|  | //===- InstCombineSelect.cpp ----------------------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the visitSelect function. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "InstCombineInternal.h" | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/CmpInstAnalysis.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" | 
|  | #include <cassert> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace PatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "instcombine" | 
|  |  | 
|  | static Value *createMinMax(InstCombiner::BuilderTy &Builder, | 
|  | SelectPatternFlavor SPF, Value *A, Value *B) { | 
|  | CmpInst::Predicate Pred = getMinMaxPred(SPF); | 
|  | assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); | 
|  | return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); | 
|  | } | 
|  |  | 
|  | /// Replace a select operand based on an equality comparison with the identity | 
|  | /// constant of a binop. | 
|  | static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, | 
|  | const TargetLibraryInfo &TLI) { | 
|  | // The select condition must be an equality compare with a constant operand. | 
|  | Value *X; | 
|  | Constant *C; | 
|  | CmpInst::Predicate Pred; | 
|  | if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) | 
|  | return nullptr; | 
|  |  | 
|  | bool IsEq; | 
|  | if (ICmpInst::isEquality(Pred)) | 
|  | IsEq = Pred == ICmpInst::ICMP_EQ; | 
|  | else if (Pred == FCmpInst::FCMP_OEQ) | 
|  | IsEq = true; | 
|  | else if (Pred == FCmpInst::FCMP_UNE) | 
|  | IsEq = false; | 
|  | else | 
|  | return nullptr; | 
|  |  | 
|  | // A select operand must be a binop. | 
|  | BinaryOperator *BO; | 
|  | if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) | 
|  | return nullptr; | 
|  |  | 
|  | // The compare constant must be the identity constant for that binop. | 
|  | // If this a floating-point compare with 0.0, any zero constant will do. | 
|  | Type *Ty = BO->getType(); | 
|  | Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); | 
|  | if (IdC != C) { | 
|  | if (!IdC || !CmpInst::isFPPredicate(Pred)) | 
|  | return nullptr; | 
|  | if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Last, match the compare variable operand with a binop operand. | 
|  | Value *Y; | 
|  | if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) | 
|  | return nullptr; | 
|  | if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) | 
|  | return nullptr; | 
|  |  | 
|  | // +0.0 compares equal to -0.0, and so it does not behave as required for this | 
|  | // transform. Bail out if we can not exclude that possibility. | 
|  | if (isa<FPMathOperator>(BO)) | 
|  | if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) | 
|  | return nullptr; | 
|  |  | 
|  | // BO = binop Y, X | 
|  | // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } | 
|  | // => | 
|  | // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y } | 
|  | Sel.setOperand(IsEq ? 1 : 2, Y); | 
|  | return &Sel; | 
|  | } | 
|  |  | 
|  | /// This folds: | 
|  | ///  select (icmp eq (and X, C1)), TC, FC | 
|  | ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2. | 
|  | /// To something like: | 
|  | ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC | 
|  | /// Or: | 
|  | ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC | 
|  | /// With some variations depending if FC is larger than TC, or the shift | 
|  | /// isn't needed, or the bit widths don't match. | 
|  | static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | const APInt *SelTC, *SelFC; | 
|  | if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || | 
|  | !match(Sel.getFalseValue(), m_APInt(SelFC))) | 
|  | return nullptr; | 
|  |  | 
|  | // If this is a vector select, we need a vector compare. | 
|  | Type *SelType = Sel.getType(); | 
|  | if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) | 
|  | return nullptr; | 
|  |  | 
|  | Value *V; | 
|  | APInt AndMask; | 
|  | bool CreateAnd = false; | 
|  | ICmpInst::Predicate Pred = Cmp->getPredicate(); | 
|  | if (ICmpInst::isEquality(Pred)) { | 
|  | if (!match(Cmp->getOperand(1), m_Zero())) | 
|  | return nullptr; | 
|  |  | 
|  | V = Cmp->getOperand(0); | 
|  | const APInt *AndRHS; | 
|  | if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) | 
|  | return nullptr; | 
|  |  | 
|  | AndMask = *AndRHS; | 
|  | } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), | 
|  | Pred, V, AndMask)) { | 
|  | assert(ICmpInst::isEquality(Pred) && "Not equality test?"); | 
|  | if (!AndMask.isPowerOf2()) | 
|  | return nullptr; | 
|  |  | 
|  | CreateAnd = true; | 
|  | } else { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // In general, when both constants are non-zero, we would need an offset to | 
|  | // replace the select. This would require more instructions than we started | 
|  | // with. But there's one special-case that we handle here because it can | 
|  | // simplify/reduce the instructions. | 
|  | APInt TC = *SelTC; | 
|  | APInt FC = *SelFC; | 
|  | if (!TC.isNullValue() && !FC.isNullValue()) { | 
|  | // If the select constants differ by exactly one bit and that's the same | 
|  | // bit that is masked and checked by the select condition, the select can | 
|  | // be replaced by bitwise logic to set/clear one bit of the constant result. | 
|  | if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) | 
|  | return nullptr; | 
|  | if (CreateAnd) { | 
|  | // If we have to create an 'and', then we must kill the cmp to not | 
|  | // increase the instruction count. | 
|  | if (!Cmp->hasOneUse()) | 
|  | return nullptr; | 
|  | V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); | 
|  | } | 
|  | bool ExtraBitInTC = TC.ugt(FC); | 
|  | if (Pred == ICmpInst::ICMP_EQ) { | 
|  | // If the masked bit in V is clear, clear or set the bit in the result: | 
|  | // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC | 
|  | // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC | 
|  | Constant *C = ConstantInt::get(SelType, TC); | 
|  | return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); | 
|  | } | 
|  | if (Pred == ICmpInst::ICMP_NE) { | 
|  | // If the masked bit in V is set, set or clear the bit in the result: | 
|  | // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC | 
|  | // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC | 
|  | Constant *C = ConstantInt::get(SelType, FC); | 
|  | return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); | 
|  | } | 
|  | llvm_unreachable("Only expecting equality predicates"); | 
|  | } | 
|  |  | 
|  | // Make sure one of the select arms is a power-of-2. | 
|  | if (!TC.isPowerOf2() && !FC.isPowerOf2()) | 
|  | return nullptr; | 
|  |  | 
|  | // Determine which shift is needed to transform result of the 'and' into the | 
|  | // desired result. | 
|  | const APInt &ValC = !TC.isNullValue() ? TC : FC; | 
|  | unsigned ValZeros = ValC.logBase2(); | 
|  | unsigned AndZeros = AndMask.logBase2(); | 
|  |  | 
|  | // Insert the 'and' instruction on the input to the truncate. | 
|  | if (CreateAnd) | 
|  | V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); | 
|  |  | 
|  | // If types don't match, we can still convert the select by introducing a zext | 
|  | // or a trunc of the 'and'. | 
|  | if (ValZeros > AndZeros) { | 
|  | V = Builder.CreateZExtOrTrunc(V, SelType); | 
|  | V = Builder.CreateShl(V, ValZeros - AndZeros); | 
|  | } else if (ValZeros < AndZeros) { | 
|  | V = Builder.CreateLShr(V, AndZeros - ValZeros); | 
|  | V = Builder.CreateZExtOrTrunc(V, SelType); | 
|  | } else { | 
|  | V = Builder.CreateZExtOrTrunc(V, SelType); | 
|  | } | 
|  |  | 
|  | // Okay, now we know that everything is set up, we just don't know whether we | 
|  | // have a icmp_ne or icmp_eq and whether the true or false val is the zero. | 
|  | bool ShouldNotVal = !TC.isNullValue(); | 
|  | ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; | 
|  | if (ShouldNotVal) | 
|  | V = Builder.CreateXor(V, ValC); | 
|  |  | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// We want to turn code that looks like this: | 
|  | ///   %C = or %A, %B | 
|  | ///   %D = select %cond, %C, %A | 
|  | /// into: | 
|  | ///   %C = select %cond, %B, 0 | 
|  | ///   %D = or %A, %C | 
|  | /// | 
|  | /// Assuming that the specified instruction is an operand to the select, return | 
|  | /// a bitmask indicating which operands of this instruction are foldable if they | 
|  | /// equal the other incoming value of the select. | 
|  | static unsigned getSelectFoldableOperands(BinaryOperator *I) { | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Mul: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | return 3;              // Can fold through either operand. | 
|  | case Instruction::Sub:   // Can only fold on the amount subtracted. | 
|  | case Instruction::Shl:   // Can only fold on the shift amount. | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | return 1; | 
|  | default: | 
|  | return 0;              // Cannot fold | 
|  | } | 
|  | } | 
|  |  | 
|  | /// For the same transformation as the previous function, return the identity | 
|  | /// constant that goes into the select. | 
|  | static APInt getSelectFoldableConstant(BinaryOperator *I) { | 
|  | switch (I->getOpcode()) { | 
|  | default: llvm_unreachable("This cannot happen!"); | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | return APInt::getNullValue(I->getType()->getScalarSizeInBits()); | 
|  | case Instruction::And: | 
|  | return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits()); | 
|  | case Instruction::Mul: | 
|  | return APInt(I->getType()->getScalarSizeInBits(), 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. | 
|  | Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI, | 
|  | Instruction *FI) { | 
|  | // Don't break up min/max patterns. The hasOneUse checks below prevent that | 
|  | // for most cases, but vector min/max with bitcasts can be transformed. If the | 
