| //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the declaration of the MachineInstr class, which is the |
| // basic representation for all target dependent machine instructions used by |
| // the back end. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_CODEGEN_MACHINEINSTR_H |
| #define LLVM_CODEGEN_MACHINEINSTR_H |
| |
| #include "llvm/ADT/DenseMapInfo.h" |
| #include "llvm/ADT/PointerSumType.h" |
| #include "llvm/ADT/ilist.h" |
| #include "llvm/ADT/ilist_node.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/MC/MCInstrDesc.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/Support/ArrayRecycler.h" |
| #include "llvm/Support/TrailingObjects.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <utility> |
| |
| namespace llvm { |
| |
| class AAResults; |
| template <typename T> class ArrayRef; |
| class DIExpression; |
| class DILocalVariable; |
| class MachineBasicBlock; |
| class MachineFunction; |
| class MachineMemOperand; |
| class MachineRegisterInfo; |
| class ModuleSlotTracker; |
| class raw_ostream; |
| template <typename T> class SmallVectorImpl; |
| class SmallBitVector; |
| class StringRef; |
| class TargetInstrInfo; |
| class TargetRegisterClass; |
| class TargetRegisterInfo; |
| |
| //===----------------------------------------------------------------------===// |
| /// Representation of each machine instruction. |
| /// |
| /// This class isn't a POD type, but it must have a trivial destructor. When a |
| /// MachineFunction is deleted, all the contained MachineInstrs are deallocated |
| /// without having their destructor called. |
| /// |
| class MachineInstr |
| : public ilist_node_with_parent<MachineInstr, MachineBasicBlock, |
| ilist_sentinel_tracking<true>> { |
| public: |
| using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator; |
| |
| /// Flags to specify different kinds of comments to output in |
| /// assembly code. These flags carry semantic information not |
| /// otherwise easily derivable from the IR text. |
| /// |
| enum CommentFlag { |
| ReloadReuse = 0x1, // higher bits are reserved for target dep comments. |
| NoSchedComment = 0x2, |
| TAsmComments = 0x4 // Target Asm comments should start from this value. |
| }; |
| |
| enum MIFlag { |
| NoFlags = 0, |
| FrameSetup = 1 << 0, // Instruction is used as a part of |
| // function frame setup code. |
| FrameDestroy = 1 << 1, // Instruction is used as a part of |
| // function frame destruction code. |
| BundledPred = 1 << 2, // Instruction has bundled predecessors. |
| BundledSucc = 1 << 3, // Instruction has bundled successors. |
| FmNoNans = 1 << 4, // Instruction does not support Fast |
| // math nan values. |
| FmNoInfs = 1 << 5, // Instruction does not support Fast |
| // math infinity values. |
| FmNsz = 1 << 6, // Instruction is not required to retain |
| // signed zero values. |
| FmArcp = 1 << 7, // Instruction supports Fast math |
| // reciprocal approximations. |
| FmContract = 1 << 8, // Instruction supports Fast math |
| // contraction operations like fma. |
| FmAfn = 1 << 9, // Instruction may map to Fast math |
| // instrinsic approximation. |
| FmReassoc = 1 << 10, // Instruction supports Fast math |
| // reassociation of operand order. |
| NoUWrap = 1 << 11, // Instruction supports binary operator |
| // no unsigned wrap. |
| NoSWrap = 1 << 12, // Instruction supports binary operator |
| // no signed wrap. |
| IsExact = 1 << 13, // Instruction supports division is |
| // known to be exact. |
| FPExcept = 1 << 14, // Instruction may raise floating-point |
| // exceptions. |
| }; |
| |
| private: |
| const MCInstrDesc *MCID; // Instruction descriptor. |
| MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block. |
| |
| // Operands are allocated by an ArrayRecycler. |
| MachineOperand *Operands = nullptr; // Pointer to the first operand. |
| unsigned NumOperands = 0; // Number of operands on instruction. |
| using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity; |
| OperandCapacity CapOperands; // Capacity of the Operands array. |
| |
| uint16_t Flags = 0; // Various bits of additional |
| // information about machine |
| // instruction. |
| |
| uint8_t AsmPrinterFlags = 0; // Various bits of information used by |
| // the AsmPrinter to emit helpful |
| // comments. This is *not* semantic |
| // information. Do not use this for |
| // anything other than to convey comment |
| // information to AsmPrinter. |
| |
| /// Internal implementation detail class that provides out-of-line storage for |
| /// extra info used by the machine instruction when this info cannot be stored |
| /// in-line within the instruction itself. |
| /// |
| /// This has to be defined eagerly due to the implementation constraints of |
| /// `PointerSumType` where it is used. |
| class ExtraInfo final |
| : TrailingObjects<ExtraInfo, MachineMemOperand *, MCSymbol *> { |
| public: |
| static ExtraInfo *create(BumpPtrAllocator &Allocator, |
| ArrayRef<MachineMemOperand *> MMOs, |
| MCSymbol *PreInstrSymbol = nullptr, |
| MCSymbol *PostInstrSymbol = nullptr) { |
| bool HasPreInstrSymbol = PreInstrSymbol != nullptr; |
| bool HasPostInstrSymbol = PostInstrSymbol != nullptr; |
| auto *Result = new (Allocator.Allocate( |
| totalSizeToAlloc<MachineMemOperand *, MCSymbol *>( |
| MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol), |
| alignof(ExtraInfo))) |
| ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol); |
| |
| // Copy the actual data into the trailing objects. |
| std::copy(MMOs.begin(), MMOs.end(), |
| Result->getTrailingObjects<MachineMemOperand *>()); |
| |
| if (HasPreInstrSymbol) |
| Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol; |
| if (HasPostInstrSymbol) |
| Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] = |
| PostInstrSymbol; |
| |
| return Result; |
| } |
| |
| ArrayRef<MachineMemOperand *> getMMOs() const { |
| return makeArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs); |
| } |
| |
| MCSymbol *getPreInstrSymbol() const { |
| return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr; |
| } |
| |
| MCSymbol *getPostInstrSymbol() const { |
| return HasPostInstrSymbol |
| ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] |
| : nullptr; |
| } |
| |
| private: |
| friend TrailingObjects; |
| |
| // Description of the extra info, used to interpret the actual optional |
| // data appended. |
| // |
| // Note that this is not terribly space optimized. This leaves a great deal |
| // of flexibility to fit more in here later. |
| const int NumMMOs; |
| const bool HasPreInstrSymbol; |
| const bool HasPostInstrSymbol; |
| |
| // Implement the `TrailingObjects` internal API. |
| size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const { |
| return NumMMOs; |
| } |
| size_t numTrailingObjects(OverloadToken<MCSymbol *>) const { |
| return HasPreInstrSymbol + HasPostInstrSymbol; |
| } |
| |
| // Just a boring constructor to allow us to initialize the sizes. Always use |
| // the `create` routine above. |
| ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol) |
| : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol), |
| HasPostInstrSymbol(HasPostInstrSymbol) {} |
| }; |
| |
| /// Enumeration of the kinds of inline extra info available. It is important |
| /// that the `MachineMemOperand` inline kind has a tag value of zero to make |
| /// it accessible as an `ArrayRef`. |
| enum ExtraInfoInlineKinds { |
| EIIK_MMO = 0, |
| EIIK_PreInstrSymbol, |
| EIIK_PostInstrSymbol, |
| EIIK_OutOfLine |
| }; |
| |
| // We store extra information about the instruction here. The common case is |
| // expected to be nothing or a single pointer (typically a MMO or a symbol). |
| // We work to optimize this common case by storing it inline here rather than |
| // requiring a separate allocation, but we fall back to an allocation when |
| // multiple pointers are needed. |
| PointerSumType<ExtraInfoInlineKinds, |
| PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>, |
| PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>, |
| PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>, |
| PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>> |
| Info; |
| |
| DebugLoc debugLoc; // Source line information. |
| |
| // Intrusive list support |
| friend struct ilist_traits<MachineInstr>; |
| friend struct ilist_callback_traits<MachineBasicBlock>; |
| void setParent(MachineBasicBlock *P) { Parent = P; } |
| |
| /// This constructor creates a copy of the given |
| /// MachineInstr in the given MachineFunction. |
| MachineInstr(MachineFunction &, const MachineInstr &); |
| |
