blob: e578e0591f90b296b7c73ea9684ab4972bebc9bb [file] [log] [blame]
//===- MinidumpYAML.cpp - Minidump YAMLIO implementation ------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ObjectYAML/MinidumpYAML.h"
using namespace llvm;
using namespace llvm::MinidumpYAML;
using namespace llvm::minidump;
namespace {
class BlobAllocator {
public:
size_t tell() const { return NextOffset; }
size_t AllocateCallback(size_t Size,
std::function<void(raw_ostream &)> Callback) {
size_t Offset = NextOffset;
NextOffset += Size;
Callbacks.push_back(std::move(Callback));
return Offset;
}
size_t AllocateBytes(ArrayRef<uint8_t> Data) {
return AllocateCallback(
Data.size(), [Data](raw_ostream &OS) { OS << toStringRef(Data); });
}
template <typename T> size_t AllocateArray(ArrayRef<T> Data) {
return AllocateBytes({reinterpret_cast<const uint8_t *>(Data.data()),
sizeof(T) * Data.size()});
}
template <typename T> size_t AllocateObject(const T &Data) {
return AllocateArray(makeArrayRef(Data));
}
void writeTo(raw_ostream &OS) const;
private:
size_t NextOffset = 0;
std::vector<std::function<void(raw_ostream &)>> Callbacks;
};
} // namespace
void BlobAllocator::writeTo(raw_ostream &OS) const {
size_t BeginOffset = OS.tell();
for (const auto &Callback : Callbacks)
Callback(OS);
assert(OS.tell() == BeginOffset + NextOffset &&
"Callbacks wrote an unexpected number of bytes.");
(void)BeginOffset;
}
/// Perform an optional yaml-mapping of an endian-aware type EndianType. The
/// only purpose of this function is to avoid casting the Default value to the
/// endian type;
template <typename EndianType>
static inline void mapOptional(yaml::IO &IO, const char *Key, EndianType &Val,
typename EndianType::value_type Default) {
IO.mapOptional(Key, Val, EndianType(Default));
}
/// Yaml-map an endian-aware type EndianType as some other type MapType.
template <typename MapType, typename EndianType>
static inline void mapRequiredAs(yaml::IO &IO, const char *Key,
EndianType &Val) {
MapType Mapped = static_cast<typename EndianType::value_type>(Val);
IO.mapRequired(Key, Mapped);
Val = static_cast<typename EndianType::value_type>(Mapped);
}
/// Perform an optional yaml-mapping of an endian-aware type EndianType as some
/// other type MapType.
template <typename MapType, typename EndianType>
static inline void mapOptionalAs(yaml::IO &IO, const char *Key, EndianType &Val,
MapType Default) {
MapType Mapped = static_cast<typename EndianType::value_type>(Val);
IO.mapOptional(Key, Mapped, Default);
Val = static_cast<typename EndianType::value_type>(Mapped);
}
namespace {
/// Return the appropriate yaml Hex type for a given endian-aware type.
template <typename EndianType> struct HexType;
template <> struct HexType<support::ulittle16_t> { using type = yaml::Hex16; };
template <> struct HexType<support::ulittle32_t> { using type = yaml::Hex32; };
template <> struct HexType<support::ulittle64_t> { using type = yaml::Hex64; };
} // namespace
/// Yaml-map an endian-aware type as an appropriately-sized hex value.
template <typename EndianType>
static inline void mapRequiredHex(yaml::IO &IO, const char *Key,
EndianType &Val) {
mapRequiredAs<typename HexType<EndianType>::type>(IO, Key, Val);
}
/// Perform an optional yaml-mapping of an endian-aware type as an
/// appropriately-sized hex value.
