| //===- llvm/CodeGen/DwarfDebug.cpp - Dwarf Debug Framework ----------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains support for writing dwarf debug info into asm files. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "DwarfDebug.h" |
| #include "ByteStreamer.h" |
| #include "DIEHash.h" |
| #include "DebugLocEntry.h" |
| #include "DebugLocStream.h" |
| #include "DwarfCompileUnit.h" |
| #include "DwarfExpression.h" |
| #include "DwarfFile.h" |
| #include "DwarfUnit.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/BinaryFormat/Dwarf.h" |
| #include "llvm/CodeGen/AccelTable.h" |
| #include "llvm/CodeGen/AsmPrinter.h" |
| #include "llvm/CodeGen/DIE.h" |
| #include "llvm/CodeGen/LexicalScopes.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/DebugInfo/DWARF/DWARFExpression.h" |
| #include "llvm/DebugInfo/DWARF/DWARFDataExtractor.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCDwarf.h" |
| #include "llvm/MC/MCSection.h" |
| #include "llvm/MC/MCStreamer.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/MC/MCTargetOptions.h" |
| #include "llvm/MC/MachineLocation.h" |
| #include "llvm/MC/SectionKind.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MD5.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/Timer.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetLoweringObjectFile.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <iterator> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "dwarfdebug" |
| |
| STATISTIC(NumCSParams, "Number of dbg call site params created"); |
| |
| static cl::opt<bool> |
| DisableDebugInfoPrinting("disable-debug-info-print", cl::Hidden, |
| cl::desc("Disable debug info printing")); |
| |
| static cl::opt<bool> UseDwarfRangesBaseAddressSpecifier( |
| "use-dwarf-ranges-base-address-specifier", cl::Hidden, |
| cl::desc("Use base address specifiers in debug_ranges"), cl::init(false)); |
| |
| static cl::opt<bool> GenerateARangeSection("generate-arange-section", |
| cl::Hidden, |
| cl::desc("Generate dwarf aranges"), |
| cl::init(false)); |
| |
| static cl::opt<bool> |
| GenerateDwarfTypeUnits("generate-type-units", cl::Hidden, |
| cl::desc("Generate DWARF4 type units."), |
| cl::init(false)); |
| |
| static cl::opt<bool> SplitDwarfCrossCuReferences( |
| "split-dwarf-cross-cu-references", cl::Hidden, |
| cl::desc("Enable cross-cu references in DWO files"), cl::init(false)); |
| |
| enum DefaultOnOff { Default, Enable, Disable }; |
| |
| static cl::opt<DefaultOnOff> UnknownLocations( |
| "use-unknown-locations", cl::Hidden, |
| cl::desc("Make an absence of debug location information explicit."), |
| cl::values(clEnumVal(Default, "At top of block or after label"), |
| clEnumVal(Enable, "In all cases"), clEnumVal(Disable, "Never")), |
| cl::init(Default)); |
| |
| static cl::opt<AccelTableKind> AccelTables( |
| "accel-tables", cl::Hidden, cl::desc("Output dwarf accelerator tables."), |
| cl::values(clEnumValN(AccelTableKind::Default, "Default", |
| "Default for platform"), |
| clEnumValN(AccelTableKind::None, "Disable", "Disabled."), |
| clEnumValN(AccelTableKind::Apple, "Apple", "Apple"), |
| clEnumValN(AccelTableKind::Dwarf, "Dwarf", "DWARF")), |
| cl::init(AccelTableKind::Default)); |
| |
| static cl::opt<DefaultOnOff> |
| DwarfInlinedStrings("dwarf-inlined-strings", cl::Hidden, |
| cl::desc("Use inlined strings rather than string section."), |
| cl::values(clEnumVal(Default, "Default for platform"), |
| clEnumVal(Enable, "Enabled"), |
| clEnumVal(Disable, "Disabled")), |
| cl::init(Default)); |
| |
| static cl::opt<bool> |
| NoDwarfRangesSection("no-dwarf-ranges-section", cl::Hidden, |
| cl::desc("Disable emission .debug_ranges section."), |
| cl::init(false)); |
| |
| static cl::opt<DefaultOnOff> DwarfSectionsAsReferences( |
| "dwarf-sections-as-references", cl::Hidden, |
| cl::desc("Use sections+offset as references rather than labels."), |
| cl::values(clEnumVal(Default, "Default for platform"), |
| clEnumVal(Enable, "Enabled"), clEnumVal(Disable, "Disabled")), |
| cl::init(Default)); |
| |
| enum LinkageNameOption { |
| DefaultLinkageNames, |
| AllLinkageNames, |
| AbstractLinkageNames |
| }; |
| |
| static cl::opt<LinkageNameOption> |
| DwarfLinkageNames("dwarf-linkage-names", cl::Hidden, |
| cl::desc("Which DWARF linkage-name attributes to emit."), |
| cl::values(clEnumValN(DefaultLinkageNames, "Default", |
| "Default for platform"), |
| clEnumValN(AllLinkageNames, "All", "All"), |
| clEnumValN(AbstractLinkageNames, "Abstract", |
| "Abstract subprograms")), |
| cl::init(DefaultLinkageNames)); |
| |
| static const char *const DWARFGroupName = "dwarf"; |
| static const char *const DWARFGroupDescription = "DWARF Emission"; |
| static const char *const DbgTimerName = "writer"; |
| static const char *const DbgTimerDescription = "DWARF Debug Writer"; |
| static constexpr unsigned ULEB128PadSize = 4; |
| |
| void DebugLocDwarfExpression::emitOp(uint8_t Op, const char *Comment) { |
| getActiveStreamer().EmitInt8( |
| Op, Comment ? Twine(Comment) + " " + dwarf::OperationEncodingString(Op) |
| : dwarf::OperationEncodingString(Op)); |
| } |
| |
| void DebugLocDwarfExpression::emitSigned(int64_t Value) { |
| getActiveStreamer().EmitSLEB128(Value, Twine(Value)); |
| } |
| |
| void DebugLocDwarfExpression::emitUnsigned(uint64_t Value) { |
| getActiveStreamer().EmitULEB128(Value, Twine(Value)); |
| } |
| |
| void DebugLocDwarfExpression::emitData1(uint8_t Value) { |
| getActiveStreamer().EmitInt8(Value, Twine(Value)); |
| } |
| |
| void DebugLocDwarfExpression::emitBaseTypeRef(uint64_t Idx) { |
| assert(Idx < (1ULL << (ULEB128PadSize * 7)) && "Idx wont fit"); |
| getActiveStreamer().EmitULEB128(Idx, Twine(Idx), ULEB128PadSize); |
| } |
| |
| bool DebugLocDwarfExpression::isFrameRegister(const TargetRegisterInfo &TRI, |
| unsigned MachineReg) { |
| // This information is not available while emitting .debug_loc entries. |
| return false; |
| } |
| |
| void DebugLocDwarfExpression::enableTemporaryBuffer() { |
| assert(!IsBuffering && "Already buffering?"); |
| if (!TmpBuf) |
| TmpBuf = std::make_unique<TempBuffer>(OutBS.GenerateComments); |
| IsBuffering = true; |
| } |
| |
| void DebugLocDwarfExpression::disableTemporaryBuffer() { IsBuffering = false; } |
| |
| unsigned DebugLocDwarfExpression::getTemporaryBufferSize() { |
| return TmpBuf ? TmpBuf->Bytes.size() : 0; |
| } |
| |
| void DebugLocDwarfExpression::commitTemporaryBuffer() { |
| if (!TmpBuf) |
| return; |
| for (auto Byte : enumerate(TmpBuf->Bytes)) { |
| const char *Comment = (Byte.index() < TmpBuf->Comments.size()) |
| ? TmpBuf->Comments[Byte.index()].c_str() |
| : ""; |
| OutBS.EmitInt8(Byte.value(), Comment); |
| } |
| TmpBuf->Bytes.clear(); |
| TmpBuf->Comments.clear(); |
| } |
| |
| const DIType *DbgVariable::getType() const { |
| return getVariable()->getType(); |
| } |
| |
| /// Get .debug_loc entry for the instruction range starting at MI. |
| static DbgValueLoc getDebugLocValue(const MachineInstr *MI) { |
| const DIExpression *Expr = MI->getDebugExpression(); |
| assert(MI->getNumOperands() == 4); |
| if (MI->getOperand(0).isReg()) { |
| auto RegOp = MI->getOperand(0); |
| auto Op1 = MI->getOperand(1); |
| // If the second operand is an immediate, this is a |
| // register-indirect address. |
| assert((!Op1.isImm() || (Op1.getImm() == 0)) && "unexpected offset"); |
| MachineLocation MLoc(RegOp.getReg(), Op1.isImm()); |
| return DbgValueLoc(Expr, MLoc); |
| } |
| if (MI->getOperand(0).isImm()) |
| return DbgValueLoc(Expr, MI->getOperand(0).getImm()); |
| if (MI->getOperand(0).isFPImm()) |
| return DbgValueLoc(Expr, MI->getOperand(0).getFPImm()); |
| if (MI->getOperand(0).isCImm()) |
| return DbgValueLoc(Expr, MI->getOperand(0).getCImm()); |
| |
| llvm_unreachable("Unexpected 4-operand DBG_VALUE instruction!"); |
| } |
| |
| void DbgVariable::initializeDbgValue(const MachineInstr *DbgValue) { |
| assert(FrameIndexExprs.empty() && "Already initialized?"); |
| assert(!ValueLoc.get() && "Already initialized?"); |
| |
| assert(getVariable() == DbgValue->getDebugVariable() && "Wrong variable"); |
| assert(getInlinedAt() == DbgValue->getDebugLoc()->getInlinedAt() && |
| "Wrong inlined-at"); |
| |
| ValueLoc = std::make_unique<DbgValueLoc>(getDebugLocValue(DbgValue)); |
| if (auto *E = DbgValue->getDebugExpression()) |
| if (E->getNumElements()) |
| FrameIndexExprs.push_back({0, E}); |
| } |
| |
| ArrayRef<DbgVariable::FrameIndexExpr> DbgVariable::getFrameIndexExprs() const { |
| if (FrameIndexExprs.size() == 1) |
| return FrameIndexExprs; |
| |
| assert(llvm::all_of(FrameIndexExprs, |
| [](const FrameIndexExpr &A) { |
| return A.Expr->isFragment(); |
| }) && |
| "multiple FI expressions without DW_OP_LLVM_fragment"); |
| llvm::sort(FrameIndexExprs, |
| [](const FrameIndexExpr &A, const FrameIndexExpr &B) -> bool { |
| return A.Expr->getFragmentInfo()->OffsetInBits < |
| B.Expr->getFragmentInfo()->OffsetInBits; |
| }); |
| |
| return FrameIndexExprs; |
| } |
| |
| void DbgVariable::addMMIEntry(const DbgVariable &V) { |
| assert(DebugLocListIndex == ~0U && !ValueLoc.get() && "not an MMI entry"); |
| assert(V.DebugLocListIndex == ~0U && !V.ValueLoc.get() && "not an MMI entry"); |
| assert(V.getVariable() == getVariable() && "conflicting variable"); |
| assert(V.getInlinedAt() == getInlinedAt() && "conflicting inlined-at location"); |
| |
| assert(!FrameIndexExprs.empty() && "Expected an MMI entry"); |
| assert(!V.FrameIndexExprs.empty() && "Expected an MMI entry"); |
| |
| // FIXME: This logic should not be necessary anymore, as we now have proper |
| // deduplication. However, without it, we currently run into the assertion |
| // below, which means that we are likely dealing with broken input, i.e. two |
| // non-fragment entries for the same variable at different frame indices. |
| if (FrameIndexExprs.size()) { |
| auto *Expr = FrameIndexExprs.back().Expr; |
| if (!Expr || !Expr->isFragment()) |
| return; |
| } |
| |
| for (const auto &FIE : V.FrameIndexExprs) |
| // Ignore duplicate entries. |
| if (llvm::none_of(FrameIndexExprs, [&](const FrameIndexExpr &Other) { |
| return FIE.FI == Other.FI && FIE.Expr == Other.Expr; |
| })) |
| FrameIndexExprs.push_back(FIE); |
| |
| assert((FrameIndexExprs.size() == 1 || |
| llvm::all_of(FrameIndexExprs, |
| [](FrameIndexExpr &FIE) { |
| return FIE.Expr && FIE.Expr->isFragment(); |
| })) && |
| "conflicting locations for variable"); |
| } |
| |
| static AccelTableKind computeAccelTableKind(unsigned DwarfVersion, |
| bool GenerateTypeUnits, |
| DebuggerKind Tuning, |
| const Triple &TT) { |
| // Honor an explicit request. |
| if (AccelTables != AccelTableKind::Default) |
| return AccelTables; |
| |
| // Accelerator tables with type units are currently not supported. |
| if (GenerateTypeUnits) |
| return AccelTableKind::None; |
| |
| // Accelerator tables get emitted if targetting DWARF v5 or LLDB. DWARF v5 |
| // always implies debug_names. For lower standard versions we use apple |
| // accelerator tables on apple platforms and debug_names elsewhere. |
| if (DwarfVersion >= 5) |
| return AccelTableKind::Dwarf; |
| if (Tuning == DebuggerKind::LLDB) |
| return TT.isOSBinFormatMachO() ? AccelTableKind::Apple |
| : AccelTableKind::Dwarf; |
| return AccelTableKind::None; |
| } |
| |
| DwarfDebug::DwarfDebug(AsmPrinter *A, Module *M) |
| : DebugHandlerBase(A), DebugLocs(A->OutStreamer->isVerboseAsm()), |
| InfoHolder(A, "info_string", DIEValueAllocator), |
| SkeletonHolder(A, "skel_string", DIEValueAllocator), |
| IsDarwin(A->TM.getTargetTriple().isOSDarwin()) { |
| const Triple &TT = Asm->TM.getTargetTriple(); |
| |
| // Make sure we know our "debugger tuning". The target option takes |
| // precedence; fall back to triple-based defaults. |
| if (Asm->TM.Options.DebuggerTuning != DebuggerKind::Default) |
| DebuggerTuning = Asm->TM.Options.DebuggerTuning; |
| else if (IsDarwin) |
| DebuggerTuning = DebuggerKind::LLDB; |
| else if (TT.isPS4CPU()) |
| DebuggerTuning = DebuggerKind::SCE; |
| else |
| DebuggerTuning = DebuggerKind::GDB; |
| |
| if (DwarfInlinedStrings == Default) |
| UseInlineStrings = TT.isNVPTX(); |
| else |
| UseInlineStrings = DwarfInlinedStrings == Enable; |
| |
| UseLocSection = !TT.isNVPTX(); |
| |
| HasAppleExtensionAttributes = tuneForLLDB(); |
| |
| // Handle split DWARF. |
| HasSplitDwarf = !Asm->TM.Options.MCOptions.SplitDwarfFile.empty(); |
| |
| // SCE defaults to linkage names only for abstract subprograms. |
| if (DwarfLinkageNames == DefaultLinkageNames) |
| UseAllLinkageNames = !tuneForSCE(); |
| else |
| UseAllLinkageNames = DwarfLinkageNames == AllLinkageNames; |
| |
| unsigned DwarfVersionNumber = Asm->TM.Options.MCOptions.DwarfVersion; |
| unsigned DwarfVersion = DwarfVersionNumber ? DwarfVersionNumber |
| : MMI->getModule()->getDwarfVersion(); |
| // Use dwarf 4 by default if nothing is requested. For NVPTX, use dwarf 2. |
| DwarfVersion = |
| TT.isNVPTX() ? 2 : (DwarfVersion ? DwarfVersion : dwarf::DWARF_VERSION); |
| |
| UseRangesSection = !NoDwarfRangesSection && !TT.isNVPTX(); |
| |
| // Use sections as references. Force for NVPTX. |
| if (DwarfSectionsAsReferences == Default) |
| UseSectionsAsReferences = TT.isNVPTX(); |
| else |
| UseSectionsAsReferences = DwarfSectionsAsReferences == Enable; |
| |
| // Don't generate type units for unsupported object file formats. |
| GenerateTypeUnits = |
| A->TM.getTargetTriple().isOSBinFormatELF() && GenerateDwarfTypeUnits; |
| |
| TheAccelTableKind = computeAccelTableKind( |
| DwarfVersion, GenerateTypeUnits, DebuggerTuning, A->TM.getTargetTriple()); |
| |
| // Work around a GDB bug. GDB doesn't support the standard opcode; |
| // SCE doesn't support GNU's; LLDB prefers the standard opcode, which |
| // is defined as of DWARF 3. |
| // See GDB bug 11616 - DW_OP_form_tls_address is unimplemented |
| // https://sourceware.org/bugzilla/show_bug.cgi?id=11616 |
| UseGNUTLSOpcode = tuneForGDB() || DwarfVersion < 3; |
| |
| // GDB does not fully support the DWARF 4 representation for bitfields. |
| UseDWARF2Bitfields = (DwarfVersion < 4) || tuneForGDB(); |
| |
| // The DWARF v5 string offsets table has - possibly shared - contributions |
| // from each compile and type unit each preceded by a header. The string |
