* BPI */ nullptr, AC, /* AllowVarArgs */ false, |
| /* AllowAlloca */ false, |
| /* Suffix */ "cold." + std::to_string(Count)); |
| |
| // Perform a simple cost/benefit analysis to decide whether or not to permit |
| // splitting. |
| SetVector<Value *> Inputs, Outputs, Sinks; |
| CE.findInputsOutputs(Inputs, Outputs, Sinks); |
| int OutliningBenefit = getOutliningBenefit(Region, TTI); |
| int OutliningPenalty = |
| getOutliningPenalty(Region, Inputs.size(), Outputs.size()); |
| LLVM_DEBUG(dbgs() << "Split profitability: benefit = " << OutliningBenefit |
| << ", penalty = " << OutliningPenalty << "\n"); |
| if (OutliningBenefit <= OutliningPenalty) |
| return nullptr; |
| |
| Function *OrigF = Region[0]->getParent(); |
| if (Function *OutF = CE.extractCodeRegion(CEAC)) { |
| User *U = *OutF->user_begin(); |
| CallInst *CI = cast<CallInst>(U); |
| CallSite CS(CI); |
| NumColdRegionsOutlined++; |
| if (TTI.useColdCCForColdCall(*OutF)) { |
| OutF->setCallingConv(CallingConv::Cold); |
| CS.setCallingConv(CallingConv::Cold); |
| } |
| CI->setIsNoInline(); |
| |
| markFunctionCold(*OutF, BFI != nullptr); |
| |
| LLVM_DEBUG(llvm::dbgs() << "Outlined Region: " << *OutF); |
| ORE.emit([&]() { |
| return OptimizationRemark(DEBUG_TYPE, "HotColdSplit", |
| &*Region[0]->begin()) |
| << ore::NV("Original", OrigF) << " split cold code into " |
| << ore::NV("Split", OutF); |
| }); |
| return OutF; |
| } |
| |
| ORE.emit([&]() { |
| return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", |
| &*Region[0]->begin()) |
| << "Failed to extract region at block " |
| << ore::NV("Block", Region.front()); |
| }); |
| return nullptr; |
| } |
| |
| /// A pair of (basic block, score). |
| using BlockTy = std::pair<BasicBlock *, unsigned>; |
| |
| namespace { |
| /// A maximal outlining region. This contains all blocks post-dominated by a |
| /// sink block, the sink block itself, and all blocks dominated by the sink. |
| /// If sink-predecessors and sink-successors cannot be extracted in one region, |
| /// the static constructor returns a list of suitable extraction regions. |
| class OutliningRegion { |
| /// A list of (block, score) pairs. A block's score is non-zero iff it's a |
| /// viable sub-region entry point. Blocks with higher scores are better entry |
| /// points (i.e. they are more distant ancestors of the sink block). |
| SmallVector<BlockTy, 0> Blocks = {}; |
| |
| /// The suggested entry point into the region. If the region has multiple |
| /// entry points, all blocks within the region may not be reachable from this |
| /// entry point. |
| BasicBlock *SuggestedEntryPoint = nullptr; |
| |
| /// Whether the entire function is cold. |
| bool EntireFunctionCold = false; |
| |
| /// If \p BB is a viable entry point, return \p Score. Return 0 otherwise. |
| static unsigned getEntryPointScore(BasicBlock &BB, unsigned Score) { |
| return mayExtractBlock(BB) ? Score : 0; |
| } |
| |
| /// These scores should be lower than the score for predecessor blocks, |
| /// because regions starting at predecessor blocks are typically larger. |
| static constexpr unsigned ScoreForSuccBlock = 1; |
| static constexpr unsigned ScoreForSinkBlock = 1; |
| |
| OutliningRegion(const OutliningRegion &) = delete; |
| OutliningRegion &operator=(const OutliningRegion &) = delete; |
| |
| public: |
| OutliningRegion() = default; |
| OutliningRegion(OutliningRegion &&) = default; |
| OutliningRegion &operator=(OutliningRegion &&) = default; |
| |
| static std::vector<OutliningRegion> create(BasicBlock &SinkBB, |
| const DominatorTree &DT, |
| const PostDominatorTree &PDT) { |
| std::vector<OutliningRegion> Regions; |
| SmallPtrSet<BasicBlock *, 4> RegionBlocks; |
| |
| Regions.emplace_back(); |
| OutliningRegion *ColdRegion = &Regions.back(); |
| |
