| ; NOTE: Assertions have been autogenerated by utils/update_test_checks.py |
| ; RUN: opt < %s -instcombine -S | FileCheck %s |
| |
| target datalayout = "e-p:32:32:32-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:64:64-v128:128:128-a0:0:64-f80:128:128" |
| |
| ; TODO: Canonicalize rotate by constant to funnel shift intrinsics. |
| ; This should help cost modeling for vectorization, inlining, etc. |
| ; If a target does not have a rotate instruction, the expansion will |
| ; be exactly these same 3 basic ops (shl/lshr/or). |
| |
| define i32 @rotl_i32_constant(i32 %x) { |
| ; CHECK-LABEL: @rotl_i32_constant( |
| ; CHECK-NEXT: [[SHL:%.*]] = shl i32 [[X:%.*]], 11 |
| ; CHECK-NEXT: [[SHR:%.*]] = lshr i32 [[X]], 21 |
| ; CHECK-NEXT: [[R:%.*]] = or i32 [[SHR]], [[SHL]] |
| ; CHECK-NEXT: ret i32 [[R]] |
| ; |
| %shl = shl i32 %x, 11 |
| %shr = lshr i32 %x, 21 |
| %r = or i32 %shr, %shl |
| ret i32 %r |
| } |
| |
| define i42 @rotr_i42_constant(i42 %x) { |
| ; CHECK-LABEL: @rotr_i42_constant( |
| ; CHECK-NEXT: [[SHL:%.*]] = shl i42 [[X:%.*]], 31 |
| ; CHECK-NEXT: [[SHR:%.*]] = lshr i42 [[X]], 11 |
| ; CHECK-NEXT: [[R:%.*]] = or i42 [[SHR]], [[SHL]] |
| ; CHECK-NEXT: ret i42 [[R]] |
| ; |
| %shl = shl i42 %x, 31 |
| %shr = lshr i42 %x, 11 |
| %r = or i42 %shr, %shl |
| ret i42 %r |
| } |
| |
| define i8 @rotr_i8_constant_commute(i8 %x) { |
| ; CHECK-LABEL: @rotr_i8_constant_commute( |
| ; CHECK-NEXT: [[SHL:%.*]] = shl i8 [[X:%.*]], 5 |
| ; CHECK-NEXT: [[SHR:%.*]] = lshr i8 [[X]], 3 |
| ; CHECK-NEXT: [[R:%.*]] = or i8 [[SHL]], [[SHR]] |
| ; CHECK-NEXT: ret i8 [[R]] |
| ; |
| %shl = shl i8 %x, 5 |
| %shr = lshr i8 %x, 3 |
| %r = or i8 %shl, %shr |
| ret i8 %r |
| } |
| |
| define i88 @rotl_i88_constant_commute(i88 %x) { |
| ; CHECK-LABEL: @rotl_i88_constant_commute( |
| ; CHECK-NEXT: [[SHL:%.*]] = shl i88 [[X:%.*]], 44 |
| ; CHECK-NEXT: [[SHR:%.*]] = lshr i88 [[X]], 44 |
| ; CHECK-NEXT: [[R:%.*]] = or i88 [[SHL]], [[SHR]] |
| ; CHECK-NEXT: ret i88 [[R]] |
| ; |
| %shl = shl i88 %x, 44 |
| %shr = lshr i88 %x, 44 |
| %r = or i88 %shl, %shr |
| ret i88 %r |
| } |
| |
| ; Vector types are allowed. |
| |
| define <2 x i16> @rotl_v2i16_constant_splat(<2 x i16> %x) { |
| ; CHECK-LABEL: @rotl_v2i16_constant_splat( |
| ; CHECK-NEXT: [[SHL:%.*]] = shl <2 x i16> [[X:%.*]], <i16 1, i16 1> |
| ; CHECK-NEXT: [[SHR:%.*]] = lshr <2 x i16> [[X]], <i16 15, i16 15> |
| ; CHECK-NEXT: [[R:%.*]] = or <2 x i16> [[SHL]], [[SHR]] |
| ; CHECK-NEXT: ret <2 x i16> [[R]] |
| ; |
| %shl = shl <2 x i16> %x, <i16 1, i16 1> |
| %shr = lshr <2 x i16> %x, <i16 15, i16 15> |
| %r = or <2 x i16> %shl, %shr |
| ret <2 x i16> %r |
| } |
| |
| ; Non-power-of-2 vector types are allowed. |
| |
| define <2 x i17> @rotr_v2i17_constant_splat(<2 x i17> %x) { |
| ; CHECK-LABEL: @rotr_v2i17_constant_splat( |
| ; CHECK-NEXT: [[SHL:%.*]] = shl <2 x i17> [[X:%.*]], <i17 12, i17 12> |
| ; CHECK-NEXT: [[SHR:%.*]] = lshr <2 x i17> [[X]], <i17 5, i17 5> |
| ; CHECK-NEXT: [[R:%.*]] = or <2 x i17> [[SHR]], [[SHL]] |
| ; CHECK-NEXT: ret <2 x i17> [[R]] |
| ; |
| %shl = shl <2 x i17> %x, <i17 12, i17 12> |
| %shr = lshr <2 x i17> %x, <i17 5, i17 5> |
| %r = or <2 x i17> %shr, %shl |
| ret <2 x i17> %r |