| // offsets table used by the pre-DWARF v5 split-DWARF implementation uses |
| // a monolithic string offsets table without any header. |
| UseSegmentedStringOffsetsTable = DwarfVersion >= 5; |
| |
| Asm->OutStreamer->getContext().setDwarfVersion(DwarfVersion); |
| } |
| |
| // Define out of line so we don't have to include DwarfUnit.h in DwarfDebug.h. |
| DwarfDebug::~DwarfDebug() = default; |
| |
| static bool isObjCClass(StringRef Name) { |
| return Name.startswith("+") || Name.startswith("-"); |
| } |
| |
| static bool hasObjCCategory(StringRef Name) { |
| if (!isObjCClass(Name)) |
| return false; |
| |
| return Name.find(") ") != StringRef::npos; |
| } |
| |
| static void getObjCClassCategory(StringRef In, StringRef &Class, |
| StringRef &Category) { |
| if (!hasObjCCategory(In)) { |
| Class = In.slice(In.find('[') + 1, In.find(' ')); |
| Category = ""; |
| return; |
| } |
| |
| Class = In.slice(In.find('[') + 1, In.find('(')); |
| Category = In.slice(In.find('[') + 1, In.find(' ')); |
| } |
| |
| static StringRef getObjCMethodName(StringRef In) { |
| return In.slice(In.find(' ') + 1, In.find(']')); |
| } |
| |
| // Add the various names to the Dwarf accelerator table names. |
| void DwarfDebug::addSubprogramNames(const DICompileUnit &CU, |
| const DISubprogram *SP, DIE &Die) { |
| if (getAccelTableKind() != AccelTableKind::Apple && |
| CU.getNameTableKind() == DICompileUnit::DebugNameTableKind::None) |
| return; |
| |
| if (!SP->isDefinition()) |
| return; |
| |
| if (SP->getName() != "") |
| addAccelName(CU, SP->getName(), Die); |
| |
| // If the linkage name is different than the name, go ahead and output that as |
| // well into the name table. Only do that if we are going to actually emit |
| // that name. |
| if (SP->getLinkageName() != "" && SP->getName() != SP->getLinkageName() && |
| (useAllLinkageNames() || InfoHolder.getAbstractSPDies().lookup(SP))) |
| addAccelName(CU, SP->getLinkageName(), Die); |
| |
| // If this is an Objective-C selector name add it to the ObjC accelerator |
| // too. |
| if (isObjCClass(SP->getName())) { |
| StringRef Class, Category; |
| getObjCClassCategory(SP->getName(), Class, Category); |
| addAccelObjC(CU, Class, Die); |
| if (Category != "") |
| addAccelObjC(CU, Category, Die); |
| // Also add the base method name to the name table. |
| addAccelName(CU, getObjCMethodName(SP->getName()), Die); |
| } |
| } |
| |
| /// Check whether we should create a DIE for the given Scope, return true |
| /// if we don't create a DIE (the corresponding DIE is null). |
| bool DwarfDebug::isLexicalScopeDIENull(LexicalScope *Scope) { |
| if (Scope->isAbstractScope()) |
| return false; |
| |
| // We don't create a DIE if there is no Range. |
| const SmallVectorImpl<InsnRange> &Ranges = Scope->getRanges(); |
| if (Ranges.empty()) |
| return true; |
| |
| if (Ranges.size() > 1) |
| return false; |
| |
| // We don't create a DIE if we have a single Range and the end label |
| // is null. |
| return !getLabelAfterInsn(Ranges.front().second); |
| } |
| |
| template <typename Func> static void forBothCUs(DwarfCompileUnit &CU, Func F) { |
| F(CU); |
| if (auto *SkelCU = CU.getSkeleton()) |
| if (CU.getCUNode()->getSplitDebugInlining()) |
| F(*SkelCU); |
| } |
| |
| bool DwarfDebug::shareAcrossDWOCUs() const { |
| return SplitDwarfCrossCuReferences; |
| } |
| |
| void DwarfDebug::constructAbstractSubprogramScopeDIE(DwarfCompileUnit &SrcCU, |
| LexicalScope *Scope) { |
| assert(Scope && Scope->getScopeNode()); |
| assert(Scope->isAbstractScope()); |
| assert(!Scope->getInlinedAt()); |
| |
| auto *SP = cast<DISubprogram>(Scope->getScopeNode()); |
| |
| // Find the subprogram's DwarfCompileUnit in the SPMap in case the subprogram |
| // was inlined from another compile unit. |
| if (useSplitDwarf() && !shareAcrossDWOCUs() && !SP->getUnit()->getSplitDebugInlining()) |
| // Avoid building the original CU if it won't be used |
| SrcCU.constructAbstractSubprogramScopeDIE(Scope); |
| else { |
| auto &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); |
| if (auto *SkelCU = CU.getSkeleton()) { |
| (shareAcrossDWOCUs() ? CU : SrcCU) |
| .constructAbstractSubprogramScopeDIE(Scope); |
| if (CU.getCUNode()->getSplitDebugInlining()) |
| SkelCU->constructAbstractSubprogramScopeDIE(Scope); |
| } else |
| CU.constructAbstractSubprogramScopeDIE(Scope); |
| } |
| } |
| |
| /// Try to interpret values loaded into registers that forward parameters |
| /// for \p CallMI. Store parameters with interpreted value into \p Params. |
| static void collectCallSiteParameters(const MachineInstr *CallMI, |
| ParamSet &Params) { |
| auto *MF = CallMI->getMF(); |
| auto CalleesMap = MF->getCallSitesInfo(); |
| auto CallFwdRegsInfo = CalleesMap.find(CallMI); |
| |
| // There is no information for the call instruction. |
| if (CallFwdRegsInfo == CalleesMap.end()) |
| return; |
| |
| auto *MBB = CallMI->getParent(); |
| const auto &TRI = MF->getSubtarget().getRegisterInfo(); |
| const auto &TII = MF->getSubtarget().getInstrInfo(); |
| const auto &TLI = MF->getSubtarget().getTargetLowering(); |
| |
| // Skip the call instruction. |
| auto I = std::next(CallMI->getReverseIterator()); |
| |
| DenseSet<unsigned> ForwardedRegWorklist; |
| // Add all the forwarding registers into the ForwardedRegWorklist. |
| for (auto ArgReg : CallFwdRegsInfo->second) { |
| bool InsertedReg = ForwardedRegWorklist.insert(ArgReg.Reg).second; |
| assert(InsertedReg && "Single register used to forward two arguments?"); |
| (void)InsertedReg; |
| } |
| |
| // We erase, from the ForwardedRegWorklist, those forwarding registers for |
| // which we successfully describe a loaded value (by using |
| // the describeLoadedValue()). For those remaining arguments in the working |
| // list, for which we do not describe a loaded value by |
| // the describeLoadedValue(), we try to generate an entry value expression |
| // for their call site value desctipion, if the call is within the entry MBB. |
| // The RegsForEntryValues maps a forwarding register into the register holding |
| // the entry value. |
| // TODO: Handle situations when call site parameter value can be described |
| // as the entry value within basic blocks other then the first one. |
| bool ShouldTryEmitEntryVals = MBB->getIterator() == MF->begin(); |
| DenseMap<unsigned, unsigned> RegsForEntryValues; |
| |
| // If the MI is an instruction defining one or more parameters' forwarding |
| // registers, add those defines. We can currently only describe forwarded |
| // registers that are explicitly defined, but keep track of implicit defines |
| // also to remove those registers from the work list. |
| auto getForwardingRegsDefinedByMI = [&](const MachineInstr &MI, |
| SmallVectorImpl<unsigned> &Explicit, |
| SmallVectorImpl<unsigned> &Implicit) { |
| if (MI.isDebugInstr()) |
| return; |
| |
| for (const MachineOperand &MO : MI.operands()) { |
| if (MO.isReg() && MO.isDef() && |
| Register::isPhysicalRegister(MO.getReg())) { |
| for (auto FwdReg : ForwardedRegWorklist) { |
| if (TRI->regsOverlap(FwdReg, MO.getReg())) { |
| if (MO.isImplicit()) |
| Implicit.push_back(FwdReg); |
| else |
| Explicit.push_back(FwdReg); |
| break; |
| } |
| } |
| } |
| } |
| }; |
| |
| auto finishCallSiteParam = [&](DbgValueLoc DbgLocVal, unsigned Reg) { |
| unsigned FwdReg = Reg; |
| if (ShouldTryEmitEntryVals) { |
| auto EntryValReg = RegsForEntryValues.find(Reg); |
| if (EntryValReg != RegsForEntryValues.end()) |
| FwdReg = EntryValReg->second; |
| } |
| |
| DbgCallSiteParam CSParm(FwdReg, DbgLocVal); |
| Params.push_back(CSParm); |
| ++NumCSParams; |
| }; |
| |
| // Search for a loading value in forwaring registers. |
| for (; I != MBB->rend(); ++I) { |
| // If the next instruction is a call we can not interpret parameter's |
| // forwarding registers or we finished the interpretation of all parameters. |
| if (I->isCall()) |
| return; |
| |
| if (ForwardedRegWorklist.empty()) |
| return; |
| |
| SmallVector<unsigned, 4> ExplicitFwdRegDefs; |
| SmallVector<unsigned, 4> ImplicitFwdRegDefs; |
| getForwardingRegsDefinedByMI(*I, ExplicitFwdRegDefs, ImplicitFwdRegDefs); |
| if (ExplicitFwdRegDefs.empty() && ImplicitFwdRegDefs.empty()) |
| continue; |
| |
| // If the MI clobbers more then one forwarding register we must remove |
| // all of them from the working list. |
| for (auto Reg : concat<unsigned>(ExplicitFwdRegDefs, ImplicitFwdRegDefs)) |
| ForwardedRegWorklist.erase(Reg); |
| |
| // The describeLoadedValue() hook currently does not have any information |
| // about which register it should describe in case of multiple defines, so |
| // for now we only handle instructions where a forwarded register is (at |
| // least partially) defined by the instruction's single explicit define. |
| if (I->getNumExplicitDefs() != 1 || ExplicitFwdRegDefs.empty()) |
| continue; |
| unsigned Reg = ExplicitFwdRegDefs[0]; |
| |
| if (auto ParamValue = TII->describeLoadedValue(*I)) { |
| if (ParamValue->first.isImm()) { |
| int64_t Val = ParamValue->first.getImm(); |
| DbgValueLoc DbgLocVal(ParamValue->second, Val); |
| finishCallSiteParam(DbgLocVal, Reg); |
| } else if (ParamValue->first.isReg()) { |
| Register RegLoc = ParamValue->first.getReg(); |
| unsigned SP = TLI->getStackPointerRegisterToSaveRestore(); |
| Register FP = TRI->getFrameRegister(*MF); |
| bool IsSPorFP = (RegLoc == SP) || (RegLoc == FP); |
| if (TRI->isCalleeSavedPhysReg(RegLoc, *MF) || IsSPorFP) { |
| DbgValueLoc DbgLocVal(ParamValue->second, |
| MachineLocation(RegLoc, |
| /*IsIndirect=*/IsSPorFP)); |
| finishCallSiteParam(DbgLocVal, Reg); |
| } else if (ShouldTryEmitEntryVals) { |
| ForwardedRegWorklist.insert(RegLoc); |
| RegsForEntryValues[RegLoc] = Reg; |
| } |
| } |
| } |
| } |
| |
| // Emit the call site parameter's value as an entry value. |
| if (ShouldTryEmitEntryVals) { |
| // Create an expression where the register's entry value is used. |
| DIExpression *EntryExpr = DIExpression::get( |
| MF->getFunction().getContext(), {dwarf::DW_OP_LLVM_entry_value, 1}); |
| for (auto RegEntry : ForwardedRegWorklist) { |
| unsigned FwdReg = RegEntry; |
| auto EntryValReg = RegsForEntryValues.find(RegEntry); |
| if (EntryValReg != RegsForEntryValues.end()) |
| FwdReg = EntryValReg->second; |
| |
| DbgValueLoc DbgLocVal(EntryExpr, MachineLocation(RegEntry)); |
| DbgCallSiteParam CSParm(FwdReg, DbgLocVal); |
| Params.push_back(CSParm); |
| ++NumCSParams; |
| } |
| } |
| } |
| |
| void DwarfDebug::constructCallSiteEntryDIEs(const DISubprogram &SP, |
| DwarfCompileUnit &CU, DIE &ScopeDIE, |
| const MachineFunction &MF) { |
| // Add a call site-related attribute (DWARF5, Sec. 3.3.1.3). Do this only if |
| // the subprogram is required to have one. |
| if (!SP.areAllCallsDescribed() || !SP.isDefinition()) |
| return; |
| |
| // Use DW_AT_call_all_calls to express that call site entries are present |
| // for both tail and non-tail calls. Don't use DW_AT_call_all_source_calls |
| // because one of its requirements is not met: call site entries for |
| // optimized-out calls are elided. |
| CU.addFlag(ScopeDIE, CU.getDwarf5OrGNUAttr(dwarf::DW_AT_call_all_calls)); |
| |
| const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); |
| assert(TII && "TargetInstrInfo not found: cannot label tail calls"); |
| bool ApplyGNUExtensions = getDwarfVersion() == 4 && tuneForGDB(); |
| |
| // Emit call site entries for each call or tail call in the function. |
| for (const MachineBasicBlock &MBB : MF) { |
| for (const MachineInstr &MI : MBB.instrs()) { |
| // Skip instructions which aren't calls. Both calls and tail-calling jump |
| // instructions (e.g TAILJMPd64) are classified correctly here. |
| if (!MI.isCall()) |
| continue; |
| |
| // TODO: Add support for targets with delay slots (see: beginInstruction). |
| if (MI.hasDelaySlot()) |
| return; |
| |
| // If this is a direct call, find the callee's subprogram. |
| // In the case of an indirect call find the register that holds |
| // the callee. |
| const MachineOperand &CalleeOp = MI.getOperand(0); |
| if (!CalleeOp.isGlobal() && !CalleeOp.isReg()) |
| continue; |
| |
| unsigned CallReg = 0; |
| const DISubprogram *CalleeSP = nullptr; |
| const Function *CalleeDecl = nullptr; |
| if (CalleeOp.isReg()) { |
| CallReg = CalleeOp.getReg(); |
| if (!CallReg) |
| continue; |
| } else { |
| CalleeDecl = dyn_cast<Function>(CalleeOp.getGlobal()); |
| if (!CalleeDecl || !CalleeDecl->getSubprogram()) |
| continue; |
| CalleeSP = CalleeDecl->getSubprogram(); |
| } |
| |
| // TODO: Omit call site entries for runtime calls (objc_msgSend, etc). |
| |
| bool IsTail = TII->isTailCall(MI); |
| |
| // For tail calls, for non-gdb tuning, no return PC information is needed. |
| // For regular calls (and tail calls in GDB tuning), the return PC |
| // is needed to disambiguate paths in the call graph which could lead to |
| // some target function. |
| const MCExpr *PCOffset = |
| (IsTail && !tuneForGDB()) ? nullptr |
| : getFunctionLocalOffsetAfterInsn(&MI); |
| |
| // Address of a call-like instruction for a normal call or a jump-like |
| // instruction for a tail call. This is needed for GDB + DWARF 4 tuning. |
| const MCSymbol *PCAddr = |
| ApplyGNUExtensions ? const_cast<MCSymbol*>(getLabelAfterInsn(&MI)) |
| : nullptr; |
| |
| assert((IsTail || PCOffset || PCAddr) && |
| "Call without return PC information"); |
| |
| LLVM_DEBUG(dbgs() << "CallSiteEntry: " << MF.getName() << " -> " |
| << (CalleeDecl ? CalleeDecl->getName() |
| : StringRef(MF.getSubtarget() |
| .getRegisterInfo() |
| ->getName(CallReg))) |
| << (IsTail ? " [IsTail]" : "") << "\n"); |
| |
| DIE &CallSiteDIE = |
| CU.constructCallSiteEntryDIE(ScopeDIE, CalleeSP, IsTail, PCAddr, |
| PCOffset, CallReg); |
| |
| // GDB and LLDB support call site parameter debug info. |
| if (Asm->TM.Options.EnableDebugEntryValues && |
| (tuneForGDB() || tuneForLLDB())) { |
| ParamSet Params; |
| // Try to interpret values of call site parameters. |
| collectCallSiteParameters(&MI, Params); |
| CU.constructCallSiteParmEntryDIEs(CallSiteDIE, Params); |
| } |
| } |
| } |
| } |
| |
| void DwarfDebug::addGnuPubAttributes(DwarfCompileUnit &U, DIE &D) const { |
