blob: deb2fb9509b6036142e2a9c90f166b2050fa85cd [file] [log] [blame]
//===- ValueTracking.cpp - Walk computations to compute properties --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains routines that help analyze properties that chains of
// computations have.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/GuardUtils.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/Loads.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/Argument.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <array>
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>
using namespace llvm;
using namespace llvm::PatternMatch;
const unsigned MaxDepth = 6;
// Controls the number of uses of the value searched for possible
// dominating comparisons.
static cl::opt<unsigned> DomConditionsMaxUses("dom-conditions-max-uses",
cl::Hidden, cl::init(20));
/// Returns the bitwidth of the given scalar or pointer type. For vector types,
/// returns the element type's bitwidth.
static unsigned getBitWidth(Type *Ty, const DataLayout &DL) {
if (unsigned BitWidth = Ty->getScalarSizeInBits())
return BitWidth;
return DL.getIndexTypeSizeInBits(Ty);
}
namespace {
// Simplifying using an assume can only be done in a particular control-flow
// context (the context instruction provides that context). If an assume and
// the context instruction are not in the same block then the DT helps in
// figuring out if we can use it.
struct Query {
const DataLayout &DL;
AssumptionCache *AC;
const Instruction *CxtI;
const DominatorTree *DT;
// Unlike the other analyses, this may be a nullptr because not all clients
// provide it currently.
OptimizationRemarkEmitter *ORE;
/// Set of assumptions that should be excluded from further queries.
/// This is because of the potential for mutual recursion to cause
/// computeKnownBits to repeatedly visit the same assume intrinsic. The
/// classic case of this is assume(x = y), which will attempt to determine
/// bits in x from bits in y, which will attempt to determine bits in y from
/// bits in x, etc. Regarding the mutual recursion, computeKnownBits can call
/// isKnownNonZero, which calls computeKnownBits and isKnownToBeAPowerOfTwo
/// (all of which can call computeKnownBits), and so on.
std::array<const Value *, MaxDepth> Excluded;
/// If true, it is safe to use metadata during simplification.
InstrInfoQuery IIQ;
unsigned NumExcluded = 0;
Query(const DataLayout &DL, AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo,
OptimizationRemarkEmitter *ORE = nullptr)
: DL(DL), AC(AC), CxtI(CxtI), DT(DT), ORE(ORE), IIQ(UseInstrInfo) {}
Query(const Query &Q, const Value *NewExcl)
: DL(Q.DL), AC(Q.AC), CxtI(Q.CxtI), DT(Q.DT), ORE(Q.ORE), IIQ(Q.IIQ),
NumExcluded(Q.NumExcluded) {
Excluded = Q.Excluded;
Excluded[NumExcluded++] = NewExcl;
assert(NumExcluded <= Excluded.size());
}
bool isExcluded(const Value *Value) const {
if (NumExcluded == 0)
return false;
auto End = Excluded.begin() + NumExcluded;
return std::find(Excluded.begin(), End, Value) != End;
}
};
} // end anonymous namespace
// Given the provided Value and, potentially, a context instruction, return
// the preferred context instruction (if any).
static const Instruction *safeCxtI(const Value *V, const Instruction *CxtI) {
// If we've been provided with a context instruction, then use that (provided
// it has been inserted).
if (CxtI && CxtI->getParent())
return CxtI;
// If the value is really an already-inserted instruction, then use that.
CxtI = dyn_cast<Instruction>(V);
if (CxtI && CxtI->getParent())
return CxtI;
return nullptr;
}
static void computeKnownBits(const Value *V, KnownBits &Known,
unsigned Depth, const Query &Q);
void llvm::computeKnownBits(const Value *V, KnownBits &Known,
const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT,
OptimizationRemarkEmitter *ORE, bool UseInstrInfo) {
::computeKnownBits(V, Known, Depth,
Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
}
static KnownBits computeKnownBits(const Value *V, unsigned Depth,
const Query &Q);
KnownBits llvm::computeKnownBits(const Value *V, const DataLayout &DL,
unsigned Depth, AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT,
OptimizationRemarkEmitter *ORE,
bool UseInstrInfo) {
return ::computeKnownBits(
V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo, ORE));
}
bool llvm::haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
const DataLayout &DL, AssumptionCache *AC,
const Instruction *CxtI, const DominatorTree *DT,
bool UseInstrInfo) {
assert(LHS->getType() == RHS->getType() &&
"LHS and RHS should have the same type");
assert(LHS->getType()->isIntOrIntVectorTy() &&
"LHS and RHS should be integers");
// Look for an inverted mask: (X & ~M) op (Y & M).
Value *M;
if (match(LHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
match(RHS, m_c_And(m_Specific(M), m_Value())))
return true;
if (match(RHS, m_c_And(m_Not(m_Value(M)), m_Value())) &&
match(LHS, m_c_And(m_Specific(M), m_Value())))
return true;
IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
KnownBits LHSKnown(IT->getBitWidth());
KnownBits RHSKnown(IT->getBitWidth());
computeKnownBits(LHS, LHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
computeKnownBits(RHS, RHSKnown, DL, 0, AC, CxtI, DT, nullptr, UseInstrInfo);
return (LHSKnown.Zero | RHSKnown.Zero).isAllOnesValue();
}
bool llvm::isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI) {
for (const User *U : CxtI->users()) {
if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
if (IC->isEquality())
if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
if (C->isNullValue())
continue;
return false;
}
return true;
}
static bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
const Query &Q);
bool llvm::isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
bool OrZero, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
return ::isKnownToBeAPowerOfTwo(
V, OrZero, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
}
static bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q);
bool llvm::isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
return ::isKnownNonZero(V, Depth,
Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
}
bool llvm::isKnownNonNegative(const Value *V, const DataLayout &DL,
unsigned Depth, AssumptionCache *AC,
const Instruction *CxtI, const DominatorTree *DT,
bool UseInstrInfo) {
KnownBits Known =
computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
return Known.isNonNegative();
}
bool llvm::isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
if (auto *CI = dyn_cast<ConstantInt>(V))
return CI->getValue().isStrictlyPositive();
// TODO: We'd doing two recursive queries here. We should factor this such
// that only a single query is needed.
return isKnownNonNegative(V, DL, Depth, AC, CxtI, DT, UseInstrInfo) &&
isKnownNonZero(V, DL, Depth, AC, CxtI, DT, UseInstrInfo);
}
bool llvm::isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
KnownBits Known =
computeKnownBits(V, DL, Depth, AC, CxtI, DT, nullptr, UseInstrInfo);
return Known.isNegative();
}
static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q);
bool llvm::isKnownNonEqual(const Value *V1, const Value *V2,
const DataLayout &DL, AssumptionCache *AC,
const Instruction *CxtI, const DominatorTree *DT,
bool UseInstrInfo) {
return ::isKnownNonEqual(V1, V2,
Query(DL, AC, safeCxtI(V1, safeCxtI(V2, CxtI)), DT,
UseInstrInfo, /*ORE=*/nullptr));
}
static bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
const Query &Q);
bool llvm::MaskedValueIsZero(const Value *V, const APInt &Mask,
const DataLayout &DL, unsigned Depth,
AssumptionCache *AC, const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
return ::MaskedValueIsZero(
V, Mask, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
}
static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
const Query &Q);
unsigned llvm::ComputeNumSignBits(const Value *V, const DataLayout &DL,
unsigned Depth, AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
return ::ComputeNumSignBits(
V, Depth, Query(DL, AC, safeCxtI(V, CxtI), DT, UseInstrInfo));
}
static void computeKnownBitsAddSub(bool Add, const Value *Op0, const Value *Op1,
bool NSW,
KnownBits &KnownOut, KnownBits &Known2,
unsigned Depth, const Query &Q) {
unsigned BitWidth = KnownOut.getBitWidth();
// If an initial sequence of bits in the result is not needed, the
// corresponding bits in the operands are not needed.
KnownBits LHSKnown(BitWidth);
computeKnownBits(Op0, LHSKnown, Depth + 1, Q);
computeKnownBits(Op1, Known2, Depth + 1, Q);
KnownOut = KnownBits::computeForAddSub(Add, NSW, LHSKnown, Known2);
}
static void computeKnownBitsMul(const Value *Op0, const Value *Op1, bool NSW,
KnownBits &Known, KnownBits &Known2,
unsigned Depth, const Query &Q) {
unsigned BitWidth = Known.getBitWidth();
computeKnownBits(Op1, Known, Depth + 1, Q);
computeKnownBits(Op0, Known2, Depth + 1, Q);
bool isKnownNegative = false;
bool isKnownNonNegative = false;
// If the multiplication is known not to overflow, compute the sign bit.
if (NSW) {
if (Op0 == Op1) {
// The product of a number with itself is non-negative.
isKnownNonNegative = true;
} else {
bool isKnownNonNegativeOp1 = Known.isNonNegative();
bool isKnownNonNegativeOp0 = Known2.isNonNegative();
bool isKnownNegativeOp1 = Known.isNegative();
bool isKnownNegativeOp0 = Known2.isNegative();
// The product of two numbers with the same sign is non-negative.
isKnownNonNegative = (isKnownNegativeOp1 && isKnownNegativeOp0) ||
(isKnownNonNegativeOp1 && isKnownNonNegativeOp0);
// The product of a negative number and a non-negative number is either
// negative or zero.
if (!isKnownNonNegative)
isKnownNegative = (isKnownNegativeOp1 && isKnownNonNegativeOp0 &&
isKnownNonZero(Op0, Depth, Q)) ||
(isKnownNegativeOp0 && isKnownNonNegativeOp1 &&
isKnownNonZero(Op1, Depth, Q));
}
}
assert(!Known.hasConflict() && !Known2.hasConflict());
// Compute a conservative estimate for high known-0 bits.
unsigned LeadZ = std::max(Known.countMinLeadingZeros() +
Known2.countMinLeadingZeros(),
BitWidth) - BitWidth;
LeadZ = std::min(LeadZ, BitWidth);
// The result of the bottom bits of an integer multiply can be
// inferred by looking at the bottom bits of both operands and
// multiplying them together.
// We can infer at least the minimum number of known trailing bits
// of both operands. Depending on number of trailing zeros, we can
// infer more bits, because (a*b) <=> ((a/m) * (b/n)) * (m*n) assuming
// a and b are divisible by m and n respectively.
// We then calculate how many of those bits are inferrable and set
// the output. For example, the i8 mul:
// a = XXXX1100 (12)
// b = XXXX1110 (14)
// We know the bottom 3 bits are zero since the first can be divided by
// 4 and the second by 2, thus having ((12/4) * (14/2)) * (2*4).
// Applying the multiplication to the trimmed arguments gets:
// XX11 (3)
// X111 (7)
// -------
// XX11
// XX11
// XX11
// XX11
// -------
// XXXXX01
// Which allows us to infer the 2 LSBs. Since we're multiplying the result
// by 8, the bottom 3 bits will be 0, so we can infer a total of 5 bits.
// The proof for this can be described as:
// Pre: (C1 >= 0) && (C1 < (1 << C5)) && (C2 >= 0) && (C2 < (1 << C6)) &&
// (C7 == (1 << (umin(countTrailingZeros(C1), C5) +
// umin(countTrailingZeros(C2), C6) +
// umin(C5 - umin(countTrailingZeros(C1), C5),
// C6 - umin(countTrailingZeros(C2), C6)))) - 1)
// %aa = shl i8 %a, C5
// %bb = shl i8 %b, C6
// %aaa = or i8 %aa, C1
// %bbb = or i8 %bb, C2
// %mul = mul i8 %aaa, %bbb
// %mask = and i8 %mul, C7
// =>
// %mask = i8 ((C1*C2)&C7)
// Where C5, C6 describe the known bits of %a, %b
// C1, C2 describe the known bottom bits of %a, %b.
// C7 describes the mask of the known bits of the result.
APInt Bottom0 = Known.One;
APInt Bottom1 = Known2.One;
// How many times we'd be able to divide each argument by 2 (shr by 1).
// This gives us the number of trailing zeros on the multiplication result.
unsigned TrailBitsKnown0 = (Known.Zero | Known.One).countTrailingOnes();
unsigned TrailBitsKnown1 = (Known2.Zero | Known2.One).countTrailingOnes();
unsigned TrailZero0 = Known.countMinTrailingZeros();
unsigned TrailZero1 = Known2.countMinTrailingZeros();
unsigned TrailZ = TrailZero0 + TrailZero1;
// Figure out the fewest known-bits operand.
unsigned SmallestOperand = std::min(TrailBitsKnown0 - TrailZero0,
TrailBitsKnown1 - TrailZero1);
unsigned ResultBitsKnown = std::min(SmallestOperand + TrailZ, BitWidth);
APInt BottomKnown = Bottom0.getLoBits(TrailBitsKnown0) *
Bottom1.getLoBits(TrailBitsKnown1);
Known.resetAll();
Known.Zero.setHighBits(LeadZ);
Known.Zero |= (~BottomKnown).getLoBits(ResultBitsKnown);
Known.One |= BottomKnown.getLoBits(ResultBitsKnown);
// Only make use of no-wrap flags if we failed to compute the sign bit
// directly. This matters if the multiplication always overflows, in
// which case we prefer to follow the result of the direct computation,
// though as the program is invoking undefined behaviour we can choose
// whatever we like here.
if (isKnownNonNegative && !Known.isNegative())
Known.makeNonNegative();
else if (isKnownNegative && !Known.isNonNegative())
Known.makeNegative();
}
void llvm::computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
KnownBits &Known) {
unsigned BitWidth = Known.getBitWidth();
unsigned NumRanges = Ranges.getNumOperands() / 2;
assert(NumRanges >= 1);
Known.Zero.setAllBits();
Known.One.setAllBits();
for (unsigned i = 0; i < NumRanges; ++i) {
ConstantInt *Lower =
mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
ConstantInt *Upper =
mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
ConstantRange Range(Lower->getValue(), Upper->getValue());
// The first CommonPrefixBits of all values in Range are equal.
unsigned CommonPrefixBits =
(Range.getUnsignedMax() ^ Range.getUnsignedMin()).countLeadingZeros();
APInt Mask = APInt::getHighBitsSet(BitWidth, CommonPrefixBits);
Known.One &= Range.getUnsignedMax() & Mask;
Known.Zero &= ~Range.getUnsignedMax() & Mask;
}
}
static bool isEphemeralValueOf(const Instruction *I, const Value *E) {
SmallVector<const Value *, 16> WorkSet(1, I);
SmallPtrSet<const Value *, 32> Visited;
SmallPtrSet<const Value *, 16> EphValues;
// The instruction defining an assumption's condition itself is always
// considered ephemeral to that assumption (even if it has other
// non-ephemeral users). See r246696's test case for an example.
if (is_contained(I->operands(), E))
return true;
while (!WorkSet.empty()) {
const Value *V = WorkSet.pop_back_val();
if (!Visited.insert(V).second)
continue;
// If all uses of this value are ephemeral, then so is this value.
if (llvm::all_of(V->users(), [&](const User *U) {
return EphValues.count(U);
})) {
if (V == E)
return true;
if (V == I || isSafeToSpeculativelyExecute(V)) {
EphValues.insert(V);
if (const User *U = dyn_cast<User>(V))
for (User::const_op_iterator J = U->op_begin(), JE = U->op_end();
J != JE; ++J)
WorkSet.push_back(*J);
}
}
}
return false;
}
// Is this an intrinsic that cannot be speculated but also cannot trap?
bool llvm::isAssumeLikeIntrinsic(const Instruction *I) {
if (const CallInst *CI = dyn_cast<CallInst>(I))
if (Function *F = CI->getCalledFunction())
switch (F->getIntrinsicID()) {
default: break;
// FIXME: This list is repeated from NoTTI::getIntrinsicCost.
case Intrinsic::assume:
case Intrinsic::sideeffect:
case Intrinsic::dbg_declare:
case Intrinsic::dbg_value:
case Intrinsic::dbg_label:
case Intrinsic::invariant_start:
case Intrinsic::invariant_end:
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
case Intrinsic::objectsize:
case Intrinsic::ptr_annotation:
case Intrinsic::var_annotation:
return true;
}
return false;
}
bool llvm::isValidAssumeForContext(const Instruction *Inv,
const Instruction *CxtI,
const DominatorTree *DT) {
// There are two restrictions on the use of an assume:
// 1. The assume must dominate the context (or the control flow must
// reach the assume whenever it reaches the context).
// 2. The context must not be in the assume's set of ephemeral values
// (otherwise we will use the assume to prove that the condition
// feeding the assume is trivially true, thus causing the removal of
// the assume).
if (DT) {
if (DT->dominates(Inv, CxtI))
return true;
} else if (Inv->getParent() == CxtI->getParent()->getSinglePredecessor()) {
// We don't have a DT, but this trivially dominates.
return true;
}
// With or without a DT, the only remaining case we will check is if the
// instructions are in the same BB. Give up if that is not the case.
if (Inv->getParent() != CxtI->getParent())
return false;
// If we have a dom tree, then we now know that the assume doesn't dominate
// the other instruction. If we don't have a dom tree then we can check if
// the assume is first in the BB.
if (!DT) {
// Search forward from the assume until we reach the context (or the end
// of the block); the common case is that the assume will come first.
for (auto I = std::next(BasicBlock::const_iterator(Inv)),
IE = Inv->getParent()->end(); I != IE; ++I)
if (&*I == CxtI)
return true;
}
// The context comes first, but they're both in the same block. Make sure
// there is nothing in between that might interrupt the control flow.
for (BasicBlock::const_iterator I =
std::next(BasicBlock::const_iterator(CxtI)), IE(Inv);
I != IE; ++I)
if (!isSafeToSpeculativelyExecute(&*I) && !isAssumeLikeIntrinsic(&*I))
return false;
return !isEphemeralValueOf(Inv, CxtI);
}
static void computeKnownBitsFromAssume(const Value *V, KnownBits &Known,
unsigned Depth, const Query &Q) {
// Use of assumptions is context-sensitive. If we don't have a context, we
// cannot use them!
if (!Q.AC || !Q.CxtI)
return;
unsigned BitWidth = Known.getBitWidth();
// Note that the patterns below need to be kept in sync with the code
// in AssumptionCache::updateAffectedValues.
for (auto &AssumeVH : Q.AC->assumptionsFor(V)) {
if (!AssumeVH)
continue;
CallInst *I = cast<CallInst>(AssumeVH);
assert(I->getParent()->getParent() == Q.CxtI->getParent()->getParent() &&
"Got assumption for the wrong function!");
if (Q.isExcluded(I))
continue;
// Warning: This loop can end up being somewhat performance sensitive.
// We're running this loop for once for each value queried resulting in a
// runtime of ~O(#assumes * #values).
assert(I->getCalledFunction()->getIntrinsicID() == Intrinsic::assume &&
"must be an assume intrinsic");
Value *Arg = I->getArgOperand(0);
if (Arg == V && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
assert(BitWidth == 1 && "assume operand is not i1?");
Known.setAllOnes();
return;
}
if (match(Arg, m_Not(m_Specific(V))) &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
assert(BitWidth == 1 && "assume operand is not i1?");
Known.setAllZero();
return;
}
// The remaining tests are all recursive, so bail out if we hit the limit.
if (Depth == MaxDepth)
continue;
Value *A, *B;
auto m_V = m_CombineOr(m_Specific(V),
m_CombineOr(m_PtrToInt(m_Specific(V)),
m_BitCast(m_Specific(V))));
CmpInst::Predicate Pred;
uint64_t C;
// assume(v = a)
if (match(Arg, m_c_ICmp(Pred, m_V, m_Value(A))) &&
Pred == ICmpInst::ICMP_EQ && isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown(BitWidth);
computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
Known.Zero |= RHSKnown.Zero;
Known.One |= RHSKnown.One;
// assume(v & b = a)
} else if (match(Arg,
m_c_ICmp(Pred, m_c_And(m_V, m_Value(B)), m_Value(A))) &&
Pred == ICmpInst::ICMP_EQ &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown(BitWidth);
computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
KnownBits MaskKnown(BitWidth);
computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
// For those bits in the mask that are known to be one, we can propagate
// known bits from the RHS to V.
Known.Zero |= RHSKnown.Zero & MaskKnown.One;
Known.One |= RHSKnown.One & MaskKnown.One;
// assume(~(v & b) = a)
} else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_And(m_V, m_Value(B))),
m_Value(A))) &&
Pred == ICmpInst::ICMP_EQ &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown(BitWidth);
computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
KnownBits MaskKnown(BitWidth);
computeKnownBits(B, MaskKnown, Depth+1, Query(Q, I));
// For those bits in the mask that are known to be one, we can propagate
// inverted known bits from the RHS to V.
Known.Zero |= RHSKnown.One & MaskKnown.One;
Known.One |= RHSKnown.Zero & MaskKnown.One;
// assume(v | b = a)
} else if (match(Arg,
m_c_ICmp(Pred, m_c_Or(m_V, m_Value(B)), m_Value(A))) &&
Pred == ICmpInst::ICMP_EQ &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown(BitWidth);
computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
KnownBits BKnown(BitWidth);
computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
// For those bits in B that are known to be zero, we can propagate known
// bits from the RHS to V.
Known.Zero |= RHSKnown.Zero & BKnown.Zero;
Known.One |= RHSKnown.One & BKnown.Zero;
// assume(~(v | b) = a)
} else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Or(m_V, m_Value(B))),
m_Value(A))) &&
Pred == ICmpInst::ICMP_EQ &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown(BitWidth);
computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
KnownBits BKnown(BitWidth);
computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
// For those bits in B that are known to be zero, we can propagate
// inverted known bits from the RHS to V.
Known.Zero |= RHSKnown.One & BKnown.Zero;
Known.One |= RHSKnown.Zero & BKnown.Zero;
// assume(v ^ b = a)
} else if (match(Arg,
m_c_ICmp(Pred, m_c_Xor(m_V, m_Value(B)), m_Value(A))) &&
Pred == ICmpInst::ICMP_EQ &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown(BitWidth);
computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
KnownBits BKnown(BitWidth);
computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
// For those bits in B that are known to be zero, we can propagate known
// bits from the RHS to V. For those bits in B that are known to be one,
// we can propagate inverted known bits from the RHS to V.
Known.Zero |= RHSKnown.Zero & BKnown.Zero;
Known.One |= RHSKnown.One & BKnown.Zero;
Known.Zero |= RHSKnown.One & BKnown.One;
Known.One |= RHSKnown.Zero & BKnown.One;
// assume(~(v ^ b) = a)
} else if (match(Arg, m_c_ICmp(Pred, m_Not(m_c_Xor(m_V, m_Value(B))),
m_Value(A))) &&
Pred == ICmpInst::ICMP_EQ &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown(BitWidth);
computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
KnownBits BKnown(BitWidth);
computeKnownBits(B, BKnown, Depth+1, Query(Q, I));
// For those bits in B that are known to be zero, we can propagate
// inverted known bits from the RHS to V. For those bits in B that are
// known to be one, we can propagate known bits from the RHS to V.
Known.Zero |= RHSKnown.One & BKnown.Zero;
Known.One |= RHSKnown.Zero & BKnown.Zero;
Known.Zero |= RHSKnown.Zero & BKnown.One;
Known.One |= RHSKnown.One & BKnown.One;
// assume(v << c = a)
} else if (match(Arg, m_c_ICmp(Pred, m_Shl(m_V, m_ConstantInt(C)),
m_Value(A))) &&
Pred == ICmpInst::ICMP_EQ &&
isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
C < BitWidth) {
KnownBits RHSKnown(BitWidth);
computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
// For those bits in RHS that are known, we can propagate them to known
// bits in V shifted to the right by C.