| /// This constructor create a MachineInstr and add the implicit operands. |
| /// It reserves space for number of operands specified by |
| /// MCInstrDesc. An explicit DebugLoc is supplied. |
| MachineInstr(MachineFunction &, const MCInstrDesc &tid, DebugLoc dl, |
| bool NoImp = false); |
| |
| // MachineInstrs are pool-allocated and owned by MachineFunction. |
| friend class MachineFunction; |
| |
| public: |
| MachineInstr(const MachineInstr &) = delete; |
| MachineInstr &operator=(const MachineInstr &) = delete; |
| // Use MachineFunction::DeleteMachineInstr() instead. |
| ~MachineInstr() = delete; |
| |
| const MachineBasicBlock* getParent() const { return Parent; } |
| MachineBasicBlock* getParent() { return Parent; } |
| |
| /// Return the function that contains the basic block that this instruction |
| /// belongs to. |
| /// |
| /// Note: this is undefined behaviour if the instruction does not have a |
| /// parent. |
| const MachineFunction *getMF() const; |
| MachineFunction *getMF() { |
| return const_cast<MachineFunction *>( |
| static_cast<const MachineInstr *>(this)->getMF()); |
| } |
| |
| /// Return the asm printer flags bitvector. |
| uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; } |
| |
| /// Clear the AsmPrinter bitvector. |
| void clearAsmPrinterFlags() { AsmPrinterFlags = 0; } |
| |
| /// Return whether an AsmPrinter flag is set. |
| bool getAsmPrinterFlag(CommentFlag Flag) const { |
| return AsmPrinterFlags & Flag; |
| } |
| |
| /// Set a flag for the AsmPrinter. |
| void setAsmPrinterFlag(uint8_t Flag) { |
| AsmPrinterFlags |= Flag; |
| } |
| |
| /// Clear specific AsmPrinter flags. |
| void clearAsmPrinterFlag(CommentFlag Flag) { |
| AsmPrinterFlags &= ~Flag; |
| } |
| |
| /// Return the MI flags bitvector. |
| uint16_t getFlags() const { |
| return Flags; |
| } |
| |
| /// Return whether an MI flag is set. |
| bool getFlag(MIFlag Flag) const { |
| return Flags & Flag; |
| } |
| |
| /// Set a MI flag. |
| void setFlag(MIFlag Flag) { |
| Flags |= (uint16_t)Flag; |
| } |
| |
| void setFlags(unsigned flags) { |
| // Filter out the automatically maintained flags. |
| unsigned Mask = BundledPred | BundledSucc; |
| Flags = (Flags & Mask) | (flags & ~Mask); |
| } |
| |
| /// clearFlag - Clear a MI flag. |
| void clearFlag(MIFlag Flag) { |
| Flags &= ~((uint16_t)Flag); |
| } |
| |
| /// Return true if MI is in a bundle (but not the first MI in a bundle). |
| /// |
| /// A bundle looks like this before it's finalized: |
| /// ---------------- |
| /// | MI | |
| /// ---------------- |
| /// | |
| /// ---------------- |
| /// | MI * | |
| /// ---------------- |
| /// | |
| /// ---------------- |
| /// | MI * | |
| /// ---------------- |
| /// In this case, the first MI starts a bundle but is not inside a bundle, the |
| /// next 2 MIs are considered "inside" the bundle. |
| /// |
| /// After a bundle is finalized, it looks like this: |
| /// ---------------- |
| /// | Bundle | |
| /// ---------------- |
| /// | |
| /// ---------------- |
| /// | MI * | |
| /// ---------------- |
| /// | |
| /// ---------------- |
| /// | MI * | |
| /// ---------------- |
| /// | |
| /// ---------------- |
| /// | MI * | |
| /// ---------------- |
| /// The first instruction has the special opcode "BUNDLE". It's not "inside" |
| /// a bundle, but the next three MIs are. |
| bool isInsideBundle() const { |
| return getFlag(BundledPred); |
| } |
| |
| /// Return true if this instruction part of a bundle. This is true |
| /// if either itself or its following instruction is marked "InsideBundle". |
| bool isBundled() const { |
| return isBundledWithPred() || isBundledWithSucc(); |
| } |
| |
| /// Return true if this instruction is part of a bundle, and it is not the |
| /// first instruction in the bundle. |
| bool isBundledWithPred() const { return getFlag(BundledPred); } |
| |
| /// Return true if this instruction is part of a bundle, and it is not the |
| /// last instruction in the bundle. |
| bool isBundledWithSucc() const { return getFlag(BundledSucc); } |
| |
| /// Bundle this instruction with its predecessor. This can be an unbundled |
| /// instruction, or it can be the first instruction in a bundle. |
| void bundleWithPred(); |
| |
| /// Bundle this instruction with its successor. This can be an unbundled |
| /// instruction, or it can be the last instruction in a bundle. |
| void bundleWithSucc(); |
| |
| /// Break bundle above this instruction. |
| void unbundleFromPred(); |
| |
| /// Break bundle below this instruction. |
| void unbundleFromSucc(); |
| |
| /// Returns the debug location id of this MachineInstr. |
| const DebugLoc &getDebugLoc() const { return debugLoc; } |
| |
| /// Return the debug variable referenced by |
| /// this DBG_VALUE instruction. |
| const DILocalVariable *getDebugVariable() const; |
| |
| /// Return the complex address expression referenced by |
| /// this DBG_VALUE instruction. |
| const DIExpression *getDebugExpression() const; |
| |
| /// Return the debug label referenced by |
| /// this DBG_LABEL instruction. |
| const DILabel *getDebugLabel() const; |
| |
| /// Emit an error referring to the source location of this instruction. |
| /// This should only be used for inline assembly that is somehow |
| /// impossible to compile. Other errors should have been handled much |
| /// earlier. |
| /// |
| /// If this method returns, the caller should try to recover from the error. |
| void emitError(StringRef Msg) const; |
| |
| /// Returns the target instruction descriptor of this MachineInstr. |
| const MCInstrDesc &getDesc() const { return *MCID; } |
| |
| /// Returns the opcode of this MachineInstr. |
| unsigned getOpcode() const { return MCID->Opcode; } |
| |
| /// Retuns the total number of operands. |
| unsigned getNumOperands() const { return NumOperands; } |
| |
| const MachineOperand& getOperand(unsigned i) const { |
| assert(i < getNumOperands() && "getOperand() out of range!"); |
| return Operands[i]; |
| } |
| MachineOperand& getOperand(unsigned i) { |
| assert(i < getNumOperands() && "getOperand() out of range!"); |
| return Operands[i]; |
| } |
| |
| /// Returns the total number of definitions. |
| unsigned getNumDefs() const { |
| return getNumExplicitDefs() + MCID->getNumImplicitDefs(); |
| } |
| |
| /// Returns true if the instruction has implicit definition. |
| bool hasImplicitDef() const { |
| for (unsigned I = getNumExplicitOperands(), E = getNumOperands(); |
| I != E; ++I) { |
| const MachineOperand &MO = getOperand(I); |
| if (MO.isDef() && MO.isImplicit()) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Returns the implicit operands number. |
| unsigned getNumImplicitOperands() const { |
| return getNumOperands() - getNumExplicitOperands(); |
| } |
| |
| /// Return true if operand \p OpIdx is a subregister index. |
| bool isOperandSubregIdx(unsigned OpIdx) const { |
| assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate && |
| "Expected MO_Immediate operand type."); |
| if (isExtractSubreg() && OpIdx == 2) |
| return true; |
| if (isInsertSubreg() && OpIdx == 3) |
| return true; |
| if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0) |
| return true; |
| if (isSubregToReg() && OpIdx == 3) |
| return true; |
| return false; |
| } |
| |
| /// Returns the number of non-implicit operands. |
| unsigned getNumExplicitOperands() const; |
| |
| /// Returns the number of non-implicit definitions. |
| unsigned getNumExplicitDefs() const; |
| |
| /// iterator/begin/end - Iterate over all operands of a machine instruction. |
| using mop_iterator = MachineOperand *; |
| using const_mop_iterator = const MachineOperand *; |
| |
| mop_iterator operands_begin() { return Operands; } |
| mop_iterator operands_end() { return Operands + NumOperands; } |
| |
| const_mop_iterator operands_begin() const { return Operands; } |
| const_mop_iterator operands_end() const { return Operands + NumOperands; } |
| |
| iterator_range<mop_iterator> operands() { |
| return make_range(operands_begin(), operands_end()); |
| } |
| iterator_range<const_mop_iterator> operands() const { |
| return make_range(operands_begin(), operands_end()); |
| } |
| iterator_range<mop_iterator> explicit_operands() { |
| return make_range(operands_begin(), |
| operands_begin() + getNumExplicitOperands()); |
| } |
| iterator_range<const_mop_iterator> explicit_operands() const { |
| return make_range(operands_begin(), |
| operands_begin() + getNumExplicitOperands()); |
| } |
| iterator_range<mop_iterator> implicit_operands() { |
| return make_range(explicit_operands().end(), operands_end()); |