| if (!U.hasDwarfPubSections()) |
| return; |
| |
| U.addFlag(D, dwarf::DW_AT_GNU_pubnames); |
| } |
| |
| void DwarfDebug::finishUnitAttributes(const DICompileUnit *DIUnit, |
| DwarfCompileUnit &NewCU) { |
| DIE &Die = NewCU.getUnitDie(); |
| StringRef FN = DIUnit->getFilename(); |
| |
| StringRef Producer = DIUnit->getProducer(); |
| StringRef Flags = DIUnit->getFlags(); |
| if (!Flags.empty() && !useAppleExtensionAttributes()) { |
| std::string ProducerWithFlags = Producer.str() + " " + Flags.str(); |
| NewCU.addString(Die, dwarf::DW_AT_producer, ProducerWithFlags); |
| } else |
| NewCU.addString(Die, dwarf::DW_AT_producer, Producer); |
| |
| NewCU.addUInt(Die, dwarf::DW_AT_language, dwarf::DW_FORM_data2, |
| DIUnit->getSourceLanguage()); |
| NewCU.addString(Die, dwarf::DW_AT_name, FN); |
| |
| // Add DW_str_offsets_base to the unit DIE, except for split units. |
| if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) |
| NewCU.addStringOffsetsStart(); |
| |
| if (!useSplitDwarf()) { |
| NewCU.initStmtList(); |
| |
| // If we're using split dwarf the compilation dir is going to be in the |
| // skeleton CU and so we don't need to duplicate it here. |
| if (!CompilationDir.empty()) |
| NewCU.addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); |
| |
| addGnuPubAttributes(NewCU, Die); |
| } |
| |
| if (useAppleExtensionAttributes()) { |
| if (DIUnit->isOptimized()) |
| NewCU.addFlag(Die, dwarf::DW_AT_APPLE_optimized); |
| |
| StringRef Flags = DIUnit->getFlags(); |
| if (!Flags.empty()) |
| NewCU.addString(Die, dwarf::DW_AT_APPLE_flags, Flags); |
| |
| if (unsigned RVer = DIUnit->getRuntimeVersion()) |
| NewCU.addUInt(Die, dwarf::DW_AT_APPLE_major_runtime_vers, |
| dwarf::DW_FORM_data1, RVer); |
| } |
| |
| if (DIUnit->getDWOId()) { |
| // This CU is either a clang module DWO or a skeleton CU. |
| NewCU.addUInt(Die, dwarf::DW_AT_GNU_dwo_id, dwarf::DW_FORM_data8, |
| DIUnit->getDWOId()); |
| if (!DIUnit->getSplitDebugFilename().empty()) |
| // This is a prefabricated skeleton CU. |
| NewCU.addString(Die, dwarf::DW_AT_GNU_dwo_name, |
| DIUnit->getSplitDebugFilename()); |
| } |
| } |
| // Create new DwarfCompileUnit for the given metadata node with tag |
| // DW_TAG_compile_unit. |
| DwarfCompileUnit & |
| DwarfDebug::getOrCreateDwarfCompileUnit(const DICompileUnit *DIUnit) { |
| if (auto *CU = CUMap.lookup(DIUnit)) |
| return *CU; |
| |
| CompilationDir = DIUnit->getDirectory(); |
| |
| auto OwnedUnit = std::make_unique<DwarfCompileUnit>( |
| InfoHolder.getUnits().size(), DIUnit, Asm, this, &InfoHolder); |
| DwarfCompileUnit &NewCU = *OwnedUnit; |
| InfoHolder.addUnit(std::move(OwnedUnit)); |
| |
| for (auto *IE : DIUnit->getImportedEntities()) |
| NewCU.addImportedEntity(IE); |
| |
| // LTO with assembly output shares a single line table amongst multiple CUs. |
| // To avoid the compilation directory being ambiguous, let the line table |
| // explicitly describe the directory of all files, never relying on the |
| // compilation directory. |
| if (!Asm->OutStreamer->hasRawTextSupport() || SingleCU) |
| Asm->OutStreamer->emitDwarfFile0Directive( |
| CompilationDir, DIUnit->getFilename(), |
| NewCU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource(), |
| NewCU.getUniqueID()); |
| |
| if (useSplitDwarf()) { |
| NewCU.setSkeleton(constructSkeletonCU(NewCU)); |
| NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoDWOSection()); |
| } else { |
| finishUnitAttributes(DIUnit, NewCU); |
| NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); |
| } |
| |
| // Create DIEs for function declarations used for call site debug info. |
| for (auto Scope : DIUnit->getRetainedTypes()) |
| if (auto *SP = dyn_cast_or_null<DISubprogram>(Scope)) |
| NewCU.getOrCreateSubprogramDIE(SP); |
| |
| CUMap.insert({DIUnit, &NewCU}); |
| CUDieMap.insert({&NewCU.getUnitDie(), &NewCU}); |
| return NewCU; |
| } |
| |
| void DwarfDebug::constructAndAddImportedEntityDIE(DwarfCompileUnit &TheCU, |
| const DIImportedEntity *N) { |
| if (isa<DILocalScope>(N->getScope())) |
| return; |
| if (DIE *D = TheCU.getOrCreateContextDIE(N->getScope())) |
| D->addChild(TheCU.constructImportedEntityDIE(N)); |
| } |
| |
| /// Sort and unique GVEs by comparing their fragment offset. |
| static SmallVectorImpl<DwarfCompileUnit::GlobalExpr> & |
| sortGlobalExprs(SmallVectorImpl<DwarfCompileUnit::GlobalExpr> &GVEs) { |
| llvm::sort( |
| GVEs, [](DwarfCompileUnit::GlobalExpr A, DwarfCompileUnit::GlobalExpr B) { |
| // Sort order: first null exprs, then exprs without fragment |
| // info, then sort by fragment offset in bits. |
| // FIXME: Come up with a more comprehensive comparator so |
| // the sorting isn't non-deterministic, and so the following |
| // std::unique call works correctly. |
| if (!A.Expr || !B.Expr) |
| return !!B.Expr; |
| auto FragmentA = A.Expr->getFragmentInfo(); |
| auto FragmentB = B.Expr->getFragmentInfo(); |
| if (!FragmentA || !FragmentB) |
| return !!FragmentB; |
| return FragmentA->OffsetInBits < FragmentB->OffsetInBits; |
| }); |
| GVEs.erase(std::unique(GVEs.begin(), GVEs.end(), |
| [](DwarfCompileUnit::GlobalExpr A, |
| DwarfCompileUnit::GlobalExpr B) { |
| return A.Expr == B.Expr; |
| }), |
| GVEs.end()); |
| return GVEs; |
| } |
| |
| // Emit all Dwarf sections that should come prior to the content. Create |
| // global DIEs and emit initial debug info sections. This is invoked by |
| // the target AsmPrinter. |
| void DwarfDebug::beginModule() { |
| NamedRegionTimer T(DbgTimerName, DbgTimerDescription, DWARFGroupName, |
| DWARFGroupDescription, TimePassesIsEnabled); |
| if (DisableDebugInfoPrinting) { |
| MMI->setDebugInfoAvailability(false); |
| return; |
| } |
| |
| const Module *M = MMI->getModule(); |
| |
| unsigned NumDebugCUs = std::distance(M->debug_compile_units_begin(), |
| M->debug_compile_units_end()); |
| // Tell MMI whether we have debug info. |
| assert(MMI->hasDebugInfo() == (NumDebugCUs > 0) && |
| "DebugInfoAvailabilty initialized unexpectedly"); |
| SingleCU = NumDebugCUs == 1; |
| DenseMap<DIGlobalVariable *, SmallVector<DwarfCompileUnit::GlobalExpr, 1>> |
| GVMap; |
| for (const GlobalVariable &Global : M->globals()) { |
| SmallVector<DIGlobalVariableExpression *, 1> GVs; |
| Global.getDebugInfo(GVs); |
| for (auto *GVE : GVs) |
| GVMap[GVE->getVariable()].push_back({&Global, GVE->getExpression()}); |
| } |
| |
| // Create the symbol that designates the start of the unit's contribution |
| // to the string offsets table. In a split DWARF scenario, only the skeleton |
| // unit has the DW_AT_str_offsets_base attribute (and hence needs the symbol). |
| if (useSegmentedStringOffsetsTable()) |
| (useSplitDwarf() ? SkeletonHolder : InfoHolder) |
| .setStringOffsetsStartSym(Asm->createTempSymbol("str_offsets_base")); |
| |
| |
| // Create the symbols that designates the start of the DWARF v5 range list |
| // and locations list tables. They are located past the table headers. |
| if (getDwarfVersion() >= 5) { |
| DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; |
| Holder.setRnglistsTableBaseSym( |
| Asm->createTempSymbol("rnglists_table_base")); |
| |
| if (useSplitDwarf()) |
| InfoHolder.setRnglistsTableBaseSym( |
| Asm->createTempSymbol("rnglists_dwo_table_base")); |
| } |
| |
| // Create the symbol that points to the first entry following the debug |
| // address table (.debug_addr) header. |
| AddrPool.setLabel(Asm->createTempSymbol("addr_table_base")); |
| |
| for (DICompileUnit *CUNode : M->debug_compile_units()) { |
| // FIXME: Move local imported entities into a list attached to the |
| // subprogram, then this search won't be needed and a |
| // getImportedEntities().empty() test should go below with the rest. |
| bool HasNonLocalImportedEntities = llvm::any_of( |
| CUNode->getImportedEntities(), [](const DIImportedEntity *IE) { |
| return !isa<DILocalScope>(IE->getScope()); |
| }); |
| |
| if (!HasNonLocalImportedEntities && CUNode->getEnumTypes().empty() && |
| CUNode->getRetainedTypes().empty() && |
| CUNode->getGlobalVariables().empty() && CUNode->getMacros().empty()) |
| continue; |
| |
| DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(CUNode); |
| |
| // Global Variables. |
| for (auto *GVE : CUNode->getGlobalVariables()) { |
| // Don't bother adding DIGlobalVariableExpressions listed in the CU if we |
| // already know about the variable and it isn't adding a constant |
| // expression. |
| auto &GVMapEntry = GVMap[GVE->getVariable()]; |
| auto *Expr = GVE->getExpression(); |
| if (!GVMapEntry.size() || (Expr && Expr->isConstant())) |
| GVMapEntry.push_back({nullptr, Expr}); |
| } |
| DenseSet<DIGlobalVariable *> Processed; |
| for (auto *GVE : CUNode->getGlobalVariables()) { |
| DIGlobalVariable *GV = GVE->getVariable(); |
| if (Processed.insert(GV).second) |
| CU.getOrCreateGlobalVariableDIE(GV, sortGlobalExprs(GVMap[GV])); |
| } |
| |
| for (auto *Ty : CUNode->getEnumTypes()) { |
| // The enum types array by design contains pointers to |
| // MDNodes rather than DIRefs. Unique them here. |
| CU.getOrCreateTypeDIE(cast<DIType>(Ty)); |
| } |
| for (auto *Ty : CUNode->getRetainedTypes()) { |
| // The retained types array by design contains pointers to |
| // MDNodes rather than DIRefs. Unique them here. |
| if (DIType *RT = dyn_cast<DIType>(Ty)) |
| // There is no point in force-emitting a forward declaration. |
| CU.getOrCreateTypeDIE(RT); |
| } |
| // Emit imported_modules last so that the relevant context is already |
| // available. |
| for (auto *IE : CUNode->getImportedEntities()) |
| constructAndAddImportedEntityDIE(CU, IE); |
| } |
| } |
| |
| void DwarfDebug::finishEntityDefinitions() { |
| for (const auto &Entity : ConcreteEntities) { |
| DIE *Die = Entity->getDIE(); |
| assert(Die); |
| // FIXME: Consider the time-space tradeoff of just storing the unit pointer |
| // in the ConcreteEntities list, rather than looking it up again here. |
| // DIE::getUnit isn't simple - it walks parent pointers, etc. |
| DwarfCompileUnit *Unit = CUDieMap.lookup(Die->getUnitDie()); |
| assert(Unit); |
| Unit->finishEntityDefinition(Entity.get()); |
| } |
| } |
| |
| void DwarfDebug::finishSubprogramDefinitions() { |
| for (const DISubprogram *SP : ProcessedSPNodes) { |
| assert(SP->getUnit()->getEmissionKind() != DICompileUnit::NoDebug); |
| forBothCUs( |
| getOrCreateDwarfCompileUnit(SP->getUnit()), |
| [&](DwarfCompileUnit &CU) { CU.finishSubprogramDefinition(SP); }); |
| } |
| } |
| |
| void DwarfDebug::finalizeModuleInfo() { |
| const TargetLoweringObjectFile &TLOF = Asm->getObjFileLowering(); |
| |
| finishSubprogramDefinitions(); |
| |
| finishEntityDefinitions(); |
| |
| // Include the DWO file name in the hash if there's more than one CU. |
| // This handles ThinLTO's situation where imported CUs may very easily be |
| // duplicate with the same CU partially imported into another ThinLTO unit. |
| StringRef DWOName; |
| if (CUMap.size() > 1) |
| DWOName = Asm->TM.Options.MCOptions.SplitDwarfFile; |
| |
| // Handle anything that needs to be done on a per-unit basis after |
| // all other generation. |
| for (const auto &P : CUMap) { |
| auto &TheCU = *P.second; |
| if (TheCU.getCUNode()->isDebugDirectivesOnly()) |
| continue; |
| // Emit DW_AT_containing_type attribute to connect types with their |
| // vtable holding type. |
| TheCU.constructContainingTypeDIEs(); |
| |
| // Add CU specific attributes if we need to add any. |
| // If we're splitting the dwarf out now that we've got the entire |
| // CU then add the dwo id to it. |
| auto *SkCU = TheCU.getSkeleton(); |
| if (useSplitDwarf() && !TheCU.getUnitDie().children().empty()) { |
| finishUnitAttributes(TheCU.getCUNode(), TheCU); |
| TheCU.addString(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_name, |
| Asm->TM.Options.MCOptions.SplitDwarfFile); |
| SkCU->addString(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_name, |
| Asm->TM.Options.MCOptions.SplitDwarfFile); |
| // Emit a unique identifier for this CU. |
| uint64_t ID = |
| DIEHash(Asm).computeCUSignature(DWOName, TheCU.getUnitDie()); |
| if (getDwarfVersion() >= 5) { |
| TheCU.setDWOId(ID); |
| SkCU->setDWOId(ID); |
| } else { |
| TheCU.addUInt(TheCU.getUnitDie(), dwarf::DW_AT_GNU_dwo_id, |
| dwarf::DW_FORM_data8, ID); |
| SkCU->addUInt(SkCU->getUnitDie(), dwarf::DW_AT_GNU_dwo_id, |
| dwarf::DW_FORM_data8, ID); |
| } |
| |
| if (getDwarfVersion() < 5 && !SkeletonHolder.getRangeLists().empty()) { |
| const MCSymbol *Sym = TLOF.getDwarfRangesSection()->getBeginSymbol(); |
| SkCU->addSectionLabel(SkCU->getUnitDie(), dwarf::DW_AT_GNU_ranges_base, |
| Sym, Sym); |
| } |
| } else if (SkCU) { |
| finishUnitAttributes(SkCU->getCUNode(), *SkCU); |
| } |
| |
| // If we have code split among multiple sections or non-contiguous |
| // ranges of code then emit a DW_AT_ranges attribute on the unit that will |
| // remain in the .o file, otherwise add a DW_AT_low_pc. |
| // FIXME: We should use ranges allow reordering of code ala |
| // .subsections_via_symbols in mach-o. This would mean turning on |
| // ranges for all subprogram DIEs for mach-o. |
| DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; |
| |
| if (unsigned NumRanges = TheCU.getRanges().size()) { |
| if (NumRanges > 1 && useRangesSection()) |
| // A DW_AT_low_pc attribute may also be specified in combination with |
| // DW_AT_ranges to specify the default base address for use in |
| // location lists (see Section 2.6.2) and range lists (see Section |
| // 2.17.3). |
| U.addUInt(U.getUnitDie(), dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr, 0); |
| else |
| U.setBaseAddress(TheCU.getRanges().front().Begin); |
| U.attachRangesOrLowHighPC(U.getUnitDie(), TheCU.takeRanges()); |
| } |
| |
| // We don't keep track of which addresses are used in which CU so this |
| // is a bit pessimistic under LTO. |
| if (!AddrPool.isEmpty() && |
| (getDwarfVersion() >= 5 || |
| (SkCU && !TheCU.getUnitDie().children().empty()))) |
| U.addAddrTableBase(); |
| |
| if (getDwarfVersion() >= 5) { |
| if (U.hasRangeLists()) |
| U.addRnglistsBase(); |
| |
| if (!DebugLocs.getLists().empty() && !useSplitDwarf()) { |
| DebugLocs.setSym(Asm->createTempSymbol("loclists_table_base")); |