RHSKnown.Zero.lshrInPlace(C);
Known.Zero |= RHSKnown.Zero;
RHSKnown.One.lshrInPlace(C);
Known.One |= RHSKnown.One;
// assume(~(v << c) = a)
} else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shl(m_V, m_ConstantInt(C))),
m_Value(A))) &&
Pred == ICmpInst::ICMP_EQ &&
isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
C < BitWidth) {
KnownBits RHSKnown(BitWidth);
computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
// For those bits in RHS that are known, we can propagate them inverted
// to known bits in V shifted to the right by C.
RHSKnown.One.lshrInPlace(C);
Known.Zero |= RHSKnown.One;
RHSKnown.Zero.lshrInPlace(C);
Known.One |= RHSKnown.Zero;
// assume(v >> c = a)
} else if (match(Arg,
m_c_ICmp(Pred, m_Shr(m_V, m_ConstantInt(C)),
m_Value(A))) &&
Pred == ICmpInst::ICMP_EQ &&
isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
C < BitWidth) {
KnownBits RHSKnown(BitWidth);
computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
// For those bits in RHS that are known, we can propagate them to known
// bits in V shifted to the right by C.
Known.Zero |= RHSKnown.Zero << C;
Known.One |= RHSKnown.One << C;
// assume(~(v >> c) = a)
} else if (match(Arg, m_c_ICmp(Pred, m_Not(m_Shr(m_V, m_ConstantInt(C))),
m_Value(A))) &&
Pred == ICmpInst::ICMP_EQ &&
isValidAssumeForContext(I, Q.CxtI, Q.DT) &&
C < BitWidth) {
KnownBits RHSKnown(BitWidth);
computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
// For those bits in RHS that are known, we can propagate them inverted
// to known bits in V shifted to the right by C.
Known.Zero |= RHSKnown.One << C;
Known.One |= RHSKnown.Zero << C;
// assume(v >=_s c) where c is non-negative
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Pred == ICmpInst::ICMP_SGE &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown(BitWidth);
computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
if (RHSKnown.isNonNegative()) {
// We know that the sign bit is zero.
Known.makeNonNegative();
}
// assume(v >_s c) where c is at least -1.
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Pred == ICmpInst::ICMP_SGT &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown(BitWidth);
computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
if (RHSKnown.isAllOnes() || RHSKnown.isNonNegative()) {
// We know that the sign bit is zero.
Known.makeNonNegative();
}
// assume(v <=_s c) where c is negative
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Pred == ICmpInst::ICMP_SLE &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown(BitWidth);
computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
if (RHSKnown.isNegative()) {
// We know that the sign bit is one.
Known.makeNegative();
}
// assume(v <_s c) where c is non-positive
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Pred == ICmpInst::ICMP_SLT &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown(BitWidth);
computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
if (RHSKnown.isZero() || RHSKnown.isNegative()) {
// We know that the sign bit is one.
Known.makeNegative();
}
// assume(v <=_u c)
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Pred == ICmpInst::ICMP_ULE &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown(BitWidth);
computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
// Whatever high bits in c are zero are known to be zero.
Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
// assume(v <_u c)
} else if (match(Arg, m_ICmp(Pred, m_V, m_Value(A))) &&
Pred == ICmpInst::ICMP_ULT &&
isValidAssumeForContext(I, Q.CxtI, Q.DT)) {
KnownBits RHSKnown(BitWidth);
computeKnownBits(A, RHSKnown, Depth+1, Query(Q, I));
// If the RHS is known zero, then this assumption must be wrong (nothing
// is unsigned less than zero). Signal a conflict and get out of here.
if (RHSKnown.isZero()) {
Known.Zero.setAllBits();
Known.One.setAllBits();
break;
}
// Whatever high bits in c are zero are known to be zero (if c is a power
// of 2, then one more).
if (isKnownToBeAPowerOfTwo(A, false, Depth + 1, Query(Q, I)))
Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros() + 1);
else
Known.Zero.setHighBits(RHSKnown.countMinLeadingZeros());
}
}
// If assumptions conflict with each other or previous known bits, then we
// have a logical fallacy. It's possible that the assumption is not reachable,
// so this isn't a real bug. On the other hand, the program may have undefined
// behavior, or we might have a bug in the compiler. We can't assert/crash, so
// clear out the known bits, try to warn the user, and hope for the best.
if (Known.Zero.intersects(Known.One)) {
Known.resetAll();
if (Q.ORE)
Q.ORE->emit([&]() {
auto *CxtI = const_cast<Instruction *>(Q.CxtI);
return OptimizationRemarkAnalysis("value-tracking", "BadAssumption",
CxtI)
<< "Detected conflicting code assumptions. Program may "
"have undefined behavior, or compiler may have "
"internal error.";
});
}
}
/// Compute known bits from a shift operator, including those with a
/// non-constant shift amount. Known is the output of this function. Known2 is a
/// pre-allocated temporary with the same bit width as Known. KZF and KOF are
/// operator-specific functions that, given the known-zero or known-one bits
/// respectively, and a shift amount, compute the implied known-zero or
/// known-one bits of the shift operator's result respectively for that shift
/// amount. The results from calling KZF and KOF are conservatively combined for
/// all permitted shift amounts.
static void computeKnownBitsFromShiftOperator(
const Operator *I, KnownBits &Known, KnownBits &Known2,
unsigned Depth, const Query &Q,
function_ref<APInt(const APInt &, unsigned)> KZF,
function_ref<APInt(const APInt &, unsigned)> KOF) {
unsigned BitWidth = Known.getBitWidth();
if (auto *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
unsigned ShiftAmt = SA->getLimitedValue(BitWidth-1);
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Known.Zero = KZF(Known.Zero, ShiftAmt);
Known.One = KOF(Known.One, ShiftAmt);
// If the known bits conflict, this must be an overflowing left shift, so
// the shift result is poison. We can return anything we want. Choose 0 for
// the best folding opportunity.
if (Known.hasConflict())
Known.setAllZero();
return;
}
computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
// If the shift amount could be greater than or equal to the bit-width of the
// LHS, the value could be poison, but bail out because the check below is
// expensive. TODO: Should we just carry on?
if ((~Known.Zero).uge(BitWidth)) {
Known.resetAll();
return;
}
// Note: We cannot use Known.Zero.getLimitedValue() here, because if
// BitWidth > 64 and any upper bits are known, we'll end up returning the
// limit value (which implies all bits are known).
uint64_t ShiftAmtKZ = Known.Zero.zextOrTrunc(64).getZExtValue();
uint64_t ShiftAmtKO = Known.One.zextOrTrunc(64).getZExtValue();
// It would be more-clearly correct to use the two temporaries for this
// calculation. Reusing the APInts here to prevent unnecessary allocations.
Known.resetAll();
// If we know the shifter operand is nonzero, we can sometimes infer more
// known bits. However this is expensive to compute, so be lazy about it and
// only compute it when absolutely necessary.
Optional<bool> ShifterOperandIsNonZero;
// Early exit if we can't constrain any well-defined shift amount.
if (!(ShiftAmtKZ & (PowerOf2Ceil(BitWidth) - 1)) &&
!(ShiftAmtKO & (PowerOf2Ceil(BitWidth) - 1))) {
ShifterOperandIsNonZero = isKnownNonZero(I->getOperand(1), Depth + 1, Q);
if (!*ShifterOperandIsNonZero)
return;
}
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Known.Zero.setAllBits();
Known.One.setAllBits();
for (unsigned ShiftAmt = 0; ShiftAmt < BitWidth; ++ShiftAmt) {
// Combine the shifted known input bits only for those shift amounts
// compatible with its known constraints.
if ((ShiftAmt & ~ShiftAmtKZ) != ShiftAmt)
continue;
if ((ShiftAmt | ShiftAmtKO) != ShiftAmt)
continue;
// If we know the shifter is nonzero, we may be able to infer more known
// bits. This check is sunk down as far as possible to avoid the expensive
// call to isKnownNonZero if the cheaper checks above fail.
if (ShiftAmt == 0) {
if (!ShifterOperandIsNonZero.hasValue())
ShifterOperandIsNonZero =
isKnownNonZero(I->getOperand(1), Depth + 1, Q);
if (*ShifterOperandIsNonZero)
continue;
}
Known.Zero &= KZF(Known2.Zero, ShiftAmt);
Known.One &= KOF(Known2.One, ShiftAmt);
}
// If the known bits conflict, the result is poison. Return a 0 and hope the
// caller can further optimize that.
if (Known.hasConflict())
Known.setAllZero();
}
static void computeKnownBitsFromOperator(const Operator *I, KnownBits &Known,
unsigned Depth, const Query &Q) {
unsigned BitWidth = Known.getBitWidth();
KnownBits Known2(Known);
switch (I->getOpcode()) {
default: break;
case Instruction::Load:
if (MDNode *MD =
Q.IIQ.getMetadata(cast<LoadInst>(I), LLVMContext::MD_range))
computeKnownBitsFromRangeMetadata(*MD, Known);
break;
case Instruction::And: {
// If either the LHS or the RHS are Zero, the result is zero.
computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
// Output known-1 bits are only known if set in both the LHS & RHS.
Known.One &= Known2.One;
// Output known-0 are known to be clear if zero in either the LHS | RHS.
Known.Zero |= Known2.Zero;
// and(x, add (x, -1)) is a common idiom that always clears the low bit;
// here we handle the more general case of adding any odd number by
// matching the form add(x, add(x, y)) where y is odd.
// TODO: This could be generalized to clearing any bit set in y where the
// following bit is known to be unset in y.
Value *X = nullptr, *Y = nullptr;
if (!Known.Zero[0] && !Known.One[0] &&
match(I, m_c_BinOp(m_Value(X), m_Add(m_Deferred(X), m_Value(Y))))) {
Known2.resetAll();
computeKnownBits(Y, Known2, Depth + 1, Q);
if (Known2.countMinTrailingOnes() > 0)
Known.Zero.setBit(0);
}
break;
}
case Instruction::Or:
computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
// Output known-0 bits are only known if clear in both the LHS & RHS.
Known.Zero &= Known2.Zero;
// Output known-1 are known to be set if set in either the LHS | RHS.
Known.One |= Known2.One;
break;
case Instruction::Xor: {
computeKnownBits(I->getOperand(1), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
// Output known-0 bits are known if clear or set in both the LHS & RHS.
APInt KnownZeroOut = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
Known.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
Known.Zero = std::move(KnownZeroOut);
break;
}
case Instruction::Mul: {
bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
computeKnownBitsMul(I->getOperand(0), I->getOperand(1), NSW, Known,
Known2, Depth, Q);
break;
}
case Instruction::UDiv: {
// For the purposes of computing leading zeros we can conservatively
// treat a udiv as a logical right shift by the power of 2 known to
// be less than the denominator.
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
unsigned LeadZ = Known2.countMinLeadingZeros();
Known2.resetAll();
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
unsigned RHSMaxLeadingZeros = Known2.countMaxLeadingZeros();
if (RHSMaxLeadingZeros != BitWidth)
LeadZ = std::min(BitWidth, LeadZ + BitWidth - RHSMaxLeadingZeros - 1);
Known.Zero.setHighBits(LeadZ);
break;
}
case Instruction::Select: {
const Value *LHS, *RHS;
SelectPatternFlavor SPF = matchSelectPattern(I, LHS, RHS).Flavor;
if (SelectPatternResult::isMinOrMax(SPF)) {
computeKnownBits(RHS, Known, Depth + 1, Q);
computeKnownBits(LHS, Known2, Depth + 1, Q);
} else {
computeKnownBits(I->getOperand(2), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
}
unsigned MaxHighOnes = 0;
unsigned MaxHighZeros = 0;
if (SPF == SPF_SMAX) {
// If both sides are negative, the result is negative.
if (Known.isNegative() && Known2.isNegative())
// We can derive a lower bound on the result by taking the max of the
// leading one bits.
MaxHighOnes =
std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
// If either side is non-negative, the result is non-negative.
else if (Known.isNonNegative() || Known2.isNonNegative())
MaxHighZeros = 1;
} else if (SPF == SPF_SMIN) {
// If both sides are non-negative, the result is non-negative.
if (Known.isNonNegative() && Known2.isNonNegative())
// We can derive an upper bound on the result by taking the max of the
// leading zero bits.
MaxHighZeros = std::max(Known.countMinLeadingZeros(),
Known2.countMinLeadingZeros());
// If either side is negative, the result is negative.
else if (Known.isNegative() || Known2.isNegative())
MaxHighOnes = 1;
} else if (SPF == SPF_UMAX) {
// We can derive a lower bound on the result by taking the max of the
// leading one bits.
MaxHighOnes =
std::max(Known.countMinLeadingOnes(), Known2.countMinLeadingOnes());
} else if (SPF == SPF_UMIN) {
// We can derive an upper bound on the result by taking the max of the
// leading zero bits.
MaxHighZeros =
std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
} else if (SPF == SPF_ABS) {
// RHS from matchSelectPattern returns the negation part of abs pattern.
// If the negate has an NSW flag we can assume the sign bit of the result
// will be 0 because that makes abs(INT_MIN) undefined.
if (Q.IIQ.hasNoSignedWrap(cast<Instruction>(RHS)))
MaxHighZeros = 1;
}
// Only known if known in both the LHS and RHS.
Known.One &= Known2.One;
Known.Zero &= Known2.Zero;
if (MaxHighOnes > 0)
Known.One.setHighBits(MaxHighOnes);
if (MaxHighZeros > 0)
Known.Zero.setHighBits(MaxHighZeros);
break;
}
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::SIToFP:
case Instruction::UIToFP:
break; // Can't work with floating point.
case Instruction::PtrToInt:
case Instruction::IntToPtr:
// Fall through and handle them the same as zext/trunc.
LLVM_FALLTHROUGH;
case Instruction::ZExt:
case Instruction::Trunc: {
Type *SrcTy = I->getOperand(0)->getType();
unsigned SrcBitWidth;
// Note that we handle pointer operands here because of inttoptr/ptrtoint
// which fall through here.
Type *ScalarTy = SrcTy->getScalarType();
SrcBitWidth = ScalarTy->isPointerTy() ?
Q.DL.getIndexTypeSizeInBits(ScalarTy) :
Q.DL.getTypeSizeInBits(ScalarTy);
assert(SrcBitWidth && "SrcBitWidth can't be zero");
Known = Known.zextOrTrunc(SrcBitWidth);
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Known = Known.zextOrTrunc(BitWidth);
// Any top bits are known to be zero.
if (BitWidth > SrcBitWidth)
Known.Zero.setBitsFrom(SrcBitWidth);
break;
}
case Instruction::BitCast: {
Type *SrcTy = I->getOperand(0)->getType();
if (SrcTy->isIntOrPtrTy() &&
// TODO: For now, not handling conversions like:
// (bitcast i64 %x to <2 x i32>)
!I->getType()->isVectorTy()) {
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
break;
}
break;
}
case Instruction::SExt: {
// Compute the bits in the result that are not present in the input.
unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Known = Known.trunc(SrcBitWidth);
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
// If the sign bit of the input is known set or clear, then we know the
// top bits of the result.
Known = Known.sext(BitWidth);
break;
}
case Instruction::Shl: {
// (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
auto KZF = [NSW](const APInt &KnownZero, unsigned ShiftAmt) {
APInt KZResult = KnownZero << ShiftAmt;
KZResult.setLowBits(ShiftAmt); // Low bits known 0.
// If this shift has "nsw" keyword, then the result is either a poison
// value or has the same sign bit as the first operand.
if (NSW && KnownZero.isSignBitSet())
KZResult.setSignBit();
return KZResult;
};
auto KOF = [NSW](const APInt &KnownOne, unsigned ShiftAmt) {
APInt KOResult = KnownOne << ShiftAmt;
if (NSW && KnownOne.isSignBitSet())
KOResult.setSignBit();
return KOResult;
};
computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
break;
}
case Instruction::LShr: {
// (lshr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
APInt KZResult = KnownZero.lshr(ShiftAmt);
// High bits known zero.
KZResult.setHighBits(ShiftAmt);
return KZResult;
};
auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
return KnownOne.lshr(ShiftAmt);
};
computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
break;
}
case Instruction::AShr: {
// (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
auto KZF = [](const APInt &KnownZero, unsigned ShiftAmt) {
return KnownZero.ashr(ShiftAmt);
};
auto KOF = [](const APInt &KnownOne, unsigned ShiftAmt) {
return KnownOne.ashr(ShiftAmt);
};
computeKnownBitsFromShiftOperator(I, Known, Known2, Depth, Q, KZF, KOF);
break;
}
case Instruction::Sub: {
bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
computeKnownBitsAddSub(false, I->getOperand(0), I->getOperand(1), NSW,
Known, Known2, Depth, Q);
break;
}
case Instruction::Add: {
bool NSW = Q.IIQ.hasNoSignedWrap(cast<OverflowingBinaryOperator>(I));
computeKnownBitsAddSub(true, I->getOperand(0), I->getOperand(1), NSW,
Known, Known2, Depth, Q);
break;
}
case Instruction::SRem:
if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
APInt RA = Rem->getValue().abs();
if (RA.isPowerOf2()) {
APInt LowBits = RA - 1;
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
// The low bits of the first operand are unchanged by the srem.
Known.Zero = Known2.Zero & LowBits;
Known.One = Known2.One & LowBits;
// If the first operand is non-negative or has all low bits zero, then
// the upper bits are all zero.
if (Known2.isNonNegative() || LowBits.isSubsetOf(Known2.Zero))
Known.Zero |= ~LowBits;
// If the first operand is negative and not all low bits are zero, then
// the upper bits are all one.
if (Known2.isNegative() && LowBits.intersects(Known2.One))
Known.One |= ~LowBits;
assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
break;
}
}
// The sign bit is the LHS's sign bit, except when the result of the
// remainder is zero.
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
// If it's known zero, our sign bit is also zero.
if (Known2.isNonNegative())
Known.makeNonNegative();
break;
case Instruction::URem: {
if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
const APInt &RA = Rem->getValue();
if (RA.isPowerOf2()) {
APInt LowBits = (RA - 1);
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
Known.Zero |= ~LowBits;
Known.One &= LowBits;
break;
}
}
// Since the result is less than or equal to either operand, any leading
// zero bits in either operand must also exist in the result.
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known2, Depth + 1, Q);
unsigned Leaders =
std::max(Known.countMinLeadingZeros(), Known2.countMinLeadingZeros());
Known.resetAll();
Known.Zero.setHighBits(Leaders);
break;
}
case Instruction::Alloca: {
const AllocaInst *AI = cast<AllocaInst>(I);
unsigned Align = AI->getAlignment();
if (Align == 0)
Align = Q.DL.getABITypeAlignment(AI->getAllocatedType());
if (Align > 0)
Known.Zero.setLowBits(countTrailingZeros(Align));
break;
}
case Instruction::GetElementPtr: {
// Analyze all of the subscripts of this getelementptr instruction
// to determine if we can prove known low zero bits.
KnownBits LocalKnown(BitWidth);
computeKnownBits(I->getOperand(0), LocalKnown, Depth + 1, Q);
unsigned TrailZ = LocalKnown.countMinTrailingZeros();
gep_type_iterator GTI = gep_type_begin(I);
for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
Value *Index = I->getOperand(i);
if (StructType *STy = GTI.getStructTypeOrNull()) {
// Handle struct member offset arithmetic.
// Handle case when index is vector zeroinitializer
Constant *CIndex = cast<Constant>(Index);
if (CIndex->isZeroValue())
continue;
if (CIndex->getType()->isVectorTy())
Index = CIndex->getSplatValue();
unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
const StructLayout *SL = Q.DL.getStructLayout(STy);
uint64_t Offset = SL->getElementOffset(Idx);
TrailZ = std::min<unsigned>(TrailZ,
countTrailingZeros(Offset));
} else {
// Handle array index arithmetic.
Type *IndexedTy = GTI.getIndexedType();
if (!IndexedTy->isSized()) {
TrailZ = 0;
break;
}
unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
uint64_t TypeSize = Q.DL.getTypeAllocSize(IndexedTy);
LocalKnown.Zero = LocalKnown.One = APInt(GEPOpiBits, 0);
computeKnownBits(Index, LocalKnown, Depth + 1, Q);
TrailZ = std::min(TrailZ,
unsigned(countTrailingZeros(TypeSize) +
LocalKnown.countMinTrailingZeros()));
}
}
Known.Zero.setLowBits(TrailZ);
break;
}
case Instruction::PHI: {
const PHINode *P = cast<PHINode>(I);
// Handle the case of a simple two-predecessor recurrence PHI.
// There's a lot more that could theoretically be done here, but
// this is sufficient to catch some interesting cases.
if (P->getNumIncomingValues() == 2) {
for (unsigned i = 0; i != 2; ++i) {
Value *L = P->getIncomingValue(i);
Value *R = P->getIncomingValue(!i);
Operator *LU = dyn_cast<Operator>(L);
if (!LU)
continue;
unsigned Opcode = LU->getOpcode();
// Check for operations that have the property that if
// both their operands have low zero bits, the result
// will have low zero bits.
if (Opcode == Instruction::Add ||
Opcode == Instruction::Sub ||
Opcode == Instruction::And ||
Opcode == Instruction::Or ||
Opcode == Instruction::Mul) {
Value *LL = LU->getOperand(0);
Value *LR = LU->getOperand(1);
// Find a recurrence.
if (LL == I)
L = LR;
else if (LR == I)
L = LL;
else
break;
// Ok, we have a PHI of the form L op= R. Check for low
// zero bits.
computeKnownBits(R, Known2, Depth + 1, Q);
// We need to take the minimum number of known bits
KnownBits Known3(Known);
computeKnownBits(L, Known3, Depth + 1, Q);
Known.Zero.setLowBits(std::min(Known2.countMinTrailingZeros(),
Known3.countMinTrailingZeros()));
auto *OverflowOp = dyn_cast<OverflowingBinaryOperator>(LU);
if (OverflowOp && Q.IIQ.hasNoSignedWrap(OverflowOp)) {
// If initial value of recurrence is nonnegative, and we are adding
// a nonnegative number with nsw, the result can only be nonnegative
// or poison value regardless of the number of times we execute the
// add in phi recurrence. If initial value is negative and we are
// adding a negative number with nsw, the result can only be
// negative or poison value. Similar arguments apply to sub and mul.