| } |
| |
| ; Allow arbitrary shift constants. |
| |
| define <2 x i32> @rotr_v2i32_constant_nonsplat(<2 x i32> %x) { |
| ; CHECK-LABEL: @rotr_v2i32_constant_nonsplat( |
| ; CHECK-NEXT: [[SHL:%.*]] = shl <2 x i32> [[X:%.*]], <i32 17, i32 19> |
| ; CHECK-NEXT: [[SHR:%.*]] = lshr <2 x i32> [[X]], <i32 15, i32 13> |
| ; CHECK-NEXT: [[R:%.*]] = or <2 x i32> [[SHL]], [[SHR]] |
| ; CHECK-NEXT: ret <2 x i32> [[R]] |
| ; |
| %shl = shl <2 x i32> %x, <i32 17, i32 19> |
| %shr = lshr <2 x i32> %x, <i32 15, i32 13> |
| %r = or <2 x i32> %shl, %shr |
| ret <2 x i32> %r |
| } |
| |
| define <2 x i36> @rotl_v2i16_constant_nonsplat(<2 x i36> %x) { |
| ; CHECK-LABEL: @rotl_v2i16_constant_nonsplat( |
| ; CHECK-NEXT: [[SHL:%.*]] = shl <2 x i36> [[X:%.*]], <i36 21, i36 11> |
| ; CHECK-NEXT: [[SHR:%.*]] = lshr <2 x i36> [[X]], <i36 15, i36 25> |
| ; CHECK-NEXT: [[R:%.*]] = or <2 x i36> [[SHL]], [[SHR]] |
| ; CHECK-NEXT: ret <2 x i36> [[R]] |
| ; |
| %shl = shl <2 x i36> %x, <i36 21, i36 11> |
| %shr = lshr <2 x i36> %x, <i36 15, i36 25> |
| %r = or <2 x i36> %shl, %shr |
| ret <2 x i36> %r |
| } |
| |
| ; The most basic rotate by variable - no guards for UB due to oversized shifts. |
| ; This cannot be canonicalized to funnel shift target-independently. The safe |
| ; expansion includes masking for the shift amount that is not included here, |
| ; so it could be more expensive. |
| |
| define i32 @rotl_i32(i32 %x, i32 %y) { |
| ; CHECK-LABEL: @rotl_i32( |
| ; CHECK-NEXT: [[SUB:%.*]] = sub i32 32, [[Y:%.*]] |
| ; CHECK-NEXT: [[SHL:%.*]] = shl i32 [[X:%.*]], [[Y]] |
| ; CHECK-NEXT: [[SHR:%.*]] = lshr i32 [[X]], [[SUB]] |
| ; CHECK-NEXT: [[R:%.*]] = or i32 [[SHR]], [[SHL]] |
| ; CHECK-NEXT: ret i32 [[R]] |
| ; |
| %sub = sub i32 32, %y |
| %shl = shl i32 %x, %y |
| %shr = lshr i32 %x, %sub |
| %r = or i32 %shr, %shl |
| ret i32 %r |
| } |
| |
| ; Non-power-of-2 types should follow the same reasoning. Left/right is determined by subtract. |
| |
| define i37 @rotr_i37(i37 %x, i37 %y) { |
| ; CHECK-LABEL: @rotr_i37( |
| ; CHECK-NEXT: [[SUB:%.*]] = sub i37 37, [[Y:%.*]] |
| ; CHECK-NEXT: [[SHL:%.*]] = shl i37 [[X:%.*]], [[SUB]] |
| ; CHECK-NEXT: [[SHR:%.*]] = lshr i37 [[X]], [[Y]] |
| ; CHECK-NEXT: [[R:%.*]] = or i37 [[SHR]], [[SHL]] |
| ; CHECK-NEXT: ret i37 [[R]] |
| ; |
| %sub = sub i37 37, %y |
| %shl = shl i37 %x, %sub |
| %shr = lshr i37 %x, %y |
| %r = or i37 %shr, %shl |
| ret i37 %r |
| } |
| |
| ; Commute 'or' operands. |
| |
| define i8 @rotr_i8_commute(i8 %x, i8 %y) { |
| ; CHECK-LABEL: @rotr_i8_commute( |
| ; CHECK-NEXT: [[SUB:%.*]] = sub i8 8, [[Y:%.*]] |
| ; CHECK-NEXT: [[SHL:%.*]] = shl i8 [[X:%.*]], [[SUB]] |
| ; CHECK-NEXT: [[SHR:%.*]] = lshr i8 [[X]], [[Y]] |
| ; CHECK-NEXT: [[R:%.*]] = or i8 [[SHL]], [[SHR]] |
| ; CHECK-NEXT: ret i8 [[R]] |
| ; |
| %sub = sub i8 8, %y |
| %shl = shl i8 %x, %sub |
| %shr = lshr i8 %x, %y |
| %r = or i8 %shl, %shr |
| ret i8 %r |
| } |
| |
| ; Vector types should follow the same rules. |
| |
| define <4 x i32> @rotl_v4i32(<4 x i32> %x, <4 x i32> %y) { |
| ; CHECK-LABEL: @rotl_v4i32( |
| ; CHECK-NEXT: [[SUB:%.*]] = sub <4 x i32> <i32 32, i32 32, i32 32, i32 32>, [[Y:%.*]] |
| ; CHECK-NEXT: [[SHL:%.*]] = shl <4 x i32> [[X:%.*]], [[Y]] |