| auto addBlockToRegion = [&](BasicBlock *BB, unsigned Score) { |
| RegionBlocks.insert(BB); |
| ColdRegion->Blocks.emplace_back(BB, Score); |
| }; |
| |
| // The ancestor farthest-away from SinkBB, and also post-dominated by it. |
| unsigned SinkScore = getEntryPointScore(SinkBB, ScoreForSinkBlock); |
| ColdRegion->SuggestedEntryPoint = (SinkScore > 0) ? &SinkBB : nullptr; |
| unsigned BestScore = SinkScore; |
| |
| // Visit SinkBB's ancestors using inverse DFS. |
| auto PredIt = ++idf_begin(&SinkBB); |
| auto PredEnd = idf_end(&SinkBB); |
| while (PredIt != PredEnd) { |
| BasicBlock &PredBB = **PredIt; |
| bool SinkPostDom = PDT.dominates(&SinkBB, &PredBB); |
| |
| // If the predecessor is cold and has no predecessors, the entire |
| // function must be cold. |
| if (SinkPostDom && pred_empty(&PredBB)) { |
| ColdRegion->EntireFunctionCold = true; |
| return Regions; |
| } |
| |
| // If SinkBB does not post-dominate a predecessor, do not mark the |
| // predecessor (or any of its predecessors) cold. |
| if (!SinkPostDom || !mayExtractBlock(PredBB)) { |
| PredIt.skipChildren(); |
| continue; |
| } |
| |
| // Keep track of the post-dominated ancestor farthest away from the sink. |
| // The path length is always >= 2, ensuring that predecessor blocks are |
| // considered as entry points before the sink block. |
| unsigned PredScore = getEntryPointScore(PredBB, PredIt.getPathLength()); |
| if (PredScore > BestScore) { |
| ColdRegion->SuggestedEntryPoint = &PredBB; |
| BestScore = PredScore; |
| } |
| |
| addBlockToRegion(&PredBB, PredScore); |
| ++PredIt; |
| } |
| |
| // If the sink can be added to the cold region, do so. It's considered as |
| // an entry point before any sink-successor blocks. |
| // |
| // Otherwise, split cold sink-successor blocks using a separate region. |
| // This satisfies the requirement that all extraction blocks other than the |
| // first have predecessors within the extraction region. |
| if (mayExtractBlock(SinkBB)) { |
| addBlockToRegion(&SinkBB, SinkScore); |
| } else { |
| Regions.emplace_back(); |
| ColdRegion = &Regions.back(); |
| BestScore = 0; |
| } |
| |
| // Find all successors of SinkBB dominated by SinkBB using DFS. |
| auto SuccIt = ++df_begin(&SinkBB); |
| auto SuccEnd = df_end(&SinkBB); |
| while (SuccIt != SuccEnd) { |
| BasicBlock &SuccBB = **SuccIt; |
| bool SinkDom = DT.dominates(&SinkBB, &SuccBB); |
| |
| // Don't allow the backwards & forwards DFSes to mark the same block. |
| bool DuplicateBlock = RegionBlocks.count(&SuccBB); |
| |
| // If SinkBB does not dominate a successor, do not mark the successor (or |
| // any of its successors) cold. |
| if (DuplicateBlock || !SinkDom || !mayExtractBlock(SuccBB)) { |
| SuccIt.skipChildren(); |
| continue; |
| } |
| |
| unsigned SuccScore = getEntryPointScore(SuccBB, ScoreForSuccBlock); |
| if (SuccScore > BestScore) { |
| ColdRegion->SuggestedEntryPoint = &SuccBB; |
| BestScore = SuccScore; |
| } |
| |
| addBlockToRegion(&SuccBB, SuccScore); |
| ++SuccIt; |
| } |
| |
| return Regions; |
| } |
| |
| /// Whether this region has nothing to extract. |
| bool empty() const { return !SuggestedEntryPoint; } |
| |
| /// The blocks in this region. |
| ArrayRef<std::pair<BasicBlock *, unsigned>> blocks() const { return Blocks; } |
| |
| /// Whether the entire function containing this region is cold. |
| bool isEntireFunctionCold() const { return EntireFunctionCold; } |
| |
| /// Remove a sub-region from this region and return it as a block sequence. |
| BlockSequence takeSingleEntrySubRegion(DominatorTree &DT) { |
| assert(!empty() && !isEntireFunctionCold() && "Nothing to extract"); |
| |
| // Remove blocks dominated by the suggested entry point from this region. |
| // During the removal, identify the next best entry point into the region. |
| // Ensure that the first extracted block is the suggested entry point. |