//
// (add non-negative, non-negative) --> non-negative
// (add negative, negative) --> negative
if (Opcode == Instruction::Add) {
if (Known2.isNonNegative() && Known3.isNonNegative())
Known.makeNonNegative();
else if (Known2.isNegative() && Known3.isNegative())
Known.makeNegative();
}
// (sub nsw non-negative, negative) --> non-negative
// (sub nsw negative, non-negative) --> negative
else if (Opcode == Instruction::Sub && LL == I) {
if (Known2.isNonNegative() && Known3.isNegative())
Known.makeNonNegative();
else if (Known2.isNegative() && Known3.isNonNegative())
Known.makeNegative();
}
// (mul nsw non-negative, non-negative) --> non-negative
else if (Opcode == Instruction::Mul && Known2.isNonNegative() &&
Known3.isNonNegative())
Known.makeNonNegative();
}
break;
}
}
}
// Unreachable blocks may have zero-operand PHI nodes.
if (P->getNumIncomingValues() == 0)
break;
// Otherwise take the unions of the known bit sets of the operands,
// taking conservative care to avoid excessive recursion.
if (Depth < MaxDepth - 1 && !Known.Zero && !Known.One) {
// Skip if every incoming value references to ourself.
if (dyn_cast_or_null<UndefValue>(P->hasConstantValue()))
break;
Known.Zero.setAllBits();
Known.One.setAllBits();
for (Value *IncValue : P->incoming_values()) {
// Skip direct self references.
if (IncValue == P) continue;
Known2 = KnownBits(BitWidth);
// Recurse, but cap the recursion to one level, because we don't
// want to waste time spinning around in loops.
computeKnownBits(IncValue, Known2, MaxDepth - 1, Q);
Known.Zero &= Known2.Zero;
Known.One &= Known2.One;
// If all bits have been ruled out, there's no need to check
// more operands.
if (!Known.Zero && !Known.One)
break;
}
}
break;
}
case Instruction::Call:
case Instruction::Invoke:
// If range metadata is attached to this call, set known bits from that,
// and then intersect with known bits based on other properties of the
// function.
if (MDNode *MD =
Q.IIQ.getMetadata(cast<Instruction>(I), LLVMContext::MD_range))
computeKnownBitsFromRangeMetadata(*MD, Known);
if (const Value *RV = ImmutableCallSite(I).getReturnedArgOperand()) {
computeKnownBits(RV, Known2, Depth + 1, Q);
Known.Zero |= Known2.Zero;
Known.One |= Known2.One;
}
if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::bitreverse:
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Known.Zero |= Known2.Zero.reverseBits();
Known.One |= Known2.One.reverseBits();
break;
case Intrinsic::bswap:
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
Known.Zero |= Known2.Zero.byteSwap();
Known.One |= Known2.One.byteSwap();
break;
case Intrinsic::ctlz: {
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
// If we have a known 1, its position is our upper bound.
unsigned PossibleLZ = Known2.One.countLeadingZeros();
// If this call is undefined for 0, the result will be less than 2^n.
if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
PossibleLZ = std::min(PossibleLZ, BitWidth - 1);
unsigned LowBits = Log2_32(PossibleLZ)+1;
Known.Zero.setBitsFrom(LowBits);
break;
}
case Intrinsic::cttz: {
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
// If we have a known 1, its position is our upper bound.
unsigned PossibleTZ = Known2.One.countTrailingZeros();
// If this call is undefined for 0, the result will be less than 2^n.
if (II->getArgOperand(1) == ConstantInt::getTrue(II->getContext()))
PossibleTZ = std::min(PossibleTZ, BitWidth - 1);
unsigned LowBits = Log2_32(PossibleTZ)+1;
Known.Zero.setBitsFrom(LowBits);
break;
}
case Intrinsic::ctpop: {
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
// We can bound the space the count needs. Also, bits known to be zero
// can't contribute to the population.
unsigned BitsPossiblySet = Known2.countMaxPopulation();
unsigned LowBits = Log2_32(BitsPossiblySet)+1;
Known.Zero.setBitsFrom(LowBits);
// TODO: we could bound KnownOne using the lower bound on the number
// of bits which might be set provided by popcnt KnownOne2.
break;
}
case Intrinsic::fshr:
case Intrinsic::fshl: {
const APInt *SA;
if (!match(I->getOperand(2), m_APInt(SA)))
break;
// Normalize to funnel shift left.
uint64_t ShiftAmt = SA->urem(BitWidth);
if (II->getIntrinsicID() == Intrinsic::fshr)
ShiftAmt = BitWidth - ShiftAmt;
KnownBits Known3(Known);
computeKnownBits(I->getOperand(0), Known2, Depth + 1, Q);
computeKnownBits(I->getOperand(1), Known3, Depth + 1, Q);
Known.Zero =
Known2.Zero.shl(ShiftAmt) | Known3.Zero.lshr(BitWidth - ShiftAmt);
Known.One =
Known2.One.shl(ShiftAmt) | Known3.One.lshr(BitWidth - ShiftAmt);
break;
}
case Intrinsic::x86_sse42_crc32_64_64:
Known.Zero.setBitsFrom(32);
break;
}
}
break;
case Instruction::ExtractElement:
// Look through extract element. At the moment we keep this simple and skip
// tracking the specific element. But at least we might find information
// valid for all elements of the vector (for example if vector is sign
// extended, shifted, etc).
computeKnownBits(I->getOperand(0), Known, Depth + 1, Q);
break;
case Instruction::ExtractValue:
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I->getOperand(0))) {
const ExtractValueInst *EVI = cast<ExtractValueInst>(I);
if (EVI->getNumIndices() != 1) break;
if (EVI->getIndices()[0] == 0) {
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::uadd_with_overflow:
case Intrinsic::sadd_with_overflow:
computeKnownBitsAddSub(true, II->getArgOperand(0),
II->getArgOperand(1), false, Known, Known2,
Depth, Q);
break;
case Intrinsic::usub_with_overflow:
case Intrinsic::ssub_with_overflow:
computeKnownBitsAddSub(false, II->getArgOperand(0),
II->getArgOperand(1), false, Known, Known2,
Depth, Q);
break;
case Intrinsic::umul_with_overflow:
case Intrinsic::smul_with_overflow:
computeKnownBitsMul(II->getArgOperand(0), II->getArgOperand(1), false,
Known, Known2, Depth, Q);
break;
}
}
}
}
}
/// Determine which bits of V are known to be either zero or one and return
/// them.
KnownBits computeKnownBits(const Value *V, unsigned Depth, const Query &Q) {
KnownBits Known(getBitWidth(V->getType(), Q.DL));
computeKnownBits(V, Known, Depth, Q);
return Known;
}
/// Determine which bits of V are known to be either zero or one and return
/// them in the Known bit set.
///
/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
/// we cannot optimize based on the assumption that it is zero without changing
/// it to be an explicit zero. If we don't change it to zero, other code could
/// optimized based on the contradictory assumption that it is non-zero.
/// Because instcombine aggressively folds operations with undef args anyway,
/// this won't lose us code quality.
///
/// This function is defined on values with integer type, values with pointer
/// type, and vectors of integers. In the case
/// where V is a vector, known zero, and known one values are the
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
void computeKnownBits(const Value *V, KnownBits &Known, unsigned Depth,
const Query &Q) {
assert(V && "No Value?");
assert(Depth <= MaxDepth && "Limit Search Depth");
unsigned BitWidth = Known.getBitWidth();
assert((V->getType()->isIntOrIntVectorTy(BitWidth) ||
V->getType()->isPtrOrPtrVectorTy()) &&
"Not integer or pointer type!");
Type *ScalarTy = V->getType()->getScalarType();
unsigned ExpectedWidth = ScalarTy->isPointerTy() ?
Q.DL.getIndexTypeSizeInBits(ScalarTy) : Q.DL.getTypeSizeInBits(ScalarTy);
assert(ExpectedWidth == BitWidth && "V and Known should have same BitWidth");
(void)BitWidth;
(void)ExpectedWidth;
const APInt *C;
if (match(V, m_APInt(C))) {
// We know all of the bits for a scalar constant or a splat vector constant!
Known.One = *C;
Known.Zero = ~Known.One;
return;
}
// Null and aggregate-zero are all-zeros.
if (isa<ConstantPointerNull>(V) || isa<ConstantAggregateZero>(V)) {
Known.setAllZero();
return;
}
// Handle a constant vector by taking the intersection of the known bits of
// each element.
if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) {
// We know that CDS must be a vector of integers. Take the intersection of
// each element.
Known.Zero.setAllBits(); Known.One.setAllBits();
for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
APInt Elt = CDS->getElementAsAPInt(i);
Known.Zero &= ~Elt;
Known.One &= Elt;
}
return;
}
if (const auto *CV = dyn_cast<ConstantVector>(V)) {
// We know that CV must be a vector of integers. Take the intersection of
// each element.
Known.Zero.setAllBits(); Known.One.setAllBits();
for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
Constant *Element = CV->getAggregateElement(i);
auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element);
if (!ElementCI) {
Known.resetAll();
return;
}
const APInt &Elt = ElementCI->getValue();
Known.Zero &= ~Elt;
Known.One &= Elt;
}
return;
}
// Start out not knowing anything.
Known.resetAll();
// We can't imply anything about undefs.
if (isa<UndefValue>(V))
return;
// There's no point in looking through other users of ConstantData for
// assumptions. Confirm that we've handled them all.
assert(!isa<ConstantData>(V) && "Unhandled constant data!");
// Limit search depth.
// All recursive calls that increase depth must come after this.
if (Depth == MaxDepth)
return;
// A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
// the bits of its aliasee.
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
if (!GA->isInterposable())
computeKnownBits(GA->getAliasee(), Known, Depth + 1, Q);
return;
}
if (const Operator *I = dyn_cast<Operator>(V))
computeKnownBitsFromOperator(I, Known, Depth, Q);
// Aligned pointers have trailing zeros - refine Known.Zero set
if (V->getType()->isPointerTy()) {
unsigned Align = V->getPointerAlignment(Q.DL);
if (Align)
Known.Zero.setLowBits(countTrailingZeros(Align));
}
// computeKnownBitsFromAssume strictly refines Known.
// Therefore, we run them after computeKnownBitsFromOperator.
// Check whether a nearby assume intrinsic can determine some known bits.
computeKnownBitsFromAssume(V, Known, Depth, Q);
assert((Known.Zero & Known.One) == 0 && "Bits known to be one AND zero?");
}
/// Return true if the given value is known to have exactly one
/// bit set when defined. For vectors return true if every element is known to
/// be a power of two when defined. Supports values with integer or pointer
/// types and vectors of integers.
bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero, unsigned Depth,
const Query &Q) {
assert(Depth <= MaxDepth && "Limit Search Depth");
// Attempt to match against constants.
if (OrZero && match(V, m_Power2OrZero()))
return true;
if (match(V, m_Power2()))
return true;
// 1 << X is clearly a power of two if the one is not shifted off the end. If
// it is shifted off the end then the result is undefined.
if (match(V, m_Shl(m_One(), m_Value())))
return true;
// (signmask) >>l X is clearly a power of two if the one is not shifted off
// the bottom. If it is shifted off the bottom then the result is undefined.
if (match(V, m_LShr(m_SignMask(), m_Value())))
return true;
// The remaining tests are all recursive, so bail out if we hit the limit.
if (Depth++ == MaxDepth)
return false;
Value *X = nullptr, *Y = nullptr;
// A shift left or a logical shift right of a power of two is a power of two
// or zero.
if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
match(V, m_LShr(m_Value(X), m_Value()))))
return isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q);
if (const ZExtInst *ZI = dyn_cast<ZExtInst>(V))
return isKnownToBeAPowerOfTwo(ZI->getOperand(0), OrZero, Depth, Q);
if (const SelectInst *SI = dyn_cast<SelectInst>(V))
return isKnownToBeAPowerOfTwo(SI->getTrueValue(), OrZero, Depth, Q) &&
isKnownToBeAPowerOfTwo(SI->getFalseValue(), OrZero, Depth, Q);
if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
// A power of two and'd with anything is a power of two or zero.
if (isKnownToBeAPowerOfTwo(X, /*OrZero*/ true, Depth, Q) ||
isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, Depth, Q))
return true;
// X & (-X) is always a power of two or zero.
if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
return true;
return false;
}
// Adding a power-of-two or zero to the same power-of-two or zero yields
// either the original power-of-two, a larger power-of-two or zero.
if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
const OverflowingBinaryOperator *VOBO = cast<OverflowingBinaryOperator>(V);
if (OrZero || Q.IIQ.hasNoUnsignedWrap(VOBO) ||
Q.IIQ.hasNoSignedWrap(VOBO)) {
if (match(X, m_And(m_Specific(Y), m_Value())) ||
match(X, m_And(m_Value(), m_Specific(Y))))
if (isKnownToBeAPowerOfTwo(Y, OrZero, Depth, Q))
return true;
if (match(Y, m_And(m_Specific(X), m_Value())) ||
match(Y, m_And(m_Value(), m_Specific(X))))
if (isKnownToBeAPowerOfTwo(X, OrZero, Depth, Q))
return true;
unsigned BitWidth = V->getType()->getScalarSizeInBits();
KnownBits LHSBits(BitWidth);
computeKnownBits(X, LHSBits, Depth, Q);
KnownBits RHSBits(BitWidth);
computeKnownBits(Y, RHSBits, Depth, Q);
// If i8 V is a power of two or zero:
// ZeroBits: 1 1 1 0 1 1 1 1
// ~ZeroBits: 0 0 0 1 0 0 0 0
if ((~(LHSBits.Zero & RHSBits.Zero)).isPowerOf2())
// If OrZero isn't set, we cannot give back a zero result.
// Make sure either the LHS or RHS has a bit set.
if (OrZero || RHSBits.One.getBoolValue() || LHSBits.One.getBoolValue())
return true;
}
}
// An exact divide or right shift can only shift off zero bits, so the result
// is a power of two only if the first operand is a power of two and not
// copying a sign bit (sdiv int_min, 2).
if (match(V, m_Exact(m_LShr(m_Value(), m_Value()))) ||
match(V, m_Exact(m_UDiv(m_Value(), m_Value())))) {
return isKnownToBeAPowerOfTwo(cast<Operator>(V)->getOperand(0), OrZero,
Depth, Q);
}
return false;
}
/// Test whether a GEP's result is known to be non-null.
///
/// Uses properties inherent in a GEP to try to determine whether it is known
/// to be non-null.
///
/// Currently this routine does not support vector GEPs.
static bool isGEPKnownNonNull(const GEPOperator *GEP, unsigned Depth,
const Query &Q) {
const Function *F = nullptr;
if (const Instruction *I = dyn_cast<Instruction>(GEP))
F = I->getFunction();
if (!GEP->isInBounds() ||
NullPointerIsDefined(F, GEP->getPointerAddressSpace()))
return false;
// FIXME: Support vector-GEPs.
assert(GEP->getType()->isPointerTy() && "We only support plain pointer GEP");
// If the base pointer is non-null, we cannot walk to a null address with an
// inbounds GEP in address space zero.
if (isKnownNonZero(GEP->getPointerOperand(), Depth, Q))
return true;
// Walk the GEP operands and see if any operand introduces a non-zero offset.
// If so, then the GEP cannot produce a null pointer, as doing so would
// inherently violate the inbounds contract within address space zero.
for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP);
GTI != GTE; ++GTI) {
// Struct types are easy -- they must always be indexed by a constant.
if (StructType *STy = GTI.getStructTypeOrNull()) {
ConstantInt *OpC = cast<ConstantInt>(GTI.getOperand());
unsigned ElementIdx = OpC->getZExtValue();
const StructLayout *SL = Q.DL.getStructLayout(STy);
uint64_t ElementOffset = SL->getElementOffset(ElementIdx);
if (ElementOffset > 0)
return true;
continue;
}
// If we have a zero-sized type, the index doesn't matter. Keep looping.
if (Q.DL.getTypeAllocSize(GTI.getIndexedType()) == 0)
continue;
// Fast path the constant operand case both for efficiency and so we don't
// increment Depth when just zipping down an all-constant GEP.
if (ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand())) {
if (!OpC->isZero())
return true;
continue;
}
// We post-increment Depth here because while isKnownNonZero increments it
// as well, when we pop back up that increment won't persist. We don't want
// to recurse 10k times just because we have 10k GEP operands. We don't
// bail completely out because we want to handle constant GEPs regardless
// of depth.
if (Depth++ >= MaxDepth)
continue;
if (isKnownNonZero(GTI.getOperand(), Depth, Q))
return true;
}
return false;
}
static bool isKnownNonNullFromDominatingCondition(const Value *V,
const Instruction *CtxI,
const DominatorTree *DT) {
assert(V->getType()->isPointerTy() && "V must be pointer type");
assert(!isa<ConstantData>(V) && "Did not expect ConstantPointerNull");
if (!CtxI || !DT)
return false;
unsigned NumUsesExplored = 0;
for (auto *U : V->users()) {
// Avoid massive lists
if (NumUsesExplored >= DomConditionsMaxUses)
break;
NumUsesExplored++;
// If the value is used as an argument to a call or invoke, then argument
// attributes may provide an answer about null-ness.
if (auto CS = ImmutableCallSite(U))
if (auto *CalledFunc = CS.getCalledFunction())
for (const Argument &Arg : CalledFunc->args())
if (CS.getArgOperand(Arg.getArgNo()) == V &&
Arg.hasNonNullAttr() && DT->dominates(CS.getInstruction(), CtxI))
return true;
// Consider only compare instructions uniquely controlling a branch
CmpInst::Predicate Pred;
if (!match(const_cast<User *>(U),
m_c_ICmp(Pred, m_Specific(V), m_Zero())) ||
(Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE))
continue;
SmallVector<const User *, 4> WorkList;
SmallPtrSet<const User *, 4> Visited;
for (auto *CmpU : U->users()) {
assert(WorkList.empty() && "Should be!");
if (Visited.insert(CmpU).second)
WorkList.push_back(CmpU);
while (!WorkList.empty()) {
auto *Curr = WorkList.pop_back_val();
// If a user is an AND, add all its users to the work list. We only
// propagate "pred != null" condition through AND because it is only
// correct to assume that all conditions of AND are met in true branch.
// TODO: Support similar logic of OR and EQ predicate?
if (Pred == ICmpInst::ICMP_NE)
if (auto *BO = dyn_cast<BinaryOperator>(Curr))
if (BO->getOpcode() == Instruction::And) {
for (auto *BOU : BO->users())
if (Visited.insert(BOU).second)
WorkList.push_back(BOU);
continue;
}
if (const BranchInst *BI = dyn_cast<BranchInst>(Curr)) {
assert(BI->isConditional() && "uses a comparison!");
BasicBlock *NonNullSuccessor =
BI->getSuccessor(Pred == ICmpInst::ICMP_EQ ? 1 : 0);
BasicBlockEdge Edge(BI->getParent(), NonNullSuccessor);
if (Edge.isSingleEdge() && DT->dominates(Edge, CtxI->getParent()))
return true;
} else if (Pred == ICmpInst::ICMP_NE && isGuard(Curr) &&
DT->dominates(cast<Instruction>(Curr), CtxI)) {
return true;
}
}
}
}
return false;
}
/// Does the 'Range' metadata (which must be a valid MD_range operand list)
/// ensure that the value it's attached to is never Value? 'RangeType' is
/// is the type of the value described by the range.
static bool rangeMetadataExcludesValue(const MDNode* Ranges, const APInt& Value) {
const unsigned NumRanges = Ranges->getNumOperands() / 2;
assert(NumRanges >= 1);
for (unsigned i = 0; i < NumRanges; ++i) {
ConstantInt *Lower =
mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 0));
ConstantInt *Upper =
mdconst::extract<ConstantInt>(Ranges->getOperand(2 * i + 1));
ConstantRange Range(Lower->getValue(), Upper->getValue());
if (Range.contains(Value))
return false;
}
return true;
}
/// Return true if the given value is known to be non-zero when defined. For
/// vectors, return true if every element is known to be non-zero when
/// defined. For pointers, if the context instruction and dominator tree are
/// specified, perform context-sensitive analysis and return true if the
/// pointer couldn't possibly be null at the specified instruction.
/// Supports values with integer or pointer type and vectors of integers.
bool isKnownNonZero(const Value *V, unsigned Depth, const Query &Q) {
if (auto *C = dyn_cast<Constant>(V)) {
if (C->isNullValue())
return false;
if (isa<ConstantInt>(C))
// Must be non-zero due to null test above.
return true;
// For constant vectors, check that all elements are undefined or known
// non-zero to determine that the whole vector is known non-zero.
if (auto *VecTy = dyn_cast<VectorType>(C->getType())) {
for (unsigned i = 0, e = VecTy->getNumElements(); i != e; ++i) {
Constant *Elt = C->getAggregateElement(i);
if (!Elt || Elt->isNullValue())
return false;
if (!isa<UndefValue>(Elt) && !isa<ConstantInt>(Elt))
return false;
}
return true;
}
// A global variable in address space 0 is non null unless extern weak
// or an absolute symbol reference. Other address spaces may have null as a
// valid address for a global, so we can't assume anything.
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
if (!GV->isAbsoluteSymbolRef() && !GV->hasExternalWeakLinkage() &&
GV->getType()->getAddressSpace() == 0)
return true;
} else
return false;
}
if (auto *I = dyn_cast<Instruction>(V)) {
if (MDNode *Ranges = Q.IIQ.getMetadata(I, LLVMContext::MD_range)) {
// If the possible ranges don't contain zero, then the value is
// definitely non-zero.
if (auto *Ty = dyn_cast<IntegerType>(V->getType())) {
const APInt ZeroValue(Ty->getBitWidth(), 0);
if (rangeMetadataExcludesValue(Ranges, ZeroValue))
return true;
}
}
}
// Some of the tests below are recursive, so bail out if we hit the limit.
if (Depth++ >= MaxDepth)
return false;
// Check for pointer simplifications.
if (V->getType()->isPointerTy()) {
// Alloca never returns null, malloc might.
if (isa<AllocaInst>(V) && Q.DL.getAllocaAddrSpace() == 0)
return true;
// A byval, inalloca, or nonnull argument is never null.
if (const Argument *A = dyn_cast<Argument>(V))
if (A->hasByValOrInAllocaAttr() || A->hasNonNullAttr())
return true;
// A Load tagged with nonnull metadata is never null.
if (const LoadInst *LI = dyn_cast<LoadInst>(V))
if (Q.IIQ.getMetadata(LI, LLVMContext::MD_nonnull))
return true;
if (const auto *Call = dyn_cast<CallBase>(V)) {
if (Call->isReturnNonNull())
return true;
if (const auto *RP = getArgumentAliasingToReturnedPointer(Call))
return isKnownNonZero(RP, Depth, Q);
}
}
// Check for recursive pointer simplifications.
if (V->getType()->isPointerTy()) {
if (isKnownNonNullFromDominatingCondition(V, Q.CxtI, Q.DT))
return true;
// Look through bitcast operations, GEPs, and int2ptr instructions as they
// do not alter the value, or at least not the nullness property of the
// value, e.g., int2ptr is allowed to zero/sign extend the value.
//
// Note that we have to take special care to avoid looking through
// truncating casts, e.g., int2ptr/ptr2int with appropriate sizes, as well
// as casts that can alter the value, e.g., AddrSpaceCasts.
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V))
if (isGEPKnownNonNull(GEP, Depth, Q))
return true;
if (auto *BCO = dyn_cast<BitCastOperator>(V))
return isKnownNonZero(BCO->getOperand(0), Depth, Q);
if (auto *I2P = dyn_cast<IntToPtrInst>(V))
if (Q.DL.getTypeSizeInBits(I2P->getSrcTy()) <=
Q.DL.getTypeSizeInBits(I2P->getDestTy()))
return isKnownNonZero(I2P->getOperand(0), Depth, Q);
}
// Similar to int2ptr above, we can look through ptr2int here if the cast
// is a no-op or an extend and not a truncate.
if (auto *P2I = dyn_cast<PtrToIntInst>(V))
if (Q.DL.getTypeSizeInBits(P2I->getSrcTy()) <=
Q.DL.getTypeSizeInBits(P2I->getDestTy()))
return isKnownNonZero(P2I->getOperand(0), Depth, Q);
unsigned BitWidth = getBitWidth(V->getType()->getScalarType(), Q.DL);
// X | Y != 0 if X != 0 or Y != 0.
