blob: f1b489ee3b3619bdb12870d4054afee5aabd1df1 [file] [log] [blame]
//===- CodeGen/ValueTypes.h - Low-Level Target independ. types --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the set of low-level target independent types which various
// values in the code generator are. This allows the target specific behavior
// of instructions to be described to target independent passes.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_VALUETYPES_H
#define LLVM_CODEGEN_VALUETYPES_H
#include <cassert>
#include <string>
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/MathExtras.h"
namespace llvm {
class Type;
struct MVT { // MVT = Machine Value Type
public:
enum SimpleValueType {
// If you change this numbering, you must change the values in
// ValueTypes.td as well!
Other = 0, // This is a non-standard value
i1 = 1, // This is a 1 bit integer value
i8 = 2, // This is an 8 bit integer value
i16 = 3, // This is a 16 bit integer value
i32 = 4, // This is a 32 bit integer value
i64 = 5, // This is a 64 bit integer value
i128 = 6, // This is a 128 bit integer value
FIRST_INTEGER_VALUETYPE = i1,
LAST_INTEGER_VALUETYPE = i128,
f32 = 7, // This is a 32 bit floating point value
f64 = 8, // This is a 64 bit floating point value
f80 = 9, // This is a 80 bit floating point value
f128 = 10, // This is a 128 bit floating point value
ppcf128 = 11, // This is a PPC 128-bit floating point value
Flag = 12, // This is a condition code or machine flag.
isVoid = 13, // This has no value
v8i8 = 14, // 8 x i8
v4i16 = 15, // 4 x i16
v2i32 = 16, // 2 x i32
v1i64 = 17, // 1 x i64
v16i8 = 18, // 16 x i8
v8i16 = 19, // 8 x i16
v3i32 = 20, // 3 x i32
v4i32 = 21, // 4 x i32
v2i64 = 22, // 2 x i64
v2f32 = 23, // 2 x f32
v3f32 = 24, // 3 x f32
v4f32 = 25, // 4 x f32
v2f64 = 26, // 2 x f64
FIRST_VECTOR_VALUETYPE = v8i8,
LAST_VECTOR_VALUETYPE = v2f64,
LAST_VALUETYPE = 27, // This always remains at the end of the list.
// iPTRAny - An int value the size of the pointer of the current
// target to any address space. This must only be used internal to
// tblgen. Other than for overloading, we treat iPTRAny the same as iPTR.
iPTRAny = 252,
// fAny - Any floating-point or vector floating-point value. This is used
// for intrinsics that have overloadings based on floating-point types.
// This is only for tblgen's consumption!
fAny = 253,
// iAny - An integer or vector integer value of any bit width. This is
// used for intrinsics that have overloadings based on integer bit widths.
// This is only for tblgen's consumption!
iAny = 254,
// iPTR - An int value the size of the pointer of the current
// target. This should only be used internal to tblgen!
iPTR = 255
};
/// MVT - This type holds low-level value types. Valid values include any of
/// the values in the SimpleValueType enum, or any value returned from one
/// of the MVT methods. Any value type equal to one of the SimpleValueType
/// enum values is a "simple" value type. All others are "extended".
///
/// Note that simple doesn't necessary mean legal for the target machine.
/// All legal value types must be simple, but often there are some simple
/// value types that are not legal.
///
/// @internal
/// Extended types are either vector types or arbitrary precision integers.
/// Arbitrary precision integers have iAny in the first SimpleTypeBits bits,
/// and the bit-width in the next PrecisionBits bits, offset by minus one.
/// Vector types are encoded by having the first
/// SimpleTypeBits+PrecisionBits bits encode the vector element type
/// (which must be a scalar type, possibly an arbitrary precision integer)
/// and the remaining VectorBits upper bits encode the vector length, offset
/// by one.
///
/// 32--------------16-----------8-------------0
/// | Vector length | Precision | Simple type |
/// | | Vector element |
///
private:
static const int SimpleTypeBits = 8;
static const int PrecisionBits = 8;
static const int VectorBits = 32 - SimpleTypeBits - PrecisionBits;
static const uint32_t SimpleTypeMask =
(~uint32_t(0) << (32 - SimpleTypeBits)) >> (32 - SimpleTypeBits);
static const uint32_t PrecisionMask =
((~uint32_t(0) << VectorBits) >> (32 - PrecisionBits)) << SimpleTypeBits;
static const uint32_t VectorMask =
(~uint32_t(0) >> (32 - VectorBits)) << (32 - VectorBits);
static const uint32_t ElementMask =
(~uint32_t(0) << VectorBits) >> VectorBits;
uint32_t V;
public:
MVT() {}
MVT(SimpleValueType S) : V(S) {}
inline bool operator== (const MVT VT) const { return V == VT.V; }
inline bool operator!= (const MVT VT) const { return V != VT.V; }
/// getIntegerVT - Returns the MVT that represents an integer with the given
/// number of bits.