| } |
| iterator_range<const_mop_iterator> implicit_operands() const { |
| return make_range(explicit_operands().end(), operands_end()); |
| } |
| /// Returns a range over all explicit operands that are register definitions. |
| /// Implicit definition are not included! |
| iterator_range<mop_iterator> defs() { |
| return make_range(operands_begin(), |
| operands_begin() + getNumExplicitDefs()); |
| } |
| /// \copydoc defs() |
| iterator_range<const_mop_iterator> defs() const { |
| return make_range(operands_begin(), |
| operands_begin() + getNumExplicitDefs()); |
| } |
| /// Returns a range that includes all operands that are register uses. |
| /// This may include unrelated operands which are not register uses. |
| iterator_range<mop_iterator> uses() { |
| return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); |
| } |
| /// \copydoc uses() |
| iterator_range<const_mop_iterator> uses() const { |
| return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); |
| } |
| iterator_range<mop_iterator> explicit_uses() { |
| return make_range(operands_begin() + getNumExplicitDefs(), |
| operands_begin() + getNumExplicitOperands()); |
| } |
| iterator_range<const_mop_iterator> explicit_uses() const { |
| return make_range(operands_begin() + getNumExplicitDefs(), |
| operands_begin() + getNumExplicitOperands()); |
| } |
| |
| /// Returns the number of the operand iterator \p I points to. |
| unsigned getOperandNo(const_mop_iterator I) const { |
| return I - operands_begin(); |
| } |
| |
| /// Access to memory operands of the instruction. If there are none, that does |
| /// not imply anything about whether the function accesses memory. Instead, |
| /// the caller must behave conservatively. |
| ArrayRef<MachineMemOperand *> memoperands() const { |
| if (!Info) |
| return {}; |
| |
| if (Info.is<EIIK_MMO>()) |
| return makeArrayRef(Info.getAddrOfZeroTagPointer(), 1); |
| |
| if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) |
| return EI->getMMOs(); |
| |
| return {}; |
| } |
| |
| /// Access to memory operands of the instruction. |
| /// |
| /// If `memoperands_begin() == memoperands_end()`, that does not imply |
| /// anything about whether the function accesses memory. Instead, the caller |
| /// must behave conservatively. |
| mmo_iterator memoperands_begin() const { return memoperands().begin(); } |
| |
| /// Access to memory operands of the instruction. |
| /// |
| /// If `memoperands_begin() == memoperands_end()`, that does not imply |
| /// anything about whether the function accesses memory. Instead, the caller |
| /// must behave conservatively. |
| mmo_iterator memoperands_end() const { return memoperands().end(); } |
| |
| /// Return true if we don't have any memory operands which described the |
| /// memory access done by this instruction. If this is true, calling code |
| /// must be conservative. |
| bool memoperands_empty() const { return memoperands().empty(); } |
| |
| /// Return true if this instruction has exactly one MachineMemOperand. |
| bool hasOneMemOperand() const { return memoperands().size() == 1; } |
| |
| /// Return the number of memory operands. |
| unsigned getNumMemOperands() const { return memoperands().size(); } |
| |
| /// Helper to extract a pre-instruction symbol if one has been added. |
| MCSymbol *getPreInstrSymbol() const { |
| if (!Info) |
| return nullptr; |
| if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>()) |
| return S; |
| if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) |
| return EI->getPreInstrSymbol(); |
| |
| return nullptr; |
| } |
| |
| /// Helper to extract a post-instruction symbol if one has been added. |
| MCSymbol *getPostInstrSymbol() const { |
| if (!Info) |
| return nullptr; |
| if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>()) |
| return S; |
| if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) |
| return EI->getPostInstrSymbol(); |
| |
| return nullptr; |
| } |
| |
| /// API for querying MachineInstr properties. They are the same as MCInstrDesc |
| /// queries but they are bundle aware. |
| |
| enum QueryType { |
| IgnoreBundle, // Ignore bundles |
| AnyInBundle, // Return true if any instruction in bundle has property |
| AllInBundle // Return true if all instructions in bundle have property |
| }; |
| |
| /// Return true if the instruction (or in the case of a bundle, |
| /// the instructions inside the bundle) has the specified property. |
| /// The first argument is the property being queried. |
| /// The second argument indicates whether the query should look inside |
| /// instruction bundles. |
| bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const { |
| assert(MCFlag < 64 && |
| "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle."); |
| // Inline the fast path for unbundled or bundle-internal instructions. |
| if (Type == IgnoreBundle || !isBundled() || isBundledWithPred()) |
| return getDesc().getFlags() & (1ULL << MCFlag); |
| |
| // If this is the first instruction in a bundle, take the slow path. |
| return hasPropertyInBundle(1ULL << MCFlag, Type); |
| } |
| |
| /// Return true if this is an instruction that should go through the usual |
| /// legalization steps. |
| bool isPreISelOpcode(QueryType Type = IgnoreBundle) const { |
| return hasProperty(MCID::PreISelOpcode, Type); |
| } |
| |
| /// Return true if this instruction can have a variable number of operands. |
| /// In this case, the variable operands will be after the normal |
| /// operands but before the implicit definitions and uses (if any are |
| /// present). |
| bool isVariadic(QueryType Type = IgnoreBundle) const { |
| return hasProperty(MCID::Variadic, Type); |
| } |
| |
| /// Set if this instruction has an optional definition, e.g. |
| /// ARM instructions which can set condition code if 's' bit is set. |
| bool hasOptionalDef(QueryType Type = IgnoreBundle) const { |
| return hasProperty(MCID::HasOptionalDef, Type); |
| } |
| |
| /// Return true if this is a pseudo instruction that doesn't |
| /// correspond to a real machine instruction. |
| bool isPseudo(QueryType Type = IgnoreBundle) const { |
| return hasProperty(MCID::Pseudo, Type); |
| } |
| |
| bool isReturn(QueryType Type = AnyInBundle) const { |
| return hasProperty(MCID::Return, Type); |
| } |
| |
| /// Return true if this is an instruction that marks the end of an EH scope, |
| /// i.e., a catchpad or a cleanuppad instruction. |
| bool isEHScopeReturn(QueryType Type = AnyInBundle) const { |
| return hasProperty(MCID::EHScopeReturn, Type); |
| } |
| |
| bool isCall(QueryType Type = AnyInBundle) const { |
| return hasProperty(MCID::Call, Type); |
| } |
| |
| /// Returns true if the specified instruction stops control flow |
| /// from executing the instruction immediately following it. Examples include |
| /// unconditional branches and return instructions. |
| bool isBarrier(QueryType Type = AnyInBundle) const { |
| return hasProperty(MCID::Barrier, Type); |
| } |
| |
| /// Returns true if this instruction part of the terminator for a basic block. |
| /// Typically this is things like return and branch instructions. |
| /// |
| /// Various passes use this to insert code into the bottom of a basic block, |
| /// but before control flow occurs. |
| bool isTerminator(QueryType Type = AnyInBundle) const { |
| return hasProperty(MCID::Terminator, Type); |
| } |
| |
| /// Returns true if this is a conditional, unconditional, or indirect branch. |
| /// Predicates below can be used to discriminate between |
| /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to |
| /// get more information. |
| bool isBranch(QueryType Type = AnyInBundle) const { |
| return hasProperty(MCID::Branch, Type); |
| } |
| |
| /// Return true if this is an indirect branch, such as a |
| /// branch through a register. |
| bool isIndirectBranch(QueryType Type = AnyInBundle) const { |
| return hasProperty(MCID::IndirectBranch, Type); |
| } |
| |
| /// Return true if this is a branch which may fall |
| /// through to the next instruction or may transfer control flow to some other |
| /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more |
| /// information about this branch. |
| bool isConditionalBranch(QueryType Type = AnyInBundle) const { |
| return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type); |
| } |
| |
| /// Return true if this is a branch which always |
| /// transfers control flow to some other block. The |
| /// TargetInstrInfo::AnalyzeBranch method can be used to get more information |
| /// about this branch. |
| bool isUnconditionalBranch(QueryType Type = AnyInBundle) const { |