Value *X = nullptr, *Y = nullptr;
if (match(V, m_Or(m_Value(X), m_Value(Y))))
return isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q);
// ext X != 0 if X != 0.
if (isa<SExtInst>(V) || isa<ZExtInst>(V))
return isKnownNonZero(cast<Instruction>(V)->getOperand(0), Depth, Q);
// shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
// if the lowest bit is shifted off the end.
if (match(V, m_Shl(m_Value(X), m_Value(Y)))) {
// shl nuw can't remove any non-zero bits.
const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
if (Q.IIQ.hasNoUnsignedWrap(BO))
return isKnownNonZero(X, Depth, Q);
KnownBits Known(BitWidth);
computeKnownBits(X, Known, Depth, Q);
if (Known.One[0])
return true;
}
// shr X, Y != 0 if X is negative. Note that the value of the shift is not
// defined if the sign bit is shifted off the end.
else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
// shr exact can only shift out zero bits.
const PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
if (BO->isExact())
return isKnownNonZero(X, Depth, Q);
KnownBits Known = computeKnownBits(X, Depth, Q);
if (Known.isNegative())
return true;
// If the shifter operand is a constant, and all of the bits shifted
// out are known to be zero, and X is known non-zero then at least one
// non-zero bit must remain.
if (ConstantInt *Shift = dyn_cast<ConstantInt>(Y)) {
auto ShiftVal = Shift->getLimitedValue(BitWidth - 1);
// Is there a known one in the portion not shifted out?
if (Known.countMaxLeadingZeros() < BitWidth - ShiftVal)
return true;
// Are all the bits to be shifted out known zero?
if (Known.countMinTrailingZeros() >= ShiftVal)
return isKnownNonZero(X, Depth, Q);
}
}
// div exact can only produce a zero if the dividend is zero.
else if (match(V, m_Exact(m_IDiv(m_Value(X), m_Value())))) {
return isKnownNonZero(X, Depth, Q);
}
// X + Y.
else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
KnownBits XKnown = computeKnownBits(X, Depth, Q);
KnownBits YKnown = computeKnownBits(Y, Depth, Q);
// If X and Y are both non-negative (as signed values) then their sum is not
// zero unless both X and Y are zero.
if (XKnown.isNonNegative() && YKnown.isNonNegative())
if (isKnownNonZero(X, Depth, Q) || isKnownNonZero(Y, Depth, Q))
return true;
// If X and Y are both negative (as signed values) then their sum is not
// zero unless both X and Y equal INT_MIN.
if (XKnown.isNegative() && YKnown.isNegative()) {
APInt Mask = APInt::getSignedMaxValue(BitWidth);
// The sign bit of X is set. If some other bit is set then X is not equal
// to INT_MIN.
if (XKnown.One.intersects(Mask))
return true;
// The sign bit of Y is set. If some other bit is set then Y is not equal
// to INT_MIN.
if (YKnown.One.intersects(Mask))
return true;
}
// The sum of a non-negative number and a power of two is not zero.
if (XKnown.isNonNegative() &&
isKnownToBeAPowerOfTwo(Y, /*OrZero*/ false, Depth, Q))
return true;
if (YKnown.isNonNegative() &&
isKnownToBeAPowerOfTwo(X, /*OrZero*/ false, Depth, Q))
return true;
}
// X * Y.
else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
const OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
// If X and Y are non-zero then so is X * Y as long as the multiplication
// does not overflow.
if ((Q.IIQ.hasNoSignedWrap(BO) || Q.IIQ.hasNoUnsignedWrap(BO)) &&
isKnownNonZero(X, Depth, Q) && isKnownNonZero(Y, Depth, Q))
return true;
}
// (C ? X : Y) != 0 if X != 0 and Y != 0.
else if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
if (isKnownNonZero(SI->getTrueValue(), Depth, Q) &&
isKnownNonZero(SI->getFalseValue(), Depth, Q))
return true;
}
// PHI
else if (const PHINode *PN = dyn_cast<PHINode>(V)) {
// Try and detect a recurrence that monotonically increases from a
// starting value, as these are common as induction variables.
if (PN->getNumIncomingValues() == 2) {
Value *Start = PN->getIncomingValue(0);
Value *Induction = PN->getIncomingValue(1);
if (isa<ConstantInt>(Induction) && !isa<ConstantInt>(Start))
std::swap(Start, Induction);
if (ConstantInt *C = dyn_cast<ConstantInt>(Start)) {
if (!C->isZero() && !C->isNegative()) {
ConstantInt *X;
if (Q.IIQ.UseInstrInfo &&
(match(Induction, m_NSWAdd(m_Specific(PN), m_ConstantInt(X))) ||
match(Induction, m_NUWAdd(m_Specific(PN), m_ConstantInt(X)))) &&
!X->isNegative())
return true;
}
}
}
// Check if all incoming values are non-zero constant.
bool AllNonZeroConstants = llvm::all_of(PN->operands(), [](Value *V) {
return isa<ConstantInt>(V) && !cast<ConstantInt>(V)->isZero();
});
if (AllNonZeroConstants)
return true;
}
KnownBits Known(BitWidth);
computeKnownBits(V, Known, Depth, Q);
return Known.One != 0;
}
/// Return true if V2 == V1 + X, where X is known non-zero.
static bool isAddOfNonZero(const Value *V1, const Value *V2, const Query &Q) {
const BinaryOperator *BO = dyn_cast<BinaryOperator>(V1);
if (!BO || BO->getOpcode() != Instruction::Add)
return false;
Value *Op = nullptr;
if (V2 == BO->getOperand(0))
Op = BO->getOperand(1);
else if (V2 == BO->getOperand(1))
Op = BO->getOperand(0);
else
return false;
return isKnownNonZero(Op, 0, Q);
}
/// Return true if it is known that V1 != V2.
static bool isKnownNonEqual(const Value *V1, const Value *V2, const Query &Q) {
if (V1 == V2)
return false;
if (V1->getType() != V2->getType())
// We can't look through casts yet.
return false;
if (isAddOfNonZero(V1, V2, Q) || isAddOfNonZero(V2, V1, Q))
return true;
if (V1->getType()->isIntOrIntVectorTy()) {
// Are any known bits in V1 contradictory to known bits in V2? If V1
// has a known zero where V2 has a known one, they must not be equal.
KnownBits Known1 = computeKnownBits(V1, 0, Q);
KnownBits Known2 = computeKnownBits(V2, 0, Q);
if (Known1.Zero.intersects(Known2.One) ||
Known2.Zero.intersects(Known1.One))
return true;
}
return false;
}
/// Return true if 'V & Mask' is known to be zero. We use this predicate to
/// simplify operations downstream. Mask is known to be zero for bits that V
/// cannot have.
///
/// This function is defined on values with integer type, values with pointer
/// type, and vectors of integers. In the case
/// where V is a vector, the mask, known zero, and known one values are the
/// same width as the vector element, and the bit is set only if it is true
/// for all of the elements in the vector.
bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth,
const Query &Q) {
KnownBits Known(Mask.getBitWidth());
computeKnownBits(V, Known, Depth, Q);
return Mask.isSubsetOf(Known.Zero);
}
// Match a signed min+max clamp pattern like smax(smin(In, CHigh), CLow).
// Returns the input and lower/upper bounds.
static bool isSignedMinMaxClamp(const Value *Select, const Value *&In,
const APInt *&CLow, const APInt *&CHigh) {
assert(isa<Operator>(Select) &&
cast<Operator>(Select)->getOpcode() == Instruction::Select &&
"Input should be a Select!");
const Value *LHS, *RHS, *LHS2, *RHS2;
SelectPatternFlavor SPF = matchSelectPattern(Select, LHS, RHS).Flavor;
if (SPF != SPF_SMAX && SPF != SPF_SMIN)
return false;
if (!match(RHS, m_APInt(CLow)))
return false;
SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor;
if (getInverseMinMaxFlavor(SPF) != SPF2)
return false;
if (!match(RHS2, m_APInt(CHigh)))
return false;
if (SPF == SPF_SMIN)
std::swap(CLow, CHigh);
In = LHS2;
return CLow->sle(*CHigh);
}
/// For vector constants, loop over the elements and find the constant with the
/// minimum number of sign bits. Return 0 if the value is not a vector constant
/// or if any element was not analyzed; otherwise, return the count for the
/// element with the minimum number of sign bits.
static unsigned computeNumSignBitsVectorConstant(const Value *V,
unsigned TyBits) {
const auto *CV = dyn_cast<Constant>(V);
if (!CV || !CV->getType()->isVectorTy())
return 0;
unsigned MinSignBits = TyBits;
unsigned NumElts = CV->getType()->getVectorNumElements();
for (unsigned i = 0; i != NumElts; ++i) {
// If we find a non-ConstantInt, bail out.
auto *Elt = dyn_cast_or_null<ConstantInt>(CV->getAggregateElement(i));
if (!Elt)
return 0;
MinSignBits = std::min(MinSignBits, Elt->getValue().getNumSignBits());
}
return MinSignBits;
}
static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
const Query &Q);
static unsigned ComputeNumSignBits(const Value *V, unsigned Depth,
const Query &Q) {
unsigned Result = ComputeNumSignBitsImpl(V, Depth, Q);
assert(Result > 0 && "At least one sign bit needs to be present!");
return Result;
}
/// Return the number of times the sign bit of the register is replicated into
/// the other bits. We know that at least 1 bit is always equal to the sign bit
/// (itself), but other cases can give us information. For example, immediately
/// after an "ashr X, 2", we know that the top 3 bits are all equal to each
/// other, so we return 3. For vectors, return the number of sign bits for the
/// vector element with the minimum number of known sign bits.
static unsigned ComputeNumSignBitsImpl(const Value *V, unsigned Depth,
const Query &Q) {
assert(Depth <= MaxDepth && "Limit Search Depth");
// We return the minimum number of sign bits that are guaranteed to be present
// in V, so for undef we have to conservatively return 1. We don't have the
// same behavior for poison though -- that's a FIXME today.
Type *ScalarTy = V->getType()->getScalarType();
unsigned TyBits = ScalarTy->isPointerTy() ?
Q.DL.getIndexTypeSizeInBits(ScalarTy) :
Q.DL.getTypeSizeInBits(ScalarTy);
unsigned Tmp, Tmp2;
unsigned FirstAnswer = 1;
// Note that ConstantInt is handled by the general computeKnownBits case
// below.
if (Depth == MaxDepth)
return 1; // Limit search depth.
const Operator *U = dyn_cast<Operator>(V);
switch (Operator::getOpcode(V)) {
default: break;
case Instruction::SExt:
Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q) + Tmp;
case Instruction::SDiv: {
const APInt *Denominator;
// sdiv X, C -> adds log(C) sign bits.
if (match(U->getOperand(1), m_APInt(Denominator))) {
// Ignore non-positive denominator.
if (!Denominator->isStrictlyPositive())
break;
// Calculate the incoming numerator bits.
unsigned NumBits = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
// Add floor(log(C)) bits to the numerator bits.
return std::min(TyBits, NumBits + Denominator->logBase2());
}
break;
}
case Instruction::SRem: {
const APInt *Denominator;
// srem X, C -> we know that the result is within [-C+1,C) when C is a
// positive constant. This let us put a lower bound on the number of sign
// bits.
if (match(U->getOperand(1), m_APInt(Denominator))) {
// Ignore non-positive denominator.
if (!Denominator->isStrictlyPositive())
break;
// Calculate the incoming numerator bits. SRem by a positive constant
// can't lower the number of sign bits.
unsigned NumrBits =
ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
// Calculate the leading sign bit constraints by examining the
// denominator. Given that the denominator is positive, there are two
// cases:
//
// 1. the numerator is positive. The result range is [0,C) and [0,C) u<
// (1 << ceilLogBase2(C)).
//
// 2. the numerator is negative. Then the result range is (-C,0] and
// integers in (-C,0] are either 0 or >u (-1 << ceilLogBase2(C)).
//
// Thus a lower bound on the number of sign bits is `TyBits -
// ceilLogBase2(C)`.
unsigned ResBits = TyBits - Denominator->ceilLogBase2();
return std::max(NumrBits, ResBits);
}
break;
}
case Instruction::AShr: {
Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
// ashr X, C -> adds C sign bits. Vectors too.
const APInt *ShAmt;
if (match(U->getOperand(1), m_APInt(ShAmt))) {
if (ShAmt->uge(TyBits))
break; // Bad shift.
unsigned ShAmtLimited = ShAmt->getZExtValue();
Tmp += ShAmtLimited;
if (Tmp > TyBits) Tmp = TyBits;
}
return Tmp;
}
case Instruction::Shl: {
const APInt *ShAmt;
if (match(U->getOperand(1), m_APInt(ShAmt))) {
// shl destroys sign bits.
Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
if (ShAmt->uge(TyBits) || // Bad shift.
ShAmt->uge(Tmp)) break; // Shifted all sign bits out.
Tmp2 = ShAmt->getZExtValue();
return Tmp - Tmp2;
}
break;
}
case Instruction::And:
case Instruction::Or:
case Instruction::Xor: // NOT is handled here.
// Logical binary ops preserve the number of sign bits at the worst.
Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
if (Tmp != 1) {
Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
FirstAnswer = std::min(Tmp, Tmp2);
// We computed what we know about the sign bits as our first
// answer. Now proceed to the generic code that uses
// computeKnownBits, and pick whichever answer is better.
}
break;
case Instruction::Select: {
// If we have a clamp pattern, we know that the number of sign bits will be
// the minimum of the clamp min/max range.
const Value *X;
const APInt *CLow, *CHigh;
if (isSignedMinMaxClamp(U, X, CLow, CHigh))
return std::min(CLow->getNumSignBits(), CHigh->getNumSignBits());
Tmp = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
if (Tmp == 1) break;
Tmp2 = ComputeNumSignBits(U->getOperand(2), Depth + 1, Q);
return std::min(Tmp, Tmp2);
}
case Instruction::Add:
// Add can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
if (Tmp == 1) break;
// Special case decrementing a value (ADD X, -1):
if (const auto *CRHS = dyn_cast<Constant>(U->getOperand(1)))
if (CRHS->isAllOnesValue()) {
KnownBits Known(TyBits);
computeKnownBits(U->getOperand(0), Known, Depth + 1, Q);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
if ((Known.Zero | 1).isAllOnesValue())
return TyBits;
// If we are subtracting one from a positive number, there is no carry
// out of the result.
if (Known.isNonNegative())
return Tmp;
}
Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
if (Tmp2 == 1) break;
return std::min(Tmp, Tmp2)-1;
case Instruction::Sub:
Tmp2 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
if (Tmp2 == 1) break;
// Handle NEG.
if (const auto *CLHS = dyn_cast<Constant>(U->getOperand(0)))
if (CLHS->isNullValue()) {
KnownBits Known(TyBits);
computeKnownBits(U->getOperand(1), Known, Depth + 1, Q);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
if ((Known.Zero | 1).isAllOnesValue())
return TyBits;
// If the input is known to be positive (the sign bit is known clear),
// the output of the NEG has the same number of sign bits as the input.
if (Known.isNonNegative())
return Tmp2;
// Otherwise, we treat this like a SUB.
}
// Sub can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
Tmp = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
if (Tmp == 1) break;
return std::min(Tmp, Tmp2)-1;
case Instruction::Mul: {
// The output of the Mul can be at most twice the valid bits in the inputs.
unsigned SignBitsOp0 = ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
if (SignBitsOp0 == 1) break;
unsigned SignBitsOp1 = ComputeNumSignBits(U->getOperand(1), Depth + 1, Q);
if (SignBitsOp1 == 1) break;
unsigned OutValidBits =
(TyBits - SignBitsOp0 + 1) + (TyBits - SignBitsOp1 + 1);
return OutValidBits > TyBits ? 1 : TyBits - OutValidBits + 1;
}
case Instruction::PHI: {
const PHINode *PN = cast<PHINode>(U);
unsigned NumIncomingValues = PN->getNumIncomingValues();
// Don't analyze large in-degree PHIs.
if (NumIncomingValues > 4) break;
// Unreachable blocks may have zero-operand PHI nodes.
if (NumIncomingValues == 0) break;
// Take the minimum of all incoming values. This can't infinitely loop
// because of our depth threshold.
Tmp = ComputeNumSignBits(PN->getIncomingValue(0), Depth + 1, Q);
for (unsigned i = 1, e = NumIncomingValues; i != e; ++i) {
if (Tmp == 1) return Tmp;
Tmp = std::min(
Tmp, ComputeNumSignBits(PN->getIncomingValue(i), Depth + 1, Q));
}
return Tmp;
}
case Instruction::Trunc:
// FIXME: it's tricky to do anything useful for this, but it is an important
// case for targets like X86.
break;
case Instruction::ExtractElement:
// Look through extract element. At the moment we keep this simple and skip
// tracking the specific element. But at least we might find information
// valid for all elements of the vector (for example if vector is sign
// extended, shifted, etc).
return ComputeNumSignBits(U->getOperand(0), Depth + 1, Q);
case Instruction::ShuffleVector: {
// TODO: This is copied almost directly from the SelectionDAG version of
// ComputeNumSignBits. It would be better if we could share common
// code. If not, make sure that changes are translated to the DAG.
// Collect the minimum number of sign bits that are shared by every vector
// element referenced by the shuffle.
auto *Shuf = cast<ShuffleVectorInst>(U);
int NumElts = Shuf->getOperand(0)->getType()->getVectorNumElements();
int NumMaskElts = Shuf->getMask()->getType()->getVectorNumElements();
APInt DemandedLHS(NumElts, 0), DemandedRHS(NumElts, 0);
for (int i = 0; i != NumMaskElts; ++i) {
int M = Shuf->getMaskValue(i);
assert(M < NumElts * 2 && "Invalid shuffle mask constant");
// For undef elements, we don't know anything about the common state of
// the shuffle result.
if (M == -1)
return 1;
if (M < NumElts)
DemandedLHS.setBit(M % NumElts);
else
DemandedRHS.setBit(M % NumElts);
}
Tmp = std::numeric_limits<unsigned>::max();
if (!!DemandedLHS)
Tmp = ComputeNumSignBits(Shuf->getOperand(0), Depth + 1, Q);
if (!!DemandedRHS) {
Tmp2 = ComputeNumSignBits(Shuf->getOperand(1), Depth + 1, Q);
Tmp = std::min(Tmp, Tmp2);
}
// If we don't know anything, early out and try computeKnownBits fall-back.
if (Tmp == 1)
break;
assert(Tmp <= V->getType()->getScalarSizeInBits() &&
"Failed to determine minimum sign bits");
return Tmp;
}
}
// Finally, if we can prove that the top bits of the result are 0's or 1's,
// use this information.
// If we can examine all elements of a vector constant successfully, we're
// done (we can't do any better than that). If not, keep trying.
if (unsigned VecSignBits = computeNumSignBitsVectorConstant(V, TyBits))
return VecSignBits;
KnownBits Known(TyBits);
computeKnownBits(V, Known, Depth, Q);
// If we know that the sign bit is either zero or one, determine the number of
// identical bits in the top of the input value.
return std::max(FirstAnswer, Known.countMinSignBits());
}
/// This function computes the integer multiple of Base that equals V.
/// If successful, it returns true and returns the multiple in
/// Multiple. If unsuccessful, it returns false. It looks
/// through SExt instructions only if LookThroughSExt is true.
bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
bool LookThroughSExt, unsigned Depth) {
const unsigned MaxDepth = 6;
assert(V && "No Value?");
assert(Depth <= MaxDepth && "Limit Search Depth");
assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Type *T = V->getType();
ConstantInt *CI = dyn_cast<ConstantInt>(V);
if (Base == 0)
return false;
if (Base == 1) {
Multiple = V;
return true;
}
ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
Constant *BaseVal = ConstantInt::get(T, Base);
if (CO && CO == BaseVal) {
// Multiple is 1.
Multiple = ConstantInt::get(T, 1);
return true;
}
if (CI && CI->getZExtValue() % Base == 0) {
Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
return true;
}
if (Depth == MaxDepth) return false; // Limit search depth.
Operator *I = dyn_cast<Operator>(V);
if (!I) return false;
switch (I->getOpcode()) {
default: break;
case Instruction::SExt:
if (!LookThroughSExt) return false;
// otherwise fall through to ZExt
LLVM_FALLTHROUGH;
case Instruction::ZExt:
return ComputeMultiple(I->getOperand(0), Base, Multiple,
LookThroughSExt, Depth+1);
case Instruction::Shl:
case Instruction::Mul: {
Value *Op0 = I->getOperand(0);
Value *Op1 = I->getOperand(1);
if (I->getOpcode() == Instruction::Shl) {
ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
if (!Op1CI) return false;
// Turn Op0 << Op1 into Op0 * 2^Op1
APInt Op1Int = Op1CI->getValue();
uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
APInt API(Op1Int.getBitWidth(), 0);
API.setBit(BitToSet);
Op1 = ConstantInt::get(V->getContext(), API);
}
Value *Mul0 = nullptr;
if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
if (Constant *Op1C = dyn_cast<Constant>(Op1))
if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
if (Op1C->getType()->getPrimitiveSizeInBits() <
MulC->getType()->getPrimitiveSizeInBits())
Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
if (Op1C->getType()->getPrimitiveSizeInBits() >
MulC->getType()->getPrimitiveSizeInBits())
MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
// V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
Multiple = ConstantExpr::getMul(MulC, Op1C);
return true;
}
if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
if (Mul0CI->getValue() == 1) {
// V == Base * Op1, so return Op1
Multiple = Op1;
return true;
}
}
Value *Mul1 = nullptr;
if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
if (Constant *Op0C = dyn_cast<Constant>(Op0))
if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
if (Op0C->getType()->getPrimitiveSizeInBits() <
MulC->getType()->getPrimitiveSizeInBits())
Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
if (Op0C->getType()->getPrimitiveSizeInBits() >
MulC->getType()->getPrimitiveSizeInBits())
MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
// V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
Multiple = ConstantExpr::getMul(MulC, Op0C);
return true;
}
if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
if (Mul1CI->getValue() == 1) {
// V == Base * Op0, so return Op0
Multiple = Op0;
return true;
}
}
}
}
// We could not determine if V is a multiple of Base.
return false;
}
Intrinsic::ID llvm::getIntrinsicForCallSite(ImmutableCallSite ICS,
const TargetLibraryInfo *TLI) {
const Function *F = ICS.getCalledFunction();
if (!F)
return Intrinsic::not_intrinsic;
if (F->isIntrinsic())
return F->getIntrinsicID();
if (!TLI)
return Intrinsic::not_intrinsic;
LibFunc Func;
// We're going to make assumptions on the semantics of the functions, check
// that the target knows that it's available in this environment and it does
// not have local linkage.
if (!F || F->hasLocalLinkage() || !TLI->getLibFunc(*F, Func))
return Intrinsic::not_intrinsic;
if (!ICS.onlyReadsMemory())
return Intrinsic::not_intrinsic;
// Otherwise check if we have a call to a function that can be turned into a
// vector intrinsic.
switch (Func) {
default:
break;
case LibFunc_sin:
case LibFunc_sinf:
case LibFunc_sinl:
return Intrinsic::sin;
case LibFunc_cos:
case LibFunc_cosf:
case LibFunc_cosl:
return Intrinsic::cos;
case LibFunc_exp:
case LibFunc_expf:
case LibFunc_expl:
return Intrinsic::exp;
case LibFunc_exp2:
case LibFunc_exp2f:
case LibFunc_exp2l:
return Intrinsic::exp2;
case LibFunc_log:
case LibFunc_logf:
case LibFunc_logl:
return Intrinsic::log;
case LibFunc_log10:
case LibFunc_log10f:
case LibFunc_log10l:
return Intrinsic::log10;
case LibFunc_log2:
case LibFunc_log2f:
case LibFunc_log2l:
return Intrinsic::log2;
case LibFunc_fabs:
case LibFunc_fabsf:
case LibFunc_fabsl:
return Intrinsic::fabs;
case LibFunc_fmin:
case LibFunc_fminf:
case LibFunc_fminl:
return Intrinsic::minnum;
case LibFunc_fmax:
case LibFunc_fmaxf:
case LibFunc_fmaxl:
return Intrinsic::maxnum;
case LibFunc_copysign:
case LibFunc_copysignf:
case LibFunc_copysignl:
return Intrinsic::copysign;
case LibFunc_floor:
case LibFunc_floorf:
case LibFunc_floorl:
return Intrinsic::floor;
case LibFunc_ceil:
case LibFunc_ceilf:
case LibFunc_ceill:
return Intrinsic::ceil;
case LibFunc_trunc:
case LibFunc_truncf:
case LibFunc_truncl:
return Intrinsic::trunc;
case LibFunc_rint:
case LibFunc_rintf:
case LibFunc_rintl:
return Intrinsic::rint;
case LibFunc_nearbyint:
case LibFunc_nearbyintf:
case LibFunc_nearbyintl:
return Intrinsic::nearbyint;
case LibFunc_round:
case LibFunc_roundf:
case LibFunc_roundl:
return Intrinsic::round;
case LibFunc_pow:
case LibFunc_powf:
case LibFunc_powl:
return Intrinsic::pow;
case LibFunc_sqrt:
case LibFunc_sqrtf:
case LibFunc_sqrtl:
return Intrinsic::sqrt;
}
return Intrinsic::not_intrinsic;
}
/// Return true if we can prove that the specified FP value is never equal to
/// -0.0.