|  | // one-use restrictions are eased for other patterns, we still don't want to | 
|  | // obfuscate min/max. | 
|  | if ((match(&SI, m_SMin(m_Value(), m_Value())) || | 
|  | match(&SI, m_SMax(m_Value(), m_Value())) || | 
|  | match(&SI, m_UMin(m_Value(), m_Value())) || | 
|  | match(&SI, m_UMax(m_Value(), m_Value())))) | 
|  | return nullptr; | 
|  |  | 
|  | // If this is a cast from the same type, merge. | 
|  | if (TI->getNumOperands() == 1 && TI->isCast()) { | 
|  | Type *FIOpndTy = FI->getOperand(0)->getType(); | 
|  | if (TI->getOperand(0)->getType() != FIOpndTy) | 
|  | return nullptr; | 
|  |  | 
|  | // The select condition may be a vector. We may only change the operand | 
|  | // type if the vector width remains the same (and matches the condition). | 
|  | Type *CondTy = SI.getCondition()->getType(); | 
|  | if (CondTy->isVectorTy()) { | 
|  | if (!FIOpndTy->isVectorTy()) | 
|  | return nullptr; | 
|  | if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()) | 
|  | return nullptr; | 
|  |  | 
|  | // TODO: If the backend knew how to deal with casts better, we could | 
|  | // remove this limitation. For now, there's too much potential to create | 
|  | // worse codegen by promoting the select ahead of size-altering casts | 
|  | // (PR28160). | 
|  | // | 
|  | // Note that ValueTracking's matchSelectPattern() looks through casts | 
|  | // without checking 'hasOneUse' when it matches min/max patterns, so this | 
|  | // transform may end up happening anyway. | 
|  | if (TI->getOpcode() != Instruction::BitCast && | 
|  | (!TI->hasOneUse() || !FI->hasOneUse())) | 
|  | return nullptr; | 
|  | } else if (!TI->hasOneUse() || !FI->hasOneUse()) { | 
|  | // TODO: The one-use restrictions for a scalar select could be eased if | 
|  | // the fold of a select in visitLoadInst() was enhanced to match a pattern | 
|  | // that includes a cast. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Fold this by inserting a select from the input values. | 
|  | Value *NewSI = | 
|  | Builder.CreateSelect(SI.getCondition(), TI->getOperand(0), | 
|  | FI->getOperand(0), SI.getName() + ".v", &SI); | 
|  | return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, | 
|  | TI->getType()); | 
|  | } | 
|  |  | 
|  | // Only handle binary operators (including two-operand getelementptr) with | 
|  | // one-use here. As with the cast case above, it may be possible to relax the | 
|  | // one-use constraint, but that needs be examined carefully since it may not | 
|  | // reduce the total number of instructions. | 
|  | if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || | 
|  | (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || | 
|  | !TI->hasOneUse() || !FI->hasOneUse()) | 
|  | return nullptr; | 
|  |  | 
|  | // Figure out if the operations have any operands in common. | 
|  | Value *MatchOp, *OtherOpT, *OtherOpF; | 
|  | bool MatchIsOpZero; | 
|  | if (TI->getOperand(0) == FI->getOperand(0)) { | 
|  | MatchOp  = TI->getOperand(0); | 
|  | OtherOpT = TI->getOperand(1); | 
|  | OtherOpF = FI->getOperand(1); | 
|  | MatchIsOpZero = true; | 
|  | } else if (TI->getOperand(1) == FI->getOperand(1)) { | 
|  | MatchOp  = TI->getOperand(1); | 
|  | OtherOpT = TI->getOperand(0); | 
|  | OtherOpF = FI->getOperand(0); | 
|  | MatchIsOpZero = false; | 
|  | } else if (!TI->isCommutative()) { | 
|  | return nullptr; | 
|  | } else if (TI->getOperand(0) == FI->getOperand(1)) { | 
|  | MatchOp  = TI->getOperand(0); | 
|  | OtherOpT = TI->getOperand(1); | 
|  | OtherOpF = FI->getOperand(0); | 
|  | MatchIsOpZero = true; | 
|  | } else if (TI->getOperand(1) == FI->getOperand(0)) { | 
|  | MatchOp  = TI->getOperand(1); | 
|  | OtherOpT = TI->getOperand(0); | 
|  | OtherOpF = FI->getOperand(1); | 
|  | MatchIsOpZero = true; | 
|  | } else { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // If the select condition is a vector, the operands of the original select's | 
|  | // operands also must be vectors. This may not be the case for getelementptr | 
|  | // for example. | 
|  | if (SI.getCondition()->getType()->isVectorTy() && | 
|  | (!OtherOpT->getType()->isVectorTy() || | 
|  | !OtherOpF->getType()->isVectorTy())) | 
|  | return nullptr; | 
|  |  | 
|  | // If we reach here, they do have operations in common. | 
|  | Value *NewSI = Builder.CreateSelect(SI.getCondition(), OtherOpT, OtherOpF, | 
|  | SI.getName() + ".v", &SI); | 
|  | Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; | 
|  | Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; | 
|  | if (auto *BO = dyn_cast<BinaryOperator>(TI)) { | 
|  | BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); | 
|  | NewBO->copyIRFlags(TI); | 
|  | NewBO->andIRFlags(FI); | 
|  | return NewBO; | 
|  | } | 
|  | if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { | 
|  | auto *FGEP = cast<GetElementPtrInst>(FI); | 
|  | Type *ElementType = TGEP->getResultElementType(); | 
|  | return TGEP->isInBounds() && FGEP->isInBounds() | 
|  | ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) | 
|  | : GetElementPtrInst::Create(ElementType, Op0, {Op1}); | 
|  | } | 
|  | llvm_unreachable("Expected BinaryOperator or GEP"); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static bool isSelect01(const APInt &C1I, const APInt &C2I) { | 
|  | if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero. | 
|  | return false; | 
|  | return C1I.isOneValue() || C1I.isAllOnesValue() || | 
|  | C2I.isOneValue() || C2I.isAllOnesValue(); | 
|  | } | 
|  |  | 
|  | /// Try to fold the select into one of the operands to allow further | 
|  | /// optimization. | 
|  | Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, | 
|  | Value *FalseVal) { | 
|  | // See the comment above GetSelectFoldableOperands for a description of the | 
|  | // transformation we are doing here. | 
|  | if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { | 
|  | if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { | 
|  | if (unsigned SFO = getSelectFoldableOperands(TVI)) { | 
|  | unsigned OpToFold = 0; | 
|  | if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { | 
|  | OpToFold = 1; | 
|  | } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { | 
|  | OpToFold = 2; | 
|  | } | 
|  |  | 
|  | if (OpToFold) { | 
|  | APInt CI = getSelectFoldableConstant(TVI); | 
|  | Value *OOp = TVI->getOperand(2-OpToFold); | 
|  | // Avoid creating select between 2 constants unless it's selecting | 
|  | // between 0, 1 and -1. | 
|  | const APInt *OOpC; | 
|  | bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); | 
|  | if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { | 
|  | Value *C = ConstantInt::get(OOp->getType(), CI); | 
|  | Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); | 
|  | NewSel->takeName(TVI); | 
|  | BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), | 
|  | FalseVal, NewSel); | 
|  | BO->copyIRFlags(TVI); | 
|  | return BO; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { | 
|  | if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { | 
|  | if (unsigned SFO = getSelectFoldableOperands(FVI)) { | 
|  | unsigned OpToFold = 0; | 
|  | if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { | 
|  | OpToFold = 1; | 
|  | } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { | 
|  | OpToFold = 2; | 
|  | } | 
|  |  | 
|  | if (OpToFold) { | 
|  | APInt CI = getSelectFoldableConstant(FVI); | 
|  | Value *OOp = FVI->getOperand(2-OpToFold); | 
|  | // Avoid creating select between 2 constants unless it's selecting | 
|  | // between 0, 1 and -1. | 
|  | const APInt *OOpC; | 
|  | bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); | 
|  | if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { | 
|  | Value *C = ConstantInt::get(OOp->getType(), CI); | 
|  | Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); | 
|  | NewSel->takeName(FVI); | 
|  | BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), | 
|  | TrueVal, NewSel); | 
|  | BO->copyIRFlags(FVI); | 
|  | return BO; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// We want to turn: | 
|  | ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) | 
|  | /// into: | 
|  | ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) | 
|  | /// Note: | 
|  | ///   Z may be 0 if lshr is missing. | 
|  | /// Worst-case scenario is that we will replace 5 instructions with 5 different | 
|  | /// instructions, but we got rid of select. | 
|  | static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, | 
|  | Value *TVal, Value *FVal, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && | 
|  | Cmp->getPredicate() == ICmpInst::ICMP_EQ && | 
|  | match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) | 
|  | return nullptr; | 
|  |  | 
|  | // The TrueVal has general form of:  and %B, 1 | 
|  | Value *B; | 
|  | if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) | 
|  | return nullptr; | 
|  |  | 
|  | // Where %B may be optionally shifted:  lshr %X, %Z. | 
|  | Value *X, *Z; | 
|  | const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); | 
|  | if (!HasShift) | 
|  | X = B; | 
|  |  | 
|  | Value *Y; | 
|  | if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) | 
|  | return nullptr; | 
|  |  | 
|  | // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 | 
|  | // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 | 
|  | Constant *One = ConstantInt::get(SelType, 1); | 
|  | Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; | 
|  | Value *FullMask = Builder.CreateOr(Y, MaskB); | 
|  | Value *MaskedX = Builder.CreateAnd(X, FullMask); | 
|  | Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); | 
|  | return new ZExtInst(ICmpNeZero, SelType); | 
|  | } | 
|  |  | 
|  | /// We want to turn: | 
|  | ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) | 
|  | /// into: | 
|  | ///   (or (shl (and X, C1), C3), Y) | 
|  | /// iff: | 
|  | ///   C1 and C2 are both powers of 2 | 