template <typename EndianType>
static inline void mapOptionalHex(yaml::IO &IO, const char *Key,
EndianType &Val,
typename EndianType::value_type Default) {
mapOptionalAs<typename HexType<EndianType>::type>(IO, Key, Val, Default);
}
Stream::~Stream() = default;
Stream::StreamKind Stream::getKind(StreamType Type) {
switch (Type) {
case StreamType::SystemInfo:
return StreamKind::SystemInfo;
case StreamType::LinuxCPUInfo:
case StreamType::LinuxProcStatus:
case StreamType::LinuxLSBRelease:
case StreamType::LinuxCMDLine:
case StreamType::LinuxMaps:
case StreamType::LinuxProcStat:
case StreamType::LinuxProcUptime:
return StreamKind::TextContent;
default:
return StreamKind::RawContent;
}
}
std::unique_ptr<Stream> Stream::create(StreamType Type) {
StreamKind Kind = getKind(Type);
switch (Kind) {
case StreamKind::RawContent:
return llvm::make_unique<RawContentStream>(Type);
case StreamKind::SystemInfo:
return llvm::make_unique<SystemInfoStream>();
case StreamKind::TextContent:
return llvm::make_unique<TextContentStream>(Type);
}
llvm_unreachable("Unhandled stream kind!");
}
void yaml::ScalarEnumerationTraits<ProcessorArchitecture>::enumeration(
IO &IO, ProcessorArchitecture &Arch) {
#define HANDLE_MDMP_ARCH(CODE, NAME) \
IO.enumCase(Arch, #NAME, ProcessorArchitecture::NAME);
#include "llvm/BinaryFormat/MinidumpConstants.def"
IO.enumFallback<Hex16>(Arch);
}
void yaml::ScalarEnumerationTraits<OSPlatform>::enumeration(IO &IO,
OSPlatform &Plat) {
#define HANDLE_MDMP_PLATFORM(CODE, NAME) \
IO.enumCase(Plat, #NAME, OSPlatform::NAME);
#include "llvm/BinaryFormat/MinidumpConstants.def"
IO.enumFallback<Hex32>(Plat);
}
void yaml::ScalarEnumerationTraits<StreamType>::enumeration(IO &IO,
StreamType &Type) {
#define HANDLE_MDMP_STREAM_TYPE(CODE, NAME) \
IO.enumCase(Type, #NAME, StreamType::NAME);
#include "llvm/BinaryFormat/MinidumpConstants.def"
IO.enumFallback<Hex32>(Type);
}
void yaml::MappingTraits<CPUInfo::ArmInfo>::mapping(IO &IO,
CPUInfo::ArmInfo &Info) {
mapRequiredHex(IO, "CPUID", Info.CPUID);
mapOptionalHex(IO, "ELF hwcaps", Info.ElfHWCaps, 0);
}
namespace {
template <std::size_t N> struct FixedSizeHex {
FixedSizeHex(uint8_t (&Storage)[N]) : Storage(Storage) {}
uint8_t (&Storage)[N];
};
} // namespace
namespace llvm {
namespace yaml {
template <std::size_t N> struct ScalarTraits<FixedSizeHex<N>> {
static void output(const FixedSizeHex<N> &Fixed, void *, raw_ostream &OS) {
OS << toHex(makeArrayRef(Fixed.Storage));
}
static StringRef input(StringRef Scalar, void *, FixedSizeHex<N> &Fixed) {
if (!all_of(Scalar, isHexDigit))
return "Invalid hex digit in input";
if (Scalar.size() < 2 * N)
return "String too short";
if (Scalar.size() > 2 * N)
return "String too long";
copy(fromHex(Scalar), Fixed.Storage);
return "";
}
static QuotingType mustQuote(StringRef S) { return QuotingType::None; }
};
} // namespace yaml
} // namespace llvm
void yaml::MappingTraits<CPUInfo::OtherInfo>::mapping(
IO &IO, CPUInfo::OtherInfo &Info) {
FixedSizeHex<sizeof(Info.ProcessorFeatures)> Features(Info.ProcessorFeatures);
IO.mapRequired("Features", Features);
}
namespace {
/// A type which only accepts strings of a fixed size for yaml conversion.
template <std::size_t N> struct FixedSizeString {
FixedSizeString(char (&Storage)[N]) : Storage(Storage) {}
char (&Storage)[N];
};
} // namespace
namespace llvm {
namespace yaml {
template <std::size_t N> struct ScalarTraits<FixedSizeString<N>> {
static void output(const FixedSizeString<N> &Fixed, void *, raw_ostream &OS) {
OS << StringRef(Fixed.Storage, N);
}
static StringRef input(StringRef Scalar, void *, FixedSizeString<N> &Fixed) {
if (Scalar.size() < N)
return "String too short";
if (Scalar.size() > N)
return "String too long";
copy(Scalar, Fixed.Storage);
return "";
}
static QuotingType mustQuote(StringRef S) { return needsQuotes(S); }
};
} // namespace yaml
} // namespace llvm
void yaml::MappingTraits<CPUInfo::X86Info>::mapping(IO &IO,
CPUInfo::X86Info &Info) {
FixedSizeString<sizeof(Info.VendorID)> VendorID(Info.VendorID);
IO.mapRequired("Vendor ID", VendorID);
mapRequiredHex(IO, "Version Info", Info.VersionInfo);
mapRequiredHex(IO, "Feature Info", Info.FeatureInfo);
mapOptionalHex(IO, "AMD Extended Features", Info.AMDExtendedFeatures, 0);
}
static void streamMapping(yaml::IO &IO, RawContentStream &Stream) {
IO.mapOptional("Content", Stream.Content);