///
/// NOTE: this function will need to be revisited when we support non-default
/// rounding modes!
bool llvm::CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
unsigned Depth) {
if (auto *CFP = dyn_cast<ConstantFP>(V))
return !CFP->getValueAPF().isNegZero();
// Limit search depth.
if (Depth == MaxDepth)
return false;
auto *Op = dyn_cast<Operator>(V);
if (!Op)
return false;
// Check if the nsz fast-math flag is set.
if (auto *FPO = dyn_cast<FPMathOperator>(Op))
if (FPO->hasNoSignedZeros())
return true;
// (fadd x, 0.0) is guaranteed to return +0.0, not -0.0.
if (match(Op, m_FAdd(m_Value(), m_PosZeroFP())))
return true;
// sitofp and uitofp turn into +0.0 for zero.
if (isa<SIToFPInst>(Op) || isa<UIToFPInst>(Op))
return true;
if (auto *Call = dyn_cast<CallInst>(Op)) {
Intrinsic::ID IID = getIntrinsicForCallSite(Call, TLI);
switch (IID) {
default:
break;
// sqrt(-0.0) = -0.0, no other negative results are possible.
case Intrinsic::sqrt:
case Intrinsic::canonicalize:
return CannotBeNegativeZero(Call->getArgOperand(0), TLI, Depth + 1);
// fabs(x) != -0.0
case Intrinsic::fabs:
return true;
}
}
return false;
}
/// If \p SignBitOnly is true, test for a known 0 sign bit rather than a
/// standard ordered compare. e.g. make -0.0 olt 0.0 be true because of the sign
/// bit despite comparing equal.
static bool cannotBeOrderedLessThanZeroImpl(const Value *V,
const TargetLibraryInfo *TLI,
bool SignBitOnly,
unsigned Depth) {
// TODO: This function does not do the right thing when SignBitOnly is true
// and we're lowering to a hypothetical IEEE 754-compliant-but-evil platform
// which flips the sign bits of NaNs. See
// https://llvm.org/bugs/show_bug.cgi?id=31702.
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
return !CFP->getValueAPF().isNegative() ||
(!SignBitOnly && CFP->getValueAPF().isZero());
}
// Handle vector of constants.
if (auto *CV = dyn_cast<Constant>(V)) {
if (CV->getType()->isVectorTy()) {
unsigned NumElts = CV->getType()->getVectorNumElements();
for (unsigned i = 0; i != NumElts; ++i) {
auto *CFP = dyn_cast_or_null<ConstantFP>(CV->getAggregateElement(i));
if (!CFP)
return false;
if (CFP->getValueAPF().isNegative() &&
(SignBitOnly || !CFP->getValueAPF().isZero()))
return false;
}
// All non-negative ConstantFPs.
return true;
}
}
if (Depth == MaxDepth)
return false; // Limit search depth.
const Operator *I = dyn_cast<Operator>(V);
if (!I)
return false;
switch (I->getOpcode()) {
default:
break;
// Unsigned integers are always nonnegative.
case Instruction::UIToFP:
return true;
case Instruction::FMul:
// x*x is always non-negative or a NaN.
if (I->getOperand(0) == I->getOperand(1) &&
(!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()))
return true;
LLVM_FALLTHROUGH;
case Instruction::FAdd:
case Instruction::FDiv:
case Instruction::FRem:
return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
Depth + 1) &&
cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
Depth + 1);
case Instruction::Select:
return cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
Depth + 1) &&
cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
Depth + 1);
case Instruction::FPExt:
case Instruction::FPTrunc:
// Widening/narrowing never change sign.
return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
Depth + 1);
case Instruction::ExtractElement:
// Look through extract element. At the moment we keep this simple and skip
// tracking the specific element. But at least we might find information
// valid for all elements of the vector.
return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
Depth + 1);
case Instruction::Call:
const auto *CI = cast<CallInst>(I);
Intrinsic::ID IID = getIntrinsicForCallSite(CI, TLI);
switch (IID) {
default:
break;
case Intrinsic::maxnum:
return (isKnownNeverNaN(I->getOperand(0), TLI) &&
cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI,
SignBitOnly, Depth + 1)) ||
(isKnownNeverNaN(I->getOperand(1), TLI) &&
cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI,
SignBitOnly, Depth + 1));
case Intrinsic::maximum:
return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
Depth + 1) ||
cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
Depth + 1);
case Intrinsic::minnum:
case Intrinsic::minimum:
return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
Depth + 1) &&
cannotBeOrderedLessThanZeroImpl(I->getOperand(1), TLI, SignBitOnly,
Depth + 1);
case Intrinsic::exp:
case Intrinsic::exp2:
case Intrinsic::fabs:
return true;
case Intrinsic::sqrt:
// sqrt(x) is always >= -0 or NaN. Moreover, sqrt(x) == -0 iff x == -0.
if (!SignBitOnly)
return true;
return CI->hasNoNaNs() && (CI->hasNoSignedZeros() ||
CannotBeNegativeZero(CI->getOperand(0), TLI));
case Intrinsic::powi:
if (ConstantInt *Exponent = dyn_cast<ConstantInt>(I->getOperand(1))) {
// powi(x,n) is non-negative if n is even.
if (Exponent->getBitWidth() <= 64 && Exponent->getSExtValue() % 2u == 0)
return true;
}
// TODO: This is not correct. Given that exp is an integer, here are the
// ways that pow can return a negative value:
//
// pow(x, exp) --> negative if exp is odd and x is negative.
// pow(-0, exp) --> -inf if exp is negative odd.
// pow(-0, exp) --> -0 if exp is positive odd.
// pow(-inf, exp) --> -0 if exp is negative odd.
// pow(-inf, exp) --> -inf if exp is positive odd.
//
// Therefore, if !SignBitOnly, we can return true if x >= +0 or x is NaN,
// but we must return false if x == -0. Unfortunately we do not currently
// have a way of expressing this constraint. See details in
// https://llvm.org/bugs/show_bug.cgi?id=31702.
return cannotBeOrderedLessThanZeroImpl(I->getOperand(0), TLI, SignBitOnly,
Depth + 1);
case Intrinsic::fma:
case Intrinsic::fmuladd:
// x*x+y is non-negative if y is non-negative.
return I->getOperand(0) == I->getOperand(1) &&
(!SignBitOnly || cast<FPMathOperator>(I)->hasNoNaNs()) &&
cannotBeOrderedLessThanZeroImpl(I->getOperand(2), TLI, SignBitOnly,
Depth + 1);
}
break;
}
return false;
}
bool llvm::CannotBeOrderedLessThanZero(const Value *V,
const TargetLibraryInfo *TLI) {
return cannotBeOrderedLessThanZeroImpl(V, TLI, false, 0);
}
bool llvm::SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI) {
return cannotBeOrderedLessThanZeroImpl(V, TLI, true, 0);
}
bool llvm::isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
unsigned Depth) {
assert(V->getType()->isFPOrFPVectorTy() && "Querying for NaN on non-FP type");
// If we're told that NaNs won't happen, assume they won't.
if (auto *FPMathOp = dyn_cast<FPMathOperator>(V))
if (FPMathOp->hasNoNaNs())
return true;
// Handle scalar constants.
if (auto *CFP = dyn_cast<ConstantFP>(V))
return !CFP->isNaN();
if (Depth == MaxDepth)
return false;
if (auto *Inst = dyn_cast<Instruction>(V)) {
switch (Inst->getOpcode()) {
case Instruction::FAdd:
case Instruction::FMul:
case Instruction::FSub:
case Instruction::FDiv:
case Instruction::FRem: {
// TODO: Need isKnownNeverInfinity
return false;
}
case Instruction::Select: {
return isKnownNeverNaN(Inst->getOperand(1), TLI, Depth + 1) &&
isKnownNeverNaN(Inst->getOperand(2), TLI, Depth + 1);
}
case Instruction::SIToFP:
case Instruction::UIToFP:
return true;
case Instruction::FPTrunc:
case Instruction::FPExt:
return isKnownNeverNaN(Inst->getOperand(0), TLI, Depth + 1);
default:
break;
}
}
if (const auto *II = dyn_cast<IntrinsicInst>(V)) {
switch (II->getIntrinsicID()) {
case Intrinsic::canonicalize:
case Intrinsic::fabs:
case Intrinsic::copysign:
case Intrinsic::exp:
case Intrinsic::exp2:
case Intrinsic::floor:
case Intrinsic::ceil:
case Intrinsic::trunc:
case Intrinsic::rint:
case Intrinsic::nearbyint:
case Intrinsic::round:
return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1);
case Intrinsic::sqrt:
return isKnownNeverNaN(II->getArgOperand(0), TLI, Depth + 1) &&
CannotBeOrderedLessThanZero(II->getArgOperand(0), TLI);
default:
return false;
}
}
// Bail out for constant expressions, but try to handle vector constants.
if (!V->getType()->isVectorTy() || !isa<Constant>(V))
return false;
// For vectors, verify that each element is not NaN.
unsigned NumElts = V->getType()->getVectorNumElements();
for (unsigned i = 0; i != NumElts; ++i) {
Constant *Elt = cast<Constant>(V)->getAggregateElement(i);
if (!Elt)
return false;
if (isa<UndefValue>(Elt))
continue;
auto *CElt = dyn_cast<ConstantFP>(Elt);
if (!CElt || CElt->isNaN())
return false;
}
// All elements were confirmed not-NaN or undefined.
return true;
}
Value *llvm::isBytewiseValue(Value *V) {
// All byte-wide stores are splatable, even of arbitrary variables.
if (V->getType()->isIntegerTy(8))
return V;
LLVMContext &Ctx = V->getContext();
// Undef don't care.
auto *UndefInt8 = UndefValue::get(Type::getInt8Ty(Ctx));
if (isa<UndefValue>(V))
return UndefInt8;
Constant *C = dyn_cast<Constant>(V);
if (!C) {
// Conceptually, we could handle things like:
// %a = zext i8 %X to i16
// %b = shl i16 %a, 8
// %c = or i16 %a, %b
// but until there is an example that actually needs this, it doesn't seem
// worth worrying about.
return nullptr;
}
// Handle 'null' ConstantArrayZero etc.
if (C->isNullValue())
return Constant::getNullValue(Type::getInt8Ty(Ctx));
// Constant floating-point values can be handled as integer values if the
// corresponding integer value is "byteable". An important case is 0.0.
if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
Type *Ty = nullptr;
if (CFP->getType()->isHalfTy())
Ty = Type::getInt16Ty(Ctx);
else if (CFP->getType()->isFloatTy())
Ty = Type::getInt32Ty(Ctx);
else if (CFP->getType()->isDoubleTy())
Ty = Type::getInt64Ty(Ctx);
// Don't handle long double formats, which have strange constraints.
return Ty ? isBytewiseValue(ConstantExpr::getBitCast(CFP, Ty)) : nullptr;
}
// We can handle constant integers that are multiple of 8 bits.
if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
if (CI->getBitWidth() % 8 == 0) {
assert(CI->getBitWidth() > 8 && "8 bits should be handled above!");
if (!CI->getValue().isSplat(8))
return nullptr;
return ConstantInt::get(Ctx, CI->getValue().trunc(8));
}
}
auto Merge = [&](Value *LHS, Value *RHS) -> Value * {
if (LHS == RHS)
return LHS;
if (!LHS || !RHS)
return nullptr;
if (LHS == UndefInt8)
return RHS;
if (RHS == UndefInt8)
return LHS;
return nullptr;
};
if (ConstantDataSequential *CA = dyn_cast<ConstantDataSequential>(C)) {
Value *Val = UndefInt8;
for (unsigned I = 0, E = CA->getNumElements(); I != E; ++I)
if (!(Val = Merge(Val, isBytewiseValue(CA->getElementAsConstant(I)))))
return nullptr;
return Val;
}
if (isa<ConstantVector>(C)) {
Constant *Splat = cast<ConstantVector>(C)->getSplatValue();
return Splat ? isBytewiseValue(Splat) : nullptr;
}
if (isa<ConstantArray>(C) || isa<ConstantStruct>(C)) {
Value *Val = UndefInt8;
for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I)
if (!(Val = Merge(Val, isBytewiseValue(C->getOperand(I)))))
return nullptr;
return Val;
}
// Don't try to handle the handful of other constants.
return nullptr;
}
// This is the recursive version of BuildSubAggregate. It takes a few different
// arguments. Idxs is the index within the nested struct From that we are
// looking at now (which is of type IndexedType). IdxSkip is the number of
// indices from Idxs that should be left out when inserting into the resulting
// struct. To is the result struct built so far, new insertvalue instructions
// build on that.
static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
SmallVectorImpl<unsigned> &Idxs,
unsigned IdxSkip,
Instruction *InsertBefore) {
StructType *STy = dyn_cast<StructType>(IndexedType);
if (STy) {
// Save the original To argument so we can modify it
Value *OrigTo = To;
// General case, the type indexed by Idxs is a struct
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
// Process each struct element recursively
Idxs.push_back(i);
Value *PrevTo = To;
To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
InsertBefore);
Idxs.pop_back();
if (!To) {
// Couldn't find any inserted value for this index? Cleanup
while (PrevTo != OrigTo) {
InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
PrevTo = Del->getAggregateOperand();
Del->eraseFromParent();
}
// Stop processing elements
break;
}
}
// If we successfully found a value for each of our subaggregates
if (To)
return To;
}
// Base case, the type indexed by SourceIdxs is not a struct, or not all of
// the struct's elements had a value that was inserted directly. In the latter
// case, perhaps we can't determine each of the subelements individually, but
// we might be able to find the complete struct somewhere.
// Find the value that is at that particular spot
Value *V = FindInsertedValue(From, Idxs);
if (!V)
return nullptr;
// Insert the value in the new (sub) aggregate
return InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
"tmp", InsertBefore);
}
// This helper takes a nested struct and extracts a part of it (which is again a
// struct) into a new value. For example, given the struct:
// { a, { b, { c, d }, e } }
// and the indices "1, 1" this returns
// { c, d }.
//
// It does this by inserting an insertvalue for each element in the resulting
// struct, as opposed to just inserting a single struct. This will only work if
// each of the elements of the substruct are known (ie, inserted into From by an
// insertvalue instruction somewhere).
//
// All inserted insertvalue instructions are inserted before InsertBefore
static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Instruction *InsertBefore) {
assert(InsertBefore && "Must have someplace to insert!");
Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
idx_range);
Value *To = UndefValue::get(IndexedType);
SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
unsigned IdxSkip = Idxs.size();
return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
}
/// Given an aggregate and a sequence of indices, see if the scalar value
/// indexed is already around as a register, for example if it was inserted
/// directly into the aggregate.
///
/// If InsertBefore is not null, this function will duplicate (modified)
/// insertvalues when a part of a nested struct is extracted.
Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
Instruction *InsertBefore) {
// Nothing to index? Just return V then (this is useful at the end of our
// recursion).
if (idx_range.empty())
return V;
// We have indices, so V should have an indexable type.
assert((V->getType()->isStructTy() || V->getType()->isArrayTy()) &&
"Not looking at a struct or array?");
assert(ExtractValueInst::getIndexedType(V->getType(), idx_range) &&
"Invalid indices for type?");
if (Constant *C = dyn_cast<Constant>(V)) {
C = C->getAggregateElement(idx_range[0]);
if (!C) return nullptr;
return FindInsertedValue(C, idx_range.slice(1), InsertBefore);
}
if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
// Loop the indices for the insertvalue instruction in parallel with the
// requested indices
const unsigned *req_idx = idx_range.begin();
for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
i != e; ++i, ++req_idx) {
if (req_idx == idx_range.end()) {
// We can't handle this without inserting insertvalues
if (!InsertBefore)
return nullptr;
// The requested index identifies a part of a nested aggregate. Handle
// this specially. For example,
// %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
// %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
// %C = extractvalue {i32, { i32, i32 } } %B, 1
// This can be changed into
// %A = insertvalue {i32, i32 } undef, i32 10, 0
// %C = insertvalue {i32, i32 } %A, i32 11, 1
// which allows the unused 0,0 element from the nested struct to be
// removed.
return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
InsertBefore);
}
// This insert value inserts something else than what we are looking for.
// See if the (aggregate) value inserted into has the value we are
// looking for, then.
if (*req_idx != *i)
return FindInsertedValue(I->getAggregateOperand(), idx_range,
InsertBefore);
}
// If we end up here, the indices of the insertvalue match with those
// requested (though possibly only partially). Now we recursively look at
// the inserted value, passing any remaining indices.
return FindInsertedValue(I->getInsertedValueOperand(),
makeArrayRef(req_idx, idx_range.end()),
InsertBefore);
}
if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
// If we're extracting a value from an aggregate that was extracted from
// something else, we can extract from that something else directly instead.
// However, we will need to chain I's indices with the requested indices.
// Calculate the number of indices required
unsigned size = I->getNumIndices() + idx_range.size();
// Allocate some space to put the new indices in
SmallVector<unsigned, 5> Idxs;
Idxs.reserve(size);
// Add indices from the extract value instruction
Idxs.append(I->idx_begin(), I->idx_end());
// Add requested indices
Idxs.append(idx_range.begin(), idx_range.end());
assert(Idxs.size() == size
&& "Number of indices added not correct?");
return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
}
// Otherwise, we don't know (such as, extracting from a function return value
// or load instruction)
return nullptr;
}
/// Analyze the specified pointer to see if it can be expressed as a base
/// pointer plus a constant offset. Return the base and offset to the caller.
Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
const DataLayout &DL) {
unsigned BitWidth = DL.getIndexTypeSizeInBits(Ptr->getType());
APInt ByteOffset(BitWidth, 0);
// We walk up the defs but use a visited set to handle unreachable code. In
// that case, we stop after accumulating the cycle once (not that it
// matters).
SmallPtrSet<Value *, 16> Visited;
while (Visited.insert(Ptr).second) {
if (Ptr->getType()->isVectorTy())
break;
if (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
// If one of the values we have visited is an addrspacecast, then
// the pointer type of this GEP may be different from the type
// of the Ptr parameter which was passed to this function. This
// means when we construct GEPOffset, we need to use the size
// of GEP's pointer type rather than the size of the original
// pointer type.
APInt GEPOffset(DL.getIndexTypeSizeInBits(Ptr->getType()), 0);
if (!GEP->accumulateConstantOffset(DL, GEPOffset))
break;
APInt OrigByteOffset(ByteOffset);
ByteOffset += GEPOffset.sextOrTrunc(ByteOffset.getBitWidth());
if (ByteOffset.getMinSignedBits() > 64) {
// Stop traversal if the pointer offset wouldn't fit into int64_t
// (this should be removed if Offset is updated to an APInt)
ByteOffset = OrigByteOffset;
break;
}
Ptr = GEP->getPointerOperand();
} else if (Operator::getOpcode(Ptr) == Instruction::BitCast ||
Operator::getOpcode(Ptr) == Instruction::AddrSpaceCast) {
Ptr = cast<Operator>(Ptr)->getOperand(0);
} else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) {
if (GA->isInterposable())
break;
Ptr = GA->getAliasee();
} else {
break;
}
}
Offset = ByteOffset.getSExtValue();
return Ptr;
}
bool llvm::isGEPBasedOnPointerToString(const GEPOperator *GEP,
unsigned CharSize) {
// Make sure the GEP has exactly three arguments.
if (GEP->getNumOperands() != 3)
return false;
// Make sure the index-ee is a pointer to array of \p CharSize integers.
// CharSize.
ArrayType *AT = dyn_cast<ArrayType>(GEP->getSourceElementType());
if (!AT || !AT->getElementType()->isIntegerTy(CharSize))
return false;
// Check to make sure that the first operand of the GEP is an integer and
// has value 0 so that we are sure we're indexing into the initializer.
const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
if (!FirstIdx || !FirstIdx->isZero())
return false;
return true;
}
bool llvm::getConstantDataArrayInfo(const Value *V,
ConstantDataArraySlice &Slice,
unsigned ElementSize, uint64_t Offset) {
assert(V);
// Look through bitcast instructions and geps.
V = V->stripPointerCasts();
// If the value is a GEP instruction or constant expression, treat it as an
// offset.
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
// The GEP operator should be based on a pointer to string constant, and is
// indexing into the string constant.
if (!isGEPBasedOnPointerToString(GEP, ElementSize))
return false;
// If the second index isn't a ConstantInt, then this is a variable index
// into the array. If this occurs, we can't say anything meaningful about
// the string.
uint64_t StartIdx = 0;
if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
StartIdx = CI->getZExtValue();
else
return false;
return getConstantDataArrayInfo(GEP->getOperand(0), Slice, ElementSize,
StartIdx + Offset);
}
// The GEP instruction, constant or instruction, must reference a global
// variable that is a constant and is initialized. The referenced constant
// initializer is the array that we'll use for optimization.
const GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
return false;
const ConstantDataArray *Array;
ArrayType *ArrayTy;
if (GV->getInitializer()->isNullValue()) {
Type *GVTy = GV->getValueType();
if ( (ArrayTy = dyn_cast<ArrayType>(GVTy)) ) {
// A zeroinitializer for the array; there is no ConstantDataArray.
Array = nullptr;
} else {
const DataLayout &DL = GV->getParent()->getDataLayout();
uint64_t SizeInBytes = DL.getTypeStoreSize(GVTy);
uint64_t Length = SizeInBytes / (ElementSize / 8);
if (Length <= Offset)
return false;
Slice.Array = nullptr;
Slice.Offset = 0;
Slice.Length = Length - Offset;
return true;
}
} else {
// This must be a ConstantDataArray.
Array = dyn_cast<ConstantDataArray>(GV->getInitializer());
if (!Array)
return false;
ArrayTy = Array->getType();
}
if (!ArrayTy->getElementType()->isIntegerTy(ElementSize))
return false;
uint64_t NumElts = ArrayTy->getArrayNumElements();
if (Offset > NumElts)
return false;
Slice.Array = Array;
Slice.Offset = Offset;
Slice.Length = NumElts - Offset;
return true;
}
/// This function computes the length of a null-terminated C string pointed to
/// by V. If successful, it returns true and returns the string in Str.
/// If unsuccessful, it returns false.
bool llvm::getConstantStringInfo(const Value *V, StringRef &Str,
uint64_t Offset, bool TrimAtNul) {
ConstantDataArraySlice Slice;
if (!getConstantDataArrayInfo(V, Slice, 8, Offset))
return false;
if (Slice.Array == nullptr) {
if (TrimAtNul) {
Str = StringRef();
return true;
}
if (Slice.Length == 1) {
Str = StringRef("", 1);
return true;
}
// We cannot instantiate a StringRef as we do not have an appropriate string
// of 0s at hand.
return false;
}
// Start out with the entire array in the StringRef.
Str = Slice.Array->getAsString();
// Skip over 'offset' bytes.