|  | /// where: | 
|  | ///   C3 = Log(C2) - Log(C1) | 
|  | /// | 
|  | /// This transform handles cases where: | 
|  | /// 1. The icmp predicate is inverted | 
|  | /// 2. The select operands are reversed | 
|  | /// 3. The magnitude of C2 and C1 are flipped | 
|  | static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, | 
|  | Value *FalseVal, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | // Only handle integer compares. Also, if this is a vector select, we need a | 
|  | // vector compare. | 
|  | if (!TrueVal->getType()->isIntOrIntVectorTy() || | 
|  | TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) | 
|  | return nullptr; | 
|  |  | 
|  | Value *CmpLHS = IC->getOperand(0); | 
|  | Value *CmpRHS = IC->getOperand(1); | 
|  |  | 
|  | Value *V; | 
|  | unsigned C1Log; | 
|  | bool IsEqualZero; | 
|  | bool NeedAnd = false; | 
|  | if (IC->isEquality()) { | 
|  | if (!match(CmpRHS, m_Zero())) | 
|  | return nullptr; | 
|  |  | 
|  | const APInt *C1; | 
|  | if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) | 
|  | return nullptr; | 
|  |  | 
|  | V = CmpLHS; | 
|  | C1Log = C1->logBase2(); | 
|  | IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; | 
|  | } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || | 
|  | IC->getPredicate() == ICmpInst::ICMP_SGT) { | 
|  | // We also need to recognize (icmp slt (trunc (X)), 0) and | 
|  | // (icmp sgt (trunc (X)), -1). | 
|  | IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; | 
|  | if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || | 
|  | (!IsEqualZero && !match(CmpRHS, m_Zero()))) | 
|  | return nullptr; | 
|  |  | 
|  | if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) | 
|  | return nullptr; | 
|  |  | 
|  | C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; | 
|  | NeedAnd = true; | 
|  | } else { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | const APInt *C2; | 
|  | bool OrOnTrueVal = false; | 
|  | bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); | 
|  | if (!OrOnFalseVal) | 
|  | OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); | 
|  |  | 
|  | if (!OrOnFalseVal && !OrOnTrueVal) | 
|  | return nullptr; | 
|  |  | 
|  | Value *Y = OrOnFalseVal ? TrueVal : FalseVal; | 
|  |  | 
|  | unsigned C2Log = C2->logBase2(); | 
|  |  | 
|  | bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); | 
|  | bool NeedShift = C1Log != C2Log; | 
|  | bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != | 
|  | V->getType()->getScalarSizeInBits(); | 
|  |  | 
|  | // Make sure we don't create more instructions than we save. | 
|  | Value *Or = OrOnFalseVal ? FalseVal : TrueVal; | 
|  | if ((NeedShift + NeedXor + NeedZExtTrunc) > | 
|  | (IC->hasOneUse() + Or->hasOneUse())) | 
|  | return nullptr; | 
|  |  | 
|  | if (NeedAnd) { | 
|  | // Insert the AND instruction on the input to the truncate. | 
|  | APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); | 
|  | V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); | 
|  | } | 
|  |  | 
|  | if (C2Log > C1Log) { | 
|  | V = Builder.CreateZExtOrTrunc(V, Y->getType()); | 
|  | V = Builder.CreateShl(V, C2Log - C1Log); | 
|  | } else if (C1Log > C2Log) { | 
|  | V = Builder.CreateLShr(V, C1Log - C2Log); | 
|  | V = Builder.CreateZExtOrTrunc(V, Y->getType()); | 
|  | } else | 
|  | V = Builder.CreateZExtOrTrunc(V, Y->getType()); | 
|  |  | 
|  | if (NeedXor) | 
|  | V = Builder.CreateXor(V, *C2); | 
|  |  | 
|  | return Builder.CreateOr(V, Y); | 
|  | } | 
|  |  | 
|  | /// Transform patterns such as: (a > b) ? a - b : 0 | 
|  | /// into: ((a > b) ? a : b) - b) | 
|  | /// This produces a canonical max pattern that is more easily recognized by the | 
|  | /// backend and converted into saturated subtraction instructions if those | 
|  | /// exist. | 
|  | /// There are 8 commuted/swapped variants of this pattern. | 
|  | /// TODO: Also support a - UMIN(a,b) patterns. | 
|  | static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, | 
|  | const Value *TrueVal, | 
|  | const Value *FalseVal, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | ICmpInst::Predicate Pred = ICI->getPredicate(); | 
|  | if (!ICmpInst::isUnsigned(Pred)) | 
|  | return nullptr; | 
|  |  | 
|  | // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 | 
|  | if (match(TrueVal, m_Zero())) { | 
|  | Pred = ICmpInst::getInversePredicate(Pred); | 
|  | std::swap(TrueVal, FalseVal); | 
|  | } | 
|  | if (!match(FalseVal, m_Zero())) | 
|  | return nullptr; | 
|  |  | 
|  | Value *A = ICI->getOperand(0); | 
|  | Value *B = ICI->getOperand(1); | 
|  | if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { | 
|  | // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 | 
|  | std::swap(A, B); | 
|  | Pred = ICmpInst::getSwappedPredicate(Pred); | 
|  | } | 
|  |  | 
|  | assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && | 
|  | "Unexpected isUnsigned predicate!"); | 
|  |  | 
|  | // Account for swapped form of subtraction: ((a > b) ? b - a : 0). | 
|  | bool IsNegative = false; | 
|  | if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A)))) | 
|  | IsNegative = true; | 
|  | else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B)))) | 
|  | return nullptr; | 
|  |  | 
|  | // If sub is used anywhere else, we wouldn't be able to eliminate it | 
|  | // afterwards. | 
|  | if (!TrueVal->hasOneUse()) | 
|  | return nullptr; | 
|  |  | 
|  | // All checks passed, convert to canonical unsigned saturated subtraction | 
|  | // form: sub(max()). | 
|  | // (a > b) ? a - b : 0 -> ((a > b) ? a : b) - b) | 
|  | Value *Max = Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); | 
|  | return IsNegative ? Builder.CreateSub(B, Max) : Builder.CreateSub(Max, B); | 
|  | } | 
|  |  | 
|  | /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single | 
|  | /// call to cttz/ctlz with flag 'is_zero_undef' cleared. | 
|  | /// | 
|  | /// For example, we can fold the following code sequence: | 
|  | /// \code | 
|  | ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) | 
|  | ///   %1 = icmp ne i32 %x, 0 | 
|  | ///   %2 = select i1 %1, i32 %0, i32 32 | 
|  | /// \code | 
|  | /// | 
|  | /// into: | 
|  | ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) | 
|  | static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | ICmpInst::Predicate Pred = ICI->getPredicate(); | 
|  | Value *CmpLHS = ICI->getOperand(0); | 
|  | Value *CmpRHS = ICI->getOperand(1); | 
|  |  | 
|  | // Check if the condition value compares a value for equality against zero. | 
|  | if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) | 
|  | return nullptr; | 
|  |  | 
|  | Value *Count = FalseVal; | 
|  | Value *ValueOnZero = TrueVal; | 
|  | if (Pred == ICmpInst::ICMP_NE) | 
|  | std::swap(Count, ValueOnZero); | 
|  |  | 
|  | // Skip zero extend/truncate. | 
|  | Value *V = nullptr; | 
|  | if (match(Count, m_ZExt(m_Value(V))) || | 
|  | match(Count, m_Trunc(m_Value(V)))) | 
|  | Count = V; | 
|  |  | 
|  | // Check if the value propagated on zero is a constant number equal to the | 
|  | // sizeof in bits of 'Count'. | 
|  | unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); | 
|  | if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits))) | 
|  | return nullptr; | 
|  |  | 
|  | // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the | 
|  | // input to the cttz/ctlz is used as LHS for the compare instruction. | 
|  | if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) || | 
|  | match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) { | 
|  | IntrinsicInst *II = cast<IntrinsicInst>(Count); | 
|  | // Explicitly clear the 'undef_on_zero' flag. | 
|  | IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone()); | 
|  | NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext())); | 
|  | Builder.Insert(NewI); | 
|  | return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType()); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Return true if we find and adjust an icmp+select pattern where the compare | 
|  | /// is with a constant that can be incremented or decremented to match the | 
|  | /// minimum or maximum idiom. | 
|  | static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { | 
|  | ICmpInst::Predicate Pred = Cmp.getPredicate(); | 
|  | Value *CmpLHS = Cmp.getOperand(0); | 
|  | Value *CmpRHS = Cmp.getOperand(1); | 
|  | Value *TrueVal = Sel.getTrueValue(); | 
|  | Value *FalseVal = Sel.getFalseValue(); | 
|  |  | 
|  | // We may move or edit the compare, so make sure the select is the only user. | 
|  | const APInt *CmpC; | 
|  | if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) | 
|  | return false; | 
|  |  | 
|  | // These transforms only work for selects of integers or vector selects of | 
|  | // integer vectors. | 
|  | Type *SelTy = Sel.getType(); | 
|  | auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); | 
|  | if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) | 
|  | return false; | 
|  |  | 
|  | Constant *AdjustedRHS; | 
|  | if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) | 
|  | AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); | 
|  | else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) | 
|  | AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); | 
|  | else | 
|  | return false; | 
|  |  | 
|  | // X > C ? X : C+1  -->  X < C+1 ? C+1 : X | 
|  | // X < C ? X : C-1  -->  X > C-1 ? C-1 : X | 
|  | if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || | 
|  | (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { | 
|  | ; // Nothing to do here. Values match without any sign/zero extension. | 
|  | } | 
|  | // Types do not match. Instead of calculating this with mixed types, promote | 
|  | // all to the larger type. This enables scalar evolution to analyze this | 
|  | // expression. | 
|  | else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { | 
|  | Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); | 