| U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_loclists_base, |
| DebugLocs.getSym(), |
| TLOF.getDwarfLoclistsSection()->getBeginSymbol()); |
| } |
| } |
| |
| auto *CUNode = cast<DICompileUnit>(P.first); |
| // If compile Unit has macros, emit "DW_AT_macro_info" attribute. |
| if (CUNode->getMacros()) |
| U.addSectionLabel(U.getUnitDie(), dwarf::DW_AT_macro_info, |
| U.getMacroLabelBegin(), |
| TLOF.getDwarfMacinfoSection()->getBeginSymbol()); |
| } |
| |
| // Emit all frontend-produced Skeleton CUs, i.e., Clang modules. |
| for (auto *CUNode : MMI->getModule()->debug_compile_units()) |
| if (CUNode->getDWOId()) |
| getOrCreateDwarfCompileUnit(CUNode); |
| |
| // Compute DIE offsets and sizes. |
| InfoHolder.computeSizeAndOffsets(); |
| if (useSplitDwarf()) |
| SkeletonHolder.computeSizeAndOffsets(); |
| } |
| |
| // Emit all Dwarf sections that should come after the content. |
| void DwarfDebug::endModule() { |
| assert(CurFn == nullptr); |
| assert(CurMI == nullptr); |
| |
| for (const auto &P : CUMap) { |
| auto &CU = *P.second; |
| CU.createBaseTypeDIEs(); |
| } |
| |
| // If we aren't actually generating debug info (check beginModule - |
| // conditionalized on !DisableDebugInfoPrinting and the presence of the |
| // llvm.dbg.cu metadata node) |
| if (!MMI->hasDebugInfo()) |
| return; |
| |
| // Finalize the debug info for the module. |
| finalizeModuleInfo(); |
| |
| emitDebugStr(); |
| |
| if (useSplitDwarf()) |
| emitDebugLocDWO(); |
| else |
| // Emit info into a debug loc section. |
| emitDebugLoc(); |
| |
| // Corresponding abbreviations into a abbrev section. |
| emitAbbreviations(); |
| |
| // Emit all the DIEs into a debug info section. |
| emitDebugInfo(); |
| |
| // Emit info into a debug aranges section. |
| if (GenerateARangeSection) |
| emitDebugARanges(); |
| |
| // Emit info into a debug ranges section. |
| emitDebugRanges(); |
| |
| // Emit info into a debug macinfo section. |
| emitDebugMacinfo(); |
| |
| if (useSplitDwarf()) { |
| emitDebugStrDWO(); |
| emitDebugInfoDWO(); |
| emitDebugAbbrevDWO(); |
| emitDebugLineDWO(); |
| emitDebugRangesDWO(); |
| } |
| |
| emitDebugAddr(); |
| |
| // Emit info into the dwarf accelerator table sections. |
| switch (getAccelTableKind()) { |
| case AccelTableKind::Apple: |
| emitAccelNames(); |
| emitAccelObjC(); |
| emitAccelNamespaces(); |
| emitAccelTypes(); |
| break; |
| case AccelTableKind::Dwarf: |
| emitAccelDebugNames(); |
| break; |
| case AccelTableKind::None: |
| break; |
| case AccelTableKind::Default: |
| llvm_unreachable("Default should have already been resolved."); |
| } |
| |
| // Emit the pubnames and pubtypes sections if requested. |
| emitDebugPubSections(); |
| |
| // clean up. |
| // FIXME: AbstractVariables.clear(); |
| } |
| |
| void DwarfDebug::ensureAbstractEntityIsCreated(DwarfCompileUnit &CU, |
| const DINode *Node, |
| const MDNode *ScopeNode) { |
| if (CU.getExistingAbstractEntity(Node)) |
| return; |
| |
| CU.createAbstractEntity(Node, LScopes.getOrCreateAbstractScope( |
| cast<DILocalScope>(ScopeNode))); |
| } |
| |
| void DwarfDebug::ensureAbstractEntityIsCreatedIfScoped(DwarfCompileUnit &CU, |
| const DINode *Node, const MDNode *ScopeNode) { |
| if (CU.getExistingAbstractEntity(Node)) |
| return; |
| |
| if (LexicalScope *Scope = |
| LScopes.findAbstractScope(cast_or_null<DILocalScope>(ScopeNode))) |
| CU.createAbstractEntity(Node, Scope); |
| } |
| |
| // Collect variable information from side table maintained by MF. |
| void DwarfDebug::collectVariableInfoFromMFTable( |
| DwarfCompileUnit &TheCU, DenseSet<InlinedEntity> &Processed) { |
| SmallDenseMap<InlinedEntity, DbgVariable *> MFVars; |
| for (const auto &VI : Asm->MF->getVariableDbgInfo()) { |
| if (!VI.Var) |
| continue; |
| assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) && |
| "Expected inlined-at fields to agree"); |
| |
| InlinedEntity Var(VI.Var, VI.Loc->getInlinedAt()); |
| Processed.insert(Var); |
| LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc); |
| |
| // If variable scope is not found then skip this variable. |
| if (!Scope) |
| continue; |
| |
| ensureAbstractEntityIsCreatedIfScoped(TheCU, Var.first, Scope->getScopeNode()); |
| auto RegVar = std::make_unique<DbgVariable>( |
| cast<DILocalVariable>(Var.first), Var.second); |
| RegVar->initializeMMI(VI.Expr, VI.Slot); |
| if (DbgVariable *DbgVar = MFVars.lookup(Var)) |
| DbgVar->addMMIEntry(*RegVar); |
| else if (InfoHolder.addScopeVariable(Scope, RegVar.get())) { |
| MFVars.insert({Var, RegVar.get()}); |
| ConcreteEntities.push_back(std::move(RegVar)); |
| } |
| } |
| } |
| |
| /// Determine whether a *singular* DBG_VALUE is valid for the entirety of its |
| /// enclosing lexical scope. The check ensures there are no other instructions |
| /// in the same lexical scope preceding the DBG_VALUE and that its range is |
| /// either open or otherwise rolls off the end of the scope. |
| static bool validThroughout(LexicalScopes &LScopes, |
| const MachineInstr *DbgValue, |
| const MachineInstr *RangeEnd) { |
| assert(DbgValue->getDebugLoc() && "DBG_VALUE without a debug location"); |
| auto MBB = DbgValue->getParent(); |
| auto DL = DbgValue->getDebugLoc(); |
| auto *LScope = LScopes.findLexicalScope(DL); |
| // Scope doesn't exist; this is a dead DBG_VALUE. |
| if (!LScope) |
| return false; |
| auto &LSRange = LScope->getRanges(); |
| if (LSRange.size() == 0) |
| return false; |
| |
| // Determine if the DBG_VALUE is valid at the beginning of its lexical block. |
| const MachineInstr *LScopeBegin = LSRange.front().first; |
| // Early exit if the lexical scope begins outside of the current block. |
| if (LScopeBegin->getParent() != MBB) |
| return false; |
| MachineBasicBlock::const_reverse_iterator Pred(DbgValue); |
| for (++Pred; Pred != MBB->rend(); ++Pred) { |
| if (Pred->getFlag(MachineInstr::FrameSetup)) |
| break; |
| auto PredDL = Pred->getDebugLoc(); |
| if (!PredDL || Pred->isMetaInstruction()) |
| continue; |
| // Check whether the instruction preceding the DBG_VALUE is in the same |
| // (sub)scope as the DBG_VALUE. |
| if (DL->getScope() == PredDL->getScope()) |
| return false; |
| auto *PredScope = LScopes.findLexicalScope(PredDL); |
| if (!PredScope || LScope->dominates(PredScope)) |
| return false; |
| } |
| |
| // If the range of the DBG_VALUE is open-ended, report success. |
| if (!RangeEnd) |
| return true; |
| |
| // Fail if there are instructions belonging to our scope in another block. |
| const MachineInstr *LScopeEnd = LSRange.back().second; |
| if (LScopeEnd->getParent() != MBB) |
| return false; |
| |
| // Single, constant DBG_VALUEs in the prologue are promoted to be live |
| // throughout the function. This is a hack, presumably for DWARF v2 and not |
| // necessarily correct. It would be much better to use a dbg.declare instead |
| // if we know the constant is live throughout the scope. |
| if (DbgValue->getOperand(0).isImm() && MBB->pred_empty()) |
| return true; |
| |
| return false; |
| } |
| |
| /// Build the location list for all DBG_VALUEs in the function that |
| /// describe the same variable. The resulting DebugLocEntries will have |
| /// strict monotonically increasing begin addresses and will never |
| /// overlap. If the resulting list has only one entry that is valid |
| /// throughout variable's scope return true. |
| // |
| // See the definition of DbgValueHistoryMap::Entry for an explanation of the |
| // different kinds of history map entries. One thing to be aware of is that if |
| // a debug value is ended by another entry (rather than being valid until the |
| // end of the function), that entry's instruction may or may not be included in |
| // the range, depending on if the entry is a clobbering entry (it has an |
| // instruction that clobbers one or more preceding locations), or if it is an |
| // (overlapping) debug value entry. This distinction can be seen in the example |
| // below. The first debug value is ended by the clobbering entry 2, and the |
| // second and third debug values are ended by the overlapping debug value entry |
| // 4. |
| // |
| // Input: |
| // |
| // History map entries [type, end index, mi] |
| // |
| // 0 | [DbgValue, 2, DBG_VALUE $reg0, [...] (fragment 0, 32)] |
| // 1 | | [DbgValue, 4, DBG_VALUE $reg1, [...] (fragment 32, 32)] |
| // 2 | | [Clobber, $reg0 = [...], -, -] |
| // 3 | | [DbgValue, 4, DBG_VALUE 123, [...] (fragment 64, 32)] |
| // 4 [DbgValue, ~0, DBG_VALUE @g, [...] (fragment 0, 96)] |
| // |
| // Output [start, end) [Value...]: |
| // |
| // [0-1) [(reg0, fragment 0, 32)] |
| // [1-3) [(reg0, fragment 0, 32), (reg1, fragment 32, 32)] |
| // [3-4) [(reg1, fragment 32, 32), (123, fragment 64, 32)] |
| // [4-) [(@g, fragment 0, 96)] |
| bool DwarfDebug::buildLocationList(SmallVectorImpl<DebugLocEntry> &DebugLoc, |
| const DbgValueHistoryMap::Entries &Entries) { |
| using OpenRange = |
| std::pair<DbgValueHistoryMap::EntryIndex, DbgValueLoc>; |
| SmallVector<OpenRange, 4> OpenRanges; |
| bool isSafeForSingleLocation = true; |
| const MachineInstr *StartDebugMI = nullptr; |
| const MachineInstr *EndMI = nullptr; |
| |
| for (auto EB = Entries.begin(), EI = EB, EE = Entries.end(); EI != EE; ++EI) { |
| const MachineInstr *Instr = EI->getInstr(); |
| |
| // Remove all values that are no longer live. |
| size_t Index = std::distance(EB, EI); |
| auto Last = |
| remove_if(OpenRanges, [&](OpenRange &R) { return R.first <= Index; }); |
| OpenRanges.erase(Last, OpenRanges.end()); |
| |
| // If we are dealing with a clobbering entry, this iteration will result in |
| // a location list entry starting after the clobbering instruction. |
| const MCSymbol *StartLabel = |
| EI->isClobber() ? getLabelAfterInsn(Instr) : getLabelBeforeInsn(Instr); |
| assert(StartLabel && |
| "Forgot label before/after instruction starting a range!"); |
| |
| const MCSymbol *EndLabel; |
| if (std::next(EI) == Entries.end()) { |
| EndLabel = Asm->getFunctionEnd(); |
| if (EI->isClobber()) |
| EndMI = EI->getInstr(); |
| } |
| else if (std::next(EI)->isClobber()) |
| EndLabel = getLabelAfterInsn(std::next(EI)->getInstr()); |
| else |
| EndLabel = getLabelBeforeInsn(std::next(EI)->getInstr()); |
| assert(EndLabel && "Forgot label after instruction ending a range!"); |
| |
| if (EI->isDbgValue()) |
| LLVM_DEBUG(dbgs() << "DotDebugLoc: " << *Instr << "\n"); |
| |
| // If this history map entry has a debug value, add that to the list of |
| // open ranges and check if its location is valid for a single value |
| // location. |
| if (EI->isDbgValue()) { |
| // Do not add undef debug values, as they are redundant information in |
| // the location list entries. An undef debug results in an empty location |
| // description. If there are any non-undef fragments then padding pieces |
| // with empty location descriptions will automatically be inserted, and if |
| // all fragments are undef then the whole location list entry is |
| // redundant. |
| if (!Instr->isUndefDebugValue()) { |
| auto Value = getDebugLocValue(Instr); |
| OpenRanges.emplace_back(EI->getEndIndex(), Value); |
| |
| // TODO: Add support for single value fragment locations. |
| if (Instr->getDebugExpression()->isFragment()) |
| isSafeForSingleLocation = false; |
| |
| if (!StartDebugMI) |
| StartDebugMI = Instr; |
| } else { |
| isSafeForSingleLocation = false; |
| } |
| } |
| |
| // Location list entries with empty location descriptions are redundant |
| // information in DWARF, so do not emit those. |
| if (OpenRanges.empty()) |
| continue; |
| |
| // Omit entries with empty ranges as they do not have any effect in DWARF. |
| if (StartLabel == EndLabel) { |
| LLVM_DEBUG(dbgs() << "Omitting location list entry with empty range.\n"); |
| continue; |
| } |
| |
| SmallVector<DbgValueLoc, 4> Values; |
| for (auto &R : OpenRanges) |
| Values.push_back(R.second); |
| DebugLoc.emplace_back(StartLabel, EndLabel, Values); |
| |
| // Attempt to coalesce the ranges of two otherwise identical |
| // DebugLocEntries. |
| auto CurEntry = DebugLoc.rbegin(); |
| LLVM_DEBUG({ |
| dbgs() << CurEntry->getValues().size() << " Values:\n"; |
| for (auto &Value : CurEntry->getValues()) |
| Value.dump(); |
| dbgs() << "-----\n"; |
| }); |
| |
| auto PrevEntry = std::next(CurEntry); |
| if (PrevEntry != DebugLoc.rend() && PrevEntry->MergeRanges(*CurEntry)) |
| DebugLoc.pop_back(); |
| } |
| |
| return DebugLoc.size() == 1 && isSafeForSingleLocation && |
| validThroughout(LScopes, StartDebugMI, EndMI); |
| } |
| |
| DbgEntity *DwarfDebug::createConcreteEntity(DwarfCompileUnit &TheCU, |
| LexicalScope &Scope, |
| const DINode *Node, |
| const DILocation *Location, |
| const MCSymbol *Sym) { |
| ensureAbstractEntityIsCreatedIfScoped(TheCU, Node, Scope.getScopeNode()); |
| if (isa<const DILocalVariable>(Node)) { |
| ConcreteEntities.push_back( |
| std::make_unique<DbgVariable>(cast<const DILocalVariable>(Node), |
| Location)); |
| InfoHolder.addScopeVariable(&Scope, |
| cast<DbgVariable>(ConcreteEntities.back().get())); |
| } else if (isa<const DILabel>(Node)) { |
| ConcreteEntities.push_back( |
| std::make_unique<DbgLabel>(cast<const DILabel>(Node), |
| Location, Sym)); |
| InfoHolder.addScopeLabel(&Scope, |
| cast<DbgLabel>(ConcreteEntities.back().get())); |
| } |
| return ConcreteEntities.back().get(); |
| } |
| |
| // Find variables for each lexical scope. |
| void DwarfDebug::collectEntityInfo(DwarfCompileUnit &TheCU, |
| const DISubprogram *SP, |
| DenseSet<InlinedEntity> &Processed) { |
| // Grab the variable info that was squirreled away in the MMI side-table. |
| collectVariableInfoFromMFTable(TheCU, Processed); |
| |
| for (const auto &I : DbgValues) { |
| InlinedEntity IV = I.first; |
| if (Processed.count(IV)) |
| continue; |
| |
| // Instruction ranges, specifying where IV is accessible. |
| const auto &HistoryMapEntries = I.second; |
| if (HistoryMapEntries.empty()) |
| continue; |
| |
| LexicalScope *Scope = nullptr; |
| const DILocalVariable *LocalVar = cast<DILocalVariable>(IV.first); |
| if (const DILocation *IA = IV.second) |
| Scope = LScopes.findInlinedScope(LocalVar->getScope(), IA); |
| else |
| Scope = LScopes.findLexicalScope(LocalVar->getScope()); |