Str = Str.substr(Slice.Offset);
if (TrimAtNul) {
// Trim off the \0 and anything after it. If the array is not nul
// terminated, we just return the whole end of string. The client may know
// some other way that the string is length-bound.
Str = Str.substr(0, Str.find('\0'));
}
return true;
}
// These next two are very similar to the above, but also look through PHI
// nodes.
// TODO: See if we can integrate these two together.
/// If we can compute the length of the string pointed to by
/// the specified pointer, return 'len+1'. If we can't, return 0.
static uint64_t GetStringLengthH(const Value *V,
SmallPtrSetImpl<const PHINode*> &PHIs,
unsigned CharSize) {
// Look through noop bitcast instructions.
V = V->stripPointerCasts();
// If this is a PHI node, there are two cases: either we have already seen it
// or we haven't.
if (const PHINode *PN = dyn_cast<PHINode>(V)) {
if (!PHIs.insert(PN).second)
return ~0ULL; // already in the set.
// If it was new, see if all the input strings are the same length.
uint64_t LenSoFar = ~0ULL;
for (Value *IncValue : PN->incoming_values()) {
uint64_t Len = GetStringLengthH(IncValue, PHIs, CharSize);
if (Len == 0) return 0; // Unknown length -> unknown.
if (Len == ~0ULL) continue;
if (Len != LenSoFar && LenSoFar != ~0ULL)
return 0; // Disagree -> unknown.
LenSoFar = Len;
}
// Success, all agree.
return LenSoFar;
}
// strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs, CharSize);
if (Len1 == 0) return 0;
uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs, CharSize);
if (Len2 == 0) return 0;
if (Len1 == ~0ULL) return Len2;
if (Len2 == ~0ULL) return Len1;
if (Len1 != Len2) return 0;
return Len1;
}
// Otherwise, see if we can read the string.
ConstantDataArraySlice Slice;
if (!getConstantDataArrayInfo(V, Slice, CharSize))
return 0;
if (Slice.Array == nullptr)
return 1;
// Search for nul characters
unsigned NullIndex = 0;
for (unsigned E = Slice.Length; NullIndex < E; ++NullIndex) {
if (Slice.Array->getElementAsInteger(Slice.Offset + NullIndex) == 0)
break;
}
return NullIndex + 1;
}
/// If we can compute the length of the string pointed to by
/// the specified pointer, return 'len+1'. If we can't, return 0.
uint64_t llvm::GetStringLength(const Value *V, unsigned CharSize) {
if (!V->getType()->isPointerTy())
return 0;
SmallPtrSet<const PHINode*, 32> PHIs;
uint64_t Len = GetStringLengthH(V, PHIs, CharSize);
// If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
// an empty string as a length.
return Len == ~0ULL ? 1 : Len;
}
const Value *llvm::getArgumentAliasingToReturnedPointer(const CallBase *Call) {
assert(Call &&
"getArgumentAliasingToReturnedPointer only works on nonnull calls");
if (const Value *RV = Call->getReturnedArgOperand())
return RV;
// This can be used only as a aliasing property.
if (isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(Call))
return Call->getArgOperand(0);
return nullptr;
}
bool llvm::isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
const CallBase *Call) {
return Call->getIntrinsicID() == Intrinsic::launder_invariant_group ||
Call->getIntrinsicID() == Intrinsic::strip_invariant_group;
}
/// \p PN defines a loop-variant pointer to an object. Check if the
/// previous iteration of the loop was referring to the same object as \p PN.
static bool isSameUnderlyingObjectInLoop(const PHINode *PN,
const LoopInfo *LI) {
// Find the loop-defined value.
Loop *L = LI->getLoopFor(PN->getParent());
if (PN->getNumIncomingValues() != 2)
return true;
// Find the value from previous iteration.
auto *PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(0));
if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
PrevValue = dyn_cast<Instruction>(PN->getIncomingValue(1));
if (!PrevValue || LI->getLoopFor(PrevValue->getParent()) != L)
return true;
// If a new pointer is loaded in the loop, the pointer references a different
// object in every iteration. E.g.:
// for (i)
// int *p = a[i];
// ...
if (auto *Load = dyn_cast<LoadInst>(PrevValue))
if (!L->isLoopInvariant(Load->getPointerOperand()))
return false;
return true;
}
Value *llvm::GetUnderlyingObject(Value *V, const DataLayout &DL,
unsigned MaxLookup) {
if (!V->getType()->isPointerTy())
return V;
for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
V = GEP->getPointerOperand();
} else if (Operator::getOpcode(V) == Instruction::BitCast ||
Operator::getOpcode(V) == Instruction::AddrSpaceCast) {
V = cast<Operator>(V)->getOperand(0);
} else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
if (GA->isInterposable())
return V;
V = GA->getAliasee();
} else if (isa<AllocaInst>(V)) {
// An alloca can't be further simplified.
return V;
} else {
if (auto *Call = dyn_cast<CallBase>(V)) {
// CaptureTracking can know about special capturing properties of some
// intrinsics like launder.invariant.group, that can't be expressed with
// the attributes, but have properties like returning aliasing pointer.
// Because some analysis may assume that nocaptured pointer is not
// returned from some special intrinsic (because function would have to
// be marked with returns attribute), it is crucial to use this function
// because it should be in sync with CaptureTracking. Not using it may
// cause weird miscompilations where 2 aliasing pointers are assumed to
// noalias.
if (auto *RP = getArgumentAliasingToReturnedPointer(Call)) {
V = RP;
continue;
}
}
// See if InstructionSimplify knows any relevant tricks.
if (Instruction *I = dyn_cast<Instruction>(V))
// TODO: Acquire a DominatorTree and AssumptionCache and use them.
if (Value *Simplified = SimplifyInstruction(I, {DL, I})) {
V = Simplified;
continue;
}
return V;
}
assert(V->getType()->isPointerTy() && "Unexpected operand type!");
}
return V;
}
void llvm::GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
const DataLayout &DL, LoopInfo *LI,
unsigned MaxLookup) {
SmallPtrSet<Value *, 4> Visited;
SmallVector<Value *, 4> Worklist;
Worklist.push_back(V);
do {
Value *P = Worklist.pop_back_val();
P = GetUnderlyingObject(P, DL, MaxLookup);
if (!Visited.insert(P).second)
continue;
if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
Worklist.push_back(SI->getTrueValue());
Worklist.push_back(SI->getFalseValue());
continue;
}
if (PHINode *PN = dyn_cast<PHINode>(P)) {
// If this PHI changes the underlying object in every iteration of the
// loop, don't look through it. Consider:
// int **A;
// for (i) {
// Prev = Curr; // Prev = PHI (Prev_0, Curr)
// Curr = A[i];
// *Prev, *Curr;
//
// Prev is tracking Curr one iteration behind so they refer to different
// underlying objects.
if (!LI || !LI->isLoopHeader(PN->getParent()) ||
isSameUnderlyingObjectInLoop(PN, LI))
for (Value *IncValue : PN->incoming_values())
Worklist.push_back(IncValue);
continue;
}
Objects.push_back(P);
} while (!Worklist.empty());
}
/// This is the function that does the work of looking through basic
/// ptrtoint+arithmetic+inttoptr sequences.
static const Value *getUnderlyingObjectFromInt(const Value *V) {
do {
if (const Operator *U = dyn_cast<Operator>(V)) {
// If we find a ptrtoint, we can transfer control back to the
// regular getUnderlyingObjectFromInt.
if (U->getOpcode() == Instruction::PtrToInt)
return U->getOperand(0);
// If we find an add of a constant, a multiplied value, or a phi, it's
// likely that the other operand will lead us to the base
// object. We don't have to worry about the case where the
// object address is somehow being computed by the multiply,
// because our callers only care when the result is an
// identifiable object.
if (U->getOpcode() != Instruction::Add ||
(!isa<ConstantInt>(U->getOperand(1)) &&
Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
!isa<PHINode>(U->getOperand(1))))
return V;
V = U->getOperand(0);
} else {
return V;
}
assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
} while (true);
}
/// This is a wrapper around GetUnderlyingObjects and adds support for basic
/// ptrtoint+arithmetic+inttoptr sequences.
/// It returns false if unidentified object is found in GetUnderlyingObjects.
bool llvm::getUnderlyingObjectsForCodeGen(const Value *V,
SmallVectorImpl<Value *> &Objects,
const DataLayout &DL) {
SmallPtrSet<const Value *, 16> Visited;
SmallVector<const Value *, 4> Working(1, V);
do {
V = Working.pop_back_val();
SmallVector<Value *, 4> Objs;
GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);
for (Value *V : Objs) {
if (!Visited.insert(V).second)
continue;
if (Operator::getOpcode(V) == Instruction::IntToPtr) {
const Value *O =
getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
if (O->getType()->isPointerTy()) {
Working.push_back(O);
continue;
}
}
// If GetUnderlyingObjects fails to find an identifiable object,
// getUnderlyingObjectsForCodeGen also fails for safety.
if (!isIdentifiedObject(V)) {
Objects.clear();
return false;
}
Objects.push_back(const_cast<Value *>(V));
}
} while (!Working.empty());
return true;
}
/// Return true if the only users of this pointer are lifetime markers.
bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
for (const User *U : V->users()) {
const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
if (!II) return false;
if (!II->isLifetimeStartOrEnd())
return false;
}
return true;
}
bool llvm::isSafeToSpeculativelyExecute(const Value *V,
const Instruction *CtxI,
const DominatorTree *DT) {
const Operator *Inst = dyn_cast<Operator>(V);
if (!Inst)
return false;
for (unsigned i = 0, e = Inst->getNumOperands(); i != e; ++i)
if (Constant *C = dyn_cast<Constant>(Inst->getOperand(i)))
if (C->canTrap())
return false;
switch (Inst->getOpcode()) {
default:
return true;
case Instruction::UDiv:
case Instruction::URem: {
// x / y is undefined if y == 0.
const APInt *V;
if (match(Inst->getOperand(1), m_APInt(V)))
return *V != 0;
return false;
}
case Instruction::SDiv:
case Instruction::SRem: {
// x / y is undefined if y == 0 or x == INT_MIN and y == -1
const APInt *Numerator, *Denominator;
if (!match(Inst->getOperand(1), m_APInt(Denominator)))
return false;
// We cannot hoist this division if the denominator is 0.
if (*Denominator == 0)
return false;
// It's safe to hoist if the denominator is not 0 or -1.
if (*Denominator != -1)
return true;
// At this point we know that the denominator is -1. It is safe to hoist as
// long we know that the numerator is not INT_MIN.
if (match(Inst->getOperand(0), m_APInt(Numerator)))
return !Numerator->isMinSignedValue();
// The numerator *might* be MinSignedValue.
return false;
}
case Instruction::Load: {
const LoadInst *LI = cast<LoadInst>(Inst);
if (!LI->isUnordered() ||
// Speculative load may create a race that did not exist in the source.
LI->getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
// Speculative load may load data from dirty regions.
LI->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
LI->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
return false;
const DataLayout &DL = LI->getModule()->getDataLayout();
return isDereferenceableAndAlignedPointer(LI->getPointerOperand(),
LI->getAlignment(), DL, CtxI, DT);
}
case Instruction::Call: {
auto *CI = cast<const CallInst>(Inst);
const Function *Callee = CI->getCalledFunction();
// The called function could have undefined behavior or side-effects, even
// if marked readnone nounwind.
return Callee && Callee->isSpeculatable();
}
case Instruction::VAArg:
case Instruction::Alloca:
case Instruction::Invoke:
case Instruction::CallBr:
case Instruction::PHI:
case Instruction::Store:
case Instruction::Ret:
case Instruction::Br:
case Instruction::IndirectBr:
case Instruction::Switch:
case Instruction::Unreachable:
case Instruction::Fence:
case Instruction::AtomicRMW:
case Instruction::AtomicCmpXchg:
case Instruction::LandingPad:
case Instruction::Resume:
case Instruction::CatchSwitch:
case Instruction::CatchPad:
case Instruction::CatchRet:
case Instruction::CleanupPad:
case Instruction::CleanupRet:
return false; // Misc instructions which have effects
}
}
bool llvm::mayBeMemoryDependent(const Instruction &I) {
return I.mayReadOrWriteMemory() || !isSafeToSpeculativelyExecute(&I);
}
OverflowResult llvm::computeOverflowForUnsignedMul(
const Value *LHS, const Value *RHS, const DataLayout &DL,
AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
bool UseInstrInfo) {
// Multiplying n * m significant bits yields a result of n + m significant
// bits. If the total number of significant bits does not exceed the
// result bit width (minus 1), there is no overflow.
// This means if we have enough leading zero bits in the operands
// we can guarantee that the result does not overflow.
// Ref: "Hacker's Delight" by Henry Warren
unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
KnownBits LHSKnown(BitWidth);
KnownBits RHSKnown(BitWidth);
computeKnownBits(LHS, LHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr,
UseInstrInfo);
computeKnownBits(RHS, RHSKnown, DL, /*Depth=*/0, AC, CxtI, DT, nullptr,
UseInstrInfo);
// Note that underestimating the number of zero bits gives a more
// conservative answer.
unsigned ZeroBits = LHSKnown.countMinLeadingZeros() +
RHSKnown.countMinLeadingZeros();
// First handle the easy case: if we have enough zero bits there's
// definitely no overflow.
if (ZeroBits >= BitWidth)
return OverflowResult::NeverOverflows;
// Get the largest possible values for each operand.
APInt LHSMax = ~LHSKnown.Zero;
APInt RHSMax = ~RHSKnown.Zero;
// We know the multiply operation doesn't overflow if the maximum values for
// each operand will not overflow after we multiply them together.
bool MaxOverflow;
(void)LHSMax.umul_ov(RHSMax, MaxOverflow);
if (!MaxOverflow)
return OverflowResult::NeverOverflows;
// We know it always overflows if multiplying the smallest possible values for
// the operands also results in overflow.
bool MinOverflow;
(void)LHSKnown.One.umul_ov(RHSKnown.One, MinOverflow);
if (MinOverflow)
return OverflowResult::AlwaysOverflows;
return OverflowResult::MayOverflow;
}
OverflowResult
llvm::computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
const DataLayout &DL, AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT, bool UseInstrInfo) {
// Multiplying n * m significant bits yields a result of n + m significant
// bits. If the total number of significant bits does not exceed the
// result bit width (minus 1), there is no overflow.
// This means if we have enough leading sign bits in the operands
// we can guarantee that the result does not overflow.
// Ref: "Hacker's Delight" by Henry Warren
unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
// Note that underestimating the number of sign bits gives a more
// conservative answer.
unsigned SignBits = ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) +
ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT);
// First handle the easy case: if we have enough sign bits there's
// definitely no overflow.
if (SignBits > BitWidth + 1)
return OverflowResult::NeverOverflows;
// There are two ambiguous cases where there can be no overflow:
// SignBits == BitWidth + 1 and
// SignBits == BitWidth
// The second case is difficult to check, therefore we only handle the
// first case.
if (SignBits == BitWidth + 1) {
// It overflows only when both arguments are negative and the true
// product is exactly the minimum negative number.
// E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
// For simplicity we just check if at least one side is not negative.
KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
nullptr, UseInstrInfo);
KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
nullptr, UseInstrInfo);
if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative())
return OverflowResult::NeverOverflows;
}
return OverflowResult::MayOverflow;
}
OverflowResult llvm::computeOverflowForUnsignedAdd(
const Value *LHS, const Value *RHS, const DataLayout &DL,
AssumptionCache *AC, const Instruction *CxtI, const DominatorTree *DT,
bool UseInstrInfo) {
KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT,
nullptr, UseInstrInfo);
if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT,
nullptr, UseInstrInfo);
if (LHSKnown.isNegative() && RHSKnown.isNegative()) {
// The sign bit is set in both cases: this MUST overflow.
return OverflowResult::AlwaysOverflows;
}
if (LHSKnown.isNonNegative() && RHSKnown.isNonNegative()) {
// The sign bit is clear in both cases: this CANNOT overflow.
return OverflowResult::NeverOverflows;
}
}
return OverflowResult::MayOverflow;
}
/// Return true if we can prove that adding the two values of the
/// knownbits will not overflow.
/// Otherwise return false.
static bool checkRippleForSignedAdd(const KnownBits &LHSKnown,
const KnownBits &RHSKnown) {
// Addition of two 2's complement numbers having opposite signs will never
// overflow.
if ((LHSKnown.isNegative() && RHSKnown.isNonNegative()) ||
(LHSKnown.isNonNegative() && RHSKnown.isNegative()))
return true;
// If either of the values is known to be non-negative, adding them can only
// overflow if the second is also non-negative, so we can assume that.
// Two non-negative numbers will only overflow if there is a carry to the
// sign bit, so we can check if even when the values are as big as possible
// there is no overflow to the sign bit.
if (LHSKnown.isNonNegative() || RHSKnown.isNonNegative()) {
APInt MaxLHS = ~LHSKnown.Zero;
MaxLHS.clearSignBit();
APInt MaxRHS = ~RHSKnown.Zero;
MaxRHS.clearSignBit();
APInt Result = std::move(MaxLHS) + std::move(MaxRHS);
return Result.isSignBitClear();
}
// If either of the values is known to be negative, adding them can only
// overflow if the second is also negative, so we can assume that.
// Two negative number will only overflow if there is no carry to the sign
// bit, so we can check if even when the values are as small as possible
// there is overflow to the sign bit.
if (LHSKnown.isNegative() || RHSKnown.isNegative()) {
APInt MinLHS = LHSKnown.One;
MinLHS.clearSignBit();
APInt MinRHS = RHSKnown.One;
MinRHS.clearSignBit();
APInt Result = std::move(MinLHS) + std::move(MinRHS);
return Result.isSignBitSet();
}
// If we reached here it means that we know nothing about the sign bits.
// In this case we can't know if there will be an overflow, since by
// changing the sign bits any two values can be made to overflow.
return false;
}
static OverflowResult computeOverflowForSignedAdd(const Value *LHS,
const Value *RHS,
const AddOperator *Add,
const DataLayout &DL,
AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT) {
if (Add && Add->hasNoSignedWrap()) {
return OverflowResult::NeverOverflows;
}
// If LHS and RHS each have at least two sign bits, the addition will look
// like
//
// XX..... +
// YY.....
//
// If the carry into the most significant position is 0, X and Y can't both
// be 1 and therefore the carry out of the addition is also 0.
//
// If the carry into the most significant position is 1, X and Y can't both
// be 0 and therefore the carry out of the addition is also 1.
//
// Since the carry into the most significant position is always equal to
// the carry out of the addition, there is no signed overflow.
if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
return OverflowResult::NeverOverflows;
KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
if (checkRippleForSignedAdd(LHSKnown, RHSKnown))
return OverflowResult::NeverOverflows;
// The remaining code needs Add to be available. Early returns if not so.
if (!Add)
return OverflowResult::MayOverflow;
// If the sign of Add is the same as at least one of the operands, this add
// CANNOT overflow. This is particularly useful when the sum is
// @llvm.assume'ed non-negative rather than proved so from analyzing its
// operands.
bool LHSOrRHSKnownNonNegative =
(LHSKnown.isNonNegative() || RHSKnown.isNonNegative());
bool LHSOrRHSKnownNegative =
(LHSKnown.isNegative() || RHSKnown.isNegative());
if (LHSOrRHSKnownNonNegative || LHSOrRHSKnownNegative) {
KnownBits AddKnown = computeKnownBits(Add, DL, /*Depth=*/0, AC, CxtI, DT);
if ((AddKnown.isNonNegative() && LHSOrRHSKnownNonNegative) ||
(AddKnown.isNegative() && LHSOrRHSKnownNegative)) {
return OverflowResult::NeverOverflows;
}
}
return OverflowResult::MayOverflow;
}
OverflowResult llvm::computeOverflowForUnsignedSub(const Value *LHS,
const Value *RHS,
const DataLayout &DL,
AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT) {
KnownBits LHSKnown = computeKnownBits(LHS, DL, /*Depth=*/0, AC, CxtI, DT);
if (LHSKnown.isNonNegative() || LHSKnown.isNegative()) {
KnownBits RHSKnown = computeKnownBits(RHS, DL, /*Depth=*/0, AC, CxtI, DT);
// If the LHS is negative and the RHS is non-negative, no unsigned wrap.
if (LHSKnown.isNegative() && RHSKnown.isNonNegative())
return OverflowResult::NeverOverflows;
// If the LHS is non-negative and the RHS negative, we always wrap.
if (LHSKnown.isNonNegative() && RHSKnown.isNegative())
return OverflowResult::AlwaysOverflows;
}
return OverflowResult::MayOverflow;
}
OverflowResult llvm::computeOverflowForSignedSub(const Value *LHS,
const Value *RHS,
const DataLayout &DL,
AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT) {
// If LHS and RHS each have at least two sign bits, the subtraction
// cannot overflow.
if (ComputeNumSignBits(LHS, DL, 0, AC, CxtI, DT) > 1 &&
ComputeNumSignBits(RHS, DL, 0, AC, CxtI, DT) > 1)
return OverflowResult::NeverOverflows;
KnownBits LHSKnown = computeKnownBits(LHS, DL, 0, AC, CxtI, DT);
KnownBits RHSKnown = computeKnownBits(RHS, DL, 0, AC, CxtI, DT);
// Subtraction of two 2's complement numbers having identical signs will
// never overflow.
if ((LHSKnown.isNegative() && RHSKnown.isNegative()) ||
(LHSKnown.isNonNegative() && RHSKnown.isNonNegative()))
return OverflowResult::NeverOverflows;
// TODO: implement logic similar to checkRippleForAdd
return OverflowResult::MayOverflow;
}
bool llvm::isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
const DominatorTree &DT) {
#ifndef NDEBUG
auto IID = II->getIntrinsicID();
assert((IID == Intrinsic::sadd_with_overflow ||
IID == Intrinsic::uadd_with_overflow ||
IID == Intrinsic::ssub_with_overflow ||
IID == Intrinsic::usub_with_overflow ||
IID == Intrinsic::smul_with_overflow ||
IID == Intrinsic::umul_with_overflow) &&
"Not an overflow intrinsic!");
#endif
SmallVector<const BranchInst *, 2> GuardingBranches;
SmallVector<const ExtractValueInst *, 2> Results;
for (const User *U : II->users()) {
if (const auto *EVI = dyn_cast<ExtractValueInst>(U)) {
assert(EVI->getNumIndices() == 1 && "Obvious from CI's type");
if (EVI->getIndices()[0] == 0)
Results.push_back(EVI);
else {
assert(EVI->getIndices()[0] == 1 && "Obvious from CI's type");
for (const auto *U : EVI->users())
if (const auto *B = dyn_cast<BranchInst>(U)) {
assert(B->isConditional() && "How else is it using an i1?");
GuardingBranches.push_back(B);
}
}
} else {
// We are using the aggregate directly in a way we don't want to analyze
// here (storing it to a global, say).
return false;
}
}
auto AllUsesGuardedByBranch = [&](const BranchInst *BI) {
BasicBlockEdge NoWrapEdge(BI->getParent(), BI->getSuccessor(1));
if (!NoWrapEdge.isSingleEdge())
return false;
// Check if all users of the add are provably no-wrap.
for (const auto *Result : Results) {
// If the extractvalue itself is not executed on overflow, the we don't
// need to check each use separately, since domination is transitive.
if (DT.dominates(NoWrapEdge, Result->getParent()))
continue;
for (auto &RU : Result->uses())
if (!DT.dominates(NoWrapEdge, RU))
return false;
}
return true;
};
return llvm::any_of(GuardingBranches, AllUsesGuardedByBranch);
}
OverflowResult llvm::computeOverflowForSignedAdd(const AddOperator *Add,
const DataLayout &DL,
AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT) {
return ::computeOverflowForSignedAdd(Add->getOperand(0), Add->getOperand(1),
Add, DL, AC, CxtI, DT);
}
OverflowResult llvm::computeOverflowForSignedAdd(const Value *LHS,
const Value *RHS,
const DataLayout &DL,
AssumptionCache *AC,
const Instruction *CxtI,
const DominatorTree *DT) {
return ::computeOverflowForSignedAdd(LHS, RHS, nullptr, DL, AC, CxtI, DT);
}
bool llvm::isGuaranteedToTransferExecutionToSuccessor(const Instruction *I) {
// A memory operation returns normally if it isn't volatile. A volatile
// operation is allowed to trap.