|  |  | 
|  | // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X | 
|  | // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X | 
|  | // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X | 
|  | // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X | 
|  | if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { | 
|  | CmpLHS = TrueVal; | 
|  | AdjustedRHS = SextRHS; | 
|  | } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && | 
|  | SextRHS == TrueVal) { | 
|  | CmpLHS = FalseVal; | 
|  | AdjustedRHS = SextRHS; | 
|  | } else if (Cmp.isUnsigned()) { | 
|  | Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); | 
|  | // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X | 
|  | // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X | 
|  | // zext + signed compare cannot be changed: | 
|  | //    0xff <s 0x00, but 0x00ff >s 0x0000 | 
|  | if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { | 
|  | CmpLHS = TrueVal; | 
|  | AdjustedRHS = ZextRHS; | 
|  | } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && | 
|  | ZextRHS == TrueVal) { | 
|  | CmpLHS = FalseVal; | 
|  | AdjustedRHS = ZextRHS; | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Pred = ICmpInst::getSwappedPredicate(Pred); | 
|  | CmpRHS = AdjustedRHS; | 
|  | std::swap(FalseVal, TrueVal); | 
|  | Cmp.setPredicate(Pred); | 
|  | Cmp.setOperand(0, CmpLHS); | 
|  | Cmp.setOperand(1, CmpRHS); | 
|  | Sel.setOperand(1, TrueVal); | 
|  | Sel.setOperand(2, FalseVal); | 
|  | Sel.swapProfMetadata(); | 
|  |  | 
|  | // Move the compare instruction right before the select instruction. Otherwise | 
|  | // the sext/zext value may be defined after the compare instruction uses it. | 
|  | Cmp.moveBefore(&Sel); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// If this is an integer min/max (icmp + select) with a constant operand, | 
|  | /// create the canonical icmp for the min/max operation and canonicalize the | 
|  | /// constant to the 'false' operand of the select: | 
|  | /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 | 
|  | /// Note: if C1 != C2, this will change the icmp constant to the existing | 
|  | /// constant operand of the select. | 
|  | static Instruction * | 
|  | canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) | 
|  | return nullptr; | 
|  |  | 
|  | // Canonicalize the compare predicate based on whether we have min or max. | 
|  | Value *LHS, *RHS; | 
|  | SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); | 
|  | if (!SelectPatternResult::isMinOrMax(SPR.Flavor)) | 
|  | return nullptr; | 
|  |  | 
|  | // Is this already canonical? | 
|  | ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor); | 
|  | if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && | 
|  | Cmp.getPredicate() == CanonicalPred) | 
|  | return nullptr; | 
|  |  | 
|  | // Create the canonical compare and plug it into the select. | 
|  | Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS)); | 
|  |  | 
|  | // If the select operands did not change, we're done. | 
|  | if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) | 
|  | return &Sel; | 
|  |  | 
|  | // If we are swapping the select operands, swap the metadata too. | 
|  | assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && | 
|  | "Unexpected results from matchSelectPattern"); | 
|  | Sel.setTrueValue(LHS); | 
|  | Sel.setFalseValue(RHS); | 
|  | Sel.swapProfMetadata(); | 
|  | return &Sel; | 
|  | } | 
|  |  | 
|  | /// There are many select variants for each of ABS/NABS. | 
|  | /// In matchSelectPattern(), there are different compare constants, compare | 
|  | /// predicates/operands and select operands. | 
|  | /// In isKnownNegation(), there are different formats of negated operands. | 
|  | /// Canonicalize all these variants to 1 pattern. | 
|  | /// This makes CSE more likely. | 
|  | static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) | 
|  | return nullptr; | 
|  |  | 
|  | // Choose a sign-bit check for the compare (likely simpler for codegen). | 
|  | // ABS:  (X <s 0) ? -X : X | 
|  | // NABS: (X <s 0) ? X : -X | 
|  | Value *LHS, *RHS; | 
|  | SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; | 
|  | if (SPF != SelectPatternFlavor::SPF_ABS && | 
|  | SPF != SelectPatternFlavor::SPF_NABS) | 
|  | return nullptr; | 
|  |  | 
|  | Value *TVal = Sel.getTrueValue(); | 
|  | Value *FVal = Sel.getFalseValue(); | 
|  | assert(isKnownNegation(TVal, FVal) && | 
|  | "Unexpected result from matchSelectPattern"); | 
|  |  | 
|  | // The compare may use the negated abs()/nabs() operand, or it may use | 
|  | // negation in non-canonical form such as: sub A, B. | 
|  | bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) || | 
|  | match(Cmp.getOperand(0), m_Neg(m_Specific(FVal))); | 
|  |  | 
|  | bool CmpCanonicalized = !CmpUsesNegatedOp && | 
|  | match(Cmp.getOperand(1), m_ZeroInt()) && | 
|  | Cmp.getPredicate() == ICmpInst::ICMP_SLT; | 
|  | bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS))); | 
|  |  | 
|  | // Is this already canonical? | 
|  | if (CmpCanonicalized && RHSCanonicalized) | 
|  | return nullptr; | 
|  |  | 
|  | // If RHS is used by other instructions except compare and select, don't | 
|  | // canonicalize it to not increase the instruction count. | 
|  | if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp))) | 
|  | return nullptr; | 
|  |  | 
|  | // Create the canonical compare: icmp slt LHS 0. | 
|  | if (!CmpCanonicalized) { | 
|  | Cmp.setPredicate(ICmpInst::ICMP_SLT); | 
|  | Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType())); | 
|  | if (CmpUsesNegatedOp) | 
|  | Cmp.setOperand(0, LHS); | 
|  | } | 
|  |  | 
|  | // Create the canonical RHS: RHS = sub (0, LHS). | 
|  | if (!RHSCanonicalized) { | 
|  | assert(RHS->hasOneUse() && "RHS use number is not right"); | 
|  | RHS = Builder.CreateNeg(LHS); | 
|  | if (TVal == LHS) { | 
|  | Sel.setFalseValue(RHS); | 
|  | FVal = RHS; | 
|  | } else { | 
|  | Sel.setTrueValue(RHS); | 
|  | TVal = RHS; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the select operands do not change, we're done. | 
|  | if (SPF == SelectPatternFlavor::SPF_NABS) { | 
|  | if (TVal == LHS) | 
|  | return &Sel; | 
|  | assert(FVal == LHS && "Unexpected results from matchSelectPattern"); | 
|  | } else { | 
|  | if (FVal == LHS) | 
|  | return &Sel; | 
|  | assert(TVal == LHS && "Unexpected results from matchSelectPattern"); | 
|  | } | 
|  |  | 
|  | // We are swapping the select operands, so swap the metadata too. | 
|  | Sel.setTrueValue(FVal); | 
|  | Sel.setFalseValue(TVal); | 
|  | Sel.swapProfMetadata(); | 
|  | return &Sel; | 
|  | } | 
|  |  | 
|  | /// Visit a SelectInst that has an ICmpInst as its first operand. | 
|  | Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI, | 
|  | ICmpInst *ICI) { | 
|  | Value *TrueVal = SI.getTrueValue(); | 
|  | Value *FalseVal = SI.getFalseValue(); | 
|  |  | 
|  | if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder)) | 
|  | return NewSel; | 
|  |  | 
|  | if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder)) | 
|  | return NewAbs; | 
|  |  | 
|  | bool Changed = adjustMinMax(SI, *ICI); | 
|  |  | 
|  | if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) | 
|  | return replaceInstUsesWith(SI, V); | 
|  |  | 
|  | // NOTE: if we wanted to, this is where to detect integer MIN/MAX | 
|  | ICmpInst::Predicate Pred = ICI->getPredicate(); | 
|  | Value *CmpLHS = ICI->getOperand(0); | 
|  | Value *CmpRHS = ICI->getOperand(1); | 
|  | if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { | 
|  | if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { | 
|  | // Transform (X == C) ? X : Y -> (X == C) ? C : Y | 
|  | SI.setOperand(1, CmpRHS); | 
|  | Changed = true; | 
|  | } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { | 
|  | // Transform (X != C) ? Y : X -> (X != C) ? Y : C | 
|  | SI.setOperand(2, CmpRHS); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring | 
|  | // decomposeBitTestICmp() might help. | 
|  | { | 
|  | unsigned BitWidth = | 
|  | DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); | 
|  | APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); | 
|  | Value *X; | 
|  | const APInt *Y, *C; | 
|  | bool TrueWhenUnset; | 
|  | bool IsBitTest = false; | 
|  | if (ICmpInst::isEquality(Pred) && | 
|  | match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && | 
|  | match(CmpRHS, m_Zero())) { | 
|  | IsBitTest = true; | 
|  | TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; | 
|  | } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { | 
|  | X = CmpLHS; | 
|  | Y = &MinSignedValue; | 
|  | IsBitTest = true; | 
|  | TrueWhenUnset = false; | 
|  | } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { | 
|  | X = CmpLHS; | 
|  | Y = &MinSignedValue; | 
|  | IsBitTest = true; | 
|  | TrueWhenUnset = true; | 
|  | } | 
|  | if (IsBitTest) { | 
|  | Value *V = nullptr; | 
|  | // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y | 
|  | if (TrueWhenUnset && TrueVal == X && | 
|  | match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) | 
|  | V = Builder.CreateAnd(X, ~(*Y)); | 
|  | // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y | 
|  | else if (!TrueWhenUnset && FalseVal == X && | 
|  | match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) | 
|  | V = Builder.CreateAnd(X, ~(*Y)); | 
|  | // (X & Y) == 0 ? X ^ Y : X  --> X | Y | 
|  | else if (TrueWhenUnset && FalseVal == X && | 
|  | match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) | 
|  | V = Builder.CreateOr(X, *Y); | 
|  | // (X & Y) != 0 ? X : X ^ Y  --> X | Y | 
|  | else if (!TrueWhenUnset && TrueVal == X && | 
|  | match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) | 
|  | V = Builder.CreateOr(X, *Y); | 
|  |  | 
|  | if (V) | 
|  | return replaceInstUsesWith(SI, V); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Instruction *V = | 