| return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type); |
| } |
| |
| /// Return true if this instruction has a predicate operand that |
| /// controls execution. It may be set to 'always', or may be set to other |
| /// values. There are various methods in TargetInstrInfo that can be used to |
| /// control and modify the predicate in this instruction. |
| bool isPredicable(QueryType Type = AllInBundle) const { |
| // If it's a bundle than all bundled instructions must be predicable for this |
| // to return true. |
| return hasProperty(MCID::Predicable, Type); |
| } |
| |
| /// Return true if this instruction is a comparison. |
| bool isCompare(QueryType Type = IgnoreBundle) const { |
| return hasProperty(MCID::Compare, Type); |
| } |
| |
| /// Return true if this instruction is a move immediate |
| /// (including conditional moves) instruction. |
| bool isMoveImmediate(QueryType Type = IgnoreBundle) const { |
| return hasProperty(MCID::MoveImm, Type); |
| } |
| |
| /// Return true if this instruction is a register move. |
| /// (including moving values from subreg to reg) |
| bool isMoveReg(QueryType Type = IgnoreBundle) const { |
| return hasProperty(MCID::MoveReg, Type); |
| } |
| |
| /// Return true if this instruction is a bitcast instruction. |
| bool isBitcast(QueryType Type = IgnoreBundle) const { |
| return hasProperty(MCID::Bitcast, Type); |
| } |
| |
| /// Return true if this instruction is a select instruction. |
| bool isSelect(QueryType Type = IgnoreBundle) const { |
| return hasProperty(MCID::Select, Type); |
| } |
| |
| /// Return true if this instruction cannot be safely duplicated. |
| /// For example, if the instruction has a unique labels attached |
| /// to it, duplicating it would cause multiple definition errors. |
| bool isNotDuplicable(QueryType Type = AnyInBundle) const { |
| return hasProperty(MCID::NotDuplicable, Type); |
| } |
| |
| /// Return true if this instruction is convergent. |
| /// Convergent instructions can not be made control-dependent on any |
| /// additional values. |
| bool isConvergent(QueryType Type = AnyInBundle) const { |
| if (isInlineAsm()) { |
| unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); |
| if (ExtraInfo & InlineAsm::Extra_IsConvergent) |
| return true; |
| } |
| return hasProperty(MCID::Convergent, Type); |
| } |
| |
| /// Returns true if the specified instruction has a delay slot |
| /// which must be filled by the code generator. |
| bool hasDelaySlot(QueryType Type = AnyInBundle) const { |
| return hasProperty(MCID::DelaySlot, Type); |
| } |
| |
| /// Return true for instructions that can be folded as |
| /// memory operands in other instructions. The most common use for this |
| /// is instructions that are simple loads from memory that don't modify |
| /// the loaded value in any way, but it can also be used for instructions |
| /// that can be expressed as constant-pool loads, such as V_SETALLONES |
| /// on x86, to allow them to be folded when it is beneficial. |
| /// This should only be set on instructions that return a value in their |
| /// only virtual register definition. |
| bool canFoldAsLoad(QueryType Type = IgnoreBundle) const { |
| return hasProperty(MCID::FoldableAsLoad, Type); |
| } |
| |
| /// Return true if this instruction behaves |
| /// the same way as the generic REG_SEQUENCE instructions. |
| /// E.g., on ARM, |
| /// dX VMOVDRR rY, rZ |
| /// is equivalent to |
| /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. |
| /// |
| /// Note that for the optimizers to be able to take advantage of |
| /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be |
| /// override accordingly. |
| bool isRegSequenceLike(QueryType Type = IgnoreBundle) const { |
| return hasProperty(MCID::RegSequence, Type); |
| } |
| |
| /// Return true if this instruction behaves |
| /// the same way as the generic EXTRACT_SUBREG instructions. |
| /// E.g., on ARM, |
| /// rX, rY VMOVRRD dZ |
| /// is equivalent to two EXTRACT_SUBREG: |
| /// rX = EXTRACT_SUBREG dZ, ssub_0 |
| /// rY = EXTRACT_SUBREG dZ, ssub_1 |
| /// |
| /// Note that for the optimizers to be able to take advantage of |
| /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be |
| /// override accordingly. |
| bool isExtractSubregLike(QueryType Type = IgnoreBundle) const { |
| return hasProperty(MCID::ExtractSubreg, Type); |
| } |
| |
| /// Return true if this instruction behaves |
| /// the same way as the generic INSERT_SUBREG instructions. |
| /// E.g., on ARM, |
| /// dX = VSETLNi32 dY, rZ, Imm |
| /// is equivalent to a INSERT_SUBREG: |
| /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) |
| /// |
| /// Note that for the optimizers to be able to take advantage of |
| /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be |
| /// override accordingly. |
| bool isInsertSubregLike(QueryType Type = IgnoreBundle) const { |
| return hasProperty(MCID::InsertSubreg, Type); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Side Effect Analysis |
| //===--------------------------------------------------------------------===// |
| |
| /// Return true if this instruction could possibly read memory. |
| /// Instructions with this flag set are not necessarily simple load |
| /// instructions, they may load a value and modify it, for example. |
| bool mayLoad(QueryType Type = AnyInBundle) const { |
| if (isInlineAsm()) { |
| unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); |
| if (ExtraInfo & InlineAsm::Extra_MayLoad) |
| return true; |
| } |
| return hasProperty(MCID::MayLoad, Type); |
| } |
| |
| /// Return true if this instruction could possibly modify memory. |
| /// Instructions with this flag set are not necessarily simple store |
| /// instructions, they may store a modified value based on their operands, or |
| /// may not actually modify anything, for example. |
| bool mayStore(QueryType Type = AnyInBundle) const { |
| if (isInlineAsm()) { |
| unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); |
| if (ExtraInfo & InlineAsm::Extra_MayStore) |
| return true; |
| } |
| return hasProperty(MCID::MayStore, Type); |
| } |
| |
| /// Return true if this instruction could possibly read or modify memory. |
| bool mayLoadOrStore(QueryType Type = AnyInBundle) const { |
| return mayLoad(Type) || mayStore(Type); |
| } |
| |
| /// Return true if this instruction could possibly raise a floating-point |
| /// exception. This is the case if the instruction is a floating-point |
| /// instruction that can in principle raise an exception, as indicated |
| /// by the MCID::MayRaiseFPException property, *and* at the same time, |
| /// the instruction is used in a context where we expect floating-point |
| /// exceptions might be enabled, as indicated by the FPExcept MI flag. |
| bool mayRaiseFPException() const { |
| return hasProperty(MCID::MayRaiseFPException) && |
| getFlag(MachineInstr::MIFlag::FPExcept); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Flags that indicate whether an instruction can be modified by a method. |
| //===--------------------------------------------------------------------===// |
| |
| /// Return true if this may be a 2- or 3-address |
| /// instruction (of the form "X = op Y, Z, ..."), which produces the same |
| /// result if Y and Z are exchanged. If this flag is set, then the |
| /// TargetInstrInfo::commuteInstruction method may be used to hack on the |
| /// instruction. |
| /// |
| /// Note that this flag may be set on instructions that are only commutable |
| /// sometimes. In these cases, the call to commuteInstruction will fail. |
| /// Also note that some instructions require non-trivial modification to |
| /// commute them. |
| bool isCommutable(QueryType Type = IgnoreBundle) const { |
| return hasProperty(MCID::Commutable, Type); |
| } |
| |
| /// Return true if this is a 2-address instruction |
| /// which can be changed into a 3-address instruction if needed. Doing this |
| /// transformation can be profitable in the register allocator, because it |
| /// means that the instruction can use a 2-address form if possible, but |
| /// degrade into a less efficient form if the source and dest register cannot |
| /// be assigned to the same register. For example, this allows the x86 |
| /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which |
| /// is the same speed as the shift but has bigger code size. |
| /// |
| /// If this returns true, then the target must implement the |
| /// TargetInstrInfo::convertToThreeAddress method for this instruction, which |