IO.mapOptional("Size", Stream.Size, Stream.Content.binary_size());
}
static StringRef streamValidate(RawContentStream &Stream) {
if (Stream.Size.value < Stream.Content.binary_size())
return "Stream size must be greater or equal to the content size";
return "";
}
static void streamMapping(yaml::IO &IO, SystemInfoStream &Stream) {
SystemInfo &Info = Stream.Info;
IO.mapRequired("Processor Arch", Info.ProcessorArch);
mapOptional(IO, "Processor Level", Info.ProcessorLevel, 0);
mapOptional(IO, "Processor Revision", Info.ProcessorRevision, 0);
IO.mapOptional("Number of Processors", Info.NumberOfProcessors, 0);
IO.mapOptional("Product type", Info.ProductType, 0);
mapOptional(IO, "Major Version", Info.MajorVersion, 0);
mapOptional(IO, "Minor Version", Info.MinorVersion, 0);
mapOptional(IO, "Build Number", Info.BuildNumber, 0);
IO.mapRequired("Platform ID", Info.PlatformId);
mapOptionalHex(IO, "CSD Version RVA", Info.CSDVersionRVA, 0);
mapOptionalHex(IO, "Suite Mask", Info.SuiteMask, 0);
mapOptionalHex(IO, "Reserved", Info.Reserved, 0);
switch (static_cast<ProcessorArchitecture>(Info.ProcessorArch)) {
case ProcessorArchitecture::X86:
case ProcessorArchitecture::AMD64:
IO.mapOptional("CPU", Info.CPU.X86);
break;
case ProcessorArchitecture::ARM:
case ProcessorArchitecture::ARM64:
IO.mapOptional("CPU", Info.CPU.Arm);
break;
default:
IO.mapOptional("CPU", Info.CPU.Other);
break;
}
}
static void streamMapping(yaml::IO &IO, TextContentStream &Stream) {
IO.mapOptional("Text", Stream.Text);
}
void yaml::MappingTraits<std::unique_ptr<Stream>>::mapping(
yaml::IO &IO, std::unique_ptr<MinidumpYAML::Stream> &S) {
StreamType Type;
if (IO.outputting())
Type = S->Type;
IO.mapRequired("Type", Type);
if (!IO.outputting())
S = MinidumpYAML::Stream::create(Type);
switch (S->Kind) {
case MinidumpYAML::Stream::StreamKind::RawContent:
streamMapping(IO, llvm::cast<RawContentStream>(*S));
break;
case MinidumpYAML::Stream::StreamKind::SystemInfo:
streamMapping(IO, llvm::cast<SystemInfoStream>(*S));
break;
case MinidumpYAML::Stream::StreamKind::TextContent:
streamMapping(IO, llvm::cast<TextContentStream>(*S));
break;
}
}
StringRef yaml::MappingTraits<std::unique_ptr<Stream>>::validate(
yaml::IO &IO, std::unique_ptr<MinidumpYAML::Stream> &S) {
switch (S->Kind) {
case MinidumpYAML::Stream::StreamKind::RawContent:
return streamValidate(cast<RawContentStream>(*S));
case MinidumpYAML::Stream::StreamKind::SystemInfo:
case MinidumpYAML::Stream::StreamKind::TextContent:
return "";
}
llvm_unreachable("Fully covered switch above!");
}
void yaml::MappingTraits<Object>::mapping(IO &IO, Object &O) {
IO.mapTag("!minidump", true);
mapOptionalHex(IO, "Signature", O.Header.Signature, Header::MagicSignature);
mapOptionalHex(IO, "Version", O.Header.Version, Header::MagicVersion);
mapOptionalHex(IO, "Flags", O.Header.Flags, 0);
IO.mapRequired("Streams", O.Streams);
}
static Directory layout(BlobAllocator &File, Stream &S) {
Directory Result;
Result.Type = S.Type;
Result.Location.RVA = File.tell();
switch (S.Kind) {
case Stream::StreamKind::RawContent: {
RawContentStream &Raw = cast<RawContentStream>(S);
File.AllocateCallback(Raw.Size, [&Raw](raw_ostream &OS) {
Raw.Content.writeAsBinary(OS);
assert(Raw.Content.binary_size() <= Raw.Size);
OS << std::string(Raw.Size - Raw.Content.binary_size(), '\0');
});
break;
}
case Stream::StreamKind::SystemInfo:
File.AllocateObject(cast<SystemInfoStream>(S).Info);
break;
case Stream::StreamKind::TextContent:
File.AllocateArray(arrayRefFromStringRef(cast<TextContentStream>(S).Text));
break;
}
Result.Location.DataSize = File.tell() - Result.Location.RVA;
return Result;
}
void MinidumpYAML::writeAsBinary(Object &Obj, raw_ostream &OS) {
BlobAllocator File;
File.AllocateObject(Obj.Header);
std::vector<Directory> StreamDirectory(Obj.Streams.size());
Obj.Header.StreamDirectoryRVA =
File.AllocateArray(makeArrayRef(StreamDirectory));
Obj.Header.NumberOfStreams = StreamDirectory.size();
for (auto &Stream : enumerate(Obj.Streams))
StreamDirectory[Stream.index()] = layout(File, *Stream.value());
File.writeTo(OS);
}
Error MinidumpYAML::writeAsBinary(StringRef Yaml, raw_ostream &OS) {
yaml::Input Input(Yaml);
Object Obj;
Input >> Obj;
if (std::error_code EC = Input.error())
return errorCodeToError(EC);
writeAsBinary(Obj, OS);
return Error::success();
}