|  | foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) | 
|  | return V; | 
|  |  | 
|  | if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) | 
|  | return replaceInstUsesWith(SI, V); | 
|  |  | 
|  | if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) | 
|  | return replaceInstUsesWith(SI, V); | 
|  |  | 
|  | if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) | 
|  | return replaceInstUsesWith(SI, V); | 
|  |  | 
|  | return Changed ? &SI : nullptr; | 
|  | } | 
|  |  | 
|  | /// SI is a select whose condition is a PHI node (but the two may be in | 
|  | /// different blocks). See if the true/false values (V) are live in all of the | 
|  | /// predecessor blocks of the PHI. For example, cases like this can't be mapped: | 
|  | /// | 
|  | ///   X = phi [ C1, BB1], [C2, BB2] | 
|  | ///   Y = add | 
|  | ///   Z = select X, Y, 0 | 
|  | /// | 
|  | /// because Y is not live in BB1/BB2. | 
|  | static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, | 
|  | const SelectInst &SI) { | 
|  | // If the value is a non-instruction value like a constant or argument, it | 
|  | // can always be mapped. | 
|  | const Instruction *I = dyn_cast<Instruction>(V); | 
|  | if (!I) return true; | 
|  |  | 
|  | // If V is a PHI node defined in the same block as the condition PHI, we can | 
|  | // map the arguments. | 
|  | const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); | 
|  |  | 
|  | if (const PHINode *VP = dyn_cast<PHINode>(I)) | 
|  | if (VP->getParent() == CondPHI->getParent()) | 
|  | return true; | 
|  |  | 
|  | // Otherwise, if the PHI and select are defined in the same block and if V is | 
|  | // defined in a different block, then we can transform it. | 
|  | if (SI.getParent() == CondPHI->getParent() && | 
|  | I->getParent() != CondPHI->getParent()) | 
|  | return true; | 
|  |  | 
|  | // Otherwise we have a 'hard' case and we can't tell without doing more | 
|  | // detailed dominator based analysis, punt. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// We have an SPF (e.g. a min or max) of an SPF of the form: | 
|  | ///   SPF2(SPF1(A, B), C) | 
|  | Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner, | 
|  | SelectPatternFlavor SPF1, | 
|  | Value *A, Value *B, | 
|  | Instruction &Outer, | 
|  | SelectPatternFlavor SPF2, Value *C) { | 
|  | if (Outer.getType() != Inner->getType()) | 
|  | return nullptr; | 
|  |  | 
|  | if (C == A || C == B) { | 
|  | // MAX(MAX(A, B), B) -> MAX(A, B) | 
|  | // MIN(MIN(a, b), a) -> MIN(a, b) | 
|  | // TODO: This could be done in instsimplify. | 
|  | if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) | 
|  | return replaceInstUsesWith(Outer, Inner); | 
|  |  | 
|  | // MAX(MIN(a, b), a) -> a | 
|  | // MIN(MAX(a, b), a) -> a | 
|  | // TODO: This could be done in instsimplify. | 
|  | if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || | 
|  | (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || | 
|  | (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || | 
|  | (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) | 
|  | return replaceInstUsesWith(Outer, C); | 
|  | } | 
|  |  | 
|  | if (SPF1 == SPF2) { | 
|  | const APInt *CB, *CC; | 
|  | if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { | 
|  | // MIN(MIN(A, 23), 97) -> MIN(A, 23) | 
|  | // MAX(MAX(A, 97), 23) -> MAX(A, 97) | 
|  | // TODO: This could be done in instsimplify. | 
|  | if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || | 
|  | (SPF1 == SPF_SMIN && CB->sle(*CC)) || | 
|  | (SPF1 == SPF_UMAX && CB->uge(*CC)) || | 
|  | (SPF1 == SPF_SMAX && CB->sge(*CC))) | 
|  | return replaceInstUsesWith(Outer, Inner); | 
|  |  | 
|  | // MIN(MIN(A, 97), 23) -> MIN(A, 23) | 
|  | // MAX(MAX(A, 23), 97) -> MAX(A, 97) | 
|  | if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || | 
|  | (SPF1 == SPF_SMIN && CB->sgt(*CC)) || | 
|  | (SPF1 == SPF_UMAX && CB->ult(*CC)) || | 
|  | (SPF1 == SPF_SMAX && CB->slt(*CC))) { | 
|  | Outer.replaceUsesOfWith(Inner, A); | 
|  | return &Outer; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // ABS(ABS(X)) -> ABS(X) | 
|  | // NABS(NABS(X)) -> NABS(X) | 
|  | // TODO: This could be done in instsimplify. | 
|  | if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { | 
|  | return replaceInstUsesWith(Outer, Inner); | 
|  | } | 
|  |  | 
|  | // ABS(NABS(X)) -> ABS(X) | 
|  | // NABS(ABS(X)) -> NABS(X) | 
|  | if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || | 
|  | (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { | 
|  | SelectInst *SI = cast<SelectInst>(Inner); | 
|  | Value *NewSI = | 
|  | Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), | 
|  | SI->getTrueValue(), SI->getName(), SI); | 
|  | return replaceInstUsesWith(Outer, NewSI); | 
|  | } | 
|  |  | 
|  | auto IsFreeOrProfitableToInvert = | 
|  | [&](Value *V, Value *&NotV, bool &ElidesXor) { | 
|  | if (match(V, m_Not(m_Value(NotV)))) { | 
|  | // If V has at most 2 uses then we can get rid of the xor operation | 
|  | // entirely. | 
|  | ElidesXor |= !V->hasNUsesOrMore(3); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) { | 
|  | NotV = nullptr; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | Value *NotA, *NotB, *NotC; | 
|  | bool ElidesXor = false; | 
|  |  | 
|  | // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) | 
|  | // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) | 
|  | // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) | 
|  | // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) | 
|  | // | 
|  | // This transform is performance neutral if we can elide at least one xor from | 
|  | // the set of three operands, since we'll be tacking on an xor at the very | 
|  | // end. | 
|  | if (SelectPatternResult::isMinOrMax(SPF1) && | 
|  | SelectPatternResult::isMinOrMax(SPF2) && | 
|  | IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && | 
|  | IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && | 
|  | IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { | 
|  | if (!NotA) | 
|  | NotA = Builder.CreateNot(A); | 
|  | if (!NotB) | 
|  | NotB = Builder.CreateNot(B); | 
|  | if (!NotC) | 
|  | NotC = Builder.CreateNot(C); | 
|  |  | 
|  | Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, | 
|  | NotB); | 
|  | Value *NewOuter = Builder.CreateNot( | 
|  | createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); | 
|  | return replaceInstUsesWith(Outer, NewOuter); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). | 
|  | /// This is even legal for FP. | 
|  | static Instruction *foldAddSubSelect(SelectInst &SI, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | Value *CondVal = SI.getCondition(); | 
|  | Value *TrueVal = SI.getTrueValue(); | 
|  | Value *FalseVal = SI.getFalseValue(); | 
|  | auto *TI = dyn_cast<Instruction>(TrueVal); | 
|  | auto *FI = dyn_cast<Instruction>(FalseVal); | 
|  | if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) | 
|  | return nullptr; | 
|  |  | 
|  | Instruction *AddOp = nullptr, *SubOp = nullptr; | 
|  | if ((TI->getOpcode() == Instruction::Sub && | 
|  | FI->getOpcode() == Instruction::Add) || | 
|  | (TI->getOpcode() == Instruction::FSub && | 
|  | FI->getOpcode() == Instruction::FAdd)) { | 
|  | AddOp = FI; | 
|  | SubOp = TI; | 
|  | } else if ((FI->getOpcode() == Instruction::Sub && | 
|  | TI->getOpcode() == Instruction::Add) || | 
|  | (FI->getOpcode() == Instruction::FSub && | 
|  | TI->getOpcode() == Instruction::FAdd)) { | 
|  | AddOp = TI; | 
|  | SubOp = FI; | 
|  | } | 
|  |  | 
|  | if (AddOp) { | 
|  | Value *OtherAddOp = nullptr; | 
|  | if (SubOp->getOperand(0) == AddOp->getOperand(0)) { | 
|  | OtherAddOp = AddOp->getOperand(1); | 
|  | } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { | 
|  | OtherAddOp = AddOp->getOperand(0); | 
|  | } | 
|  |  | 
|  | if (OtherAddOp) { | 
|  | // So at this point we know we have (Y -> OtherAddOp): | 
|  | //        select C, (add X, Y), (sub X, Z) | 
|  | Value *NegVal; // Compute -Z | 
|  | if (SI.getType()->isFPOrFPVectorTy()) { | 
|  | NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); | 
|  | if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { | 
|  | FastMathFlags Flags = AddOp->getFastMathFlags(); | 
|  | Flags &= SubOp->getFastMathFlags(); | 
|  | NegInst->setFastMathFlags(Flags); | 
|  | } | 
|  | } else { | 
|  | NegVal = Builder.CreateNeg(SubOp->getOperand(1)); | 
|  | } | 
|  |  | 
|  | Value *NewTrueOp = OtherAddOp; | 
|  | Value *NewFalseOp = NegVal; | 
|  | if (AddOp != TI) | 
|  | std::swap(NewTrueOp, NewFalseOp); | 
|  | Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, | 
|  | SI.getName() + ".p", &SI); | 
|  |  | 
|  | if (SI.getType()->isFPOrFPVectorTy()) { | 
|  | Instruction *RI = | 
|  | BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); | 
|  |  | 
|  | FastMathFlags Flags = AddOp->getFastMathFlags(); | 
|  | Flags &= SubOp->getFastMathFlags(); | 
|  | RI->setFastMathFlags(Flags); | 
|  | return RI; | 
|  | } else | 
|  | return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) { | 
|  | Constant *C; | 
|  | if (!match(Sel.getTrueValue(), m_Constant(C)) && | 
|  | !match(Sel.getFalseValue(), m_Constant(C))) | 
|  | return nullptr; | 
|  |  | 
|  | Instruction *ExtInst; | 
|  | if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && | 
|  | !match(Sel.getFalseValue(), m_Instruction(ExtInst))) | 
|  | return nullptr; | 
|  |  | 
|  | auto ExtOpcode = ExtInst->getOpcode(); | 
|  | if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) | 
|  | return nullptr; | 
|  |  | 
|  | // If we are extending from a boolean type or if we can create a select that | 
|  | // has the same size operands as its condition, try to narrow the select. | 
|  | Value *X = ExtInst->getOperand(0); | 
|  | Type *SmallType = X->getType(); | 
|  | Value *Cond = Sel.getCondition(); | 
|  | auto *Cmp = dyn_cast<CmpInst>(Cond); | 
|  | if (!SmallType->isIntOrIntVectorTy(1) && | 