| ; CHECK-NEXT: [[SHR:%.*]] = lshr <4 x i32> [[X]], [[SUB]] |
| ; CHECK-NEXT: [[R:%.*]] = or <4 x i32> [[SHL]], [[SHR]] |
| ; CHECK-NEXT: ret <4 x i32> [[R]] |
| ; |
| %sub = sub <4 x i32> <i32 32, i32 32, i32 32, i32 32>, %y |
| %shl = shl <4 x i32> %x, %y |
| %shr = lshr <4 x i32> %x, %sub |
| %r = or <4 x i32> %shl, %shr |
| ret <4 x i32> %r |
| } |
| |
| ; Non-power-of-2 vector types should follow the same rules. |
| |
| define <3 x i42> @rotr_v3i42(<3 x i42> %x, <3 x i42> %y) { |
| ; CHECK-LABEL: @rotr_v3i42( |
| ; CHECK-NEXT: [[SUB:%.*]] = sub <3 x i42> <i42 42, i42 42, i42 42>, [[Y:%.*]] |
| ; CHECK-NEXT: [[SHL:%.*]] = shl <3 x i42> [[X:%.*]], [[SUB]] |
| ; CHECK-NEXT: [[SHR:%.*]] = lshr <3 x i42> [[X]], [[Y]] |
| ; CHECK-NEXT: [[R:%.*]] = or <3 x i42> [[SHR]], [[SHL]] |
| ; CHECK-NEXT: ret <3 x i42> [[R]] |
| ; |
| %sub = sub <3 x i42> <i42 42, i42 42, i42 42>, %y |
| %shl = shl <3 x i42> %x, %sub |
| %shr = lshr <3 x i42> %x, %y |
| %r = or <3 x i42> %shr, %shl |
| ret <3 x i42> %r |
| } |
| |
| ; This is the canonical pattern for a UB-safe rotate-by-variable with power-of-2-size scalar type. |
| ; The backend expansion of funnel shift for targets that don't have a rotate instruction should |
| ; match the original IR, so it is always good to canonicalize to the intrinsics for this pattern. |
| |
| define i32 @rotl_safe_i32(i32 %x, i32 %y) { |
| ; CHECK-LABEL: @rotl_safe_i32( |
| ; CHECK-NEXT: [[R:%.*]] = call i32 @llvm.fshl.i32(i32 [[X:%.*]], i32 [[X]], i32 [[Y:%.*]]) |
| ; CHECK-NEXT: ret i32 [[R]] |
| ; |
| %negy = sub i32 0, %y |
| %ymask = and i32 %y, 31 |
| %negymask = and i32 %negy, 31 |
| %shl = shl i32 %x, %ymask |
| %shr = lshr i32 %x, %negymask |
| %r = or i32 %shr, %shl |
| ret i32 %r |
| } |
| |
| ; Extra uses don't change anything. |
| |
| define i16 @rotl_safe_i16_commute_extra_use(i16 %x, i16 %y, i16* %p) { |
| ; CHECK-LABEL: @rotl_safe_i16_commute_extra_use( |
| ; CHECK-NEXT: [[NEGY:%.*]] = sub i16 0, [[Y:%.*]] |
| ; CHECK-NEXT: [[NEGYMASK:%.*]] = and i16 [[NEGY]], 15 |
| ; CHECK-NEXT: store i16 [[NEGYMASK]], i16* [[P:%.*]], align 2 |
| ; CHECK-NEXT: [[R:%.*]] = call i16 @llvm.fshl.i16(i16 [[X:%.*]], i16 [[X]], i16 [[Y]]) |
| ; CHECK-NEXT: ret i16 [[R]] |
| ; |
| %negy = sub i16 0, %y |
| %ymask = and i16 %y, 15 |
| %negymask = and i16 %negy, 15 |
| store i16 %negymask, i16* %p |
| %shl = shl i16 %x, %ymask |
| %shr = lshr i16 %x, %negymask |
| %r = or i16 %shl, %shr |
| ret i16 %r |
| } |
| |
| ; Left/right is determined by the negation. |
| |
| define i64 @rotr_safe_i64(i64 %x, i64 %y) { |
| ; CHECK-LABEL: @rotr_safe_i64( |
| ; CHECK-NEXT: [[R:%.*]] = call i64 @llvm.fshr.i64(i64 [[X:%.*]], i64 [[X]], i64 [[Y:%.*]]) |
| ; CHECK-NEXT: ret i64 [[R]] |
| ; |
| %negy = sub i64 0, %y |
| %ymask = and i64 %y, 63 |
| %negymask = and i64 %negy, 63 |
| %shl = shl i64 %x, %negymask |
| %shr = lshr i64 %x, %ymask |
| %r = or i64 %shr, %shl |
| ret i64 %r |
| } |
| |
| ; Extra uses don't change anything. |
| |
| define i8 @rotr_safe_i8_commute_extra_use(i8 %x, i8 %y, i8* %p) { |
| ; CHECK-LABEL: @rotr_safe_i8_commute_extra_use( |
| ; CHECK-NEXT: [[NEGY:%.*]] = sub i8 0, [[Y:%.*]] |