| /// is allowed to fail if the transformation isn't valid for this specific |
| /// instruction (e.g. shl reg, 4 on x86). |
| /// |
| bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const { |
| return hasProperty(MCID::ConvertibleTo3Addr, Type); |
| } |
| |
| /// Return true if this instruction requires |
| /// custom insertion support when the DAG scheduler is inserting it into a |
| /// machine basic block. If this is true for the instruction, it basically |
| /// means that it is a pseudo instruction used at SelectionDAG time that is |
| /// expanded out into magic code by the target when MachineInstrs are formed. |
| /// |
| /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method |
| /// is used to insert this into the MachineBasicBlock. |
| bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const { |
| return hasProperty(MCID::UsesCustomInserter, Type); |
| } |
| |
| /// Return true if this instruction requires *adjustment* |
| /// after instruction selection by calling a target hook. For example, this |
| /// can be used to fill in ARM 's' optional operand depending on whether |
| /// the conditional flag register is used. |
| bool hasPostISelHook(QueryType Type = IgnoreBundle) const { |
| return hasProperty(MCID::HasPostISelHook, Type); |
| } |
| |
| /// Returns true if this instruction is a candidate for remat. |
| /// This flag is deprecated, please don't use it anymore. If this |
| /// flag is set, the isReallyTriviallyReMaterializable() method is called to |
| /// verify the instruction is really rematable. |
| bool isRematerializable(QueryType Type = AllInBundle) const { |
| // It's only possible to re-mat a bundle if all bundled instructions are |
| // re-materializable. |
| return hasProperty(MCID::Rematerializable, Type); |
| } |
| |
| /// Returns true if this instruction has the same cost (or less) than a move |
| /// instruction. This is useful during certain types of optimizations |
| /// (e.g., remat during two-address conversion or machine licm) |
| /// where we would like to remat or hoist the instruction, but not if it costs |
| /// more than moving the instruction into the appropriate register. Note, we |
| /// are not marking copies from and to the same register class with this flag. |
| bool isAsCheapAsAMove(QueryType Type = AllInBundle) const { |
| // Only returns true for a bundle if all bundled instructions are cheap. |
| return hasProperty(MCID::CheapAsAMove, Type); |
| } |
| |
| /// Returns true if this instruction source operands |
| /// have special register allocation requirements that are not captured by the |
| /// operand register classes. e.g. ARM::STRD's two source registers must be an |
| /// even / odd pair, ARM::STM registers have to be in ascending order. |
| /// Post-register allocation passes should not attempt to change allocations |
| /// for sources of instructions with this flag. |
| bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const { |
| return hasProperty(MCID::ExtraSrcRegAllocReq, Type); |
| } |
| |
| /// Returns true if this instruction def operands |
| /// have special register allocation requirements that are not captured by the |
| /// operand register classes. e.g. ARM::LDRD's two def registers must be an |
| /// even / odd pair, ARM::LDM registers have to be in ascending order. |
| /// Post-register allocation passes should not attempt to change allocations |
| /// for definitions of instructions with this flag. |
| bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const { |
| return hasProperty(MCID::ExtraDefRegAllocReq, Type); |
| } |
| |
| enum MICheckType { |
| CheckDefs, // Check all operands for equality |
| CheckKillDead, // Check all operands including kill / dead markers |
| IgnoreDefs, // Ignore all definitions |
| IgnoreVRegDefs // Ignore virtual register definitions |
| }; |
| |
| /// Return true if this instruction is identical to \p Other. |
| /// Two instructions are identical if they have the same opcode and all their |
| /// operands are identical (with respect to MachineOperand::isIdenticalTo()). |
| /// Note that this means liveness related flags (dead, undef, kill) do not |
| /// affect the notion of identical. |
| bool isIdenticalTo(const MachineInstr &Other, |
| MICheckType Check = CheckDefs) const; |
| |
| /// Unlink 'this' from the containing basic block, and return it without |
| /// deleting it. |
| /// |
| /// This function can not be used on bundled instructions, use |
| /// removeFromBundle() to remove individual instructions from a bundle. |
| MachineInstr *removeFromParent(); |
| |
| /// Unlink this instruction from its basic block and return it without |
| /// deleting it. |
| /// |
| /// If the instruction is part of a bundle, the other instructions in the |
| /// bundle remain bundled. |
| MachineInstr *removeFromBundle(); |
| |
| /// Unlink 'this' from the containing basic block and delete it. |
| /// |
| /// If this instruction is the header of a bundle, the whole bundle is erased. |
| /// This function can not be used for instructions inside a bundle, use |
| /// eraseFromBundle() to erase individual bundled instructions. |
| void eraseFromParent(); |
| |
| /// Unlink 'this' from the containing basic block and delete it. |
| /// |
| /// For all definitions mark their uses in DBG_VALUE nodes |
| /// as undefined. Otherwise like eraseFromParent(). |
| void eraseFromParentAndMarkDBGValuesForRemoval(); |
| |
| /// Unlink 'this' form its basic block and delete it. |
| /// |
| /// If the instruction is part of a bundle, the other instructions in the |
| /// bundle remain bundled. |
| void eraseFromBundle(); |
| |
| bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; } |
| bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; } |
| bool isAnnotationLabel() const { |
| return getOpcode() == TargetOpcode::ANNOTATION_LABEL; |
| } |
| |
| /// Returns true if the MachineInstr represents a label. |
| bool isLabel() const { |
| return isEHLabel() || isGCLabel() || isAnnotationLabel(); |
| } |
| |
| bool isCFIInstruction() const { |
| return getOpcode() == TargetOpcode::CFI_INSTRUCTION; |
| } |
| |
| // True if the instruction represents a position in the function. |
| bool isPosition() const { return isLabel() || isCFIInstruction(); } |
| |
| bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; } |
| bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; } |
| bool isDebugInstr() const { return isDebugValue() || isDebugLabel(); } |
| |
| /// A DBG_VALUE is indirect iff the first operand is a register and |
| /// the second operand is an immediate. |
| bool isIndirectDebugValue() const { |
| return isDebugValue() |
| && getOperand(0).isReg() |
| && getOperand(1).isImm(); |
| } |
| |
| /// A DBG_VALUE is an entry value iff its debug expression contains the |
| /// DW_OP_LLVM_entry_value operation. |
| bool isDebugEntryValue() const; |
| |
| /// Return true if the instruction is a debug value which describes a part of |
| /// a variable as unavailable. |
| bool isUndefDebugValue() const { |
| return isDebugValue() && getOperand(0).isReg() && !getOperand(0).getReg().isValid(); |
| } |
| |
| bool isPHI() const { |
| return getOpcode() == TargetOpcode::PHI || |
| getOpcode() == TargetOpcode::G_PHI; |
| } |
| bool isKill() const { return getOpcode() == TargetOpcode::KILL; } |
| bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; } |
| bool isInlineAsm() const { |
| return getOpcode() == TargetOpcode::INLINEASM || |
| getOpcode() == TargetOpcode::INLINEASM_BR; |
| } |
| |
| /// FIXME: Seems like a layering violation that the AsmDialect, which is X86 |
| /// specific, be attached to a generic MachineInstr. |
| bool isMSInlineAsm() const { |
| return isInlineAsm() && getInlineAsmDialect() == InlineAsm::AD_Intel; |
| } |
| |
| bool isStackAligningInlineAsm() const; |
| InlineAsm::AsmDialect getInlineAsmDialect() const; |
| |
| bool isInsertSubreg() const { |
| return getOpcode() == TargetOpcode::INSERT_SUBREG; |
| } |
| |
| bool isSubregToReg() const { |
| return getOpcode() == TargetOpcode::SUBREG_TO_REG; |
| } |
| |
| bool isRegSequence() const { |
| return getOpcode() == TargetOpcode::REG_SEQUENCE; |
| } |
| |
| bool isBundle() const { |
| return getOpcode() == TargetOpcode::BUNDLE; |
| } |
| |
| bool isCopy() const { |
| return getOpcode() == TargetOpcode::COPY; |
| } |
| |
| bool isFullCopy() const { |
| return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg(); |
| } |
| |
| bool isExtractSubreg() const { |
| return getOpcode() == TargetOpcode::EXTRACT_SUBREG; |
| } |
| |
| /// Return true if the instruction behaves like a copy. |