|  | (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) | 
|  | return nullptr; | 
|  |  | 
|  | // If the constant is the same after truncation to the smaller type and | 
|  | // extension to the original type, we can narrow the select. | 
|  | Type *SelType = Sel.getType(); | 
|  | Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); | 
|  | Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); | 
|  | if (ExtC == C) { | 
|  | Value *TruncCVal = cast<Value>(TruncC); | 
|  | if (ExtInst == Sel.getFalseValue()) | 
|  | std::swap(X, TruncCVal); | 
|  |  | 
|  | // select Cond, (ext X), C --> ext(select Cond, X, C') | 
|  | // select Cond, C, (ext X) --> ext(select Cond, C', X) | 
|  | Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); | 
|  | return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); | 
|  | } | 
|  |  | 
|  | // If one arm of the select is the extend of the condition, replace that arm | 
|  | // with the extension of the appropriate known bool value. | 
|  | if (Cond == X) { | 
|  | if (ExtInst == Sel.getTrueValue()) { | 
|  | // select X, (sext X), C --> select X, -1, C | 
|  | // select X, (zext X), C --> select X,  1, C | 
|  | Constant *One = ConstantInt::getTrue(SmallType); | 
|  | Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); | 
|  | return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); | 
|  | } else { | 
|  | // select X, C, (sext X) --> select X, C, 0 | 
|  | // select X, C, (zext X) --> select X, C, 0 | 
|  | Constant *Zero = ConstantInt::getNullValue(SelType); | 
|  | return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Try to transform a vector select with a constant condition vector into a | 
|  | /// shuffle for easier combining with other shuffles and insert/extract. | 
|  | static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { | 
|  | Value *CondVal = SI.getCondition(); | 
|  | Constant *CondC; | 
|  | if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC))) | 
|  | return nullptr; | 
|  |  | 
|  | unsigned NumElts = CondVal->getType()->getVectorNumElements(); | 
|  | SmallVector<Constant *, 16> Mask; | 
|  | Mask.reserve(NumElts); | 
|  | Type *Int32Ty = Type::getInt32Ty(CondVal->getContext()); | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | Constant *Elt = CondC->getAggregateElement(i); | 
|  | if (!Elt) | 
|  | return nullptr; | 
|  |  | 
|  | if (Elt->isOneValue()) { | 
|  | // If the select condition element is true, choose from the 1st vector. | 
|  | Mask.push_back(ConstantInt::get(Int32Ty, i)); | 
|  | } else if (Elt->isNullValue()) { | 
|  | // If the select condition element is false, choose from the 2nd vector. | 
|  | Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts)); | 
|  | } else if (isa<UndefValue>(Elt)) { | 
|  | // Undef in a select condition (choose one of the operands) does not mean | 
|  | // the same thing as undef in a shuffle mask (any value is acceptable), so | 
|  | // give up. | 
|  | return nullptr; | 
|  | } else { | 
|  | // Bail out on a constant expression. | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), | 
|  | ConstantVector::get(Mask)); | 
|  | } | 
|  |  | 
|  | /// Reuse bitcasted operands between a compare and select: | 
|  | /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> | 
|  | /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) | 
|  | static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | Value *Cond = Sel.getCondition(); | 
|  | Value *TVal = Sel.getTrueValue(); | 
|  | Value *FVal = Sel.getFalseValue(); | 
|  |  | 
|  | CmpInst::Predicate Pred; | 
|  | Value *A, *B; | 
|  | if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) | 
|  | return nullptr; | 
|  |  | 
|  | // The select condition is a compare instruction. If the select's true/false | 
|  | // values are already the same as the compare operands, there's nothing to do. | 
|  | if (TVal == A || TVal == B || FVal == A || FVal == B) | 
|  | return nullptr; | 
|  |  | 
|  | Value *C, *D; | 
|  | if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) | 
|  | return nullptr; | 
|  |  | 
|  | // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) | 
|  | Value *TSrc, *FSrc; | 
|  | if (!match(TVal, m_BitCast(m_Value(TSrc))) || | 
|  | !match(FVal, m_BitCast(m_Value(FSrc)))) | 
|  | return nullptr; | 
|  |  | 
|  | // If the select true/false values are *different bitcasts* of the same source | 
|  | // operands, make the select operands the same as the compare operands and | 
|  | // cast the result. This is the canonical select form for min/max. | 
|  | Value *NewSel; | 
|  | if (TSrc == C && FSrc == D) { | 
|  | // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> | 
|  | // bitcast (select (cmp A, B), A, B) | 
|  | NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); | 
|  | } else if (TSrc == D && FSrc == C) { | 
|  | // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> | 
|  | // bitcast (select (cmp A, B), B, A) | 
|  | NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); | 
|  | } else { | 
|  | return nullptr; | 
|  | } | 
|  | return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); | 
|  | } | 
|  |  | 
|  | /// Try to eliminate select instructions that test the returned flag of cmpxchg | 
|  | /// instructions. | 
|  | /// | 
|  | /// If a select instruction tests the returned flag of a cmpxchg instruction and | 
|  | /// selects between the returned value of the cmpxchg instruction its compare | 
|  | /// operand, the result of the select will always be equal to its false value. | 
|  | /// For example: | 
|  | /// | 
|  | ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst | 
|  | ///   %1 = extractvalue { i64, i1 } %0, 1 | 
|  | ///   %2 = extractvalue { i64, i1 } %0, 0 | 
|  | ///   %3 = select i1 %1, i64 %compare, i64 %2 | 
|  | ///   ret i64 %3 | 
|  | /// | 
|  | /// The returned value of the cmpxchg instruction (%2) is the original value | 
|  | /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 | 
|  | /// must have been equal to %compare. Thus, the result of the select is always | 
|  | /// equal to %2, and the code can be simplified to: | 
|  | /// | 
|  | ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst | 
|  | ///   %1 = extractvalue { i64, i1 } %0, 0 | 
|  | ///   ret i64 %1 | 
|  | /// | 
|  | static Instruction *foldSelectCmpXchg(SelectInst &SI) { | 
|  | // A helper that determines if V is an extractvalue instruction whose | 
|  | // aggregate operand is a cmpxchg instruction and whose single index is equal | 
|  | // to I. If such conditions are true, the helper returns the cmpxchg | 
|  | // instruction; otherwise, a nullptr is returned. | 
|  | auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { | 
|  | auto *Extract = dyn_cast<ExtractValueInst>(V); | 
|  | if (!Extract) | 
|  | return nullptr; | 
|  | if (Extract->getIndices()[0] != I) | 
|  | return nullptr; | 
|  | return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); | 
|  | }; | 
|  |  | 
|  | // If the select has a single user, and this user is a select instruction that | 
|  | // we can simplify, skip the cmpxchg simplification for now. | 
|  | if (SI.hasOneUse()) | 
|  | if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) | 
|  | if (Select->getCondition() == SI.getCondition()) | 
|  | if (Select->getFalseValue() == SI.getTrueValue() || | 
|  | Select->getTrueValue() == SI.getFalseValue()) | 
|  | return nullptr; | 
|  |  | 
|  | // Ensure the select condition is the returned flag of a cmpxchg instruction. | 
|  | auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); | 
|  | if (!CmpXchg) | 
|  | return nullptr; | 
|  |  | 
|  | // Check the true value case: The true value of the select is the returned | 
|  | // value of the same cmpxchg used by the condition, and the false value is the | 
|  | // cmpxchg instruction's compare operand. | 
|  | if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) | 
|  | if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) { | 
|  | SI.setTrueValue(SI.getFalseValue()); | 
|  | return &SI; | 
|  | } | 
|  |  | 
|  | // Check the false value case: The false value of the select is the returned | 
|  | // value of the same cmpxchg used by the condition, and the true value is the | 
|  | // cmpxchg instruction's compare operand. | 
|  | if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) | 
|  | if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) { | 
|  | SI.setTrueValue(SI.getFalseValue()); | 
|  | return &SI; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Reduce a sequence of min/max with a common operand. | 
|  | static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, | 
|  | Value *RHS, | 
|  | InstCombiner::BuilderTy &Builder) { | 
|  | assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); | 
|  | // TODO: Allow FP min/max with nnan/nsz. | 
|  | if (!LHS->getType()->isIntOrIntVectorTy()) | 
|  | return nullptr; | 
|  |  | 
|  | // Match 3 of the same min/max ops. Example: umin(umin(), umin()). | 
|  | Value *A, *B, *C, *D; | 
|  | SelectPatternResult L = matchSelectPattern(LHS, A, B); | 
|  | SelectPatternResult R = matchSelectPattern(RHS, C, D); | 
|  | if (SPF != L.Flavor || L.Flavor != R.Flavor) | 
|  | return nullptr; | 
|  |  | 
|  | // Look for a common operand. The use checks are different than usual because | 
|  | // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by | 
|  | // the select. | 
|  | Value *MinMaxOp = nullptr; | 
|  | Value *ThirdOp = nullptr; | 
|  | if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) { | 
|  | // If the LHS is only used in this chain and the RHS is used outside of it, | 
|  | // reuse the RHS min/max because that will eliminate the LHS. | 
|  | if (D == A || C == A) { | 
|  | // min(min(a, b), min(c, a)) --> min(min(c, a), b) | 
|  | // min(min(a, b), min(a, d)) --> min(min(a, d), b) | 
|  | MinMaxOp = RHS; | 
|  | ThirdOp = B; | 
|  | } else if (D == B || C == B) { | 