| ; CHECK-NEXT: [[YMASK:%.*]] = and i8 [[Y]], 7 |
| ; CHECK-NEXT: [[NEGYMASK:%.*]] = and i8 [[NEGY]], 7 |
| ; CHECK-NEXT: [[SHL:%.*]] = shl i8 [[X:%.*]], [[NEGYMASK]] |
| ; CHECK-NEXT: [[SHR:%.*]] = lshr i8 [[X]], [[YMASK]] |
| ; CHECK-NEXT: store i8 [[SHR]], i8* [[P:%.*]], align 1 |
| ; CHECK-NEXT: [[R:%.*]] = or i8 [[SHL]], [[SHR]] |
| ; CHECK-NEXT: ret i8 [[R]] |
| ; |
| %negy = sub i8 0, %y |
| %ymask = and i8 %y, 7 |
| %negymask = and i8 %negy, 7 |
| %shl = shl i8 %x, %negymask |
| %shr = lshr i8 %x, %ymask |
| store i8 %shr, i8* %p |
| %r = or i8 %shl, %shr |
| ret i8 %r |
| } |
| |
| ; Vectors follow the same rules. |
| |
| define <2 x i32> @rotl_safe_v2i32(<2 x i32> %x, <2 x i32> %y) { |
| ; CHECK-LABEL: @rotl_safe_v2i32( |
| ; CHECK-NEXT: [[R:%.*]] = call <2 x i32> @llvm.fshl.v2i32(<2 x i32> [[X:%.*]], <2 x i32> [[X]], <2 x i32> [[Y:%.*]]) |
| ; CHECK-NEXT: ret <2 x i32> [[R]] |
| ; |
| %negy = sub <2 x i32> zeroinitializer, %y |
| %ymask = and <2 x i32> %y, <i32 31, i32 31> |
| %negymask = and <2 x i32> %negy, <i32 31, i32 31> |
| %shl = shl <2 x i32> %x, %ymask |
| %shr = lshr <2 x i32> %x, %negymask |
| %r = or <2 x i32> %shr, %shl |
| ret <2 x i32> %r |
| } |
| |
| ; Vectors follow the same rules. |
| |
| define <3 x i16> @rotr_safe_v3i16(<3 x i16> %x, <3 x i16> %y) { |
| ; CHECK-LABEL: @rotr_safe_v3i16( |
| ; CHECK-NEXT: [[R:%.*]] = call <3 x i16> @llvm.fshr.v3i16(<3 x i16> [[X:%.*]], <3 x i16> [[X]], <3 x i16> [[Y:%.*]]) |
| ; CHECK-NEXT: ret <3 x i16> [[R]] |
| ; |
| %negy = sub <3 x i16> zeroinitializer, %y |
| %ymask = and <3 x i16> %y, <i16 15, i16 15, i16 15> |
| %negymask = and <3 x i16> %negy, <i16 15, i16 15, i16 15> |
| %shl = shl <3 x i16> %x, %negymask |
| %shr = lshr <3 x i16> %x, %ymask |
| %r = or <3 x i16> %shr, %shl |
| ret <3 x i16> %r |
| } |
| |
| ; These are optionally UB-free rotate left/right patterns that are narrowed to a smaller bitwidth. |
| ; See PR34046, PR16726, and PR39624 for motivating examples: |
| ; https://bugs.llvm.org/show_bug.cgi?id=34046 |
| ; https://bugs.llvm.org/show_bug.cgi?id=16726 |
| ; https://bugs.llvm.org/show_bug.cgi?id=39624 |
| |
| define i16 @rotate_left_16bit(i16 %v, i32 %shift) { |
| ; CHECK-LABEL: @rotate_left_16bit( |
| ; CHECK-NEXT: [[TMP1:%.*]] = trunc i32 [[SHIFT:%.*]] to i16 |
| ; CHECK-NEXT: [[CONV2:%.*]] = call i16 @llvm.fshl.i16(i16 [[V:%.*]], i16 [[V]], i16 [[TMP1]]) |
| ; CHECK-NEXT: ret i16 [[CONV2]] |
| ; |
| %and = and i32 %shift, 15 |
| %conv = zext i16 %v to i32 |
| %shl = shl i32 %conv, %and |
| %sub = sub i32 16, %and |
| %shr = lshr i32 %conv, %sub |
| %or = or i32 %shr, %shl |
| %conv2 = trunc i32 %or to i16 |
| ret i16 %conv2 |
| } |
| |
| ; Commute the 'or' operands and try a vector type. |
| |
| define <2 x i16> @rotate_left_commute_16bit_vec(<2 x i16> %v, <2 x i32> %shift) { |
| ; CHECK-LABEL: @rotate_left_commute_16bit_vec( |
| ; CHECK-NEXT: [[TMP1:%.*]] = trunc <2 x i32> [[SHIFT:%.*]] to <2 x i16> |
| ; CHECK-NEXT: [[CONV2:%.*]] = call <2 x i16> @llvm.fshl.v2i16(<2 x i16> [[V:%.*]], <2 x i16> [[V]], <2 x i16> [[TMP1]]) |
| ; CHECK-NEXT: ret <2 x i16> [[CONV2]] |
| ; |
| %and = and <2 x i32> %shift, <i32 15, i32 15> |
| %conv = zext <2 x i16> %v to <2 x i32> |