| /// This does not include native copy instructions. |
| bool isCopyLike() const { |
| return isCopy() || isSubregToReg(); |
| } |
| |
| /// Return true is the instruction is an identity copy. |
| bool isIdentityCopy() const { |
| return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() && |
| getOperand(0).getSubReg() == getOperand(1).getSubReg(); |
| } |
| |
| /// Return true if this instruction doesn't produce any output in the form of |
| /// executable instructions. |
| bool isMetaInstruction() const { |
| switch (getOpcode()) { |
| default: |
| return false; |
| case TargetOpcode::IMPLICIT_DEF: |
| case TargetOpcode::KILL: |
| case TargetOpcode::CFI_INSTRUCTION: |
| case TargetOpcode::EH_LABEL: |
| case TargetOpcode::GC_LABEL: |
| case TargetOpcode::DBG_VALUE: |
| case TargetOpcode::DBG_LABEL: |
| case TargetOpcode::LIFETIME_START: |
| case TargetOpcode::LIFETIME_END: |
| return true; |
| } |
| } |
| |
| /// Return true if this is a transient instruction that is either very likely |
| /// to be eliminated during register allocation (such as copy-like |
| /// instructions), or if this instruction doesn't have an execution-time cost. |
| bool isTransient() const { |
| switch (getOpcode()) { |
| default: |
| return isMetaInstruction(); |
| // Copy-like instructions are usually eliminated during register allocation. |
| case TargetOpcode::PHI: |
| case TargetOpcode::G_PHI: |
| case TargetOpcode::COPY: |
| case TargetOpcode::INSERT_SUBREG: |
| case TargetOpcode::SUBREG_TO_REG: |
| case TargetOpcode::REG_SEQUENCE: |
| return true; |
| } |
| } |
| |
| /// Return the number of instructions inside the MI bundle, excluding the |
| /// bundle header. |
| /// |
| /// This is the number of instructions that MachineBasicBlock::iterator |
| /// skips, 0 for unbundled instructions. |
| unsigned getBundleSize() const; |
| |
| /// Return true if the MachineInstr reads the specified register. |
| /// If TargetRegisterInfo is passed, then it also checks if there |
| /// is a read of a super-register. |
| /// This does not count partial redefines of virtual registers as reads: |
| /// %reg1024:6 = OP. |
| bool readsRegister(Register Reg, |
| const TargetRegisterInfo *TRI = nullptr) const { |
| return findRegisterUseOperandIdx(Reg, false, TRI) != -1; |
| } |
| |
| /// Return true if the MachineInstr reads the specified virtual register. |
| /// Take into account that a partial define is a |
| /// read-modify-write operation. |
| bool readsVirtualRegister(Register Reg) const { |
| return readsWritesVirtualRegister(Reg).first; |
| } |
| |
| /// Return a pair of bools (reads, writes) indicating if this instruction |
| /// reads or writes Reg. This also considers partial defines. |
| /// If Ops is not null, all operand indices for Reg are added. |
| std::pair<bool,bool> readsWritesVirtualRegister(Register Reg, |
| SmallVectorImpl<unsigned> *Ops = nullptr) const; |
| |
| /// Return true if the MachineInstr kills the specified register. |
| /// If TargetRegisterInfo is passed, then it also checks if there is |
| /// a kill of a super-register. |
| bool killsRegister(Register Reg, |
| const TargetRegisterInfo *TRI = nullptr) const { |
| return findRegisterUseOperandIdx(Reg, true, TRI) != -1; |
| } |
| |
| /// Return true if the MachineInstr fully defines the specified register. |
| /// If TargetRegisterInfo is passed, then it also checks |
| /// if there is a def of a super-register. |
| /// NOTE: It's ignoring subreg indices on virtual registers. |
| bool definesRegister(Register Reg, |
| const TargetRegisterInfo *TRI = nullptr) const { |
| return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1; |
| } |
| |
| /// Return true if the MachineInstr modifies (fully define or partially |
| /// define) the specified register. |
| /// NOTE: It's ignoring subreg indices on virtual registers. |
| bool modifiesRegister(Register Reg, const TargetRegisterInfo *TRI) const { |
| return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1; |
| } |
| |
| /// Returns true if the register is dead in this machine instruction. |
| /// If TargetRegisterInfo is passed, then it also checks |
| /// if there is a dead def of a super-register. |
| bool registerDefIsDead(Register Reg, |
| const TargetRegisterInfo *TRI = nullptr) const { |
| return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1; |
| } |
| |
| /// Returns true if the MachineInstr has an implicit-use operand of exactly |
| /// the given register (not considering sub/super-registers). |
| bool hasRegisterImplicitUseOperand(Register Reg) const; |
| |
| /// Returns the operand index that is a use of the specific register or -1 |
| /// if it is not found. It further tightens the search criteria to a use |
| /// that kills the register if isKill is true. |
| int findRegisterUseOperandIdx(Register Reg, bool isKill = false, |
| const TargetRegisterInfo *TRI = nullptr) const; |
| |
| /// Wrapper for findRegisterUseOperandIdx, it returns |
| /// a pointer to the MachineOperand rather than an index. |
| MachineOperand *findRegisterUseOperand(Register Reg, bool isKill = false, |
| const TargetRegisterInfo *TRI = nullptr) { |
| int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI); |
| return (Idx == -1) ? nullptr : &getOperand(Idx); |
| } |
| |
| const MachineOperand *findRegisterUseOperand( |
| Register Reg, bool isKill = false, |
| const TargetRegisterInfo *TRI = nullptr) const { |
| return const_cast<MachineInstr *>(this)-> |
| findRegisterUseOperand(Reg, isKill, TRI); |
| } |
| |
| /// Returns the operand index that is a def of the specified register or |
| /// -1 if it is not found. If isDead is true, defs that are not dead are |
| /// skipped. If Overlap is true, then it also looks for defs that merely |
| /// overlap the specified register. If TargetRegisterInfo is non-null, |
| /// then it also checks if there is a def of a super-register. |
| /// This may also return a register mask operand when Overlap is true. |
| int findRegisterDefOperandIdx(Register Reg, |
| bool isDead = false, bool Overlap = false, |
| const TargetRegisterInfo *TRI = nullptr) const; |
| |
| /// Wrapper for findRegisterDefOperandIdx, it returns |
| /// a pointer to the MachineOperand rather than an index. |
| MachineOperand * |
| findRegisterDefOperand(Register Reg, bool isDead = false, |
| bool Overlap = false, |
| const TargetRegisterInfo *TRI = nullptr) { |
| int Idx = findRegisterDefOperandIdx(Reg, isDead, Overlap, TRI); |
| return (Idx == -1) ? nullptr : &getOperand(Idx); |
| } |
| |
| const MachineOperand * |
| findRegisterDefOperand(Register Reg, bool isDead = false, |
| bool Overlap = false, |
| const TargetRegisterInfo *TRI = nullptr) const { |
| return const_cast<MachineInstr *>(this)->findRegisterDefOperand( |
| Reg, isDead, Overlap, TRI); |
| } |
| |
| /// Find the index of the first operand in the |
| /// operand list that is used to represent the predicate. It returns -1 if |
| /// none is found. |
| int findFirstPredOperandIdx() const; |
| |
| /// Find the index of the flag word operand that |
| /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if |
| /// getOperand(OpIdx) does not belong to an inline asm operand group. |
| /// |
| /// If GroupNo is not NULL, it will receive the number of the operand group |
| /// containing OpIdx. |
| /// |
| /// The flag operand is an immediate that can be decoded with methods like |
| /// InlineAsm::hasRegClassConstraint(). |
| int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const; |
| |
| /// Compute the static register class constraint for operand OpIdx. |
| /// For normal instructions, this is derived from the MCInstrDesc. |
| /// For inline assembly it is derived from the flag words. |
| /// |
| /// Returns NULL if the static register class constraint cannot be |
| /// determined. |
| const TargetRegisterClass* |
| getRegClassConstraint(unsigned OpIdx, |
| const TargetInstrInfo *TII, |
| const TargetRegisterInfo *TRI) const; |
| |
| /// Applies the constraints (def/use) implied by this MI on \p Reg to |
| /// the given \p CurRC. |
| /// If \p ExploreBundle is set and MI is part of a bundle, all the |
| /// instructions inside the bundle will be taken into account. In other words, |
| /// this method accumulates all the constraints of the operand of this MI and |
| /// the related bundle if MI is a bundle or inside a bundle. |
| /// |
| /// Returns the register class that satisfies both \p CurRC and the |
| /// constraints set by MI. Returns NULL if such a register class does not |
| /// exist. |
| /// |
| /// \pre CurRC must not be NULL. |