| // If variable scope is not found then skip this variable. |
| if (!Scope) |
| continue; |
| |
| Processed.insert(IV); |
| DbgVariable *RegVar = cast<DbgVariable>(createConcreteEntity(TheCU, |
| *Scope, LocalVar, IV.second)); |
| |
| const MachineInstr *MInsn = HistoryMapEntries.front().getInstr(); |
| assert(MInsn->isDebugValue() && "History must begin with debug value"); |
| |
| // Check if there is a single DBG_VALUE, valid throughout the var's scope. |
| // If the history map contains a single debug value, there may be an |
| // additional entry which clobbers the debug value. |
| size_t HistSize = HistoryMapEntries.size(); |
| bool SingleValueWithClobber = |
| HistSize == 2 && HistoryMapEntries[1].isClobber(); |
| if (HistSize == 1 || SingleValueWithClobber) { |
| const auto *End = |
| SingleValueWithClobber ? HistoryMapEntries[1].getInstr() : nullptr; |
| if (validThroughout(LScopes, MInsn, End)) { |
| RegVar->initializeDbgValue(MInsn); |
| continue; |
| } |
| } |
| |
| // Do not emit location lists if .debug_loc secton is disabled. |
| if (!useLocSection()) |
| continue; |
| |
| // Handle multiple DBG_VALUE instructions describing one variable. |
| DebugLocStream::ListBuilder List(DebugLocs, TheCU, *Asm, *RegVar, *MInsn); |
| |
| // Build the location list for this variable. |
| SmallVector<DebugLocEntry, 8> Entries; |
| bool isValidSingleLocation = buildLocationList(Entries, HistoryMapEntries); |
| |
| // Check whether buildLocationList managed to merge all locations to one |
| // that is valid throughout the variable's scope. If so, produce single |
| // value location. |
| if (isValidSingleLocation) { |
| RegVar->initializeDbgValue(Entries[0].getValues()[0]); |
| continue; |
| } |
| |
| // If the variable has a DIBasicType, extract it. Basic types cannot have |
| // unique identifiers, so don't bother resolving the type with the |
| // identifier map. |
| const DIBasicType *BT = dyn_cast<DIBasicType>( |
| static_cast<const Metadata *>(LocalVar->getType())); |
| |
| // Finalize the entry by lowering it into a DWARF bytestream. |
| for (auto &Entry : Entries) |
| Entry.finalize(*Asm, List, BT, TheCU); |
| } |
| |
| // For each InlinedEntity collected from DBG_LABEL instructions, convert to |
| // DWARF-related DbgLabel. |
| for (const auto &I : DbgLabels) { |
| InlinedEntity IL = I.first; |
| const MachineInstr *MI = I.second; |
| if (MI == nullptr) |
| continue; |
| |
| LexicalScope *Scope = nullptr; |
| const DILabel *Label = cast<DILabel>(IL.first); |
| // The scope could have an extra lexical block file. |
| const DILocalScope *LocalScope = |
| Label->getScope()->getNonLexicalBlockFileScope(); |
| // Get inlined DILocation if it is inlined label. |
| if (const DILocation *IA = IL.second) |
| Scope = LScopes.findInlinedScope(LocalScope, IA); |
| else |
| Scope = LScopes.findLexicalScope(LocalScope); |
| // If label scope is not found then skip this label. |
| if (!Scope) |
| continue; |
| |
| Processed.insert(IL); |
| /// At this point, the temporary label is created. |
| /// Save the temporary label to DbgLabel entity to get the |
| /// actually address when generating Dwarf DIE. |
| MCSymbol *Sym = getLabelBeforeInsn(MI); |
| createConcreteEntity(TheCU, *Scope, Label, IL.second, Sym); |
| } |
| |
| // Collect info for variables/labels that were optimized out. |
| for (const DINode *DN : SP->getRetainedNodes()) { |
| if (!Processed.insert(InlinedEntity(DN, nullptr)).second) |
| continue; |
| LexicalScope *Scope = nullptr; |
| if (auto *DV = dyn_cast<DILocalVariable>(DN)) { |
| Scope = LScopes.findLexicalScope(DV->getScope()); |
| } else if (auto *DL = dyn_cast<DILabel>(DN)) { |
| Scope = LScopes.findLexicalScope(DL->getScope()); |
| } |
| |
| if (Scope) |
| createConcreteEntity(TheCU, *Scope, DN, nullptr); |
| } |
| } |
| |
| // Process beginning of an instruction. |
| void DwarfDebug::beginInstruction(const MachineInstr *MI) { |
| DebugHandlerBase::beginInstruction(MI); |
| assert(CurMI); |
| |
| const auto *SP = MI->getMF()->getFunction().getSubprogram(); |
| if (!SP || SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) |
| return; |
| |
| // Check if source location changes, but ignore DBG_VALUE and CFI locations. |
| // If the instruction is part of the function frame setup code, do not emit |
| // any line record, as there is no correspondence with any user code. |
| if (MI->isMetaInstruction() || MI->getFlag(MachineInstr::FrameSetup)) |
| return; |
| const DebugLoc &DL = MI->getDebugLoc(); |
| // When we emit a line-0 record, we don't update PrevInstLoc; so look at |
| // the last line number actually emitted, to see if it was line 0. |
| unsigned LastAsmLine = |
| Asm->OutStreamer->getContext().getCurrentDwarfLoc().getLine(); |
| |
| // Request a label after the call in order to emit AT_return_pc information |
| // in call site entries. TODO: Add support for targets with delay slots. |
| if (SP->areAllCallsDescribed() && MI->isCall() && !MI->hasDelaySlot()) |
| requestLabelAfterInsn(MI); |
| |
| if (DL == PrevInstLoc) { |
| // If we have an ongoing unspecified location, nothing to do here. |
| if (!DL) |
| return; |
| // We have an explicit location, same as the previous location. |
| // But we might be coming back to it after a line 0 record. |
| if (LastAsmLine == 0 && DL.getLine() != 0) { |
| // Reinstate the source location but not marked as a statement. |
| const MDNode *Scope = DL.getScope(); |
| recordSourceLine(DL.getLine(), DL.getCol(), Scope, /*Flags=*/0); |
| } |
| return; |
| } |
| |
| if (!DL) { |
| // We have an unspecified location, which might want to be line 0. |
| // If we have already emitted a line-0 record, don't repeat it. |
| if (LastAsmLine == 0) |
| return; |
| // If user said Don't Do That, don't do that. |
| if (UnknownLocations == Disable) |
| return; |
| // See if we have a reason to emit a line-0 record now. |
| // Reasons to emit a line-0 record include: |
| // - User asked for it (UnknownLocations). |
| // - Instruction has a label, so it's referenced from somewhere else, |
| // possibly debug information; we want it to have a source location. |
| // - Instruction is at the top of a block; we don't want to inherit the |
| // location from the physically previous (maybe unrelated) block. |
| if (UnknownLocations == Enable || PrevLabel || |
| (PrevInstBB && PrevInstBB != MI->getParent())) { |
| // Preserve the file and column numbers, if we can, to save space in |
| // the encoded line table. |
| // Do not update PrevInstLoc, it remembers the last non-0 line. |
| const MDNode *Scope = nullptr; |
| unsigned Column = 0; |
| if (PrevInstLoc) { |
| Scope = PrevInstLoc.getScope(); |
| Column = PrevInstLoc.getCol(); |
| } |
| recordSourceLine(/*Line=*/0, Column, Scope, /*Flags=*/0); |
| } |
| return; |
| } |
| |
| // We have an explicit location, different from the previous location. |
| // Don't repeat a line-0 record, but otherwise emit the new location. |
| // (The new location might be an explicit line 0, which we do emit.) |
| if (DL.getLine() == 0 && LastAsmLine == 0) |
| return; |
| unsigned Flags = 0; |
| if (DL == PrologEndLoc) { |
| Flags |= DWARF2_FLAG_PROLOGUE_END | DWARF2_FLAG_IS_STMT; |
| PrologEndLoc = DebugLoc(); |
| } |
| // If the line changed, we call that a new statement; unless we went to |
| // line 0 and came back, in which case it is not a new statement. |
| unsigned OldLine = PrevInstLoc ? PrevInstLoc.getLine() : LastAsmLine; |
| if (DL.getLine() && DL.getLine() != OldLine) |
| Flags |= DWARF2_FLAG_IS_STMT; |
| |
| const MDNode *Scope = DL.getScope(); |
| recordSourceLine(DL.getLine(), DL.getCol(), Scope, Flags); |
| |
| // If we're not at line 0, remember this location. |
| if (DL.getLine()) |
| PrevInstLoc = DL; |
| } |
| |
| static DebugLoc findPrologueEndLoc(const MachineFunction *MF) { |
| // First known non-DBG_VALUE and non-frame setup location marks |
| // the beginning of the function body. |
| for (const auto &MBB : *MF) |
| for (const auto &MI : MBB) |
| if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) && |
| MI.getDebugLoc()) |
| return MI.getDebugLoc(); |
| return DebugLoc(); |
| } |
| |
| /// Register a source line with debug info. Returns the unique label that was |
| /// emitted and which provides correspondence to the source line list. |
| static void recordSourceLine(AsmPrinter &Asm, unsigned Line, unsigned Col, |
| const MDNode *S, unsigned Flags, unsigned CUID, |
| uint16_t DwarfVersion, |
| ArrayRef<std::unique_ptr<DwarfCompileUnit>> DCUs) { |
| StringRef Fn; |
| unsigned FileNo = 1; |
| unsigned Discriminator = 0; |
| if (auto *Scope = cast_or_null<DIScope>(S)) { |
| Fn = Scope->getFilename(); |
| if (Line != 0 && DwarfVersion >= 4) |
| if (auto *LBF = dyn_cast<DILexicalBlockFile>(Scope)) |
| Discriminator = LBF->getDiscriminator(); |
| |
| FileNo = static_cast<DwarfCompileUnit &>(*DCUs[CUID]) |
| .getOrCreateSourceID(Scope->getFile()); |
| } |
| Asm.OutStreamer->EmitDwarfLocDirective(FileNo, Line, Col, Flags, 0, |
| Discriminator, Fn); |
| } |
| |
| DebugLoc DwarfDebug::emitInitialLocDirective(const MachineFunction &MF, |
| unsigned CUID) { |
| // Get beginning of function. |
| if (DebugLoc PrologEndLoc = findPrologueEndLoc(&MF)) { |
| // Ensure the compile unit is created if the function is called before |
| // beginFunction(). |
| (void)getOrCreateDwarfCompileUnit( |
| MF.getFunction().getSubprogram()->getUnit()); |
| // We'd like to list the prologue as "not statements" but GDB behaves |
| // poorly if we do that. Revisit this with caution/GDB (7.5+) testing. |
| const DISubprogram *SP = PrologEndLoc->getInlinedAtScope()->getSubprogram(); |
| ::recordSourceLine(*Asm, SP->getScopeLine(), 0, SP, DWARF2_FLAG_IS_STMT, |
| CUID, getDwarfVersion(), getUnits()); |
| return PrologEndLoc; |
| } |
| return DebugLoc(); |
| } |
| |
| // Gather pre-function debug information. Assumes being called immediately |
| // after the function entry point has been emitted. |
| void DwarfDebug::beginFunctionImpl(const MachineFunction *MF) { |
| CurFn = MF; |
| |
| auto *SP = MF->getFunction().getSubprogram(); |
| assert(LScopes.empty() || SP == LScopes.getCurrentFunctionScope()->getScopeNode()); |
| if (SP->getUnit()->getEmissionKind() == DICompileUnit::NoDebug) |
| return; |
| |
| SectionLabels.insert(std::make_pair(&Asm->getFunctionBegin()->getSection(), |
| Asm->getFunctionBegin())); |
| |
| DwarfCompileUnit &CU = getOrCreateDwarfCompileUnit(SP->getUnit()); |
| |
| // Set DwarfDwarfCompileUnitID in MCContext to the Compile Unit this function |
| // belongs to so that we add to the correct per-cu line table in the |
| // non-asm case. |
| if (Asm->OutStreamer->hasRawTextSupport()) |
| // Use a single line table if we are generating assembly. |
| Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); |
| else |
| Asm->OutStreamer->getContext().setDwarfCompileUnitID(CU.getUniqueID()); |
| |
| // Record beginning of function. |
| PrologEndLoc = emitInitialLocDirective( |
| *MF, Asm->OutStreamer->getContext().getDwarfCompileUnitID()); |
| } |
| |
| void DwarfDebug::skippedNonDebugFunction() { |
| // If we don't have a subprogram for this function then there will be a hole |
| // in the range information. Keep note of this by setting the previously used |
| // section to nullptr. |
| PrevCU = nullptr; |
| CurFn = nullptr; |
| } |
| |
| // Gather and emit post-function debug information. |
| void DwarfDebug::endFunctionImpl(const MachineFunction *MF) { |
| const DISubprogram *SP = MF->getFunction().getSubprogram(); |
| |
| assert(CurFn == MF && |
| "endFunction should be called with the same function as beginFunction"); |
| |
| // Set DwarfDwarfCompileUnitID in MCContext to default value. |
| Asm->OutStreamer->getContext().setDwarfCompileUnitID(0); |
| |
| LexicalScope *FnScope = LScopes.getCurrentFunctionScope(); |
| assert(!FnScope || SP == FnScope->getScopeNode()); |
| DwarfCompileUnit &TheCU = *CUMap.lookup(SP->getUnit()); |
| if (TheCU.getCUNode()->isDebugDirectivesOnly()) { |
| PrevLabel = nullptr; |
| CurFn = nullptr; |
| return; |
| } |
| |
| DenseSet<InlinedEntity> Processed; |
| collectEntityInfo(TheCU, SP, Processed); |
| |
| // Add the range of this function to the list of ranges for the CU. |
| TheCU.addRange({Asm->getFunctionBegin(), Asm->getFunctionEnd()}); |
| |
| // Under -gmlt, skip building the subprogram if there are no inlined |
| // subroutines inside it. But with -fdebug-info-for-profiling, the subprogram |
| // is still needed as we need its source location. |
| if (!TheCU.getCUNode()->getDebugInfoForProfiling() && |
| TheCU.getCUNode()->getEmissionKind() == DICompileUnit::LineTablesOnly && |
| LScopes.getAbstractScopesList().empty() && !IsDarwin) { |
| assert(InfoHolder.getScopeVariables().empty()); |
| PrevLabel = nullptr; |
| CurFn = nullptr; |
| return; |
| } |
| |
| #ifndef NDEBUG |
| size_t NumAbstractScopes = LScopes.getAbstractScopesList().size(); |
| #endif |
| // Construct abstract scopes. |
| for (LexicalScope *AScope : LScopes.getAbstractScopesList()) { |
| auto *SP = cast<DISubprogram>(AScope->getScopeNode()); |
| for (const DINode *DN : SP->getRetainedNodes()) { |
| if (!Processed.insert(InlinedEntity(DN, nullptr)).second) |
| continue; |
| |
| const MDNode *Scope = nullptr; |
| if (auto *DV = dyn_cast<DILocalVariable>(DN)) |
| Scope = DV->getScope(); |
| else if (auto *DL = dyn_cast<DILabel>(DN)) |
| Scope = DL->getScope(); |
| else |
| llvm_unreachable("Unexpected DI type!"); |
| |
| // Collect info for variables/labels that were optimized out. |
| ensureAbstractEntityIsCreated(TheCU, DN, Scope); |
| assert(LScopes.getAbstractScopesList().size() == NumAbstractScopes |
| && "ensureAbstractEntityIsCreated inserted abstract scopes"); |
| } |
| constructAbstractSubprogramScopeDIE(TheCU, AScope); |
| } |
| |
| ProcessedSPNodes.insert(SP); |
| DIE &ScopeDIE = TheCU.constructSubprogramScopeDIE(SP, FnScope); |
| if (auto *SkelCU = TheCU.getSkeleton()) |
| if (!LScopes.getAbstractScopesList().empty() && |
| TheCU.getCUNode()->getSplitDebugInlining()) |
| SkelCU->constructSubprogramScopeDIE(SP, FnScope); |
| |
| // Construct call site entries. |
| constructCallSiteEntryDIEs(*SP, TheCU, ScopeDIE, *MF); |