| %shl = shl <2 x i32> %conv, %and |
| %sub = sub <2 x i32> <i32 16, i32 16>, %and |
| %shr = lshr <2 x i32> %conv, %sub |
| %or = or <2 x i32> %shl, %shr |
| %conv2 = trunc <2 x i32> %or to <2 x i16> |
| ret <2 x i16> %conv2 |
| } |
| |
| ; Change the size, rotation direction (the subtract is on the left-shift), and mask op. |
| |
| define i8 @rotate_right_8bit(i8 %v, i3 %shift) { |
| ; CHECK-LABEL: @rotate_right_8bit( |
| ; CHECK-NEXT: [[TMP1:%.*]] = zext i3 [[SHIFT:%.*]] to i8 |
| ; CHECK-NEXT: [[CONV2:%.*]] = call i8 @llvm.fshr.i8(i8 [[V:%.*]], i8 [[V]], i8 [[TMP1]]) |
| ; CHECK-NEXT: ret i8 [[CONV2]] |
| ; |
| %and = zext i3 %shift to i32 |
| %conv = zext i8 %v to i32 |
| %shr = lshr i32 %conv, %and |
| %sub = sub i32 8, %and |
| %shl = shl i32 %conv, %sub |
| %or = or i32 %shl, %shr |
| %conv2 = trunc i32 %or to i8 |
| ret i8 %conv2 |
| } |
| |
| ; The shifted value does not need to be a zexted value; here it is masked. |
| ; The shift mask could be less than the bitwidth, but this is still ok. |
| |
| define i8 @rotate_right_commute_8bit(i32 %v, i32 %shift) { |
| ; CHECK-LABEL: @rotate_right_commute_8bit( |
| ; CHECK-NEXT: [[TMP1:%.*]] = trunc i32 [[SHIFT:%.*]] to i8 |
| ; CHECK-NEXT: [[TMP2:%.*]] = and i8 [[TMP1]], 3 |
| ; CHECK-NEXT: [[TMP3:%.*]] = trunc i32 [[V:%.*]] to i8 |
| ; CHECK-NEXT: [[CONV2:%.*]] = call i8 @llvm.fshr.i8(i8 [[TMP3]], i8 [[TMP3]], i8 [[TMP2]]) |
| ; CHECK-NEXT: ret i8 [[CONV2]] |
| ; |
| %and = and i32 %shift, 3 |
| %conv = and i32 %v, 255 |
| %shr = lshr i32 %conv, %and |
| %sub = sub i32 8, %and |
| %shl = shl i32 %conv, %sub |
| %or = or i32 %shr, %shl |
| %conv2 = trunc i32 %or to i8 |
| ret i8 %conv2 |
| } |
| |
| ; If the original source does not mask the shift amount, |
| ; we still do the transform by adding masks to make it safe. |
| |
| define i8 @rotate8_not_safe(i8 %v, i32 %shamt) { |
| ; CHECK-LABEL: @rotate8_not_safe( |
| ; CHECK-NEXT: [[TMP1:%.*]] = trunc i32 [[SHAMT:%.*]] to i8 |
| ; CHECK-NEXT: [[RET:%.*]] = call i8 @llvm.fshl.i8(i8 [[V:%.*]], i8 [[V]], i8 [[TMP1]]) |
| ; CHECK-NEXT: ret i8 [[RET]] |
| ; |
| %conv = zext i8 %v to i32 |
| %sub = sub i32 8, %shamt |
| %shr = lshr i32 %conv, %sub |
| %shl = shl i32 %conv, %shamt |
| %or = or i32 %shr, %shl |
| %ret = trunc i32 %or to i8 |
| ret i8 %ret |
| } |
| |
| ; A non-power-of-2 destination type can't be masked as above. |
| |
| define i9 @rotate9_not_safe(i9 %v, i32 %shamt) { |
| ; CHECK-LABEL: @rotate9_not_safe( |
| ; CHECK-NEXT: [[CONV:%.*]] = zext i9 [[V:%.*]] to i32 |
| ; CHECK-NEXT: [[SUB:%.*]] = sub i32 9, [[SHAMT:%.*]] |
| ; CHECK-NEXT: [[SHR:%.*]] = lshr i32 [[CONV]], [[SUB]] |
| ; CHECK-NEXT: [[SHL:%.*]] = shl i32 [[CONV]], [[SHAMT]] |
| ; CHECK-NEXT: [[OR:%.*]] = or i32 [[SHR]], [[SHL]] |
| ; CHECK-NEXT: [[RET:%.*]] = trunc i32 [[OR]] to i9 |
| ; CHECK-NEXT: ret i9 [[RET]] |
| ; |
| %conv = zext i9 %v to i32 |
| %sub = sub i32 9, %shamt |
| %shr = lshr i32 %conv, %sub |
| %shl = shl i32 %conv, %shamt |
| %or = or i32 %shr, %shl |
| %ret = trunc i32 %or to i9 |
| ret i9 %ret |
| } |
| |
| ; We should narrow (v << (s & 15)) | (v >> (-s & 15)) |
| ; when both v and s have been promoted. |
| |
| define i16 @rotateleft_16_neg_mask(i16 %v, i16 %shamt) { |