| BlockSequence SubRegion = {SuggestedEntryPoint}; |
| BasicBlock *NextEntryPoint = nullptr; |
| unsigned NextScore = 0; |
| auto RegionEndIt = Blocks.end(); |
| auto RegionStartIt = remove_if(Blocks, [&](const BlockTy &Block) { |
| BasicBlock *BB = Block.first; |
| unsigned Score = Block.second; |
| bool InSubRegion = |
| BB == SuggestedEntryPoint || DT.dominates(SuggestedEntryPoint, BB); |
| if (!InSubRegion && Score > NextScore) { |
| NextEntryPoint = BB; |
| NextScore = Score; |
| } |
| if (InSubRegion && BB != SuggestedEntryPoint) |
| SubRegion.push_back(BB); |
| return InSubRegion; |
| }); |
| Blocks.erase(RegionStartIt, RegionEndIt); |
| |
| // Update the suggested entry point. |
| SuggestedEntryPoint = NextEntryPoint; |
| |
| return SubRegion; |
| } |
| }; |
| } // namespace |
| |
| bool HotColdSplitting::outlineColdRegions(Function &F, bool HasProfileSummary) { |
| bool Changed = false; |
| |
| // The set of cold blocks. |
| SmallPtrSet<BasicBlock *, 4> ColdBlocks; |
| |
| // The worklist of non-intersecting regions left to outline. |
| SmallVector<OutliningRegion, 2> OutliningWorklist; |
| |
| // Set up an RPO traversal. Experimentally, this performs better (outlines |
| // more) than a PO traversal, because we prevent region overlap by keeping |
| // the first region to contain a block. |
| ReversePostOrderTraversal<Function *> RPOT(&F); |
| |
| // Calculate domtrees lazily. This reduces compile-time significantly. |
| std::unique_ptr<DominatorTree> DT; |
| std::unique_ptr<PostDominatorTree> PDT; |
| |
| // Calculate BFI lazily (it's only used to query ProfileSummaryInfo). This |
| // reduces compile-time significantly. TODO: When we *do* use BFI, we should |
| // be able to salvage its domtrees instead of recomputing them. |
| BlockFrequencyInfo *BFI = nullptr; |
| if (HasProfileSummary) |
| BFI = GetBFI(F); |
| |
| TargetTransformInfo &TTI = GetTTI(F); |
| OptimizationRemarkEmitter &ORE = (*GetORE)(F); |
| AssumptionCache *AC = LookupAC(F); |
| |
| // Find all cold regions. |
| for (BasicBlock *BB : RPOT) { |
| // This block is already part of some outlining region. |
| if (ColdBlocks.count(BB)) |
| continue; |
| |
| bool Cold = (BFI && PSI->isColdBlock(BB, BFI)) || |
| (EnableStaticAnalyis && unlikelyExecuted(*BB)); |
| if (!Cold) |
| continue; |
| |
| LLVM_DEBUG({ |
| dbgs() << "Found a cold block:\n"; |
| BB->dump(); |
| }); |
| |
| if (!DT) |
| DT = std::make_unique<DominatorTree>(F); |
| if (!PDT) |
| PDT = std::make_unique<PostDominatorTree>(F); |
| |
| auto Regions = OutliningRegion::create(*BB, *DT, *PDT); |
| for (OutliningRegion &Region : Regions) { |
| if (Region.empty()) |
| continue; |
| |
| if (Region.isEntireFunctionCold()) { |
| LLVM_DEBUG(dbgs() << "Entire function is cold\n"); |
| return markFunctionCold(F); |
| } |
| |
| // If this outlining region intersects with another, drop the new region. |
| // |
| // TODO: It's theoretically possible to outline more by only keeping the |
| // largest region which contains a block, but the extra bookkeeping to do |
| // this is tricky/expensive. |
| bool RegionsOverlap = any_of(Region.blocks(), [&](const BlockTy &Block) { |
| return !ColdBlocks.insert(Block.first).second; |
| }); |
| if (RegionsOverlap) |
| continue; |
| |
| OutliningWorklist.emplace_back(std::move(Region)); |
| ++NumColdRegionsFound; |
| } |
| } |
| |
| if (OutliningWorklist.empty()) |
| return Changed; |
| |
| // Outline single-entry cold regions, splitting up larger regions as needed. |
| unsigned OutlinedFunctionID = 1; |
| // Cache and recycle the CodeExtractor analysis to avoid O(n^2) compile-time. |
| CodeExtractorAnalysisCache CEAC(F); |
| do { |
| OutliningRegion Region = OutliningWorklist.pop_back_val(); |
| assert(!Region.empty() && "Empty outlining region in worklist"); |