| |
| // Clear debug info |
| // Ownership of DbgVariables is a bit subtle - ScopeVariables owns all the |
| // DbgVariables except those that are also in AbstractVariables (since they |
| // can be used cross-function) |
| InfoHolder.getScopeVariables().clear(); |
| InfoHolder.getScopeLabels().clear(); |
| PrevLabel = nullptr; |
| CurFn = nullptr; |
| } |
| |
| // Register a source line with debug info. Returns the unique label that was |
| // emitted and which provides correspondence to the source line list. |
| void DwarfDebug::recordSourceLine(unsigned Line, unsigned Col, const MDNode *S, |
| unsigned Flags) { |
| ::recordSourceLine(*Asm, Line, Col, S, Flags, |
| Asm->OutStreamer->getContext().getDwarfCompileUnitID(), |
| getDwarfVersion(), getUnits()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Emit Methods |
| //===----------------------------------------------------------------------===// |
| |
| // Emit the debug info section. |
| void DwarfDebug::emitDebugInfo() { |
| DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; |
| Holder.emitUnits(/* UseOffsets */ false); |
| } |
| |
| // Emit the abbreviation section. |
| void DwarfDebug::emitAbbreviations() { |
| DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; |
| |
| Holder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevSection()); |
| } |
| |
| void DwarfDebug::emitStringOffsetsTableHeader() { |
| DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; |
| Holder.getStringPool().emitStringOffsetsTableHeader( |
| *Asm, Asm->getObjFileLowering().getDwarfStrOffSection(), |
| Holder.getStringOffsetsStartSym()); |
| } |
| |
| template <typename AccelTableT> |
| void DwarfDebug::emitAccel(AccelTableT &Accel, MCSection *Section, |
| StringRef TableName) { |
| Asm->OutStreamer->SwitchSection(Section); |
| |
| // Emit the full data. |
| emitAppleAccelTable(Asm, Accel, TableName, Section->getBeginSymbol()); |
| } |
| |
| void DwarfDebug::emitAccelDebugNames() { |
| // Don't emit anything if we have no compilation units to index. |
| if (getUnits().empty()) |
| return; |
| |
| emitDWARF5AccelTable(Asm, AccelDebugNames, *this, getUnits()); |
| } |
| |
| // Emit visible names into a hashed accelerator table section. |
| void DwarfDebug::emitAccelNames() { |
| emitAccel(AccelNames, Asm->getObjFileLowering().getDwarfAccelNamesSection(), |
| "Names"); |
| } |
| |
| // Emit objective C classes and categories into a hashed accelerator table |
| // section. |
| void DwarfDebug::emitAccelObjC() { |
| emitAccel(AccelObjC, Asm->getObjFileLowering().getDwarfAccelObjCSection(), |
| "ObjC"); |
| } |
| |
| // Emit namespace dies into a hashed accelerator table. |
| void DwarfDebug::emitAccelNamespaces() { |
| emitAccel(AccelNamespace, |
| Asm->getObjFileLowering().getDwarfAccelNamespaceSection(), |
| "namespac"); |
| } |
| |
| // Emit type dies into a hashed accelerator table. |
| void DwarfDebug::emitAccelTypes() { |
| emitAccel(AccelTypes, Asm->getObjFileLowering().getDwarfAccelTypesSection(), |
| "types"); |
| } |
| |
| // Public name handling. |
| // The format for the various pubnames: |
| // |
| // dwarf pubnames - offset/name pairs where the offset is the offset into the CU |
| // for the DIE that is named. |
| // |
| // gnu pubnames - offset/index value/name tuples where the offset is the offset |
| // into the CU and the index value is computed according to the type of value |
| // for the DIE that is named. |
| // |
| // For type units the offset is the offset of the skeleton DIE. For split dwarf |
| // it's the offset within the debug_info/debug_types dwo section, however, the |
| // reference in the pubname header doesn't change. |
| |
| /// computeIndexValue - Compute the gdb index value for the DIE and CU. |
| static dwarf::PubIndexEntryDescriptor computeIndexValue(DwarfUnit *CU, |
| const DIE *Die) { |
| // Entities that ended up only in a Type Unit reference the CU instead (since |
| // the pub entry has offsets within the CU there's no real offset that can be |
| // provided anyway). As it happens all such entities (namespaces and types, |
| // types only in C++ at that) are rendered as TYPE+EXTERNAL. If this turns out |
| // not to be true it would be necessary to persist this information from the |
| // point at which the entry is added to the index data structure - since by |
| // the time the index is built from that, the original type/namespace DIE in a |
| // type unit has already been destroyed so it can't be queried for properties |
| // like tag, etc. |
| if (Die->getTag() == dwarf::DW_TAG_compile_unit) |
| return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, |
| dwarf::GIEL_EXTERNAL); |
| dwarf::GDBIndexEntryLinkage Linkage = dwarf::GIEL_STATIC; |
| |
| // We could have a specification DIE that has our most of our knowledge, |
| // look for that now. |
| if (DIEValue SpecVal = Die->findAttribute(dwarf::DW_AT_specification)) { |
| DIE &SpecDIE = SpecVal.getDIEEntry().getEntry(); |
| if (SpecDIE.findAttribute(dwarf::DW_AT_external)) |
| Linkage = dwarf::GIEL_EXTERNAL; |
| } else if (Die->findAttribute(dwarf::DW_AT_external)) |
| Linkage = dwarf::GIEL_EXTERNAL; |
| |
| switch (Die->getTag()) { |
| case dwarf::DW_TAG_class_type: |
| case dwarf::DW_TAG_structure_type: |
| case dwarf::DW_TAG_union_type: |
| case dwarf::DW_TAG_enumeration_type: |
| return dwarf::PubIndexEntryDescriptor( |
| dwarf::GIEK_TYPE, |
| dwarf::isCPlusPlus((dwarf::SourceLanguage)CU->getLanguage()) |
| ? dwarf::GIEL_EXTERNAL |
| : dwarf::GIEL_STATIC); |
| case dwarf::DW_TAG_typedef: |
| case dwarf::DW_TAG_base_type: |
| case dwarf::DW_TAG_subrange_type: |
| return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_TYPE, dwarf::GIEL_STATIC); |
| case dwarf::DW_TAG_namespace: |
| return dwarf::GIEK_TYPE; |
| case dwarf::DW_TAG_subprogram: |
| return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_FUNCTION, Linkage); |
| case dwarf::DW_TAG_variable: |
| return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, Linkage); |
| case dwarf::DW_TAG_enumerator: |
| return dwarf::PubIndexEntryDescriptor(dwarf::GIEK_VARIABLE, |
| dwarf::GIEL_STATIC); |
| default: |
| return dwarf::GIEK_NONE; |
| } |
| } |
| |
| /// emitDebugPubSections - Emit visible names and types into debug pubnames and |
| /// pubtypes sections. |
| void DwarfDebug::emitDebugPubSections() { |
| for (const auto &NU : CUMap) { |
| DwarfCompileUnit *TheU = NU.second; |
| if (!TheU->hasDwarfPubSections()) |
| continue; |
| |
| bool GnuStyle = TheU->getCUNode()->getNameTableKind() == |
| DICompileUnit::DebugNameTableKind::GNU; |
| |
| Asm->OutStreamer->SwitchSection( |
| GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubNamesSection() |
| : Asm->getObjFileLowering().getDwarfPubNamesSection()); |
| emitDebugPubSection(GnuStyle, "Names", TheU, TheU->getGlobalNames()); |
| |
| Asm->OutStreamer->SwitchSection( |
| GnuStyle ? Asm->getObjFileLowering().getDwarfGnuPubTypesSection() |
| : Asm->getObjFileLowering().getDwarfPubTypesSection()); |
| emitDebugPubSection(GnuStyle, "Types", TheU, TheU->getGlobalTypes()); |
| } |
| } |
| |
| void DwarfDebug::emitSectionReference(const DwarfCompileUnit &CU) { |
| if (useSectionsAsReferences()) |
| Asm->EmitDwarfOffset(CU.getSection()->getBeginSymbol(), |
| CU.getDebugSectionOffset()); |
| else |
| Asm->emitDwarfSymbolReference(CU.getLabelBegin()); |
| } |
| |
| void DwarfDebug::emitDebugPubSection(bool GnuStyle, StringRef Name, |
| DwarfCompileUnit *TheU, |
| const StringMap<const DIE *> &Globals) { |
| if (auto *Skeleton = TheU->getSkeleton()) |
| TheU = Skeleton; |
| |
| // Emit the header. |
| Asm->OutStreamer->AddComment("Length of Public " + Name + " Info"); |
| MCSymbol *BeginLabel = Asm->createTempSymbol("pub" + Name + "_begin"); |
| MCSymbol *EndLabel = Asm->createTempSymbol("pub" + Name + "_end"); |
| Asm->EmitLabelDifference(EndLabel, BeginLabel, 4); |
| |
| Asm->OutStreamer->EmitLabel(BeginLabel); |
| |
| Asm->OutStreamer->AddComment("DWARF Version"); |
| Asm->emitInt16(dwarf::DW_PUBNAMES_VERSION); |
| |
| Asm->OutStreamer->AddComment("Offset of Compilation Unit Info"); |
| emitSectionReference(*TheU); |
| |
| Asm->OutStreamer->AddComment("Compilation Unit Length"); |
| Asm->emitInt32(TheU->getLength()); |
| |
| // Emit the pubnames for this compilation unit. |
| for (const auto &GI : Globals) { |
| const char *Name = GI.getKeyData(); |
| const DIE *Entity = GI.second; |
| |
| Asm->OutStreamer->AddComment("DIE offset"); |
| Asm->emitInt32(Entity->getOffset()); |
| |
| if (GnuStyle) { |
| dwarf::PubIndexEntryDescriptor Desc = computeIndexValue(TheU, Entity); |
| Asm->OutStreamer->AddComment( |
| Twine("Attributes: ") + dwarf::GDBIndexEntryKindString(Desc.Kind) + |
| ", " + dwarf::GDBIndexEntryLinkageString(Desc.Linkage)); |
| Asm->emitInt8(Desc.toBits()); |
| } |
| |
| Asm->OutStreamer->AddComment("External Name"); |
| Asm->OutStreamer->EmitBytes(StringRef(Name, GI.getKeyLength() + 1)); |
| } |
| |
| Asm->OutStreamer->AddComment("End Mark"); |
| Asm->emitInt32(0); |
| Asm->OutStreamer->EmitLabel(EndLabel); |
| } |
| |
| /// Emit null-terminated strings into a debug str section. |
| void DwarfDebug::emitDebugStr() { |
| MCSection *StringOffsetsSection = nullptr; |
| if (useSegmentedStringOffsetsTable()) { |
| emitStringOffsetsTableHeader(); |
| StringOffsetsSection = Asm->getObjFileLowering().getDwarfStrOffSection(); |
| } |
| DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; |
| Holder.emitStrings(Asm->getObjFileLowering().getDwarfStrSection(), |
| StringOffsetsSection, /* UseRelativeOffsets = */ true); |
| } |
| |
| void DwarfDebug::emitDebugLocEntry(ByteStreamer &Streamer, |
| const DebugLocStream::Entry &Entry, |
| const DwarfCompileUnit *CU) { |
| auto &&Comments = DebugLocs.getComments(Entry); |
| auto Comment = Comments.begin(); |
| auto End = Comments.end(); |
| |
| // The expressions are inserted into a byte stream rather early (see |
| // DwarfExpression::addExpression) so for those ops (e.g. DW_OP_convert) that |
| // need to reference a base_type DIE the offset of that DIE is not yet known. |
| // To deal with this we instead insert a placeholder early and then extract |
| // it here and replace it with the real reference. |
| unsigned PtrSize = Asm->MAI->getCodePointerSize(); |
| DWARFDataExtractor Data(StringRef(DebugLocs.getBytes(Entry).data(), |
| DebugLocs.getBytes(Entry).size()), |
| Asm->getDataLayout().isLittleEndian(), PtrSize); |
| DWARFExpression Expr(Data, getDwarfVersion(), PtrSize); |
| |
| using Encoding = DWARFExpression::Operation::Encoding; |
| uint64_t Offset = 0; |
| for (auto &Op : Expr) { |
| assert(Op.getCode() != dwarf::DW_OP_const_type && |
| "3 operand ops not yet supported"); |
| Streamer.EmitInt8(Op.getCode(), Comment != End ? *(Comment++) : ""); |
| Offset++; |
| for (unsigned I = 0; I < 2; ++I) { |
| if (Op.getDescription().Op[I] == Encoding::SizeNA) |
| continue; |
| if (Op.getDescription().Op[I] == Encoding::BaseTypeRef) { |
| if (CU) { |
| uint64_t Offset = CU->ExprRefedBaseTypes[Op.getRawOperand(I)].Die->getOffset(); |
| assert(Offset < (1ULL << (ULEB128PadSize * 7)) && "Offset wont fit"); |
| Asm->EmitULEB128(Offset, nullptr, ULEB128PadSize); |
| } else { |
| // Emit a reference to the 'generic type'. |
| Asm->EmitULEB128(0, nullptr, ULEB128PadSize); |
| } |
| // Make sure comments stay aligned. |
| for (unsigned J = 0; J < ULEB128PadSize; ++J) |
| if (Comment != End) |
| Comment++; |
| } else { |
| for (uint64_t J = Offset; J < Op.getOperandEndOffset(I); ++J) |
| Streamer.EmitInt8(Data.getData()[J], Comment != End ? *(Comment++) : ""); |
| } |
| Offset = Op.getOperandEndOffset(I); |
| } |
| assert(Offset == Op.getEndOffset()); |
| } |
| } |
| |
| void DwarfDebug::emitDebugLocValue(const AsmPrinter &AP, const DIBasicType *BT, |
| const DbgValueLoc &Value, |
| DwarfExpression &DwarfExpr) { |
| auto *DIExpr = Value.getExpression(); |
| DIExpressionCursor ExprCursor(DIExpr); |
| DwarfExpr.addFragmentOffset(DIExpr); |
| // Regular entry. |
| if (Value.isInt()) { |
| if (BT && (BT->getEncoding() == dwarf::DW_ATE_signed || |
| BT->getEncoding() == dwarf::DW_ATE_signed_char)) |
| DwarfExpr.addSignedConstant(Value.getInt()); |
| else |
| DwarfExpr.addUnsignedConstant(Value.getInt()); |
| } else if (Value.isLocation()) { |
| MachineLocation Location = Value.getLoc(); |
| if (Location.isIndirect()) |
| DwarfExpr.setMemoryLocationKind(); |
| DIExpressionCursor Cursor(DIExpr); |
| |
| if (DIExpr->isEntryValue()) { |
| DwarfExpr.setEntryValueFlag(); |
| DwarfExpr.beginEntryValueExpression(Cursor); |
| } |
| |
| const TargetRegisterInfo &TRI = *AP.MF->getSubtarget().getRegisterInfo(); |
| if (!DwarfExpr.addMachineRegExpression(TRI, Cursor, Location.getReg())) |
| return; |
| return DwarfExpr.addExpression(std::move(Cursor)); |
| } else if (Value.isConstantFP()) { |
| APInt RawBytes = Value.getConstantFP()->getValueAPF().bitcastToAPInt(); |
| DwarfExpr.addUnsignedConstant(RawBytes); |
| } |
| DwarfExpr.addExpression(std::move(ExprCursor)); |
| } |
| |
| void DebugLocEntry::finalize(const AsmPrinter &AP, |
| DebugLocStream::ListBuilder &List, |
| const DIBasicType *BT, |
| DwarfCompileUnit &TheCU) { |
| assert(!Values.empty() && |
| "location list entries without values are redundant"); |
| assert(Begin != End && "unexpected location list entry with empty range"); |
| DebugLocStream::EntryBuilder Entry(List, Begin, End); |
| BufferByteStreamer Streamer = Entry.getStreamer(); |
| DebugLocDwarfExpression DwarfExpr(AP.getDwarfVersion(), Streamer, TheCU); |
| const DbgValueLoc &Value = Values[0]; |
| if (Value.isFragment()) { |
| // Emit all fragments that belong to the same variable and range. |
| assert(llvm::all_of(Values, [](DbgValueLoc P) { |
| return P.isFragment(); |
| }) && "all values are expected to be fragments"); |
| assert(std::is_sorted(Values.begin(), Values.end()) && |
| "fragments are expected to be sorted"); |
| |
| for (auto Fragment : Values) |
| DwarfDebug::emitDebugLocValue(AP, BT, Fragment, DwarfExpr); |
| |
| } else { |
| assert(Values.size() == 1 && "only fragments may have >1 value"); |
| DwarfDebug::emitDebugLocValue(AP, BT, Value, DwarfExpr); |
| } |
| DwarfExpr.finalize(); |