|  | // min(min(a, b), min(c, b)) --> min(min(c, b), a) | 
|  | // min(min(a, b), min(b, d)) --> min(min(b, d), a) | 
|  | MinMaxOp = RHS; | 
|  | ThirdOp = A; | 
|  | } | 
|  | } else if (!RHS->hasNUsesOrMore(3)) { | 
|  | // Reuse the LHS. This will eliminate the RHS. | 
|  | if (D == A || D == B) { | 
|  | // min(min(a, b), min(c, a)) --> min(min(a, b), c) | 
|  | // min(min(a, b), min(c, b)) --> min(min(a, b), c) | 
|  | MinMaxOp = LHS; | 
|  | ThirdOp = C; | 
|  | } else if (C == A || C == B) { | 
|  | // min(min(a, b), min(b, d)) --> min(min(a, b), d) | 
|  | // min(min(a, b), min(c, b)) --> min(min(a, b), d) | 
|  | MinMaxOp = LHS; | 
|  | ThirdOp = D; | 
|  | } | 
|  | } | 
|  | if (!MinMaxOp || !ThirdOp) | 
|  | return nullptr; | 
|  |  | 
|  | CmpInst::Predicate P = getMinMaxPred(SPF); | 
|  | Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); | 
|  | return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); | 
|  | } | 
|  |  | 
|  | Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { | 
|  | Value *CondVal = SI.getCondition(); | 
|  | Value *TrueVal = SI.getTrueValue(); | 
|  | Value *FalseVal = SI.getFalseValue(); | 
|  | Type *SelType = SI.getType(); | 
|  |  | 
|  | // FIXME: Remove this workaround when freeze related patches are done. | 
|  | // For select with undef operand which feeds into an equality comparison, | 
|  | // don't simplify it so loop unswitch can know the equality comparison | 
|  | // may have an undef operand. This is a workaround for PR31652 caused by | 
|  | // descrepancy about branch on undef between LoopUnswitch and GVN. | 
|  | if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) { | 
|  | if (llvm::any_of(SI.users(), [&](User *U) { | 
|  | ICmpInst *CI = dyn_cast<ICmpInst>(U); | 
|  | if (CI && CI->isEquality()) | 
|  | return true; | 
|  | return false; | 
|  | })) { | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, | 
|  | SQ.getWithInstruction(&SI))) | 
|  | return replaceInstUsesWith(SI, V); | 
|  |  | 
|  | if (Instruction *I = canonicalizeSelectToShuffle(SI)) | 
|  | return I; | 
|  |  | 
|  | // Canonicalize a one-use integer compare with a non-canonical predicate by | 
|  | // inverting the predicate and swapping the select operands. This matches a | 
|  | // compare canonicalization for conditional branches. | 
|  | // TODO: Should we do the same for FP compares? | 
|  | CmpInst::Predicate Pred; | 
|  | if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) && | 
|  | !isCanonicalPredicate(Pred)) { | 
|  | // Swap true/false values and condition. | 
|  | CmpInst *Cond = cast<CmpInst>(CondVal); | 
|  | Cond->setPredicate(CmpInst::getInversePredicate(Pred)); | 
|  | SI.setOperand(1, FalseVal); | 
|  | SI.setOperand(2, TrueVal); | 
|  | SI.swapProfMetadata(); | 
|  | Worklist.Add(Cond); | 
|  | return &SI; | 
|  | } | 
|  |  | 
|  | if (SelType->isIntOrIntVectorTy(1) && | 
|  | TrueVal->getType() == CondVal->getType()) { | 
|  | if (match(TrueVal, m_One())) { | 
|  | // Change: A = select B, true, C --> A = or B, C | 
|  | return BinaryOperator::CreateOr(CondVal, FalseVal); | 
|  | } | 
|  | if (match(TrueVal, m_Zero())) { | 
|  | // Change: A = select B, false, C --> A = and !B, C | 
|  | Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); | 
|  | return BinaryOperator::CreateAnd(NotCond, FalseVal); | 
|  | } | 
|  | if (match(FalseVal, m_Zero())) { | 
|  | // Change: A = select B, C, false --> A = and B, C | 
|  | return BinaryOperator::CreateAnd(CondVal, TrueVal); | 
|  | } | 
|  | if (match(FalseVal, m_One())) { | 
|  | // Change: A = select B, C, true --> A = or !B, C | 
|  | Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); | 
|  | return BinaryOperator::CreateOr(NotCond, TrueVal); | 
|  | } | 
|  |  | 
|  | // select a, a, b  -> a | b | 
|  | // select a, b, a  -> a & b | 
|  | if (CondVal == TrueVal) | 
|  | return BinaryOperator::CreateOr(CondVal, FalseVal); | 
|  | if (CondVal == FalseVal) | 
|  | return BinaryOperator::CreateAnd(CondVal, TrueVal); | 
|  |  | 
|  | // select a, ~a, b -> (~a) & b | 
|  | // select a, b, ~a -> (~a) | b | 
|  | if (match(TrueVal, m_Not(m_Specific(CondVal)))) | 
|  | return BinaryOperator::CreateAnd(TrueVal, FalseVal); | 
|  | if (match(FalseVal, m_Not(m_Specific(CondVal)))) | 
|  | return BinaryOperator::CreateOr(TrueVal, FalseVal); | 
|  | } | 
|  |  | 
|  | // Selecting between two integer or vector splat integer constants? | 
|  | // | 
|  | // Note that we don't handle a scalar select of vectors: | 
|  | // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> | 
|  | // because that may need 3 instructions to splat the condition value: | 
|  | // extend, insertelement, shufflevector. | 
|  | if (SelType->isIntOrIntVectorTy() && | 
|  | CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { | 
|  | // select C, 1, 0 -> zext C to int | 
|  | if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) | 
|  | return new ZExtInst(CondVal, SelType); | 
|  |  | 
|  | // select C, -1, 0 -> sext C to int | 
|  | if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) | 
|  | return new SExtInst(CondVal, SelType); | 
|  |  | 
|  | // select C, 0, 1 -> zext !C to int | 
|  | if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { | 
|  | Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); | 
|  | return new ZExtInst(NotCond, SelType); | 
|  | } | 
|  |  | 
|  | // select C, 0, -1 -> sext !C to int | 
|  | if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { | 
|  | Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); | 
|  | return new SExtInst(NotCond, SelType); | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if we are selecting two values based on a comparison of the two values. | 
|  | if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { | 
|  | if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { | 
|  | // Canonicalize to use ordered comparisons by swapping the select | 
|  | // operands. | 
|  | // | 
|  | // e.g. | 
|  | // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X | 
|  | if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { | 
|  | FCmpInst::Predicate InvPred = FCI->getInversePredicate(); | 
|  | IRBuilder<>::FastMathFlagGuard FMFG(Builder); | 
|  | Builder.setFastMathFlags(FCI->getFastMathFlags()); | 
|  | Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal, | 
|  | FCI->getName() + ".inv"); | 
|  |  | 
|  | return SelectInst::Create(NewCond, FalseVal, TrueVal, | 
|  | SI.getName() + ".p"); | 
|  | } | 
|  |  | 
|  | // NOTE: if we wanted to, this is where to detect MIN/MAX | 
|  | } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ | 
|  | // Canonicalize to use ordered comparisons by swapping the select | 
|  | // operands. | 
|  | // | 
|  | // e.g. | 
|  | // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y | 
|  | if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { | 
|  | FCmpInst::Predicate InvPred = FCI->getInversePredicate(); | 
|  | IRBuilder<>::FastMathFlagGuard FMFG(Builder); | 
|  | Builder.setFastMathFlags(FCI->getFastMathFlags()); | 
|  | Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal, | 
|  | FCI->getName() + ".inv"); | 
|  |  | 
|  | return SelectInst::Create(NewCond, FalseVal, TrueVal, | 
|  | SI.getName() + ".p"); | 
|  | } | 
|  |  | 
|  | // NOTE: if we wanted to, this is where to detect MIN/MAX | 
|  | } | 
|  |  | 
|  | // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need | 
|  | // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We | 
|  | // also require nnan because we do not want to unintentionally change the | 
|  | // sign of a NaN value. | 
|  | Value *X = FCI->getOperand(0); | 
|  | FCmpInst::Predicate Pred = FCI->getPredicate(); | 
|  | if (match(FCI->getOperand(1), m_AnyZeroFP()) && FCI->hasNoNaNs()) { | 
|  | // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) | 
|  | // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X) | 
|  | if ((X == FalseVal && Pred == FCmpInst::FCMP_OLE && | 
|  | match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) || | 
|  | (X == TrueVal && Pred == FCmpInst::FCMP_OGT && | 
|  | match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(X))))) { | 
|  | Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, FCI); | 
|  | return replaceInstUsesWith(SI, Fabs); | 
|  | } | 
|  | // With nsz: | 
|  | // (X <  +/-0.0) ? -X : X --> fabs(X) | 
|  | // (X <= +/-0.0) ? -X : X --> fabs(X) | 
|  | // (X >  +/-0.0) ? X : -X --> fabs(X) | 
|  | // (X >= +/-0.0) ? X : -X --> fabs(X) | 
|  | if (FCI->hasNoSignedZeros() && | 
|  | ((X == FalseVal && match(TrueVal, m_FNeg(m_Specific(X))) && | 
|  | (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE)) || | 
|  | (X == TrueVal && match(FalseVal, m_FNeg(m_Specific(X))) && | 
|  | (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE)))) { | 
|  | Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, FCI); | 
|  | return replaceInstUsesWith(SI, Fabs); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if we are selecting two values based on a comparison of the two values. | 
|  | if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) | 
|  | if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) | 
|  | return Result; | 
|  |  | 
|  | if (Instruction *Add = foldAddSubSelect(SI, Builder)) | 
|  | return Add; | 
|  |  | 
|  | // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) | 
|  | auto *TI = dyn_cast<Instruction>(TrueVal); | 
|  | auto *FI = dyn_cast<Instruction>(FalseVal); | 
|  | if (TI && FI && TI->getOpcode() == FI->getOpcode()) | 
|  | if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) | 
|  | return IV; | 
|  |  | 
|  | if (Instruction *I = foldSelectExtConst(SI)) | 
|  | return I; | 
|  |  | 
|  | // See if we can fold the select into one of our operands. | 
|  | if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { | 
|  | if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) | 
|  | return FoldI; | 
|  |  | 