| do { |
| BlockSequence SubRegion = Region.takeSingleEntrySubRegion(*DT); |
| LLVM_DEBUG({ |
| dbgs() << "Hot/cold splitting attempting to outline these blocks:\n"; |
| for (BasicBlock *BB : SubRegion) |
| BB->dump(); |
| }); |
| |
| Function *Outlined = extractColdRegion(SubRegion, CEAC, *DT, BFI, TTI, |
| ORE, AC, OutlinedFunctionID); |
| if (Outlined) { |
| ++OutlinedFunctionID; |
| Changed = true; |
| } |
| } while (!Region.empty()); |
| } while (!OutliningWorklist.empty()); |
| |
| return Changed; |
| } |
| |
| bool HotColdSplitting::run(Module &M) { |
| bool Changed = false; |
| bool HasProfileSummary = (M.getProfileSummary(/* IsCS */ false) != nullptr); |
| for (auto It = M.begin(), End = M.end(); It != End; ++It) { |
| Function &F = *It; |
| |
| // Do not touch declarations. |
| if (F.isDeclaration()) |
| continue; |
| |
| // Do not modify `optnone` functions. |
| if (F.hasOptNone()) |
| continue; |
| |
| // Detect inherently cold functions and mark them as such. |
| if (isFunctionCold(F)) { |
| Changed |= markFunctionCold(F); |
| continue; |
| } |
| |
| if (!shouldOutlineFrom(F)) { |
| LLVM_DEBUG(llvm::dbgs() << "Skipping " << F.getName() << "\n"); |
| continue; |
| } |
| |
| LLVM_DEBUG(llvm::dbgs() << "Outlining in " << F.getName() << "\n"); |
| Changed |= outlineColdRegions(F, HasProfileSummary); |
| } |
| return Changed; |
| } |
| |
| bool HotColdSplittingLegacyPass::runOnModule(Module &M) { |
| if (skipModule(M)) |
| return false; |
| ProfileSummaryInfo *PSI = |
| &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
| auto GTTI = [this](Function &F) -> TargetTransformInfo & { |
| return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
| }; |
| auto GBFI = [this](Function &F) { |
| return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); |
| }; |
| std::unique_ptr<OptimizationRemarkEmitter> ORE; |
| std::function<OptimizationRemarkEmitter &(Function &)> GetORE = |
| [&ORE](Function &F) -> OptimizationRemarkEmitter & { |
| ORE.reset(new OptimizationRemarkEmitter(&F)); |
| return *ORE.get(); |
| }; |
| auto LookupAC = [this](Function &F) -> AssumptionCache * { |
| if (auto *ACT = getAnalysisIfAvailable<AssumptionCacheTracker>()) |
| return ACT->lookupAssumptionCache(F); |
| return nullptr; |
| }; |
| |
| return HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M); |
| } |
| |
| PreservedAnalyses |
| HotColdSplittingPass::run(Module &M, ModuleAnalysisManager &AM) { |
| auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); |
| |
| auto LookupAC = [&FAM](Function &F) -> AssumptionCache * { |
| return FAM.getCachedResult<AssumptionAnalysis>(F); |
| }; |
| |
| auto GBFI = [&FAM](Function &F) { |
| return &FAM.getResult<BlockFrequencyAnalysis>(F); |
| }; |
| |
| std::function<TargetTransformInfo &(Function &)> GTTI = |
| [&FAM](Function &F) -> TargetTransformInfo & { |
| return FAM.getResult<TargetIRAnalysis>(F); |
| }; |
| |
| std::unique_ptr<OptimizationRemarkEmitter> ORE; |
| std::function<OptimizationRemarkEmitter &(Function &)> GetORE = |
| [&ORE](Function &F) -> OptimizationRemarkEmitter & { |
| ORE.reset(new OptimizationRemarkEmitter(&F)); |
| return *ORE.get(); |
| }; |
| |
| ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); |
| |
| if (HotColdSplitting(PSI, GBFI, GTTI, &GetORE, LookupAC).run(M)) |
| return PreservedAnalyses::none(); |
| return PreservedAnalyses::all(); |
| } |
| |
| char HotColdSplittingLegacyPass::ID = 0; |
| INITIALIZE_PASS_BEGIN(HotColdSplittingLegacyPass, "hotcoldsplit", |
| "Hot Cold Splitting", false, false) |
| INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) |
| INITIALIZE_PASS_END(HotColdSplittingLegacyPass, "hotcoldsplit", |
| "Hot Cold Splitting", false, false) |
| |
| ModulePass *llvm::createHotColdSplittingPass() { |
| return new HotColdSplittingLegacyPass(); |
| } |