| const TargetRegisterClass *getRegClassConstraintEffectForVReg( |
| Register Reg, const TargetRegisterClass *CurRC, |
| const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, |
| bool ExploreBundle = false) const; |
| |
| /// Applies the constraints (def/use) implied by the \p OpIdx operand |
| /// to the given \p CurRC. |
| /// |
| /// Returns the register class that satisfies both \p CurRC and the |
| /// constraints set by \p OpIdx MI. Returns NULL if such a register class |
| /// does not exist. |
| /// |
| /// \pre CurRC must not be NULL. |
| /// \pre The operand at \p OpIdx must be a register. |
| const TargetRegisterClass * |
| getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC, |
| const TargetInstrInfo *TII, |
| const TargetRegisterInfo *TRI) const; |
| |
| /// Add a tie between the register operands at DefIdx and UseIdx. |
| /// The tie will cause the register allocator to ensure that the two |
| /// operands are assigned the same physical register. |
| /// |
| /// Tied operands are managed automatically for explicit operands in the |
| /// MCInstrDesc. This method is for exceptional cases like inline asm. |
| void tieOperands(unsigned DefIdx, unsigned UseIdx); |
| |
| /// Given the index of a tied register operand, find the |
| /// operand it is tied to. Defs are tied to uses and vice versa. Returns the |
| /// index of the tied operand which must exist. |
| unsigned findTiedOperandIdx(unsigned OpIdx) const; |
| |
| /// Given the index of a register def operand, |
| /// check if the register def is tied to a source operand, due to either |
| /// two-address elimination or inline assembly constraints. Returns the |
| /// first tied use operand index by reference if UseOpIdx is not null. |
| bool isRegTiedToUseOperand(unsigned DefOpIdx, |
| unsigned *UseOpIdx = nullptr) const { |
| const MachineOperand &MO = getOperand(DefOpIdx); |
| if (!MO.isReg() || !MO.isDef() || !MO.isTied()) |
| return false; |
| if (UseOpIdx) |
| *UseOpIdx = findTiedOperandIdx(DefOpIdx); |
| return true; |
| } |
| |
| /// Return true if the use operand of the specified index is tied to a def |
| /// operand. It also returns the def operand index by reference if DefOpIdx |
| /// is not null. |
| bool isRegTiedToDefOperand(unsigned UseOpIdx, |
| unsigned *DefOpIdx = nullptr) const { |
| const MachineOperand &MO = getOperand(UseOpIdx); |
| if (!MO.isReg() || !MO.isUse() || !MO.isTied()) |
| return false; |
| if (DefOpIdx) |
| *DefOpIdx = findTiedOperandIdx(UseOpIdx); |
| return true; |
| } |
| |
| /// Clears kill flags on all operands. |
| void clearKillInfo(); |
| |
| /// Replace all occurrences of FromReg with ToReg:SubIdx, |
| /// properly composing subreg indices where necessary. |
| void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx, |
| const TargetRegisterInfo &RegInfo); |
| |
| /// We have determined MI kills a register. Look for the |
| /// operand that uses it and mark it as IsKill. If AddIfNotFound is true, |
| /// add a implicit operand if it's not found. Returns true if the operand |
| /// exists / is added. |
| bool addRegisterKilled(Register IncomingReg, |
| const TargetRegisterInfo *RegInfo, |
| bool AddIfNotFound = false); |
| |
| /// Clear all kill flags affecting Reg. If RegInfo is provided, this includes |
| /// all aliasing registers. |
| void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo); |
| |
| /// We have determined MI defined a register without a use. |
| /// Look for the operand that defines it and mark it as IsDead. If |
| /// AddIfNotFound is true, add a implicit operand if it's not found. Returns |
| /// true if the operand exists / is added. |
| bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo, |
| bool AddIfNotFound = false); |
| |
| /// Clear all dead flags on operands defining register @p Reg. |
| void clearRegisterDeads(Register Reg); |
| |
| /// Mark all subregister defs of register @p Reg with the undef flag. |
| /// This function is used when we determined to have a subregister def in an |
| /// otherwise undefined super register. |
| void setRegisterDefReadUndef(Register Reg, bool IsUndef = true); |
| |
| /// We have determined MI defines a register. Make sure there is an operand |
| /// defining Reg. |
| void addRegisterDefined(Register Reg, |
| const TargetRegisterInfo *RegInfo = nullptr); |
| |
| /// Mark every physreg used by this instruction as |
| /// dead except those in the UsedRegs list. |
| /// |
| /// On instructions with register mask operands, also add implicit-def |
| /// operands for all registers in UsedRegs. |
| void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, |
| const TargetRegisterInfo &TRI); |
| |
| /// Return true if it is safe to move this instruction. If |
| /// SawStore is set to true, it means that there is a store (or call) between |
| /// the instruction's location and its intended destination. |
| bool isSafeToMove(AAResults *AA, bool &SawStore) const; |
| |
| /// Returns true if this instruction's memory access aliases the memory |
| /// access of Other. |
| // |
| /// Assumes any physical registers used to compute addresses |
| /// have the same value for both instructions. Returns false if neither |
| /// instruction writes to memory. |
| /// |
| /// @param AA Optional alias analysis, used to compare memory operands. |
| /// @param Other MachineInstr to check aliasing against. |
| /// @param UseTBAA Whether to pass TBAA information to alias analysis. |
| bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const; |
| |
| /// Return true if this instruction may have an ordered |
| /// or volatile memory reference, or if the information describing the memory |
| /// reference is not available. Return false if it is known to have no |
| /// ordered or volatile memory references. |
| bool hasOrderedMemoryRef() const; |
| |
| /// Return true if this load instruction never traps and points to a memory |
| /// location whose value doesn't change during the execution of this function. |
| /// |
| /// Examples include loading a value from the constant pool or from the |
| /// argument area of a function (if it does not change). If the instruction |
| /// does multiple loads, this returns true only if all of the loads are |
| /// dereferenceable and invariant. |
| bool isDereferenceableInvariantLoad(AAResults *AA) const; |
| |
| /// If the specified instruction is a PHI that always merges together the |
| /// same virtual register, return the register, otherwise return 0. |
| unsigned isConstantValuePHI() const; |
| |
| /// Return true if this instruction has side effects that are not modeled |
| /// by mayLoad / mayStore, etc. |
| /// For all instructions, the property is encoded in MCInstrDesc::Flags |
| /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is |
| /// INLINEASM instruction, in which case the side effect property is encoded |
| /// in one of its operands (see InlineAsm::Extra_HasSideEffect). |
| /// |
| bool hasUnmodeledSideEffects() const; |
| |
| /// Returns true if it is illegal to fold a load across this instruction. |
| bool isLoadFoldBarrier() const; |
| |
| /// Return true if all the defs of this instruction are dead. |
| bool allDefsAreDead() const; |
| |
| /// Return a valid size if the instruction is a spill instruction. |
| Optional<unsigned> getSpillSize(const TargetInstrInfo *TII) const; |
| |
| /// Return a valid size if the instruction is a folded spill instruction. |
| Optional<unsigned> getFoldedSpillSize(const TargetInstrInfo *TII) const; |
| |
| /// Return a valid size if the instruction is a restore instruction. |
| Optional<unsigned> getRestoreSize(const TargetInstrInfo *TII) const; |
| |
| /// Return a valid size if the instruction is a folded restore instruction. |
| Optional<unsigned> |
| getFoldedRestoreSize(const TargetInstrInfo *TII) const; |
| |
| /// Copy implicit register operands from specified |
| /// instruction to this instruction. |
| void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI); |
| |
| /// Debugging support |
| /// @{ |
| /// Determine the generic type to be printed (if needed) on uses and defs. |
| LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, |
| const MachineRegisterInfo &MRI) const; |
| |
| /// Return true when an instruction has tied register that can't be determined |
| /// by the instruction's descriptor. This is useful for MIR printing, to |
| /// determine whether we need to print the ties or not. |
| bool hasComplexRegisterTies() const; |
| |
| /// Print this MI to \p OS. |
| /// Don't print information that can be inferred from other instructions if |