| ; CHECK-LABEL: @rotateleft_16_neg_mask( |
| ; CHECK-NEXT: [[RET:%.*]] = call i16 @llvm.fshl.i16(i16 [[V:%.*]], i16 [[V]], i16 [[SHAMT:%.*]]) |
| ; CHECK-NEXT: ret i16 [[RET]] |
| ; |
| %neg = sub i16 0, %shamt |
| %lshamt = and i16 %shamt, 15 |
| %lshamtconv = zext i16 %lshamt to i32 |
| %rshamt = and i16 %neg, 15 |
| %rshamtconv = zext i16 %rshamt to i32 |
| %conv = zext i16 %v to i32 |
| %shl = shl i32 %conv, %lshamtconv |
| %shr = lshr i32 %conv, %rshamtconv |
| %or = or i32 %shr, %shl |
| %ret = trunc i32 %or to i16 |
| ret i16 %ret |
| } |
| |
| define i16 @rotateleft_16_neg_mask_commute(i16 %v, i16 %shamt) { |
| ; CHECK-LABEL: @rotateleft_16_neg_mask_commute( |
| ; CHECK-NEXT: [[RET:%.*]] = call i16 @llvm.fshl.i16(i16 [[V:%.*]], i16 [[V]], i16 [[SHAMT:%.*]]) |
| ; CHECK-NEXT: ret i16 [[RET]] |
| ; |
| %neg = sub i16 0, %shamt |
| %lshamt = and i16 %shamt, 15 |
| %lshamtconv = zext i16 %lshamt to i32 |
| %rshamt = and i16 %neg, 15 |
| %rshamtconv = zext i16 %rshamt to i32 |
| %conv = zext i16 %v to i32 |
| %shl = shl i32 %conv, %lshamtconv |
| %shr = lshr i32 %conv, %rshamtconv |
| %or = or i32 %shl, %shr |
| %ret = trunc i32 %or to i16 |
| ret i16 %ret |
| } |
| |
| define i8 @rotateright_8_neg_mask(i8 %v, i8 %shamt) { |
| ; CHECK-LABEL: @rotateright_8_neg_mask( |
| ; CHECK-NEXT: [[RET:%.*]] = call i8 @llvm.fshr.i8(i8 [[V:%.*]], i8 [[V]], i8 [[SHAMT:%.*]]) |
| ; CHECK-NEXT: ret i8 [[RET]] |
| ; |
| %neg = sub i8 0, %shamt |
| %rshamt = and i8 %shamt, 7 |
| %rshamtconv = zext i8 %rshamt to i32 |
| %lshamt = and i8 %neg, 7 |
| %lshamtconv = zext i8 %lshamt to i32 |
| %conv = zext i8 %v to i32 |
| %shl = shl i32 %conv, %lshamtconv |
| %shr = lshr i32 %conv, %rshamtconv |
| %or = or i32 %shr, %shl |
| %ret = trunc i32 %or to i8 |
| ret i8 %ret |
| } |
| |
| define i8 @rotateright_8_neg_mask_commute(i8 %v, i8 %shamt) { |
| ; CHECK-LABEL: @rotateright_8_neg_mask_commute( |
| ; CHECK-NEXT: [[RET:%.*]] = call i8 @llvm.fshr.i8(i8 [[V:%.*]], i8 [[V]], i8 [[SHAMT:%.*]]) |
| ; CHECK-NEXT: ret i8 [[RET]] |
| ; |
| %neg = sub i8 0, %shamt |
| %rshamt = and i8 %shamt, 7 |
| %rshamtconv = zext i8 %rshamt to i32 |
| %lshamt = and i8 %neg, 7 |
| %lshamtconv = zext i8 %lshamt to i32 |
| %conv = zext i8 %v to i32 |
| %shl = shl i32 %conv, %lshamtconv |
| %shr = lshr i32 %conv, %rshamtconv |
| %or = or i32 %shl, %shr |
| %ret = trunc i32 %or to i8 |
| ret i8 %ret |
| } |
| |
| ; The shift amount may already be in the wide type, |
| ; so we need to truncate it going into the rotate pattern. |
| |
| define i16 @rotateright_16_neg_mask_wide_amount(i16 %v, i32 %shamt) { |
| ; CHECK-LABEL: @rotateright_16_neg_mask_wide_amount( |
| ; CHECK-NEXT: [[TMP1:%.*]] = trunc i32 [[SHAMT:%.*]] to i16 |
| ; CHECK-NEXT: [[RET:%.*]] = call i16 @llvm.fshr.i16(i16 [[V:%.*]], i16 [[V]], i16 [[TMP1]]) |
| ; CHECK-NEXT: ret i16 [[RET]] |
| ; |
| %neg = sub i32 0, %shamt |
| %rshamt = and i32 %shamt, 15 |
| %lshamt = and i32 %neg, 15 |
| %conv = zext i16 %v to i32 |
| %shl = shl i32 %conv, %lshamt |
| %shr = lshr i32 %conv, %rshamt |
| %or = or i32 %shr, %shl |
| %ret = trunc i32 %or to i16 |
| ret i16 %ret |
| } |
| |