| } |
| |
| void DwarfDebug::emitDebugLocEntryLocation(const DebugLocStream::Entry &Entry, |
| const DwarfCompileUnit *CU) { |
| // Emit the size. |
| Asm->OutStreamer->AddComment("Loc expr size"); |
| if (getDwarfVersion() >= 5) |
| Asm->EmitULEB128(DebugLocs.getBytes(Entry).size()); |
| else if (DebugLocs.getBytes(Entry).size() <= std::numeric_limits<uint16_t>::max()) |
| Asm->emitInt16(DebugLocs.getBytes(Entry).size()); |
| else { |
| // The entry is too big to fit into 16 bit, drop it as there is nothing we |
| // can do. |
| Asm->emitInt16(0); |
| return; |
| } |
| // Emit the entry. |
| APByteStreamer Streamer(*Asm); |
| emitDebugLocEntry(Streamer, Entry, CU); |
| } |
| |
| // Emit the common part of the DWARF 5 range/locations list tables header. |
| static void emitListsTableHeaderStart(AsmPrinter *Asm, |
| MCSymbol *TableStart, |
| MCSymbol *TableEnd) { |
| // Build the table header, which starts with the length field. |
| Asm->OutStreamer->AddComment("Length"); |
| Asm->EmitLabelDifference(TableEnd, TableStart, 4); |
| Asm->OutStreamer->EmitLabel(TableStart); |
| // Version number (DWARF v5 and later). |
| Asm->OutStreamer->AddComment("Version"); |
| Asm->emitInt16(Asm->OutStreamer->getContext().getDwarfVersion()); |
| // Address size. |
| Asm->OutStreamer->AddComment("Address size"); |
| Asm->emitInt8(Asm->MAI->getCodePointerSize()); |
| // Segment selector size. |
| Asm->OutStreamer->AddComment("Segment selector size"); |
| Asm->emitInt8(0); |
| } |
| |
| // Emit the header of a DWARF 5 range list table list table. Returns the symbol |
| // that designates the end of the table for the caller to emit when the table is |
| // complete. |
| static MCSymbol *emitRnglistsTableHeader(AsmPrinter *Asm, |
| const DwarfFile &Holder) { |
| MCSymbol *TableStart = Asm->createTempSymbol("debug_rnglist_table_start"); |
| MCSymbol *TableEnd = Asm->createTempSymbol("debug_rnglist_table_end"); |
| emitListsTableHeaderStart(Asm, TableStart, TableEnd); |
| |
| Asm->OutStreamer->AddComment("Offset entry count"); |
| Asm->emitInt32(Holder.getRangeLists().size()); |
| Asm->OutStreamer->EmitLabel(Holder.getRnglistsTableBaseSym()); |
| |
| for (const RangeSpanList &List : Holder.getRangeLists()) |
| Asm->EmitLabelDifference(List.getSym(), Holder.getRnglistsTableBaseSym(), |
| 4); |
| |
| return TableEnd; |
| } |
| |
| // Emit the header of a DWARF 5 locations list table. Returns the symbol that |
| // designates the end of the table for the caller to emit when the table is |
| // complete. |
| static MCSymbol *emitLoclistsTableHeader(AsmPrinter *Asm, |
| const DwarfDebug &DD) { |
| MCSymbol *TableStart = Asm->createTempSymbol("debug_loclist_table_start"); |
| MCSymbol *TableEnd = Asm->createTempSymbol("debug_loclist_table_end"); |
| emitListsTableHeaderStart(Asm, TableStart, TableEnd); |
| |
| const auto &DebugLocs = DD.getDebugLocs(); |
| |
| // FIXME: Generate the offsets table and use DW_FORM_loclistx with the |
| // DW_AT_loclists_base attribute. Until then set the number of offsets to 0. |
| Asm->OutStreamer->AddComment("Offset entry count"); |
| Asm->emitInt32(0); |
| Asm->OutStreamer->EmitLabel(DebugLocs.getSym()); |
| |
| return TableEnd; |
| } |
| |
| template <typename Ranges, typename PayloadEmitter> |
| static void emitRangeList( |
| DwarfDebug &DD, AsmPrinter *Asm, MCSymbol *Sym, const Ranges &R, |
| const DwarfCompileUnit &CU, unsigned BaseAddressx, unsigned OffsetPair, |
| unsigned StartxLength, unsigned EndOfList, |
| StringRef (*StringifyEnum)(unsigned), |
| bool ShouldUseBaseAddress, |
| PayloadEmitter EmitPayload) { |
| |
| auto Size = Asm->MAI->getCodePointerSize(); |
| bool UseDwarf5 = DD.getDwarfVersion() >= 5; |
| |
| // Emit our symbol so we can find the beginning of the range. |
| Asm->OutStreamer->EmitLabel(Sym); |
| |
| // Gather all the ranges that apply to the same section so they can share |
| // a base address entry. |
| MapVector<const MCSection *, std::vector<decltype(&*R.begin())>> SectionRanges; |
| |
| for (const auto &Range : R) |
| SectionRanges[&Range.Begin->getSection()].push_back(&Range); |
| |
| const MCSymbol *CUBase = CU.getBaseAddress(); |
| bool BaseIsSet = false; |
| for (const auto &P : SectionRanges) { |
| auto *Base = CUBase; |
| if (!Base && ShouldUseBaseAddress) { |
| const MCSymbol *Begin = P.second.front()->Begin; |
| const MCSymbol *NewBase = DD.getSectionLabel(&Begin->getSection()); |
| if (!UseDwarf5) { |
| Base = NewBase; |
| BaseIsSet = true; |
| Asm->OutStreamer->EmitIntValue(-1, Size); |
| Asm->OutStreamer->AddComment(" base address"); |
| Asm->OutStreamer->EmitSymbolValue(Base, Size); |
| } else if (NewBase != Begin || P.second.size() > 1) { |
| // Only use a base address if |
| // * the existing pool address doesn't match (NewBase != Begin) |
| // * or, there's more than one entry to share the base address |
| Base = NewBase; |
| BaseIsSet = true; |
| Asm->OutStreamer->AddComment(StringifyEnum(BaseAddressx)); |
| Asm->emitInt8(BaseAddressx); |
| Asm->OutStreamer->AddComment(" base address index"); |
| Asm->EmitULEB128(DD.getAddressPool().getIndex(Base)); |
| } |
| } else if (BaseIsSet && !UseDwarf5) { |
| BaseIsSet = false; |
| assert(!Base); |
| Asm->OutStreamer->EmitIntValue(-1, Size); |
| Asm->OutStreamer->EmitIntValue(0, Size); |
| } |
| |
| for (const auto *RS : P.second) { |
| const MCSymbol *Begin = RS->Begin; |
| const MCSymbol *End = RS->End; |
| assert(Begin && "Range without a begin symbol?"); |
| assert(End && "Range without an end symbol?"); |
| if (Base) { |
| if (UseDwarf5) { |
| // Emit offset_pair when we have a base. |
| Asm->OutStreamer->AddComment(StringifyEnum(OffsetPair)); |
| Asm->emitInt8(OffsetPair); |
| Asm->OutStreamer->AddComment(" starting offset"); |
| Asm->EmitLabelDifferenceAsULEB128(Begin, Base); |
| Asm->OutStreamer->AddComment(" ending offset"); |
| Asm->EmitLabelDifferenceAsULEB128(End, Base); |
| } else { |
| Asm->EmitLabelDifference(Begin, Base, Size); |
| Asm->EmitLabelDifference(End, Base, Size); |
| } |
| } else if (UseDwarf5) { |
| Asm->OutStreamer->AddComment(StringifyEnum(StartxLength)); |
| Asm->emitInt8(StartxLength); |
| Asm->OutStreamer->AddComment(" start index"); |
| Asm->EmitULEB128(DD.getAddressPool().getIndex(Begin)); |
| Asm->OutStreamer->AddComment(" length"); |
| Asm->EmitLabelDifferenceAsULEB128(End, Begin); |
| } else { |
| Asm->OutStreamer->EmitSymbolValue(Begin, Size); |
| Asm->OutStreamer->EmitSymbolValue(End, Size); |
| } |
| EmitPayload(*RS); |
| } |
| } |
| |
| if (UseDwarf5) { |
| Asm->OutStreamer->AddComment(StringifyEnum(EndOfList)); |
| Asm->emitInt8(EndOfList); |
| } else { |
| // Terminate the list with two 0 values. |
| Asm->OutStreamer->EmitIntValue(0, Size); |
| Asm->OutStreamer->EmitIntValue(0, Size); |
| } |
| } |
| |
| static void emitLocList(DwarfDebug &DD, AsmPrinter *Asm, const DebugLocStream::List &List) { |
| emitRangeList( |
| DD, Asm, List.Label, DD.getDebugLocs().getEntries(List), *List.CU, |
| dwarf::DW_LLE_base_addressx, dwarf::DW_LLE_offset_pair, |
| dwarf::DW_LLE_startx_length, dwarf::DW_LLE_end_of_list, |
| llvm::dwarf::LocListEncodingString, |
| /* ShouldUseBaseAddress */ true, |
| [&](const DebugLocStream::Entry &E) { |
| DD.emitDebugLocEntryLocation(E, List.CU); |
| }); |
| } |
| |
| // Emit locations into the .debug_loc/.debug_rnglists section. |
| void DwarfDebug::emitDebugLoc() { |
| if (DebugLocs.getLists().empty()) |
| return; |
| |
| MCSymbol *TableEnd = nullptr; |
| if (getDwarfVersion() >= 5) { |
| Asm->OutStreamer->SwitchSection( |
| Asm->getObjFileLowering().getDwarfLoclistsSection()); |
| TableEnd = emitLoclistsTableHeader(Asm, *this); |
| } else { |
| Asm->OutStreamer->SwitchSection( |
| Asm->getObjFileLowering().getDwarfLocSection()); |
| } |
| |
| for (const auto &List : DebugLocs.getLists()) |
| emitLocList(*this, Asm, List); |
| |
| if (TableEnd) |
| Asm->OutStreamer->EmitLabel(TableEnd); |
| } |
| |
| void DwarfDebug::emitDebugLocDWO() { |
| for (const auto &List : DebugLocs.getLists()) { |
| Asm->OutStreamer->SwitchSection( |
| Asm->getObjFileLowering().getDwarfLocDWOSection()); |
| Asm->OutStreamer->EmitLabel(List.Label); |
| for (const auto &Entry : DebugLocs.getEntries(List)) { |
| // GDB only supports startx_length in pre-standard split-DWARF. |
| // (in v5 standard loclists, it currently* /only/ supports base_address + |
| // offset_pair, so the implementations can't really share much since they |
| // need to use different representations) |
| // * as of October 2018, at least |
| // Ideally/in v5, this could use SectionLabels to reuse existing addresses |
| // in the address pool to minimize object size/relocations. |
| Asm->emitInt8(dwarf::DW_LLE_startx_length); |
| unsigned idx = AddrPool.getIndex(Entry.Begin); |
| Asm->EmitULEB128(idx); |
| Asm->EmitLabelDifference(Entry.End, Entry.Begin, 4); |
| |
| emitDebugLocEntryLocation(Entry, List.CU); |
| } |
| Asm->emitInt8(dwarf::DW_LLE_end_of_list); |
| } |
| } |
| |
| struct ArangeSpan { |
| const MCSymbol *Start, *End; |
| }; |
| |
| // Emit a debug aranges section, containing a CU lookup for any |
| // address we can tie back to a CU. |
| void DwarfDebug::emitDebugARanges() { |
| // Provides a unique id per text section. |
| MapVector<MCSection *, SmallVector<SymbolCU, 8>> SectionMap; |
| |
| // Filter labels by section. |
| for (const SymbolCU &SCU : ArangeLabels) { |
| if (SCU.Sym->isInSection()) { |
| // Make a note of this symbol and it's section. |
| MCSection *Section = &SCU.Sym->getSection(); |
| if (!Section->getKind().isMetadata()) |
| SectionMap[Section].push_back(SCU); |
| } else { |
| // Some symbols (e.g. common/bss on mach-o) can have no section but still |
| // appear in the output. This sucks as we rely on sections to build |
| // arange spans. We can do it without, but it's icky. |
| SectionMap[nullptr].push_back(SCU); |
| } |
| } |
| |
| DenseMap<DwarfCompileUnit *, std::vector<ArangeSpan>> Spans; |
| |
| for (auto &I : SectionMap) { |
| MCSection *Section = I.first; |
| SmallVector<SymbolCU, 8> &List = I.second; |
| if (List.size() < 1) |
| continue; |
| |
| // If we have no section (e.g. common), just write out |
| // individual spans for each symbol. |
| if (!Section) { |
| for (const SymbolCU &Cur : List) { |
| ArangeSpan Span; |
| Span.Start = Cur.Sym; |
| Span.End = nullptr; |
| assert(Cur.CU); |
| Spans[Cur.CU].push_back(Span); |
| } |
| continue; |
| } |
| |
| // Sort the symbols by offset within the section. |
| llvm::stable_sort(List, [&](const SymbolCU &A, const SymbolCU &B) { |
| unsigned IA = A.Sym ? Asm->OutStreamer->GetSymbolOrder(A.Sym) : 0; |
| unsigned IB = B.Sym ? Asm->OutStreamer->GetSymbolOrder(B.Sym) : 0; |
| |
| // Symbols with no order assigned should be placed at the end. |
| // (e.g. section end labels) |
| if (IA == 0) |
| return false; |
| if (IB == 0) |
| return true; |
| return IA < IB; |
| }); |
| |
| // Insert a final terminator. |
| List.push_back(SymbolCU(nullptr, Asm->OutStreamer->endSection(Section))); |
| |
| // Build spans between each label. |
| const MCSymbol *StartSym = List[0].Sym; |
| for (size_t n = 1, e = List.size(); n < e; n++) { |
| const SymbolCU &Prev = List[n - 1]; |
| const SymbolCU &Cur = List[n]; |
| |
| // Try and build the longest span we can within the same CU. |
| if (Cur.CU != Prev.CU) { |
| ArangeSpan Span; |
| Span.Start = StartSym; |
| Span.End = Cur.Sym; |
| assert(Prev.CU); |
| Spans[Prev.CU].push_back(Span); |
| StartSym = Cur.Sym; |
| } |
| } |
| } |
| |
| // Start the dwarf aranges section. |
| Asm->OutStreamer->SwitchSection( |
| Asm->getObjFileLowering().getDwarfARangesSection()); |
| |
| unsigned PtrSize = Asm->MAI->getCodePointerSize(); |
| |
| // Build a list of CUs used. |
| std::vector<DwarfCompileUnit *> CUs; |
| for (const auto &it : Spans) { |
| DwarfCompileUnit *CU = it.first; |
| CUs.push_back(CU); |
| } |
| |
| // Sort the CU list (again, to ensure consistent output order). |
| llvm::sort(CUs, [](const DwarfCompileUnit *A, const DwarfCompileUnit *B) { |
| return A->getUniqueID() < B->getUniqueID(); |
| }); |
| |
| // Emit an arange table for each CU we used. |
| for (DwarfCompileUnit *CU : CUs) { |
| std::vector<ArangeSpan> &List = Spans[CU]; |
| |
| // Describe the skeleton CU's offset and length, not the dwo file's. |
| if (auto *Skel = CU->getSkeleton()) |
| CU = Skel; |
| |
| // Emit size of content not including length itself. |
| unsigned ContentSize = |
| sizeof(int16_t) + // DWARF ARange version number |
| sizeof(int32_t) + // Offset of CU in the .debug_info section |
| sizeof(int8_t) + // Pointer Size (in bytes) |
| sizeof(int8_t); // Segment Size (in bytes) |
| |
| unsigned TupleSize = PtrSize * 2; |
| |
| // 7.20 in the Dwarf specs requires the table to be aligned to a tuple. |
| unsigned Padding = |
| offsetToAlignment(sizeof(int32_t) + ContentSize, Align(TupleSize)); |
| |
| ContentSize += Padding; |
| ContentSize += (List.size() + 1) * TupleSize; |
| |
| // For each compile unit, write the list of spans it covers. |
| Asm->OutStreamer->AddComment("Length of ARange Set"); |
| Asm->emitInt32(ContentSize); |
| Asm->OutStreamer->AddComment("DWARF Arange version number"); |
| Asm->emitInt16(dwarf::DW_ARANGES_VERSION); |
| Asm->OutStreamer->AddComment("Offset Into Debug Info Section"); |
| emitSectionReference(*CU); |
| Asm->OutStreamer->AddComment("Address Size (in bytes)"); |
| Asm->emitInt8(PtrSize); |
| Asm->OutStreamer->AddComment("Segment Size (in bytes)"); |
| Asm->emitInt8(0); |
| |
| Asm->OutStreamer->emitFill(Padding, 0xff); |
| |
| for (const ArangeSpan &Span : List) { |
| Asm->EmitLabelReference(Span.Start, PtrSize); |
| |
| // Calculate the size as being from the span start to it's end. |
| if (Span.End) { |
| Asm->EmitLabelDifference(Span.End, Span.Start, PtrSize); |
| } else { |
| // For symbols without an end marker (e.g. common), we |
| // write a single arange entry containing just that one symbol. |
| uint64_t Size = SymSize[Span.Start]; |
| if (Size == 0) |
| Size = 1; |
| |
| Asm->OutStreamer->EmitIntValue(Size, PtrSize); |
| } |
| } |
| |
| Asm->OutStreamer->AddComment("ARange terminator"); |
| Asm->OutStreamer->EmitIntValue(0, PtrSize); |