| /// \p IsStandalone is false. It is usually true when only a fragment of the |
| /// function is printed. |
| /// Only print the defs and the opcode if \p SkipOpers is true. |
| /// Otherwise, also print operands if \p SkipDebugLoc is true. |
| /// Otherwise, also print the debug loc, with a terminating newline. |
| /// \p TII is used to print the opcode name. If it's not present, but the |
| /// MI is in a function, the opcode will be printed using the function's TII. |
| void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false, |
| bool SkipDebugLoc = false, bool AddNewLine = true, |
| const TargetInstrInfo *TII = nullptr) const; |
| void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true, |
| bool SkipOpers = false, bool SkipDebugLoc = false, |
| bool AddNewLine = true, |
| const TargetInstrInfo *TII = nullptr) const; |
| void dump() const; |
| /// @} |
| |
| //===--------------------------------------------------------------------===// |
| // Accessors used to build up machine instructions. |
| |
| /// Add the specified operand to the instruction. If it is an implicit |
| /// operand, it is added to the end of the operand list. If it is an |
| /// explicit operand it is added at the end of the explicit operand list |
| /// (before the first implicit operand). |
| /// |
| /// MF must be the machine function that was used to allocate this |
| /// instruction. |
| /// |
| /// MachineInstrBuilder provides a more convenient interface for creating |
| /// instructions and adding operands. |
| void addOperand(MachineFunction &MF, const MachineOperand &Op); |
| |
| /// Add an operand without providing an MF reference. This only works for |
| /// instructions that are inserted in a basic block. |
| /// |
| /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be |
| /// preferred. |
| void addOperand(const MachineOperand &Op); |
| |
| /// Replace the instruction descriptor (thus opcode) of |
| /// the current instruction with a new one. |
| void setDesc(const MCInstrDesc &tid) { MCID = &tid; } |
| |
| /// Replace current source information with new such. |
| /// Avoid using this, the constructor argument is preferable. |
| void setDebugLoc(DebugLoc dl) { |
| debugLoc = std::move(dl); |
| assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); |
| } |
| |
| /// Erase an operand from an instruction, leaving it with one |
| /// fewer operand than it started with. |
| void RemoveOperand(unsigned OpNo); |
| |
| /// Clear this MachineInstr's memory reference descriptor list. This resets |
| /// the memrefs to their most conservative state. This should be used only |
| /// as a last resort since it greatly pessimizes our knowledge of the memory |
| /// access performed by the instruction. |
| void dropMemRefs(MachineFunction &MF); |
| |
| /// Assign this MachineInstr's memory reference descriptor list. |
| /// |
| /// Unlike other methods, this *will* allocate them into a new array |
| /// associated with the provided `MachineFunction`. |
| void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs); |
| |
| /// Add a MachineMemOperand to the machine instruction. |
| /// This function should be used only occasionally. The setMemRefs function |
| /// is the primary method for setting up a MachineInstr's MemRefs list. |
| void addMemOperand(MachineFunction &MF, MachineMemOperand *MO); |
| |
| /// Clone another MachineInstr's memory reference descriptor list and replace |
| /// ours with it. |
| /// |
| /// Note that `*this` may be the incoming MI! |
| /// |
| /// Prefer this API whenever possible as it can avoid allocations in common |
| /// cases. |
| void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI); |
| |
| /// Clone the merge of multiple MachineInstrs' memory reference descriptors |
| /// list and replace ours with it. |
| /// |
| /// Note that `*this` may be one of the incoming MIs! |
| /// |
| /// Prefer this API whenever possible as it can avoid allocations in common |
| /// cases. |
| void cloneMergedMemRefs(MachineFunction &MF, |
| ArrayRef<const MachineInstr *> MIs); |
| |
| /// Set a symbol that will be emitted just prior to the instruction itself. |
| /// |
| /// Setting this to a null pointer will remove any such symbol. |
| /// |
| /// FIXME: This is not fully implemented yet. |
| void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); |
| |
| /// Set a symbol that will be emitted just after the instruction itself. |
| /// |
| /// Setting this to a null pointer will remove any such symbol. |
| /// |
| /// FIXME: This is not fully implemented yet. |
| void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); |
| |
| /// Clone another MachineInstr's pre- and post- instruction symbols and |
| /// replace ours with it. |
| void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI); |
| |
| /// Return the MIFlags which represent both MachineInstrs. This |
| /// should be used when merging two MachineInstrs into one. This routine does |
| /// not modify the MIFlags of this MachineInstr. |
| uint16_t mergeFlagsWith(const MachineInstr& Other) const; |
| |
| static uint16_t copyFlagsFromInstruction(const Instruction &I); |
| |
| /// Copy all flags to MachineInst MIFlags |
| void copyIRFlags(const Instruction &I); |
| |
| /// Break any tie involving OpIdx. |
| void untieRegOperand(unsigned OpIdx) { |
| MachineOperand &MO = getOperand(OpIdx); |
| if (MO.isReg() && MO.isTied()) { |
| getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0; |
| MO.TiedTo = 0; |
| } |
| } |
| |
| /// Add all implicit def and use operands to this instruction. |
| void addImplicitDefUseOperands(MachineFunction &MF); |
| |
| /// Scan instructions following MI and collect any matching DBG_VALUEs. |
| void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues); |
| |
| /// Find all DBG_VALUEs that point to the register def in this instruction |
| /// and point them to \p Reg instead. |
| void changeDebugValuesDefReg(Register Reg); |
| |
| /// Returns the Intrinsic::ID for this instruction. |
| /// \pre Must have an intrinsic ID operand. |
| unsigned getIntrinsicID() const { |
| return getOperand(getNumExplicitDefs()).getIntrinsicID(); |
| } |
| |
| private: |
| /// If this instruction is embedded into a MachineFunction, return the |
| /// MachineRegisterInfo object for the current function, otherwise |
| /// return null. |
| MachineRegisterInfo *getRegInfo(); |
| |
| /// Unlink all of the register operands in this instruction from their |
| /// respective use lists. This requires that the operands already be on their |
| /// use lists. |
| void RemoveRegOperandsFromUseLists(MachineRegisterInfo&); |
| |
| /// Add all of the register operands in this instruction from their |
| /// respective use lists. This requires that the operands not be on their |
| /// use lists yet. |
| void AddRegOperandsToUseLists(MachineRegisterInfo&); |
| |
| /// Slow path for hasProperty when we're dealing with a bundle. |
| bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const; |
| |
| /// Implements the logic of getRegClassConstraintEffectForVReg for the |
| /// this MI and the given operand index \p OpIdx. |
| /// If the related operand does not constrained Reg, this returns CurRC. |
| const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl( |
| unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, |
| const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const; |
| }; |
| |
| /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the |
| /// instruction rather than by pointer value. |
| /// The hashing and equality testing functions ignore definitions so this is |
| /// useful for CSE, etc. |
| struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> { |
| static inline MachineInstr *getEmptyKey() { |
| return nullptr; |
| } |
| |
| static inline MachineInstr *getTombstoneKey() { |
| return reinterpret_cast<MachineInstr*>(-1); |
| } |
| |
| static unsigned getHashValue(const MachineInstr* const &MI); |
| |
| static bool isEqual(const MachineInstr* const &LHS, |
| const MachineInstr* const &RHS) { |
| if (RHS == getEmptyKey() || RHS == getTombstoneKey() || |
| LHS == getEmptyKey() || LHS == getTombstoneKey()) |
| return LHS == RHS; |
| return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs); |
| } |
| }; |
| |
| //===----------------------------------------------------------------------===// |
| // Debugging Support |
| |
| inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) { |
| MI.print(OS); |
| return OS; |
| } |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_CODEGEN_MACHINEINSTR_H |