| define i16 @rotateright_16_neg_mask_wide_amount_commute(i16 %v, i32 %shamt) { |
| ; CHECK-LABEL: @rotateright_16_neg_mask_wide_amount_commute( |
| ; CHECK-NEXT: [[TMP1:%.*]] = trunc i32 [[SHAMT:%.*]] to i16 |
| ; CHECK-NEXT: [[RET:%.*]] = call i16 @llvm.fshr.i16(i16 [[V:%.*]], i16 [[V]], i16 [[TMP1]]) |
| ; CHECK-NEXT: ret i16 [[RET]] |
| ; |
| %neg = sub i32 0, %shamt |
| %rshamt = and i32 %shamt, 15 |
| %lshamt = and i32 %neg, 15 |
| %conv = zext i16 %v to i32 |
| %shl = shl i32 %conv, %lshamt |
| %shr = lshr i32 %conv, %rshamt |
| %or = or i32 %shl, %shr |
| %ret = trunc i32 %or to i16 |
| ret i16 %ret |
| } |
| |
| define i8 @rotateleft_8_neg_mask_wide_amount(i8 %v, i32 %shamt) { |
| ; CHECK-LABEL: @rotateleft_8_neg_mask_wide_amount( |
| ; CHECK-NEXT: [[TMP1:%.*]] = trunc i32 [[SHAMT:%.*]] to i8 |
| ; CHECK-NEXT: [[RET:%.*]] = call i8 @llvm.fshl.i8(i8 [[V:%.*]], i8 [[V]], i8 [[TMP1]]) |
| ; CHECK-NEXT: ret i8 [[RET]] |
| ; |
| %neg = sub i32 0, %shamt |
| %lshamt = and i32 %shamt, 7 |
| %rshamt = and i32 %neg, 7 |
| %conv = zext i8 %v to i32 |
| %shl = shl i32 %conv, %lshamt |
| %shr = lshr i32 %conv, %rshamt |
| %or = or i32 %shr, %shl |
| %ret = trunc i32 %or to i8 |
| ret i8 %ret |
| } |
| |
| define i8 @rotateleft_8_neg_mask_wide_amount_commute(i8 %v, i32 %shamt) { |
| ; CHECK-LABEL: @rotateleft_8_neg_mask_wide_amount_commute( |
| ; CHECK-NEXT: [[TMP1:%.*]] = trunc i32 [[SHAMT:%.*]] to i8 |
| ; CHECK-NEXT: [[RET:%.*]] = call i8 @llvm.fshl.i8(i8 [[V:%.*]], i8 [[V]], i8 [[TMP1]]) |
| ; CHECK-NEXT: ret i8 [[RET]] |
| ; |
| %neg = sub i32 0, %shamt |
| %lshamt = and i32 %shamt, 7 |
| %rshamt = and i32 %neg, 7 |
| %conv = zext i8 %v to i32 |
| %shl = shl i32 %conv, %lshamt |
| %shr = lshr i32 %conv, %rshamt |
| %or = or i32 %shl, %shr |
| %ret = trunc i32 %or to i8 |
| ret i8 %ret |
| } |
| |
| ; Non-power-of-2 types. This could be transformed, but it's not a typical rotate pattern. |
| |
| define i9 @rotateleft_9_neg_mask_wide_amount_commute(i9 %v, i33 %shamt) { |
| ; CHECK-LABEL: @rotateleft_9_neg_mask_wide_amount_commute( |
| ; CHECK-NEXT: [[NEG:%.*]] = sub i33 0, [[SHAMT:%.*]] |
| ; CHECK-NEXT: [[LSHAMT:%.*]] = and i33 [[SHAMT]], 8 |
| ; CHECK-NEXT: [[RSHAMT:%.*]] = and i33 [[NEG]], 8 |
| ; CHECK-NEXT: [[CONV:%.*]] = zext i9 [[V:%.*]] to i33 |
| ; CHECK-NEXT: [[SHL:%.*]] = shl i33 [[CONV]], [[LSHAMT]] |
| ; CHECK-NEXT: [[SHR:%.*]] = lshr i33 [[CONV]], [[RSHAMT]] |
| ; CHECK-NEXT: [[OR:%.*]] = or i33 [[SHL]], [[SHR]] |
| ; CHECK-NEXT: [[RET:%.*]] = trunc i33 [[OR]] to i9 |
| ; CHECK-NEXT: ret i9 [[RET]] |
| ; |
| %neg = sub i33 0, %shamt |
| %lshamt = and i33 %shamt, 8 |
| %rshamt = and i33 %neg, 8 |
| %conv = zext i9 %v to i33 |
| %shl = shl i33 %conv, %lshamt |
| %shr = lshr i33 %conv, %rshamt |
| %or = or i33 %shl, %shr |
| %ret = trunc i33 %or to i9 |
| ret i9 %ret |
| } |
| |
| ; Convert select pattern to masked shift that ends in 'or'. |
| |
| define i32 @rotr_select(i32 %x, i32 %shamt) { |
| ; CHECK-LABEL: @rotr_select( |
| ; CHECK-NEXT: [[R:%.*]] = call i32 @llvm.fshr.i32(i32 [[X:%.*]], i32 [[X]], i32 [[SHAMT:%.*]]) |
| ; CHECK-NEXT: ret i32 [[R]] |
| ; |
| %cmp = icmp eq i32 %shamt, 0 |
| %sub = sub i32 32, %shamt |
| %shr = lshr i32 %x, %shamt |