| Asm->OutStreamer->EmitIntValue(0, PtrSize); |
| } |
| } |
| |
| /// Emit a single range list. We handle both DWARF v5 and earlier. |
| static void emitRangeList(DwarfDebug &DD, AsmPrinter *Asm, |
| const RangeSpanList &List) { |
| emitRangeList(DD, Asm, List.getSym(), List.getRanges(), List.getCU(), |
| dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair, |
| dwarf::DW_RLE_startx_length, dwarf::DW_RLE_end_of_list, |
| llvm::dwarf::RangeListEncodingString, |
| List.getCU().getCUNode()->getRangesBaseAddress() || |
| DD.getDwarfVersion() >= 5, |
| [](auto) {}); |
| } |
| |
| static void emitDebugRangesImpl(DwarfDebug &DD, AsmPrinter *Asm, |
| const DwarfFile &Holder, MCSymbol *TableEnd) { |
| for (const RangeSpanList &List : Holder.getRangeLists()) |
| emitRangeList(DD, Asm, List); |
| |
| if (TableEnd) |
| Asm->OutStreamer->EmitLabel(TableEnd); |
| } |
| |
| /// Emit address ranges into the .debug_ranges section or into the DWARF v5 |
| /// .debug_rnglists section. |
| void DwarfDebug::emitDebugRanges() { |
| if (CUMap.empty()) |
| return; |
| |
| const auto &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; |
| |
| if (Holder.getRangeLists().empty()) |
| return; |
| |
| assert(useRangesSection()); |
| assert(llvm::none_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { |
| return Pair.second->getCUNode()->isDebugDirectivesOnly(); |
| })); |
| |
| // Start the dwarf ranges section. |
| MCSymbol *TableEnd = nullptr; |
| if (getDwarfVersion() >= 5) { |
| Asm->OutStreamer->SwitchSection( |
| Asm->getObjFileLowering().getDwarfRnglistsSection()); |
| TableEnd = emitRnglistsTableHeader(Asm, Holder); |
| } else |
| Asm->OutStreamer->SwitchSection( |
| Asm->getObjFileLowering().getDwarfRangesSection()); |
| |
| emitDebugRangesImpl(*this, Asm, Holder, TableEnd); |
| } |
| |
| void DwarfDebug::emitDebugRangesDWO() { |
| assert(useSplitDwarf()); |
| |
| if (CUMap.empty()) |
| return; |
| |
| const auto &Holder = InfoHolder; |
| |
| if (Holder.getRangeLists().empty()) |
| return; |
| |
| assert(getDwarfVersion() >= 5); |
| assert(useRangesSection()); |
| assert(llvm::none_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { |
| return Pair.second->getCUNode()->isDebugDirectivesOnly(); |
| })); |
| |
| // Start the dwarf ranges section. |
| Asm->OutStreamer->SwitchSection( |
| Asm->getObjFileLowering().getDwarfRnglistsDWOSection()); |
| MCSymbol *TableEnd = emitRnglistsTableHeader(Asm, Holder); |
| |
| emitDebugRangesImpl(*this, Asm, Holder, TableEnd); |
| } |
| |
| void DwarfDebug::handleMacroNodes(DIMacroNodeArray Nodes, DwarfCompileUnit &U) { |
| for (auto *MN : Nodes) { |
| if (auto *M = dyn_cast<DIMacro>(MN)) |
| emitMacro(*M); |
| else if (auto *F = dyn_cast<DIMacroFile>(MN)) |
| emitMacroFile(*F, U); |
| else |
| llvm_unreachable("Unexpected DI type!"); |
| } |
| } |
| |
| void DwarfDebug::emitMacro(DIMacro &M) { |
| Asm->EmitULEB128(M.getMacinfoType()); |
| Asm->EmitULEB128(M.getLine()); |
| StringRef Name = M.getName(); |
| StringRef Value = M.getValue(); |
| Asm->OutStreamer->EmitBytes(Name); |
| if (!Value.empty()) { |
| // There should be one space between macro name and macro value. |
| Asm->emitInt8(' '); |
| Asm->OutStreamer->EmitBytes(Value); |
| } |
| Asm->emitInt8('\0'); |
| } |
| |
| void DwarfDebug::emitMacroFile(DIMacroFile &F, DwarfCompileUnit &U) { |
| assert(F.getMacinfoType() == dwarf::DW_MACINFO_start_file); |
| Asm->EmitULEB128(dwarf::DW_MACINFO_start_file); |
| Asm->EmitULEB128(F.getLine()); |
| Asm->EmitULEB128(U.getOrCreateSourceID(F.getFile())); |
| handleMacroNodes(F.getElements(), U); |
| Asm->EmitULEB128(dwarf::DW_MACINFO_end_file); |
| } |
| |
| /// Emit macros into a debug macinfo section. |
| void DwarfDebug::emitDebugMacinfo() { |
| if (CUMap.empty()) |
| return; |
| |
| if (llvm::all_of(CUMap, [](const decltype(CUMap)::value_type &Pair) { |
| return Pair.second->getCUNode()->isDebugDirectivesOnly(); |
| })) |
| return; |
| |
| // Start the dwarf macinfo section. |
| Asm->OutStreamer->SwitchSection( |
| Asm->getObjFileLowering().getDwarfMacinfoSection()); |
| |
| for (const auto &P : CUMap) { |
| auto &TheCU = *P.second; |
| if (TheCU.getCUNode()->isDebugDirectivesOnly()) |
| continue; |
| auto *SkCU = TheCU.getSkeleton(); |
| DwarfCompileUnit &U = SkCU ? *SkCU : TheCU; |
| auto *CUNode = cast<DICompileUnit>(P.first); |
| DIMacroNodeArray Macros = CUNode->getMacros(); |
| if (!Macros.empty()) { |
| Asm->OutStreamer->EmitLabel(U.getMacroLabelBegin()); |
| handleMacroNodes(Macros, U); |
| } |
| } |
| Asm->OutStreamer->AddComment("End Of Macro List Mark"); |
| Asm->emitInt8(0); |
| } |
| |
| // DWARF5 Experimental Separate Dwarf emitters. |
| |
| void DwarfDebug::initSkeletonUnit(const DwarfUnit &U, DIE &Die, |
| std::unique_ptr<DwarfCompileUnit> NewU) { |
| |
| if (!CompilationDir.empty()) |
| NewU->addString(Die, dwarf::DW_AT_comp_dir, CompilationDir); |
| |
| addGnuPubAttributes(*NewU, Die); |
| |
| SkeletonHolder.addUnit(std::move(NewU)); |
| } |
| |
| DwarfCompileUnit &DwarfDebug::constructSkeletonCU(const DwarfCompileUnit &CU) { |
| |
| auto OwnedUnit = std::make_unique<DwarfCompileUnit>( |
| CU.getUniqueID(), CU.getCUNode(), Asm, this, &SkeletonHolder); |
| DwarfCompileUnit &NewCU = *OwnedUnit; |
| NewCU.setSection(Asm->getObjFileLowering().getDwarfInfoSection()); |
| |
| NewCU.initStmtList(); |
| |
| if (useSegmentedStringOffsetsTable()) |
| NewCU.addStringOffsetsStart(); |
| |
| initSkeletonUnit(CU, NewCU.getUnitDie(), std::move(OwnedUnit)); |
| |
| return NewCU; |
| } |
| |
| // Emit the .debug_info.dwo section for separated dwarf. This contains the |
| // compile units that would normally be in debug_info. |
| void DwarfDebug::emitDebugInfoDWO() { |
| assert(useSplitDwarf() && "No split dwarf debug info?"); |
| // Don't emit relocations into the dwo file. |
| InfoHolder.emitUnits(/* UseOffsets */ true); |
| } |
| |
| // Emit the .debug_abbrev.dwo section for separated dwarf. This contains the |
| // abbreviations for the .debug_info.dwo section. |
| void DwarfDebug::emitDebugAbbrevDWO() { |
| assert(useSplitDwarf() && "No split dwarf?"); |
| InfoHolder.emitAbbrevs(Asm->getObjFileLowering().getDwarfAbbrevDWOSection()); |
| } |
| |
| void DwarfDebug::emitDebugLineDWO() { |
| assert(useSplitDwarf() && "No split dwarf?"); |
| SplitTypeUnitFileTable.Emit( |
| *Asm->OutStreamer, MCDwarfLineTableParams(), |
| Asm->getObjFileLowering().getDwarfLineDWOSection()); |
| } |
| |
| void DwarfDebug::emitStringOffsetsTableHeaderDWO() { |
| assert(useSplitDwarf() && "No split dwarf?"); |
| InfoHolder.getStringPool().emitStringOffsetsTableHeader( |
| *Asm, Asm->getObjFileLowering().getDwarfStrOffDWOSection(), |
| InfoHolder.getStringOffsetsStartSym()); |
| } |
| |
| // Emit the .debug_str.dwo section for separated dwarf. This contains the |
| // string section and is identical in format to traditional .debug_str |
| // sections. |
| void DwarfDebug::emitDebugStrDWO() { |
| if (useSegmentedStringOffsetsTable()) |
| emitStringOffsetsTableHeaderDWO(); |
| assert(useSplitDwarf() && "No split dwarf?"); |
| MCSection *OffSec = Asm->getObjFileLowering().getDwarfStrOffDWOSection(); |
| InfoHolder.emitStrings(Asm->getObjFileLowering().getDwarfStrDWOSection(), |
| OffSec, /* UseRelativeOffsets = */ false); |
| } |
| |
| // Emit address pool. |
| void DwarfDebug::emitDebugAddr() { |
| AddrPool.emit(*Asm, Asm->getObjFileLowering().getDwarfAddrSection()); |
| } |
| |
| MCDwarfDwoLineTable *DwarfDebug::getDwoLineTable(const DwarfCompileUnit &CU) { |
| if (!useSplitDwarf()) |
| return nullptr; |
| const DICompileUnit *DIUnit = CU.getCUNode(); |
| SplitTypeUnitFileTable.maybeSetRootFile( |
| DIUnit->getDirectory(), DIUnit->getFilename(), |
| CU.getMD5AsBytes(DIUnit->getFile()), DIUnit->getSource()); |
| return &SplitTypeUnitFileTable; |
| } |
| |
| uint64_t DwarfDebug::makeTypeSignature(StringRef Identifier) { |
| MD5 Hash; |
| Hash.update(Identifier); |
| // ... take the least significant 8 bytes and return those. Our MD5 |
| // implementation always returns its results in little endian, so we actually |
| // need the "high" word. |
| MD5::MD5Result Result; |
| Hash.final(Result); |
| return Result.high(); |
| } |
| |
| void DwarfDebug::addDwarfTypeUnitType(DwarfCompileUnit &CU, |
| StringRef Identifier, DIE &RefDie, |
| const DICompositeType *CTy) { |
| // Fast path if we're building some type units and one has already used the |
| // address pool we know we're going to throw away all this work anyway, so |
| // don't bother building dependent types. |
| if (!TypeUnitsUnderConstruction.empty() && AddrPool.hasBeenUsed()) |
| return; |
| |
| auto Ins = TypeSignatures.insert(std::make_pair(CTy, 0)); |
| if (!Ins.second) { |
| CU.addDIETypeSignature(RefDie, Ins.first->second); |
| return; |
| } |
| |
| bool TopLevelType = TypeUnitsUnderConstruction.empty(); |
| AddrPool.resetUsedFlag(); |
| |
| auto OwnedUnit = std::make_unique<DwarfTypeUnit>(CU, Asm, this, &InfoHolder, |
| getDwoLineTable(CU)); |
| DwarfTypeUnit &NewTU = *OwnedUnit; |
| DIE &UnitDie = NewTU.getUnitDie(); |
| TypeUnitsUnderConstruction.emplace_back(std::move(OwnedUnit), CTy); |
| |
| NewTU.addUInt(UnitDie, dwarf::DW_AT_language, dwarf::DW_FORM_data2, |
| CU.getLanguage()); |
| |
| uint64_t Signature = makeTypeSignature(Identifier); |
| NewTU.setTypeSignature(Signature); |
| Ins.first->second = Signature; |
| |
| if (useSplitDwarf()) { |
| MCSection *Section = |
| getDwarfVersion() <= 4 |
| ? Asm->getObjFileLowering().getDwarfTypesDWOSection() |
| : Asm->getObjFileLowering().getDwarfInfoDWOSection(); |
| NewTU.setSection(Section); |
| } else { |
| MCSection *Section = |
| getDwarfVersion() <= 4 |
| ? Asm->getObjFileLowering().getDwarfTypesSection(Signature) |
| : Asm->getObjFileLowering().getDwarfInfoSection(Signature); |
| NewTU.setSection(Section); |
| // Non-split type units reuse the compile unit's line table. |
| CU.applyStmtList(UnitDie); |
| } |
| |
| // Add DW_AT_str_offsets_base to the type unit DIE, but not for split type |
| // units. |
| if (useSegmentedStringOffsetsTable() && !useSplitDwarf()) |
| NewTU.addStringOffsetsStart(); |
| |
| NewTU.setType(NewTU.createTypeDIE(CTy)); |
| |
| if (TopLevelType) { |
| auto TypeUnitsToAdd = std::move(TypeUnitsUnderConstruction); |
| TypeUnitsUnderConstruction.clear(); |
| |
| // Types referencing entries in the address table cannot be placed in type |
| // units. |
| if (AddrPool.hasBeenUsed()) { |
| |
| // Remove all the types built while building this type. |
| // This is pessimistic as some of these types might not be dependent on |
| // the type that used an address. |
| for (const auto &TU : TypeUnitsToAdd) |
| TypeSignatures.erase(TU.second); |
| |
| // Construct this type in the CU directly. |
| // This is inefficient because all the dependent types will be rebuilt |
| // from scratch, including building them in type units, discovering that |
| // they depend on addresses, throwing them out and rebuilding them. |
| CU.constructTypeDIE(RefDie, cast<DICompositeType>(CTy)); |
| return; |
| } |
| |
| // If the type wasn't dependent on fission addresses, finish adding the type |
| // and all its dependent types. |
| for (auto &TU : TypeUnitsToAdd) { |
| InfoHolder.computeSizeAndOffsetsForUnit(TU.first.get()); |
| InfoHolder.emitUnit(TU.first.get(), useSplitDwarf()); |
| } |
| } |
| CU.addDIETypeSignature(RefDie, Signature); |
| } |
| |
| DwarfDebug::NonTypeUnitContext::NonTypeUnitContext(DwarfDebug *DD) |
| : DD(DD), |
| TypeUnitsUnderConstruction(std::move(DD->TypeUnitsUnderConstruction)) { |
| DD->TypeUnitsUnderConstruction.clear(); |
| assert(TypeUnitsUnderConstruction.empty() || !DD->AddrPool.hasBeenUsed()); |
| } |
| |
| DwarfDebug::NonTypeUnitContext::~NonTypeUnitContext() { |
| DD->TypeUnitsUnderConstruction = std::move(TypeUnitsUnderConstruction); |
| DD->AddrPool.resetUsedFlag(); |
| } |
| |
| DwarfDebug::NonTypeUnitContext DwarfDebug::enterNonTypeUnitContext() { |
| return NonTypeUnitContext(this); |
| } |
| |
| // Add the Name along with its companion DIE to the appropriate accelerator |
| // table (for AccelTableKind::Dwarf it's always AccelDebugNames, for |
| // AccelTableKind::Apple, we use the table we got as an argument). If |
| // accelerator tables are disabled, this function does nothing. |
| template <typename DataT> |
| void DwarfDebug::addAccelNameImpl(const DICompileUnit &CU, |
| AccelTable<DataT> &AppleAccel, StringRef Name, |
| const DIE &Die) { |
| if (getAccelTableKind() == AccelTableKind::None) |
| return; |
| |
| if (getAccelTableKind() != AccelTableKind::Apple && |
| CU.getNameTableKind() != DICompileUnit::DebugNameTableKind::Default) |
| return; |
| |
| DwarfFile &Holder = useSplitDwarf() ? SkeletonHolder : InfoHolder; |
| DwarfStringPoolEntryRef Ref = Holder.getStringPool().getEntry(*Asm, Name); |
| |
| switch (getAccelTableKind()) { |
| case AccelTableKind::Apple: |
| AppleAccel.addName(Ref, Die); |
| break; |
| case AccelTableKind::Dwarf: |
| AccelDebugNames.addName(Ref, Die); |
| break; |
| case AccelTableKind::Default: |
| llvm_unreachable("Default should have already been resolved."); |
| case AccelTableKind::None: |
| llvm_unreachable("None handled above"); |
| } |
| } |
| |
| void DwarfDebug::addAccelName(const DICompileUnit &CU, StringRef Name, |
| const DIE &Die) { |
| addAccelNameImpl(CU, AccelNames, Name, Die); |
| } |
| |
| void DwarfDebug::addAccelObjC(const DICompileUnit &CU, StringRef Name, |
| const DIE &Die) { |
| // ObjC names go only into the Apple accelerator tables. |
| if (getAccelTableKind() == AccelTableKind::Apple) |
| addAccelNameImpl(CU, AccelObjC, Name, Die); |
| } |
| |
| void DwarfDebug::addAccelNamespace(const DICompileUnit &CU, StringRef Name, |
| const DIE &Die) { |
| addAccelNameImpl(CU, AccelNamespace, Name, Die); |
| } |
| |
| void DwarfDebug::addAccelType(const DICompileUnit &CU, StringRef Name, |
| const DIE &Die, char Flags) { |
| addAccelNameImpl(CU, AccelTypes, Name, Die); |
| } |
| |
| uint16_t DwarfDebug::getDwarfVersion() const { |
| return Asm->OutStreamer->getContext().getDwarfVersion(); |
| } |
| |
| const MCSymbol *DwarfDebug::getSectionLabel(const MCSection *S) { |
| return SectionLabels.find(S)->second; |
| } |