//
// An atomic operation isn't guaranteed to return in a reasonable amount of
// time because it's possible for another thread to interfere with it for an
// arbitrary length of time, but programs aren't allowed to rely on that.
if (const LoadInst *LI = dyn_cast<LoadInst>(I))
return !LI->isVolatile();
if (const StoreInst *SI = dyn_cast<StoreInst>(I))
return !SI->isVolatile();
if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I))
return !CXI->isVolatile();
if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I))
return !RMWI->isVolatile();
if (const MemIntrinsic *MII = dyn_cast<MemIntrinsic>(I))
return !MII->isVolatile();
// If there is no successor, then execution can't transfer to it.
if (const auto *CRI = dyn_cast<CleanupReturnInst>(I))
return !CRI->unwindsToCaller();
if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(I))
return !CatchSwitch->unwindsToCaller();
if (isa<ResumeInst>(I))
return false;
if (isa<ReturnInst>(I))
return false;
if (isa<UnreachableInst>(I))
return false;
// Calls can throw, or contain an infinite loop, or kill the process.
if (auto CS = ImmutableCallSite(I)) {
// Call sites that throw have implicit non-local control flow.
if (!CS.doesNotThrow())
return false;
// Non-throwing call sites can loop infinitely, call exit/pthread_exit
// etc. and thus not return. However, LLVM already assumes that
//
// - Thread exiting actions are modeled as writes to memory invisible to
// the program.
//
// - Loops that don't have side effects (side effects are volatile/atomic
// stores and IO) always terminate (see http://llvm.org/PR965).
// Furthermore IO itself is also modeled as writes to memory invisible to
// the program.
//
// We rely on those assumptions here, and use the memory effects of the call
// target as a proxy for checking that it always returns.
// FIXME: This isn't aggressive enough; a call which only writes to a global
// is guaranteed to return.
return CS.onlyReadsMemory() || CS.onlyAccessesArgMemory() ||
match(I, m_Intrinsic<Intrinsic::assume>()) ||
match(I, m_Intrinsic<Intrinsic::sideeffect>()) ||
match(I, m_Intrinsic<Intrinsic::experimental_widenable_condition>());
}
// Other instructions return normally.
return true;
}
bool llvm::isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB) {
// TODO: This is slightly conservative for invoke instruction since exiting
// via an exception *is* normal control for them.
for (auto I = BB->begin(), E = BB->end(); I != E; ++I)
if (!isGuaranteedToTransferExecutionToSuccessor(&*I))
return false;
return true;
}
bool llvm::isGuaranteedToExecuteForEveryIteration(const Instruction *I,
const Loop *L) {
// The loop header is guaranteed to be executed for every iteration.
//
// FIXME: Relax this constraint to cover all basic blocks that are
// guaranteed to be executed at every iteration.
if (I->getParent() != L->getHeader()) return false;
for (const Instruction &LI : *L->getHeader()) {
if (&LI == I) return true;
if (!isGuaranteedToTransferExecutionToSuccessor(&LI)) return false;
}
llvm_unreachable("Instruction not contained in its own parent basic block.");
}
bool llvm::propagatesFullPoison(const Instruction *I) {
switch (I->getOpcode()) {
case Instruction::Add:
case Instruction::Sub:
case Instruction::Xor:
case Instruction::Trunc:
case Instruction::BitCast:
case Instruction::AddrSpaceCast:
case Instruction::Mul:
case Instruction::Shl:
case Instruction::GetElementPtr:
// These operations all propagate poison unconditionally. Note that poison
// is not any particular value, so xor or subtraction of poison with
// itself still yields poison, not zero.
return true;
case Instruction::AShr:
case Instruction::SExt:
// For these operations, one bit of the input is replicated across
// multiple output bits. A replicated poison bit is still poison.
return true;
case Instruction::ICmp:
// Comparing poison with any value yields poison. This is why, for
// instance, x s< (x +nsw 1) can be folded to true.
return true;
default:
return false;
}
}
const Value *llvm::getGuaranteedNonFullPoisonOp(const Instruction *I) {
switch (I->getOpcode()) {
case Instruction::Store:
return cast<StoreInst>(I)->getPointerOperand();
case Instruction::Load:
return cast<LoadInst>(I)->getPointerOperand();
case Instruction::AtomicCmpXchg:
return cast<AtomicCmpXchgInst>(I)->getPointerOperand();
case Instruction::AtomicRMW:
return cast<AtomicRMWInst>(I)->getPointerOperand();
case Instruction::UDiv:
case Instruction::SDiv:
case Instruction::URem:
case Instruction::SRem:
return I->getOperand(1);
default:
return nullptr;
}
}
bool llvm::programUndefinedIfFullPoison(const Instruction *PoisonI) {
// We currently only look for uses of poison values within the same basic
// block, as that makes it easier to guarantee that the uses will be
// executed given that PoisonI is executed.
//
// FIXME: Expand this to consider uses beyond the same basic block. To do
// this, look out for the distinction between post-dominance and strong
// post-dominance.
const BasicBlock *BB = PoisonI->getParent();
// Set of instructions that we have proved will yield poison if PoisonI
// does.
SmallSet<const Value *, 16> YieldsPoison;
SmallSet<const BasicBlock *, 4> Visited;
YieldsPoison.insert(PoisonI);
Visited.insert(PoisonI->getParent());
BasicBlock::const_iterator Begin = PoisonI->getIterator(), End = BB->end();
unsigned Iter = 0;
while (Iter++ < MaxDepth) {
for (auto &I : make_range(Begin, End)) {
if (&I != PoisonI) {
const Value *NotPoison = getGuaranteedNonFullPoisonOp(&I);
if (NotPoison != nullptr && YieldsPoison.count(NotPoison))
return true;
if (!isGuaranteedToTransferExecutionToSuccessor(&I))
return false;
}
// Mark poison that propagates from I through uses of I.
if (YieldsPoison.count(&I)) {
for (const User *User : I.users()) {
const Instruction *UserI = cast<Instruction>(User);
if (propagatesFullPoison(UserI))
YieldsPoison.insert(User);
}
}
}
if (auto *NextBB = BB->getSingleSuccessor()) {
if (Visited.insert(NextBB).second) {
BB = NextBB;
Begin = BB->getFirstNonPHI()->getIterator();
End = BB->end();
continue;
}
}
break;
}
return false;
}
static bool isKnownNonNaN(const Value *V, FastMathFlags FMF) {
if (FMF.noNaNs())
return true;
if (auto *C = dyn_cast<ConstantFP>(V))
return !C->isNaN();
if (auto *C = dyn_cast<ConstantDataVector>(V)) {
if (!C->getElementType()->isFloatingPointTy())
return false;
for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
if (C->getElementAsAPFloat(I).isNaN())
return false;
}
return true;
}
return false;
}
static bool isKnownNonZero(const Value *V) {
if (auto *C = dyn_cast<ConstantFP>(V))
return !C->isZero();
if (auto *C = dyn_cast<ConstantDataVector>(V)) {
if (!C->getElementType()->isFloatingPointTy())
return false;
for (unsigned I = 0, E = C->getNumElements(); I < E; ++I) {
if (C->getElementAsAPFloat(I).isZero())
return false;
}
return true;
}
return false;
}
/// Match clamp pattern for float types without care about NaNs or signed zeros.
/// Given non-min/max outer cmp/select from the clamp pattern this
/// function recognizes if it can be substitued by a "canonical" min/max
/// pattern.
static SelectPatternResult matchFastFloatClamp(CmpInst::Predicate Pred,
Value *CmpLHS, Value *CmpRHS,
Value *TrueVal, Value *FalseVal,
Value *&LHS, Value *&RHS) {
// Try to match
// X < C1 ? C1 : Min(X, C2) --> Max(C1, Min(X, C2))
// X > C1 ? C1 : Max(X, C2) --> Min(C1, Max(X, C2))
// and return description of the outer Max/Min.
// First, check if select has inverse order:
if (CmpRHS == FalseVal) {
std::swap(TrueVal, FalseVal);
Pred = CmpInst::getInversePredicate(Pred);
}
// Assume success now. If there's no match, callers should not use these anyway.
LHS = TrueVal;
RHS = FalseVal;
const APFloat *FC1;
if (CmpRHS != TrueVal || !match(CmpRHS, m_APFloat(FC1)) || !FC1->isFinite())
return {SPF_UNKNOWN, SPNB_NA, false};
const APFloat *FC2;
switch (Pred) {
case CmpInst::FCMP_OLT:
case CmpInst::FCMP_OLE:
case CmpInst::FCMP_ULT:
case CmpInst::FCMP_ULE:
if (match(FalseVal,
m_CombineOr(m_OrdFMin(m_Specific(CmpLHS), m_APFloat(FC2)),
m_UnordFMin(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
FC1->compare(*FC2) == APFloat::cmpResult::cmpLessThan)
return {SPF_FMAXNUM, SPNB_RETURNS_ANY, false};
break;
case CmpInst::FCMP_OGT:
case CmpInst::FCMP_OGE:
case CmpInst::FCMP_UGT:
case CmpInst::FCMP_UGE:
if (match(FalseVal,
m_CombineOr(m_OrdFMax(m_Specific(CmpLHS), m_APFloat(FC2)),
m_UnordFMax(m_Specific(CmpLHS), m_APFloat(FC2)))) &&
FC1->compare(*FC2) == APFloat::cmpResult::cmpGreaterThan)
return {SPF_FMINNUM, SPNB_RETURNS_ANY, false};
break;
default:
break;
}
return {SPF_UNKNOWN, SPNB_NA, false};
}
/// Recognize variations of:
/// CLAMP(v,l,h) ==> ((v) < (l) ? (l) : ((v) > (h) ? (h) : (v)))
static SelectPatternResult matchClamp(CmpInst::Predicate Pred,
Value *CmpLHS, Value *CmpRHS,
Value *TrueVal, Value *FalseVal) {
// Swap the select operands and predicate to match the patterns below.
if (CmpRHS != TrueVal) {
Pred = ICmpInst::getSwappedPredicate(Pred);
std::swap(TrueVal, FalseVal);
}
const APInt *C1;
if (CmpRHS == TrueVal && match(CmpRHS, m_APInt(C1))) {
const APInt *C2;
// (X <s C1) ? C1 : SMIN(X, C2) ==> SMAX(SMIN(X, C2), C1)
if (match(FalseVal, m_SMin(m_Specific(CmpLHS), m_APInt(C2))) &&
C1->slt(*C2) && Pred == CmpInst::ICMP_SLT)
return {SPF_SMAX, SPNB_NA, false};
// (X >s C1) ? C1 : SMAX(X, C2) ==> SMIN(SMAX(X, C2), C1)
if (match(FalseVal, m_SMax(m_Specific(CmpLHS), m_APInt(C2))) &&
C1->sgt(*C2) && Pred == CmpInst::ICMP_SGT)
return {SPF_SMIN, SPNB_NA, false};
// (X <u C1) ? C1 : UMIN(X, C2) ==> UMAX(UMIN(X, C2), C1)
if (match(FalseVal, m_UMin(m_Specific(CmpLHS), m_APInt(C2))) &&
C1->ult(*C2) && Pred == CmpInst::ICMP_ULT)
return {SPF_UMAX, SPNB_NA, false};
// (X >u C1) ? C1 : UMAX(X, C2) ==> UMIN(UMAX(X, C2), C1)
if (match(FalseVal, m_UMax(m_Specific(CmpLHS), m_APInt(C2))) &&
C1->ugt(*C2) && Pred == CmpInst::ICMP_UGT)
return {SPF_UMIN, SPNB_NA, false};
}
return {SPF_UNKNOWN, SPNB_NA, false};
}
/// Recognize variations of:
/// a < c ? min(a,b) : min(b,c) ==> min(min(a,b),min(b,c))
static SelectPatternResult matchMinMaxOfMinMax(CmpInst::Predicate Pred,
Value *CmpLHS, Value *CmpRHS,
Value *TVal, Value *FVal,
unsigned Depth) {
// TODO: Allow FP min/max with nnan/nsz.
assert(CmpInst::isIntPredicate(Pred) && "Expected integer comparison");
Value *A, *B;
SelectPatternResult L = matchSelectPattern(TVal, A, B, nullptr, Depth + 1);
if (!SelectPatternResult::isMinOrMax(L.Flavor))
return {SPF_UNKNOWN, SPNB_NA, false};
Value *C, *D;
SelectPatternResult R = matchSelectPattern(FVal, C, D, nullptr, Depth + 1);
if (L.Flavor != R.Flavor)
return {SPF_UNKNOWN, SPNB_NA, false};
// We have something like: x Pred y ? min(a, b) : min(c, d).
// Try to match the compare to the min/max operations of the select operands.
// First, make sure we have the right compare predicate.
switch (L.Flavor) {
case SPF_SMIN:
if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) {
Pred = ICmpInst::getSwappedPredicate(Pred);
std::swap(CmpLHS, CmpRHS);
}
if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
break;
return {SPF_UNKNOWN, SPNB_NA, false};
case SPF_SMAX:
if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
Pred = ICmpInst::getSwappedPredicate(Pred);
std::swap(CmpLHS, CmpRHS);
}
if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
break;
return {SPF_UNKNOWN, SPNB_NA, false};
case SPF_UMIN:
if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
Pred = ICmpInst::getSwappedPredicate(Pred);
std::swap(CmpLHS, CmpRHS);
}
if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
break;
return {SPF_UNKNOWN, SPNB_NA, false};
case SPF_UMAX:
if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
Pred = ICmpInst::getSwappedPredicate(Pred);
std::swap(CmpLHS, CmpRHS);
}
if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
break;
return {SPF_UNKNOWN, SPNB_NA, false};
default:
return {SPF_UNKNOWN, SPNB_NA, false};
}
// If there is a common operand in the already matched min/max and the other
// min/max operands match the compare operands (either directly or inverted),
// then this is min/max of the same flavor.
// a pred c ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
// ~c pred ~a ? m(a, b) : m(c, b) --> m(m(a, b), m(c, b))
if (D == B) {
if ((CmpLHS == A && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
match(A, m_Not(m_Specific(CmpRHS)))))
return {L.Flavor, SPNB_NA, false};
}
// a pred d ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
// ~d pred ~a ? m(a, b) : m(b, d) --> m(m(a, b), m(b, d))
if (C == B) {
if ((CmpLHS == A && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
match(A, m_Not(m_Specific(CmpRHS)))))
return {L.Flavor, SPNB_NA, false};
}
// b pred c ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
// ~c pred ~b ? m(a, b) : m(c, a) --> m(m(a, b), m(c, a))
if (D == A) {
if ((CmpLHS == B && CmpRHS == C) || (match(C, m_Not(m_Specific(CmpLHS))) &&
match(B, m_Not(m_Specific(CmpRHS)))))
return {L.Flavor, SPNB_NA, false};
}
// b pred d ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
// ~d pred ~b ? m(a, b) : m(a, d) --> m(m(a, b), m(a, d))
if (C == A) {
if ((CmpLHS == B && CmpRHS == D) || (match(D, m_Not(m_Specific(CmpLHS))) &&
match(B, m_Not(m_Specific(CmpRHS)))))
return {L.Flavor, SPNB_NA, false};
}
return {SPF_UNKNOWN, SPNB_NA, false};
}
/// Match non-obvious integer minimum and maximum sequences.
static SelectPatternResult matchMinMax(CmpInst::Predicate Pred,
Value *CmpLHS, Value *CmpRHS,
Value *TrueVal, Value *FalseVal,
Value *&LHS, Value *&RHS,
unsigned Depth) {
// Assume success. If there's no match, callers should not use these anyway.
LHS = TrueVal;
RHS = FalseVal;
SelectPatternResult SPR = matchClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal);
if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
return SPR;
SPR = matchMinMaxOfMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, Depth);
if (SPR.Flavor != SelectPatternFlavor::SPF_UNKNOWN)
return SPR;
if (Pred != CmpInst::ICMP_SGT && Pred != CmpInst::ICMP_SLT)
return {SPF_UNKNOWN, SPNB_NA, false};
// Z = X -nsw Y
// (X >s Y) ? 0 : Z ==> (Z >s 0) ? 0 : Z ==> SMIN(Z, 0)
// (X <s Y) ? 0 : Z ==> (Z <s 0) ? 0 : Z ==> SMAX(Z, 0)
if (match(TrueVal, m_Zero()) &&
match(FalseVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
// Z = X -nsw Y
// (X >s Y) ? Z : 0 ==> (Z >s 0) ? Z : 0 ==> SMAX(Z, 0)
// (X <s Y) ? Z : 0 ==> (Z <s 0) ? Z : 0 ==> SMIN(Z, 0)
if (match(FalseVal, m_Zero()) &&
match(TrueVal, m_NSWSub(m_Specific(CmpLHS), m_Specific(CmpRHS))))
return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
const APInt *C1;
if (!match(CmpRHS, m_APInt(C1)))
return {SPF_UNKNOWN, SPNB_NA, false};
// An unsigned min/max can be written with a signed compare.
const APInt *C2;
if ((CmpLHS == TrueVal && match(FalseVal, m_APInt(C2))) ||
(CmpLHS == FalseVal && match(TrueVal, m_APInt(C2)))) {
// Is the sign bit set?
// (X <s 0) ? X : MAXVAL ==> (X >u MAXVAL) ? X : MAXVAL ==> UMAX
// (X <s 0) ? MAXVAL : X ==> (X >u MAXVAL) ? MAXVAL : X ==> UMIN
if (Pred == CmpInst::ICMP_SLT && C1->isNullValue() &&
C2->isMaxSignedValue())
return {CmpLHS == TrueVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
// Is the sign bit clear?
// (X >s -1) ? MINVAL : X ==> (X <u MINVAL) ? MINVAL : X ==> UMAX
// (X >s -1) ? X : MINVAL ==> (X <u MINVAL) ? X : MINVAL ==> UMIN
if (Pred == CmpInst::ICMP_SGT && C1->isAllOnesValue() &&
C2->isMinSignedValue())
return {CmpLHS == FalseVal ? SPF_UMAX : SPF_UMIN, SPNB_NA, false};
}
// Look through 'not' ops to find disguised signed min/max.
// (X >s C) ? ~X : ~C ==> (~X <s ~C) ? ~X : ~C ==> SMIN(~X, ~C)
// (X <s C) ? ~X : ~C ==> (~X >s ~C) ? ~X : ~C ==> SMAX(~X, ~C)
if (match(TrueVal, m_Not(m_Specific(CmpLHS))) &&
match(FalseVal, m_APInt(C2)) && ~(*C1) == *C2)
return {Pred == CmpInst::ICMP_SGT ? SPF_SMIN : SPF_SMAX, SPNB_NA, false};
// (X >s C) ? ~C : ~X ==> (~X <s ~C) ? ~C : ~X ==> SMAX(~C, ~X)
// (X <s C) ? ~C : ~X ==> (~X >s ~C) ? ~C : ~X ==> SMIN(~C, ~X)
if (match(FalseVal, m_Not(m_Specific(CmpLHS))) &&
match(TrueVal, m_APInt(C2)) && ~(*C1) == *C2)
return {Pred == CmpInst::ICMP_SGT ? SPF_SMAX : SPF_SMIN, SPNB_NA, false};
return {SPF_UNKNOWN, SPNB_NA, false};
}
bool llvm::isKnownNegation(const Value *X, const Value *Y, bool NeedNSW) {
assert(X && Y && "Invalid operand");
// X = sub (0, Y) || X = sub nsw (0, Y)
if ((!NeedNSW && match(X, m_Sub(m_ZeroInt(), m_Specific(Y)))) ||
(NeedNSW && match(X, m_NSWSub(m_ZeroInt(), m_Specific(Y)))))
return true;
// Y = sub (0, X) || Y = sub nsw (0, X)
if ((!NeedNSW && match(Y, m_Sub(m_ZeroInt(), m_Specific(X)))) ||
(NeedNSW && match(Y, m_NSWSub(m_ZeroInt(), m_Specific(X)))))
return true;
// X = sub (A, B), Y = sub (B, A) || X = sub nsw (A, B), Y = sub nsw (B, A)
Value *A, *B;
return (!NeedNSW && (match(X, m_Sub(m_Value(A), m_Value(B))) &&
match(Y, m_Sub(m_Specific(B), m_Specific(A))))) ||
(NeedNSW && (match(X, m_NSWSub(m_Value(A), m_Value(B))) &&
match(Y, m_NSWSub(m_Specific(B), m_Specific(A)))));
}
static SelectPatternResult matchSelectPattern(CmpInst::Predicate Pred,
FastMathFlags FMF,
Value *CmpLHS, Value *CmpRHS,
Value *TrueVal, Value *FalseVal,
Value *&LHS, Value *&RHS,
unsigned Depth) {
if (CmpInst::isFPPredicate(Pred)) {
// IEEE-754 ignores the sign of 0.0 in comparisons. So if the select has one
// 0.0 operand, set the compare's 0.0 operands to that same value for the
// purpose of identifying min/max. Disregard vector constants with undefined
// elements because those can not be back-propagated for analysis.
Value *OutputZeroVal = nullptr;
if (match(TrueVal, m_AnyZeroFP()) && !match(FalseVal, m_AnyZeroFP()) &&
!cast<Constant>(TrueVal)->containsUndefElement())
OutputZeroVal = TrueVal;
else if (match(FalseVal, m_AnyZeroFP()) && !match(TrueVal, m_AnyZeroFP()) &&
!cast<Constant>(FalseVal)->containsUndefElement())
OutputZeroVal = FalseVal;
if (OutputZeroVal) {
if (match(CmpLHS, m_AnyZeroFP()))
CmpLHS = OutputZeroVal;
if (match(CmpRHS, m_AnyZeroFP()))
CmpRHS = OutputZeroVal;
}
}
LHS = CmpLHS;
RHS = CmpRHS;
// Signed zero may return inconsistent results between implementations.
// (0.0 <= -0.0) ? 0.0 : -0.0 // Returns 0.0
// minNum(0.0, -0.0) // May return -0.0 or 0.0 (IEEE 754-2008 5.3.1)
// Therefore, we behave conservatively and only proceed if at least one of the
// operands is known to not be zero or if we don't care about signed zero.
switch (Pred) {
default: break;
// FIXME: Include OGT/OLT/UGT/ULT.
case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLE:
case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULE:
if (!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
!isKnownNonZero(CmpRHS))
return {SPF_UNKNOWN, SPNB_NA, false};
}
SelectPatternNaNBehavior NaNBehavior = SPNB_NA;
bool Ordered = false;
// When given one NaN and one non-NaN input:
// - maxnum/minnum (C99 fmaxf()/fminf()) return the non-NaN input.
// - A simple C99 (a < b ? a : b) construction will return 'b' (as the
// ordered comparison fails), which could be NaN or non-NaN.
// so here we discover exactly what NaN behavior is required/accepted.
if (CmpInst::isFPPredicate(Pred)) {
bool LHSSafe = isKnownNonNaN(CmpLHS, FMF);
bool RHSSafe = isKnownNonNaN(CmpRHS, FMF);
if (LHSSafe && RHSSafe) {
// Both operands are known non-NaN.