| %shl = shl i32 %x, %sub |
| %or = or i32 %shr, %shl |
| %r = select i1 %cmp, i32 %x, i32 %or |
| ret i32 %r |
| } |
| |
| ; Convert select pattern to masked shift that ends in 'or'. |
| |
| define i8 @rotr_select_commute(i8 %x, i8 %shamt) { |
| ; CHECK-LABEL: @rotr_select_commute( |
| ; CHECK-NEXT: [[R:%.*]] = call i8 @llvm.fshr.i8(i8 [[X:%.*]], i8 [[X]], i8 [[SHAMT:%.*]]) |
| ; CHECK-NEXT: ret i8 [[R]] |
| ; |
| %cmp = icmp eq i8 %shamt, 0 |
| %sub = sub i8 8, %shamt |
| %shr = lshr i8 %x, %shamt |
| %shl = shl i8 %x, %sub |
| %or = or i8 %shl, %shr |
| %r = select i1 %cmp, i8 %x, i8 %or |
| ret i8 %r |
| } |
| |
| ; Convert select pattern to masked shift that ends in 'or'. |
| |
| define i16 @rotl_select(i16 %x, i16 %shamt) { |
| ; CHECK-LABEL: @rotl_select( |
| ; CHECK-NEXT: [[R:%.*]] = call i16 @llvm.fshl.i16(i16 [[X:%.*]], i16 [[X]], i16 [[SHAMT:%.*]]) |
| ; CHECK-NEXT: ret i16 [[R]] |
| ; |
| %cmp = icmp eq i16 %shamt, 0 |
| %sub = sub i16 16, %shamt |
| %shr = lshr i16 %x, %sub |
| %shl = shl i16 %x, %shamt |
| %or = or i16 %shr, %shl |
| %r = select i1 %cmp, i16 %x, i16 %or |
| ret i16 %r |
| } |
| |
| ; Convert select pattern to masked shift that ends in 'or'. |
| |
| define <2 x i64> @rotl_select_commute(<2 x i64> %x, <2 x i64> %shamt) { |
| ; CHECK-LABEL: @rotl_select_commute( |
| ; CHECK-NEXT: [[R:%.*]] = call <2 x i64> @llvm.fshl.v2i64(<2 x i64> [[X:%.*]], <2 x i64> [[X]], <2 x i64> [[SHAMT:%.*]]) |
| ; CHECK-NEXT: ret <2 x i64> [[R]] |
| ; |
| %cmp = icmp eq <2 x i64> %shamt, zeroinitializer |
| %sub = sub <2 x i64> <i64 64, i64 64>, %shamt |
| %shr = lshr <2 x i64> %x, %sub |
| %shl = shl <2 x i64> %x, %shamt |
| %or = or <2 x i64> %shl, %shr |
| %r = select <2 x i1> %cmp, <2 x i64> %x, <2 x i64> %or |
| ret <2 x i64> %r |
| } |
| |
| ; Negative test - the transform is only valid with power-of-2 types. |
| |
| define i24 @rotl_select_weird_type(i24 %x, i24 %shamt) { |
| ; CHECK-LABEL: @rotl_select_weird_type( |
| ; CHECK-NEXT: [[CMP:%.*]] = icmp eq i24 [[SHAMT:%.*]], 0 |
| ; CHECK-NEXT: [[SUB:%.*]] = sub i24 24, [[SHAMT]] |
| ; CHECK-NEXT: [[SHR:%.*]] = lshr i24 [[X:%.*]], [[SUB]] |
| ; CHECK-NEXT: [[SHL:%.*]] = shl i24 [[X]], [[SHAMT]] |
| ; CHECK-NEXT: [[OR:%.*]] = or i24 [[SHL]], [[SHR]] |
| ; CHECK-NEXT: [[R:%.*]] = select i1 [[CMP]], i24 [[X]], i24 [[OR]] |
| ; CHECK-NEXT: ret i24 [[R]] |
| ; |
| %cmp = icmp eq i24 %shamt, 0 |
| %sub = sub i24 24, %shamt |
| %shr = lshr i24 %x, %sub |
| %shl = shl i24 %x, %shamt |
| %or = or i24 %shl, %shr |
| %r = select i1 %cmp, i24 %x, i24 %or |
| ret i24 %r |
| } |
| |
| ; Test that the transform doesn't crash when there's an "or" with a ConstantExpr operand. |
| |
| @external_global = external global i8 |
| |
| define i32 @rotl_constant_expr(i32 %shamt) { |
| ; CHECK-LABEL: @rotl_constant_expr( |
| ; CHECK-NEXT: [[SHR:%.*]] = lshr i32 ptrtoint (i8* @external_global to i32), [[SHAMT:%.*]] |
| ; CHECK-NEXT: [[R:%.*]] = or i32 [[SHR]], shl (i32 ptrtoint (i8* @external_global to i32), i32 11) |
| ; CHECK-NEXT: ret i32 [[R]] |
| ; |
| %shr = lshr i32 ptrtoint (i8* @external_global to i32), %shamt |
| %r = or i32 %shr, shl (i32 ptrtoint (i8* @external_global to i32), i32 11) |
| ret i32 %r |
| } |