|  | Value *LHS, *RHS; | 
|  | Instruction::CastOps CastOp; | 
|  | SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); | 
|  | auto SPF = SPR.Flavor; | 
|  | if (SPF) { | 
|  | Value *LHS2, *RHS2; | 
|  | if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) | 
|  | if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, | 
|  | RHS2, SI, SPF, RHS)) | 
|  | return R; | 
|  | if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) | 
|  | if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, | 
|  | RHS2, SI, SPF, LHS)) | 
|  | return R; | 
|  | // TODO. | 
|  | // ABS(-X) -> ABS(X) | 
|  | } | 
|  |  | 
|  | if (SelectPatternResult::isMinOrMax(SPF)) { | 
|  | // Canonicalize so that | 
|  | // - type casts are outside select patterns. | 
|  | // - float clamp is transformed to min/max pattern | 
|  |  | 
|  | bool IsCastNeeded = LHS->getType() != SelType; | 
|  | Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); | 
|  | Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); | 
|  | if (IsCastNeeded || | 
|  | (LHS->getType()->isFPOrFPVectorTy() && | 
|  | ((CmpLHS != LHS && CmpLHS != RHS) || | 
|  | (CmpRHS != LHS && CmpRHS != RHS)))) { | 
|  | CmpInst::Predicate Pred = getMinMaxPred(SPF, SPR.Ordered); | 
|  |  | 
|  | Value *Cmp; | 
|  | if (CmpInst::isIntPredicate(Pred)) { | 
|  | Cmp = Builder.CreateICmp(Pred, LHS, RHS); | 
|  | } else { | 
|  | IRBuilder<>::FastMathFlagGuard FMFG(Builder); | 
|  | auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); | 
|  | Builder.setFastMathFlags(FMF); | 
|  | Cmp = Builder.CreateFCmp(Pred, LHS, RHS); | 
|  | } | 
|  |  | 
|  | Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); | 
|  | if (!IsCastNeeded) | 
|  | return replaceInstUsesWith(SI, NewSI); | 
|  |  | 
|  | Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); | 
|  | return replaceInstUsesWith(SI, NewCast); | 
|  | } | 
|  |  | 
|  | // MAX(~a, ~b) -> ~MIN(a, b) | 
|  | // MAX(~a, C)  -> ~MIN(a, ~C) | 
|  | // MIN(~a, ~b) -> ~MAX(a, b) | 
|  | // MIN(~a, C)  -> ~MAX(a, ~C) | 
|  | auto moveNotAfterMinMax = [&](Value *X, Value *Y, | 
|  | bool Swapped) -> Instruction * { | 
|  | Value *A; | 
|  | if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) && | 
|  | !IsFreeToInvert(A, A->hasOneUse()) && | 
|  | // Passing false to only consider m_Not and constants. | 
|  | IsFreeToInvert(Y, false)) { | 
|  | Value *B = Builder.CreateNot(Y); | 
|  | Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF), | 
|  | A, B); | 
|  | // Copy the profile metadata. | 
|  | if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) { | 
|  | cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD); | 
|  | // Swap the metadata if the operands are swapped. | 
|  | if (Swapped) { | 
|  | assert(X == SI.getFalseValue() && Y == SI.getTrueValue() && | 
|  | "Unexpected operands."); | 
|  | cast<SelectInst>(NewMinMax)->swapProfMetadata(); | 
|  | } else { | 
|  | assert(X == SI.getTrueValue() && Y == SI.getFalseValue() && | 
|  | "Unexpected operands."); | 
|  | } | 
|  | } | 
|  |  | 
|  | return BinaryOperator::CreateNot(NewMinMax); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | }; | 
|  |  | 
|  | if (Instruction *I = moveNotAfterMinMax(LHS, RHS, /*Swapped*/false)) | 
|  | return I; | 
|  | if (Instruction *I = moveNotAfterMinMax(RHS, LHS, /*Swapped*/true)) | 
|  | return I; | 
|  |  | 
|  | if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) | 
|  | return I; | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if we can fold the select into a phi node if the condition is a select. | 
|  | if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) | 
|  | // The true/false values have to be live in the PHI predecessor's blocks. | 
|  | if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && | 
|  | canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) | 
|  | if (Instruction *NV = foldOpIntoPhi(SI, PN)) | 
|  | return NV; | 
|  |  | 
|  | if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { | 
|  | if (TrueSI->getCondition()->getType() == CondVal->getType()) { | 
|  | // select(C, select(C, a, b), c) -> select(C, a, c) | 
|  | if (TrueSI->getCondition() == CondVal) { | 
|  | if (SI.getTrueValue() == TrueSI->getTrueValue()) | 
|  | return nullptr; | 
|  | SI.setOperand(1, TrueSI->getTrueValue()); | 
|  | return &SI; | 
|  | } | 
|  | // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) | 
|  | // We choose this as normal form to enable folding on the And and shortening | 
|  | // paths for the values (this helps GetUnderlyingObjects() for example). | 
|  | if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { | 
|  | Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition()); | 
|  | SI.setOperand(0, And); | 
|  | SI.setOperand(1, TrueSI->getTrueValue()); | 
|  | return &SI; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { | 
|  | if (FalseSI->getCondition()->getType() == CondVal->getType()) { | 
|  | // select(C, a, select(C, b, c)) -> select(C, a, c) | 
|  | if (FalseSI->getCondition() == CondVal) { | 
|  | if (SI.getFalseValue() == FalseSI->getFalseValue()) | 
|  | return nullptr; | 
|  | SI.setOperand(2, FalseSI->getFalseValue()); | 
|  | return &SI; | 
|  | } | 
|  | // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) | 
|  | if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { | 
|  | Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition()); | 
|  | SI.setOperand(0, Or); | 
|  | SI.setOperand(2, FalseSI->getFalseValue()); | 
|  | return &SI; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { | 
|  | // The select might be preventing a division by 0. | 
|  | switch (BO->getOpcode()) { | 
|  | default: | 
|  | return true; | 
|  | case Instruction::SRem: | 
|  | case Instruction::URem: | 
|  | case Instruction::SDiv: | 
|  | case Instruction::UDiv: | 
|  | return false; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Try to simplify a binop sandwiched between 2 selects with the same | 
|  | // condition. | 
|  | // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) | 
|  | BinaryOperator *TrueBO; | 
|  | if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && | 
|  | canMergeSelectThroughBinop(TrueBO)) { | 
|  | if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { | 
|  | if (TrueBOSI->getCondition() == CondVal) { | 
|  | TrueBO->setOperand(0, TrueBOSI->getTrueValue()); | 
|  | Worklist.Add(TrueBO); | 
|  | return &SI; | 
|  | } | 
|  | } | 
|  | if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { | 
|  | if (TrueBOSI->getCondition() == CondVal) { | 
|  | TrueBO->setOperand(1, TrueBOSI->getTrueValue()); | 
|  | Worklist.Add(TrueBO); | 
|  | return &SI; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) | 
|  | BinaryOperator *FalseBO; | 
|  | if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && | 
|  | canMergeSelectThroughBinop(FalseBO)) { | 
|  | if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { | 
|  | if (FalseBOSI->getCondition() == CondVal) { | 
|  | FalseBO->setOperand(0, FalseBOSI->getFalseValue()); | 
|  | Worklist.Add(FalseBO); | 
|  | return &SI; | 
|  | } | 
|  | } | 
|  | if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { | 
|  | if (FalseBOSI->getCondition() == CondVal) { | 
|  | FalseBO->setOperand(1, FalseBOSI->getFalseValue()); | 
|  | Worklist.Add(FalseBO); | 
|  | return &SI; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Value *NotCond; | 
|  | if (match(CondVal, m_Not(m_Value(NotCond)))) { | 
|  | SI.setOperand(0, NotCond); | 
|  | SI.setOperand(1, FalseVal); | 
|  | SI.setOperand(2, TrueVal); | 
|  | SI.swapProfMetadata(); | 
|  | return &SI; | 
|  | } | 
|  |  | 
|  | if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) { | 
|  | unsigned VWidth = VecTy->getNumElements(); | 
|  | APInt UndefElts(VWidth, 0); | 
|  | APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); | 
|  | if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { | 
|  | if (V != &SI) | 
|  | return replaceInstUsesWith(SI, V); | 
|  | return &SI; | 
|  | } | 
|  | } | 
|  |  | 
|  | // See if we can determine the result of this select based on a dominating | 
|  | // condition. | 
|  | BasicBlock *Parent = SI.getParent(); | 
|  | if (BasicBlock *Dom = Parent->getSinglePredecessor()) { | 
|  | auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); | 
|  | if (PBI && PBI->isConditional() && | 
|  | PBI->getSuccessor(0) != PBI->getSuccessor(1) && | 
|  | (PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) { | 
|  | bool CondIsTrue = PBI->getSuccessor(0) == Parent; | 
|  | Optional<bool> Implication = isImpliedCondition( | 
|  | PBI->getCondition(), SI.getCondition(), DL, CondIsTrue); | 
|  | if (Implication) { | 
|  | Value *V = *Implication ? TrueVal : FalseVal; | 
|  | return replaceInstUsesWith(SI, V); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we can compute the condition, there's no need for a select. | 
|  | // Like the above fold, we are attempting to reduce compile-time cost by | 
|  | // putting this fold here with limitations rather than in InstSimplify. | 
|  | // The motivation for this call into value tracking is to take advantage of | 
|  | // the assumption cache, so make sure that is populated. | 
|  | if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { | 
|  | KnownBits Known(1); | 
|  | computeKnownBits(CondVal, Known, 0, &SI); | 
|  | if (Known.One.isOneValue()) | 
|  | return replaceInstUsesWith(SI, TrueVal); | 
|  | if (Known.Zero.isOneValue()) | 
|  | return replaceInstUsesWith(SI, FalseVal); | 
|  | } | 
|  |  | 
|  | if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) | 
|  | return BitCastSel; | 
|  |  | 
|  | // Simplify selects that test the returned flag of cmpxchg instructions. | 
|  | if (Instruction *Select = foldSelectCmpXchg(SI)) | 
|  | return Select; | 
|  |  | 
|  | if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI)) | 
|  | return Select; | 
|  |  | 
|  | return nullptr; | 
|  | } |