NaNBehavior = SPNB_RETURNS_ANY;
} else if (CmpInst::isOrdered(Pred)) {
// An ordered comparison will return false when given a NaN, so it
// returns the RHS.
Ordered = true;
if (LHSSafe)
// LHS is non-NaN, so if RHS is NaN then NaN will be returned.
NaNBehavior = SPNB_RETURNS_NAN;
else if (RHSSafe)
NaNBehavior = SPNB_RETURNS_OTHER;
else
// Completely unsafe.
return {SPF_UNKNOWN, SPNB_NA, false};
} else {
Ordered = false;
// An unordered comparison will return true when given a NaN, so it
// returns the LHS.
if (LHSSafe)
// LHS is non-NaN, so if RHS is NaN then non-NaN will be returned.
NaNBehavior = SPNB_RETURNS_OTHER;
else if (RHSSafe)
NaNBehavior = SPNB_RETURNS_NAN;
else
// Completely unsafe.
return {SPF_UNKNOWN, SPNB_NA, false};
}
}
if (TrueVal == CmpRHS && FalseVal == CmpLHS) {
std::swap(CmpLHS, CmpRHS);
Pred = CmpInst::getSwappedPredicate(Pred);
if (NaNBehavior == SPNB_RETURNS_NAN)
NaNBehavior = SPNB_RETURNS_OTHER;
else if (NaNBehavior == SPNB_RETURNS_OTHER)
NaNBehavior = SPNB_RETURNS_NAN;
Ordered = !Ordered;
}
// ([if]cmp X, Y) ? X : Y
if (TrueVal == CmpLHS && FalseVal == CmpRHS) {
switch (Pred) {
default: return {SPF_UNKNOWN, SPNB_NA, false}; // Equality.
case ICmpInst::ICMP_UGT:
case ICmpInst::ICMP_UGE: return {SPF_UMAX, SPNB_NA, false};
case ICmpInst::ICMP_SGT:
case ICmpInst::ICMP_SGE: return {SPF_SMAX, SPNB_NA, false};
case ICmpInst::ICMP_ULT:
case ICmpInst::ICMP_ULE: return {SPF_UMIN, SPNB_NA, false};
case ICmpInst::ICMP_SLT:
case ICmpInst::ICMP_SLE: return {SPF_SMIN, SPNB_NA, false};
case FCmpInst::FCMP_UGT:
case FCmpInst::FCMP_UGE:
case FCmpInst::FCMP_OGT:
case FCmpInst::FCMP_OGE: return {SPF_FMAXNUM, NaNBehavior, Ordered};
case FCmpInst::FCMP_ULT:
case FCmpInst::FCMP_ULE:
case FCmpInst::FCMP_OLT:
case FCmpInst::FCMP_OLE: return {SPF_FMINNUM, NaNBehavior, Ordered};
}
}
if (isKnownNegation(TrueVal, FalseVal)) {
// Sign-extending LHS does not change its sign, so TrueVal/FalseVal can
// match against either LHS or sext(LHS).
auto MaybeSExtCmpLHS =
m_CombineOr(m_Specific(CmpLHS), m_SExt(m_Specific(CmpLHS)));
auto ZeroOrAllOnes = m_CombineOr(m_ZeroInt(), m_AllOnes());
auto ZeroOrOne = m_CombineOr(m_ZeroInt(), m_One());
if (match(TrueVal, MaybeSExtCmpLHS)) {
// Set the return values. If the compare uses the negated value (-X >s 0),
// swap the return values because the negated value is always 'RHS'.
LHS = TrueVal;
RHS = FalseVal;
if (match(CmpLHS, m_Neg(m_Specific(FalseVal))))
std::swap(LHS, RHS);
// (X >s 0) ? X : -X or (X >s -1) ? X : -X --> ABS(X)
// (-X >s 0) ? -X : X or (-X >s -1) ? -X : X --> ABS(X)
if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
return {SPF_ABS, SPNB_NA, false};
// (X <s 0) ? X : -X or (X <s 1) ? X : -X --> NABS(X)
// (-X <s 0) ? -X : X or (-X <s 1) ? -X : X --> NABS(X)
if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
return {SPF_NABS, SPNB_NA, false};
}
else if (match(FalseVal, MaybeSExtCmpLHS)) {
// Set the return values. If the compare uses the negated value (-X >s 0),
// swap the return values because the negated value is always 'RHS'.
LHS = FalseVal;
RHS = TrueVal;
if (match(CmpLHS, m_Neg(m_Specific(TrueVal))))
std::swap(LHS, RHS);
// (X >s 0) ? -X : X or (X >s -1) ? -X : X --> NABS(X)
// (-X >s 0) ? X : -X or (-X >s -1) ? X : -X --> NABS(X)
if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, ZeroOrAllOnes))
return {SPF_NABS, SPNB_NA, false};
// (X <s 0) ? -X : X or (X <s 1) ? -X : X --> ABS(X)
// (-X <s 0) ? X : -X or (-X <s 1) ? X : -X --> ABS(X)
if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, ZeroOrOne))
return {SPF_ABS, SPNB_NA, false};
}
}
if (CmpInst::isIntPredicate(Pred))
return matchMinMax(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS, Depth);
// According to (IEEE 754-2008 5.3.1), minNum(0.0, -0.0) and similar
// may return either -0.0 or 0.0, so fcmp/select pair has stricter
// semantics than minNum. Be conservative in such case.
if (NaNBehavior != SPNB_RETURNS_ANY ||
(!FMF.noSignedZeros() && !isKnownNonZero(CmpLHS) &&
!isKnownNonZero(CmpRHS)))
return {SPF_UNKNOWN, SPNB_NA, false};
return matchFastFloatClamp(Pred, CmpLHS, CmpRHS, TrueVal, FalseVal, LHS, RHS);
}
/// Helps to match a select pattern in case of a type mismatch.
///
/// The function processes the case when type of true and false values of a
/// select instruction differs from type of the cmp instruction operands because
/// of a cast instruction. The function checks if it is legal to move the cast
/// operation after "select". If yes, it returns the new second value of
/// "select" (with the assumption that cast is moved):
/// 1. As operand of cast instruction when both values of "select" are same cast
/// instructions.
/// 2. As restored constant (by applying reverse cast operation) when the first
/// value of the "select" is a cast operation and the second value is a
/// constant.
/// NOTE: We return only the new second value because the first value could be
/// accessed as operand of cast instruction.
static Value *lookThroughCast(CmpInst *CmpI, Value *V1, Value *V2,
Instruction::CastOps *CastOp) {
auto *Cast1 = dyn_cast<CastInst>(V1);
if (!Cast1)
return nullptr;
*CastOp = Cast1->getOpcode();
Type *SrcTy = Cast1->getSrcTy();
if (auto *Cast2 = dyn_cast<CastInst>(V2)) {
// If V1 and V2 are both the same cast from the same type, look through V1.
if (*CastOp == Cast2->getOpcode() && SrcTy == Cast2->getSrcTy())
return Cast2->getOperand(0);
return nullptr;
}
auto *C = dyn_cast<Constant>(V2);
if (!C)
return nullptr;
Constant *CastedTo = nullptr;
switch (*CastOp) {
case Instruction::ZExt:
if (CmpI->isUnsigned())
CastedTo = ConstantExpr::getTrunc(C, SrcTy);
break;
case Instruction::SExt:
if (CmpI->isSigned())
CastedTo = ConstantExpr::getTrunc(C, SrcTy, true);
break;
case Instruction::Trunc:
Constant *CmpConst;
if (match(CmpI->getOperand(1), m_Constant(CmpConst)) &&
CmpConst->getType() == SrcTy) {
// Here we have the following case:
//
// %cond = cmp iN %x, CmpConst
// %tr = trunc iN %x to iK
// %narrowsel = select i1 %cond, iK %t, iK C
//
// We can always move trunc after select operation:
//
// %cond = cmp iN %x, CmpConst
// %widesel = select i1 %cond, iN %x, iN CmpConst
// %tr = trunc iN %widesel to iK
//
// Note that C could be extended in any way because we don't care about
// upper bits after truncation. It can't be abs pattern, because it would
// look like:
//
// select i1 %cond, x, -x.
//
// So only min/max pattern could be matched. Such match requires widened C
// == CmpConst. That is why set widened C = CmpConst, condition trunc
// CmpConst == C is checked below.
CastedTo = CmpConst;
} else {
CastedTo = ConstantExpr::getIntegerCast(C, SrcTy, CmpI->isSigned());
}
break;
case Instruction::FPTrunc:
CastedTo = ConstantExpr::getFPExtend(C, SrcTy, true);
break;
case Instruction::FPExt:
CastedTo = ConstantExpr::getFPTrunc(C, SrcTy, true);
break;
case Instruction::FPToUI:
CastedTo = ConstantExpr::getUIToFP(C, SrcTy, true);
break;
case Instruction::FPToSI:
CastedTo = ConstantExpr::getSIToFP(C, SrcTy, true);
break;
case Instruction::UIToFP:
CastedTo = ConstantExpr::getFPToUI(C, SrcTy, true);
break;
case Instruction::SIToFP:
CastedTo = ConstantExpr::getFPToSI(C, SrcTy, true);
break;
default:
break;
}
if (!CastedTo)
return nullptr;
// Make sure the cast doesn't lose any information.
Constant *CastedBack =
ConstantExpr::getCast(*CastOp, CastedTo, C->getType(), true);
if (CastedBack != C)
return nullptr;
return CastedTo;
}
SelectPatternResult llvm::matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
Instruction::CastOps *CastOp,
unsigned Depth) {
if (Depth >= MaxDepth)
return {SPF_UNKNOWN, SPNB_NA, false};
SelectInst *SI = dyn_cast<SelectInst>(V);
if (!SI) return {SPF_UNKNOWN, SPNB_NA, false};
CmpInst *CmpI = dyn_cast<CmpInst>(SI->getCondition());
if (!CmpI) return {SPF_UNKNOWN, SPNB_NA, false};
CmpInst::Predicate Pred = CmpI->getPredicate();
Value *CmpLHS = CmpI->getOperand(0);
Value *CmpRHS = CmpI->getOperand(1);
Value *TrueVal = SI->getTrueValue();
Value *FalseVal = SI->getFalseValue();
FastMathFlags FMF;
if (isa<FPMathOperator>(CmpI))
FMF = CmpI->getFastMathFlags();
// Bail out early.
if (CmpI->isEquality())
return {SPF_UNKNOWN, SPNB_NA, false};
// Deal with type mismatches.
if (CastOp && CmpLHS->getType() != TrueVal->getType()) {
if (Value *C = lookThroughCast(CmpI, TrueVal, FalseVal, CastOp)) {
// If this is a potential fmin/fmax with a cast to integer, then ignore
// -0.0 because there is no corresponding integer value.
if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
FMF.setNoSignedZeros();
return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
cast<CastInst>(TrueVal)->getOperand(0), C,
LHS, RHS, Depth);
}
if (Value *C = lookThroughCast(CmpI, FalseVal, TrueVal, CastOp)) {
// If this is a potential fmin/fmax with a cast to integer, then ignore
// -0.0 because there is no corresponding integer value.
if (*CastOp == Instruction::FPToSI || *CastOp == Instruction::FPToUI)
FMF.setNoSignedZeros();
return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS,
C, cast<CastInst>(FalseVal)->getOperand(0),
LHS, RHS, Depth);
}
}
return ::matchSelectPattern(Pred, FMF, CmpLHS, CmpRHS, TrueVal, FalseVal,
LHS, RHS, Depth);
}
CmpInst::Predicate llvm::getMinMaxPred(SelectPatternFlavor SPF, bool Ordered) {
if (SPF == SPF_SMIN) return ICmpInst::ICMP_SLT;
if (SPF == SPF_UMIN) return ICmpInst::ICMP_ULT;
if (SPF == SPF_SMAX) return ICmpInst::ICMP_SGT;
if (SPF == SPF_UMAX) return ICmpInst::ICMP_UGT;
if (SPF == SPF_FMINNUM)
return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT;
if (SPF == SPF_FMAXNUM)
return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT;
llvm_unreachable("unhandled!");
}
SelectPatternFlavor llvm::getInverseMinMaxFlavor(SelectPatternFlavor SPF) {
if (SPF == SPF_SMIN) return SPF_SMAX;
if (SPF == SPF_UMIN) return SPF_UMAX;
if (SPF == SPF_SMAX) return SPF_SMIN;
if (SPF == SPF_UMAX) return SPF_UMIN;
llvm_unreachable("unhandled!");
}
CmpInst::Predicate llvm::getInverseMinMaxPred(SelectPatternFlavor SPF) {
return getMinMaxPred(getInverseMinMaxFlavor(SPF));
}
/// Return true if "icmp Pred LHS RHS" is always true.
static bool isTruePredicate(CmpInst::Predicate Pred, const Value *LHS,
const Value *RHS, const DataLayout &DL,
unsigned Depth) {
assert(!LHS->getType()->isVectorTy() && "TODO: extend to handle vectors!");
if (ICmpInst::isTrueWhenEqual(Pred) && LHS == RHS)
return true;
switch (Pred) {
default:
return false;
case CmpInst::ICMP_SLE: {
const APInt *C;
// LHS s<= LHS +_{nsw} C if C >= 0
if (match(RHS, m_NSWAdd(m_Specific(LHS), m_APInt(C))))
return !C->isNegative();
return false;
}
case CmpInst::ICMP_ULE: {
const APInt *C;
// LHS u<= LHS +_{nuw} C for any C
if (match(RHS, m_NUWAdd(m_Specific(LHS), m_APInt(C))))
return true;
// Match A to (X +_{nuw} CA) and B to (X +_{nuw} CB)
auto MatchNUWAddsToSameValue = [&](const Value *A, const Value *B,
const Value *&X,
const APInt *&CA, const APInt *&CB) {
if (match(A, m_NUWAdd(m_Value(X), m_APInt(CA))) &&
match(B, m_NUWAdd(m_Specific(X), m_APInt(CB))))
return true;
// If X & C == 0 then (X | C) == X +_{nuw} C
if (match(A, m_Or(m_Value(X), m_APInt(CA))) &&
match(B, m_Or(m_Specific(X), m_APInt(CB)))) {
KnownBits Known(CA->getBitWidth());
computeKnownBits(X, Known, DL, Depth + 1, /*AC*/ nullptr,
/*CxtI*/ nullptr, /*DT*/ nullptr);
if (CA->isSubsetOf(Known.Zero) && CB->isSubsetOf(Known.Zero))
return true;
}
return false;
};
const Value *X;
const APInt *CLHS, *CRHS;
if (MatchNUWAddsToSameValue(LHS, RHS, X, CLHS, CRHS))
return CLHS->ule(*CRHS);
return false;
}
}
}
/// Return true if "icmp Pred BLHS BRHS" is true whenever "icmp Pred
/// ALHS ARHS" is true. Otherwise, return None.
static Optional<bool>
isImpliedCondOperands(CmpInst::Predicate Pred, const Value *ALHS,
const Value *ARHS, const Value *BLHS, const Value *BRHS,
const DataLayout &DL, unsigned Depth) {
switch (Pred) {
default:
return None;
case CmpInst::ICMP_SLT:
case CmpInst::ICMP_SLE:
if (isTruePredicate(CmpInst::ICMP_SLE, BLHS, ALHS, DL, Depth) &&
isTruePredicate(CmpInst::ICMP_SLE, ARHS, BRHS, DL, Depth))
return true;
return None;
case CmpInst::ICMP_ULT:
case CmpInst::ICMP_ULE:
if (isTruePredicate(CmpInst::ICMP_ULE, BLHS, ALHS, DL, Depth) &&
isTruePredicate(CmpInst::ICMP_ULE, ARHS, BRHS, DL, Depth))
return true;
return None;
}
}
/// Return true if the operands of the two compares match. IsSwappedOps is true
/// when the operands match, but are swapped.
static bool isMatchingOps(const Value *ALHS, const Value *ARHS,
const Value *BLHS, const Value *BRHS,
bool &IsSwappedOps) {
bool IsMatchingOps = (ALHS == BLHS && ARHS == BRHS);
IsSwappedOps = (ALHS == BRHS && ARHS == BLHS);
return IsMatchingOps || IsSwappedOps;
}
/// Return true if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is true.
/// Return false if "icmp1 APred X, Y" implies "icmp2 BPred X, Y" is false.
/// Otherwise, return None if we can't infer anything.
static Optional<bool> isImpliedCondMatchingOperands(CmpInst::Predicate APred,
CmpInst::Predicate BPred,
bool AreSwappedOps) {
// Canonicalize the predicate as if the operands were not commuted.
if (AreSwappedOps)
BPred = ICmpInst::getSwappedPredicate(BPred);
if (CmpInst::isImpliedTrueByMatchingCmp(APred, BPred))
return true;
if (CmpInst::isImpliedFalseByMatchingCmp(APred, BPred))
return false;
return None;
}
/// Return true if "icmp APred X, C1" implies "icmp BPred X, C2" is true.
/// Return false if "icmp APred X, C1" implies "icmp BPred X, C2" is false.
/// Otherwise, return None if we can't infer anything.
static Optional<bool>
isImpliedCondMatchingImmOperands(CmpInst::Predicate APred,
const ConstantInt *C1,
CmpInst::Predicate BPred,
const ConstantInt *C2) {
ConstantRange DomCR =
ConstantRange::makeExactICmpRegion(APred, C1->getValue());
ConstantRange CR =
ConstantRange::makeAllowedICmpRegion(BPred, C2->getValue());
ConstantRange Intersection = DomCR.intersectWith(CR);
ConstantRange Difference = DomCR.difference(CR);
if (Intersection.isEmptySet())
return false;
if (Difference.isEmptySet())
return true;
return None;
}
/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
/// false. Otherwise, return None if we can't infer anything.
static Optional<bool> isImpliedCondICmps(const ICmpInst *LHS,
const ICmpInst *RHS,
const DataLayout &DL, bool LHSIsTrue,
unsigned Depth) {
Value *ALHS = LHS->getOperand(0);
Value *ARHS = LHS->getOperand(1);
// The rest of the logic assumes the LHS condition is true. If that's not the
// case, invert the predicate to make it so.
ICmpInst::Predicate APred =
LHSIsTrue ? LHS->getPredicate() : LHS->getInversePredicate();
Value *BLHS = RHS->getOperand(0);
Value *BRHS = RHS->getOperand(1);
ICmpInst::Predicate BPred = RHS->getPredicate();
// Can we infer anything when the two compares have matching operands?
bool AreSwappedOps;
if (isMatchingOps(ALHS, ARHS, BLHS, BRHS, AreSwappedOps)) {
if (Optional<bool> Implication = isImpliedCondMatchingOperands(
APred, BPred, AreSwappedOps))
return Implication;
// No amount of additional analysis will infer the second condition, so
// early exit.
return None;
}
// Can we infer anything when the LHS operands match and the RHS operands are
// constants (not necessarily matching)?
if (ALHS == BLHS && isa<ConstantInt>(ARHS) && isa<ConstantInt>(BRHS)) {
if (Optional<bool> Implication = isImpliedCondMatchingImmOperands(
APred, cast<ConstantInt>(ARHS), BPred, cast<ConstantInt>(BRHS)))
return Implication;
// No amount of additional analysis will infer the second condition, so
// early exit.
return None;
}
if (APred == BPred)
return isImpliedCondOperands(APred, ALHS, ARHS, BLHS, BRHS, DL, Depth);
return None;
}
/// Return true if LHS implies RHS is true. Return false if LHS implies RHS is
/// false. Otherwise, return None if we can't infer anything. We expect the
/// RHS to be an icmp and the LHS to be an 'and' or an 'or' instruction.
static Optional<bool> isImpliedCondAndOr(const BinaryOperator *LHS,
const ICmpInst *RHS,
const DataLayout &DL, bool LHSIsTrue,
unsigned Depth) {
// The LHS must be an 'or' or an 'and' instruction.
assert((LHS->getOpcode() == Instruction::And ||
LHS->getOpcode() == Instruction::Or) &&
"Expected LHS to be 'and' or 'or'.");
assert(Depth <= MaxDepth && "Hit recursion limit");
// If the result of an 'or' is false, then we know both legs of the 'or' are
// false. Similarly, if the result of an 'and' is true, then we know both
// legs of the 'and' are true.
Value *ALHS, *ARHS;
if ((!LHSIsTrue && match(LHS, m_Or(m_Value(ALHS), m_Value(ARHS)))) ||
(LHSIsTrue && match(LHS, m_And(m_Value(ALHS), m_Value(ARHS))))) {
// FIXME: Make this non-recursion.
if (Optional<bool> Implication =
isImpliedCondition(ALHS, RHS, DL, LHSIsTrue, Depth + 1))
return Implication;
if (Optional<bool> Implication =
isImpliedCondition(ARHS, RHS, DL, LHSIsTrue, Depth + 1))
return Implication;
return None;
}
return None;
}
Optional<bool> llvm::isImpliedCondition(const Value *LHS, const Value *RHS,
const DataLayout &DL, bool LHSIsTrue,
unsigned Depth) {
// Bail out when we hit the limit.
if (Depth == MaxDepth)
return None;
// A mismatch occurs when we compare a scalar cmp to a vector cmp, for
// example.
if (LHS->getType() != RHS->getType())
return None;
Type *OpTy = LHS->getType();
assert(OpTy->isIntOrIntVectorTy(1) && "Expected integer type only!");
// LHS ==> RHS by definition
if (LHS == RHS)
return LHSIsTrue;
// FIXME: Extending the code below to handle vectors.
if (OpTy->isVectorTy())
return None;
assert(OpTy->isIntegerTy(1) && "implied by above");
// Both LHS and RHS are icmps.
const ICmpInst *LHSCmp = dyn_cast<ICmpInst>(LHS);
const ICmpInst *RHSCmp = dyn_cast<ICmpInst>(RHS);
if (LHSCmp && RHSCmp)
return isImpliedCondICmps(LHSCmp, RHSCmp, DL, LHSIsTrue, Depth);
// The LHS should be an 'or' or an 'and' instruction. We expect the RHS to be
// an icmp. FIXME: Add support for and/or on the RHS.
const BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHS);
if (LHSBO && RHSCmp) {
if ((LHSBO->getOpcode() == Instruction::And ||
LHSBO->getOpcode() == Instruction::Or))
return isImpliedCondAndOr(LHSBO, RHSCmp, DL, LHSIsTrue, Depth);
}
return None;
}
Optional<bool> llvm::isImpliedByDomCondition(const Value *Cond,
const Instruction *ContextI,
const DataLayout &DL) {
assert(Cond->getType()->isIntOrIntVectorTy(1) && "Condition must be bool");
if (!ContextI || !ContextI->getParent())
return None;
// TODO: This is a poor/cheap way to determine dominance. Should we use a
// dominator tree (eg, from a SimplifyQuery) instead?
const BasicBlock *ContextBB = ContextI->getParent();
const BasicBlock *PredBB = ContextBB->getSinglePredecessor();
if (!PredBB)
return None;
// We need a conditional branch in the predecessor.
Value *PredCond;
BasicBlock *TrueBB, *FalseBB;
if (!match(PredBB->getTerminator(), m_Br(m_Value(PredCond), TrueBB, FalseBB)))
return None;
// The branch should get simplified. Don't bother simplifying this condition.
if (TrueBB == FalseBB)
return None;
assert((TrueBB == ContextBB || FalseBB == ContextBB) &&
"Predecessor block does not point to successor?");
// Is this condition implied by the predecessor condition?
bool CondIsTrue = TrueBB == ContextBB;
return isImpliedCondition(PredCond, Cond, DL, CondIsTrue);
}