static inline MVT getIntegerVT(unsigned BitWidth) {
switch (BitWidth) {
default:
break;
case 1:
return i1;
case 8:
return i8;
case 16:
return i16;
case 32:
return i32;
case 64:
return i64;
case 128:
return i128;
}
MVT VT;
VT.V = iAny | (((BitWidth - 1) << SimpleTypeBits) & PrecisionMask);
assert(VT.getSizeInBits() == BitWidth && "Bad bit width!");
return VT;
}
/// getVectorVT - Returns the MVT that represents a vector NumElements in
/// length, where each element is of type VT.
static inline MVT getVectorVT(MVT VT, unsigned NumElements) {
switch (VT.V) {
default:
break;
case i8:
if (NumElements == 8) return v8i8;
if (NumElements == 16) return v16i8;
break;
case i16:
if (NumElements == 4) return v4i16;
if (NumElements == 8) return v8i16;
break;
case i32:
if (NumElements == 2) return v2i32;
if (NumElements == 3) return v3i32;
if (NumElements == 4) return v4i32;
break;
case i64:
if (NumElements == 1) return v1i64;
if (NumElements == 2) return v2i64;
break;
case f32:
if (NumElements == 2) return v2f32;
if (NumElements == 3) return v3f32;
if (NumElements == 4) return v4f32;
break;
case f64:
if (NumElements == 2) return v2f64;
break;
}
MVT Result;
Result.V = VT.V | ((NumElements + 1) << (32 - VectorBits));
assert(Result.getVectorElementType() == VT &&
"Bad vector element type!");
assert(Result.getVectorNumElements() == NumElements &&
"Bad vector length!");
return Result;
}
/// getIntVectorWithNumElements - Return any integer vector type that has
/// the specified number of elements.
static inline MVT getIntVectorWithNumElements(unsigned NumElts) {
switch (NumElts) {
default: return getVectorVT(i8, NumElts);
case 1: return v1i64;
case 2: return v2i32;
case 3: return v3i32;
case 4: return v4i16;
case 8: return v8i8;
case 16: return v16i8;
}
}
/// isSimple - Test if the given MVT is simple (as opposed to being
/// extended).
inline bool isSimple() const {
return V <= SimpleTypeMask;
}
/// isExtended - Test if the given MVT is extended (as opposed to
/// being simple).
inline bool isExtended() const {
return !isSimple();
}
/// isFloatingPoint - Return true if this is a FP, or a vector FP type.
inline bool isFloatingPoint() const {
uint32_t SVT = V & SimpleTypeMask;
return (SVT >= f32 && SVT <= ppcf128) || (SVT >= v2f32 && SVT <= v2f64);
}
/// isInteger - Return true if this is an integer, or a vector integer type.
inline bool isInteger() const {
uint32_t SVT = V & SimpleTypeMask;
return (SVT >= FIRST_INTEGER_VALUETYPE && SVT <= LAST_INTEGER_VALUETYPE) ||
(SVT >= v8i8 && SVT <= v2i64) || (SVT == iAny && (V & PrecisionMask));
}
/// isVector - Return true if this is a vector value type.
inline bool isVector() const {
return (V >= FIRST_VECTOR_VALUETYPE && V <= LAST_VECTOR_VALUETYPE) ||
(V & VectorMask);
}
/// is64BitVector - Return true if this is a 64-bit vector type.
inline bool is64BitVector() const {
return (V==v8i8 || V==v4i16 || V==v2i32 || V==v1i64 || V==v2f32 ||
(isExtended() && isVector() && getSizeInBits()==64));
}
/// is128BitVector - Return true if this is a 128-bit vector type.
inline bool is128BitVector() const {
return (V==v16i8 || V==v8i16 || V==v4i32 || V==v2i64 ||
V==v4f32 || V==v2f64 ||
(isExtended() && isVector() && getSizeInBits()==128));
}
/// isByteSized - Return true if the bit size is a multiple of 8.
inline bool isByteSized() const {
return (getSizeInBits() & 7) == 0;
}
/// isRound - Return true if the size is a power-of-two number of bytes.
inline bool isRound() const {
unsigned BitSize = getSizeInBits();
return BitSize >= 8 && !(BitSize & (BitSize - 1));
}
/// bitsGT - Return true if this has more bits than VT.
inline bool bitsGT(MVT VT) const {
return getSizeInBits() > VT.getSizeInBits();
}
/// bitsGE - Return true if this has no less bits than VT.
inline bool bitsGE(MVT VT) const {
return getSizeInBits() >= VT.getSizeInBits();
}
/// bitsLT - Return true if this has less bits than VT.
inline bool bitsLT(MVT VT) const {
return getSizeInBits() < VT.getSizeInBits();
}
/// bitsLE - Return true if this has no more bits than VT.
