blob: 447ddf5ab3c9acee8460820d42028d8dca07d176 [file] [log] [blame]
//===-- TimeProfiler.cpp - Hierarchical Time Profiler ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements hierarchical time profiler.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/TimeProfiler.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/JSON.h"
#include <cassert>
#include <chrono>
#include <string>
#include <vector>
using namespace std::chrono;
namespace llvm {
static cl::opt<unsigned> TimeTraceGranularity(
"time-trace-granularity",
cl::desc(
"Minimum time granularity (in microseconds) traced by time profiler"),
cl::init(500));
TimeTraceProfiler *TimeTraceProfilerInstance = nullptr;
typedef duration<steady_clock::rep, steady_clock::period> DurationType;
typedef std::pair<size_t, DurationType> CountAndDurationType;
typedef std::pair<std::string, CountAndDurationType>
NameAndCountAndDurationType;
struct Entry {
time_point<steady_clock> Start;
DurationType Duration;
std::string Name;
std::string Detail;
Entry(time_point<steady_clock> &&S, DurationType &&D, std::string &&N,
std::string &&Dt)
: Start(std::move(S)), Duration(std::move(D)), Name(std::move(N)),
Detail(std::move(Dt)){};
};
struct TimeTraceProfiler {
TimeTraceProfiler() {
StartTime = steady_clock::now();
}
void begin(std::string Name, llvm::function_ref<std::string()> Detail) {
Stack.emplace_back(steady_clock::now(), DurationType{}, std::move(Name),
Detail());
}
void end() {
assert(!Stack.empty() && "Must call begin() first");
auto &E = Stack.back();
E.Duration = steady_clock::now() - E.Start;
// Only include sections longer than TimeTraceGranularity msec.
if (duration_cast<microseconds>(E.Duration).count() > TimeTraceGranularity)
Entries.emplace_back(E);
// Track total time taken by each "name", but only the topmost levels of
// them; e.g. if there's a template instantiation that instantiates other
// templates from within, we only want to add the topmost one. "topmost"
// happens to be the ones that don't have any currently open entries above
// itself.
if (std::find_if(++Stack.rbegin(), Stack.rend(), [&](const Entry &Val) {
return Val.Name == E.Name;
}) == Stack.rend()) {
auto &CountAndTotal = CountAndTotalPerName[E.Name];
CountAndTotal.first++;
CountAndTotal.second += E.Duration;
}
Stack.pop_back();
}
void Write(raw_pwrite_stream &OS) {
assert(Stack.empty() &&
"All profiler sections should be ended when calling Write");
json::Array Events;
const size_t ExpectedEntryCount =
Entries.size() + CountAndTotalPerName.size() + 1;
Events.reserve(ExpectedEntryCount);
// Emit all events for the main flame graph.
for (const auto &E : Entries) {
auto StartUs = duration_cast<microseconds>(E.Start - StartTime).count();
auto DurUs = duration_cast<microseconds>(E.Duration).count();
Events.emplace_back(json::Object{
{"pid", 1},
{"tid", 0},
{"ph", "X"},
{"ts", StartUs},
{"dur", DurUs},
{"name", E.Name},
{"args", json::Object{{"detail", E.Detail}}},
});
}
// Emit totals by section name as additional "thread" events, sorted from
// longest one.
int Tid = 1;
std::vector<NameAndCountAndDurationType> SortedTotals;
SortedTotals.reserve(CountAndTotalPerName.size());
for (const auto &E : CountAndTotalPerName)
SortedTotals.emplace_back(E.getKey(), E.getValue());
llvm::sort(SortedTotals.begin(), SortedTotals.end(),
[](const NameAndCountAndDurationType &A,
const NameAndCountAndDurationType &B) {
return A.second.second > B.second.second;
});
for (const auto &E : SortedTotals) {
auto DurUs = duration_cast<microseconds>(E.second.second).count();
auto Count = CountAndTotalPerName[E.first].first;
Events.emplace_back(json::Object{
{"pid", 1},
{"tid", Tid},
{"ph", "X"},
{"ts", 0},
{"dur", DurUs},
{"name", "Total " + E.first},
{"args", json::Object{{"count", static_cast<int64_t>(Count)},
{"avg ms",
static_cast<int64_t>(DurUs / Count / 1000)}}},
});
++Tid;
}
// Emit metadata event with process name.
Events.emplace_back(json::Object{
{"cat", ""},
{"pid", 1},
{"tid", 0},
{"ts", 0},
{"ph", "M"},
{"name", "process_name"},
{"args", json::Object{{"name", "clang"}}},
});
assert(Events.size() == ExpectedEntryCount && "Size prediction failed!");
OS << formatv("{0:2}", json::Value(json::Object(
{{"traceEvents", std::move(Events)}})));
}
SmallVector<Entry, 16> Stack;
SmallVector<Entry, 128> Entries;
StringMap<CountAndDurationType> CountAndTotalPerName;
time_point<steady_clock> StartTime;
};
void timeTraceProfilerInitialize() {
assert(TimeTraceProfilerInstance == nullptr &&
"Profiler should not be initialized");
TimeTraceProfilerInstance = new TimeTraceProfiler();
}
void timeTraceProfilerCleanup() {
delete TimeTraceProfilerInstance;
TimeTraceProfilerInstance = nullptr;
}
void timeTraceProfilerWrite(raw_pwrite_stream &OS) {
assert(TimeTraceProfilerInstance != nullptr &&
"Profiler object can't be null");
TimeTraceProfilerInstance->Write(OS);
}
void timeTraceProfilerBegin(StringRef Name, StringRef Detail) {
if (TimeTraceProfilerInstance != nullptr)
TimeTraceProfilerInstance->begin(Name, [&]() { return Detail; });
}
void timeTraceProfilerBegin(StringRef Name,
llvm::function_ref<std::string()> Detail) {
if (TimeTraceProfilerInstance != nullptr)
TimeTraceProfilerInstance->begin(Name, Detail);
}
void timeTraceProfilerEnd() {
if (TimeTraceProfilerInstance != nullptr)
TimeTraceProfilerInstance->end();
}
} // namespace llvm