inline bool bitsLE(MVT VT) const {
return getSizeInBits() <= VT.getSizeInBits();
}
/// getSimpleVT - Return the SimpleValueType held in the specified
/// simple MVT.
inline SimpleValueType getSimpleVT() const {
assert(isSimple() && "Expected a SimpleValueType!");
return (SimpleValueType)V;
}
/// getVectorElementType - Given a vector type, return the type of
/// each element.
inline MVT getVectorElementType() const {
assert(isVector() && "Invalid vector type!");
switch (V) {
default: {
assert(isExtended() && "Unknown simple vector type!");
MVT VT;
VT.V = V & ElementMask;
return VT;
}
case v8i8 :
case v16i8: return i8;
case v4i16:
case v8i16: return i16;
case v2i32:
case v3i32:
case v4i32: return i32;
case v1i64:
case v2i64: return i64;
case v2f32:
case v3f32:
case v4f32: return f32;
case v2f64: return f64;
}
}
/// getVectorNumElements - Given a vector type, return the number of
/// elements it contains.
inline unsigned getVectorNumElements() const {
assert(isVector() && "Invalid vector type!");
switch (V) {
default:
assert(isExtended() && "Unknown simple vector type!");
return ((V & VectorMask) >> (32 - VectorBits)) - 1;
case v16i8: return 16;
case v8i8 :
case v8i16: return 8;
case v4i16:
case v4i32:
case v4f32: return 4;
case v3i32:
case v3f32: return 3;
case v2i32:
case v2i64:
case v2f32:
case v2f64: return 2;
case v1i64: return 1;
}
}
/// getSizeInBits - Return the size of the specified value type in bits.
inline unsigned getSizeInBits() const {
switch (V) {
default:
assert(isExtended() && "MVT has no known size!");
if (isVector())
return getVectorElementType().getSizeInBits()*getVectorNumElements();
if (isInteger())
return ((V & PrecisionMask) >> SimpleTypeBits) + 1;
assert(false && "Unknown value type!");
return 0;
case i1 : return 1;
case i8 : return 8;
case i16 : return 16;
case f32 :
case i32 : return 32;
case f64 :
case i64 :
case v8i8:
case v4i16:
case v2i32:
case v1i64:
case v2f32: return 64;
case f80 : return 80;
case v3i32:
case v3f32: return 96;
case f128:
case ppcf128:
case i128:
case v16i8:
case v8i16:
case v4i32:
case v2i64:
case v4f32:
case v2f64: return 128;
}
}
/// getStoreSizeInBits - Return the number of bits overwritten by a store
/// of the specified value type.
inline unsigned getStoreSizeInBits() const {
return (getSizeInBits() + 7)/8*8;
}
/// getRoundIntegerType - Rounds the bit-width of the given integer MVT up
/// to the nearest power of two (and at least to eight), and returns the
/// integer MVT with that number of bits.
inline MVT getRoundIntegerType() const {
assert(isInteger() && !isVector() && "Invalid integer type!");
unsigned BitWidth = getSizeInBits();
if (BitWidth <= 8)
return i8;
else
return getIntegerVT(1 << Log2_32_Ceil(BitWidth));
}
/// getIntegerVTBitMask - Return an integer with 1's every place there are
/// bits in the specified integer value type. FIXME: Should return an apint.
inline uint64_t getIntegerVTBitMask() const {
assert(isInteger() && !isVector() && "Only applies to int scalars!");
return ~uint64_t(0UL) >> (64-getSizeInBits());
}
/// getIntegerVTSignBit - Return an integer with a 1 in the position of the
/// sign bit for the specified integer value type. FIXME: Should return an
/// apint.
inline uint64_t getIntegerVTSignBit() const {
assert(isInteger() && !isVector() && "Only applies to int scalars!");
return uint64_t(1UL) << (getSizeInBits()-1);
}
/// getMVTString - This function returns value type as a string,
/// e.g. "i32".
std::string getMVTString() const;
/// getTypeForMVT - This method returns an LLVM type corresponding to the
/// specified MVT. For integer types, this returns an unsigned type. Note
/// that this will abort for types that cannot be represented.
const Type *getTypeForMVT() const;
/// getMVT - Return the value type corresponding to the specified type.
/// This returns all pointers as iPTR. If HandleUnknown is true, unknown
/// types are returned as Other, otherwise they are invalid.
static MVT getMVT(const Type *Ty, bool HandleUnknown = false);
/// getRawBits - Represent the type as a bunch of bits.
uint32_t getRawBits() const { return V; }
/// compareRawBits - A meaningless but well-behaved order, useful for
/// constructing containers.
struct compareRawBits {
bool operator()(MVT L, MVT R) const {
return L.getRawBits() < R.getRawBits();
}
};
};
} // End llvm namespace
#endif