blob: ca6a0dc3c2a3ab0ec3e21e4d3739b02fc2287b69 [file] [log] [blame]
//===------ LeonPasses.cpp - Define passes specific to LEON ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//
#include "LeonPasses.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
LEONMachineFunctionPass::LEONMachineFunctionPass(char &ID)
: MachineFunctionPass(ID) {}
int LEONMachineFunctionPass::GetRegIndexForOperand(MachineInstr &MI,
int OperandIndex) {
if (MI.getNumOperands() > 0) {
if (OperandIndex == LAST_OPERAND) {
OperandIndex = MI.getNumOperands() - 1;
}
if (MI.getNumOperands() > (unsigned)OperandIndex &&
MI.getOperand(OperandIndex).isReg()) {
return (int)MI.getOperand(OperandIndex).getReg();
}
}
static int NotFoundIndex = -10;
// Return a different number each time to avoid any comparisons between the
// values returned.
NotFoundIndex -= 10;
return NotFoundIndex;
}
// finds a new free FP register
// checks also the AllocatedRegisters vector
int LEONMachineFunctionPass::getUnusedFPRegister(MachineRegisterInfo &MRI) {
for (int RegisterIndex = SP::F0; RegisterIndex <= SP::F31; ++RegisterIndex) {
if (!MRI.isPhysRegUsed(RegisterIndex) &&
!is_contained(UsedRegisters, RegisterIndex)) {
return RegisterIndex;
}
}
return -1;
}
//*****************************************************************************
//**** InsertNOPLoad pass
//*****************************************************************************
// This pass fixes the incorrectly working Load instructions that exists for
// some earlier versions of the LEON processor line. NOP instructions must
// be inserted after the load instruction to ensure that the Load instruction
// behaves as expected for these processors.
//
// This pass inserts a NOP after any LD or LDF instruction.
//
char InsertNOPLoad::ID = 0;
InsertNOPLoad::InsertNOPLoad() : LEONMachineFunctionPass(ID) {}
bool InsertNOPLoad::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
if (Opcode >= SP::LDDArr && Opcode <= SP::LDrr) {
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP));
Modified = true;
}
}
}
return Modified;
}
//*****************************************************************************
//**** FixFSMULD pass
//*****************************************************************************
// This pass fixes the incorrectly working FSMULD instruction that exists for
// some earlier versions of the LEON processor line.
//
// The pass should convert the FSMULD operands to double precision in scratch
// registers, then calculate the result with the FMULD instruction. Therefore,
// the pass should replace operations of the form:
// fsmuld %f20,%f21,%f8
// with the sequence:
// fstod %f20,%f0
// fstod %f21,%f2
// fmuld %f0,%f2,%f8
//
char FixFSMULD::ID = 0;
FixFSMULD::FixFSMULD() : LEONMachineFunctionPass(ID) {}
bool FixFSMULD::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
const int UNASSIGNED_INDEX = -1;
int Reg1Index = UNASSIGNED_INDEX;
int Reg2Index = UNASSIGNED_INDEX;
int Reg3Index = UNASSIGNED_INDEX;
if (Opcode == SP::FSMULD && MI.getNumOperands() == 3) {
// take the registers from fsmuld %f20,%f21,%f8
Reg1Index = MI.getOperand(0).getReg();
Reg2Index = MI.getOperand(1).getReg();
Reg3Index = MI.getOperand(2).getReg();
}
if (Reg1Index != UNASSIGNED_INDEX && Reg2Index != UNASSIGNED_INDEX &&
Reg3Index != UNASSIGNED_INDEX) {
clearUsedRegisterList();
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
// Whatever Reg3Index is hasn't been used yet, so we need to reserve it.
markRegisterUsed(Reg3Index);
const int ScratchReg1Index = getUnusedFPRegister(MF.getRegInfo());
markRegisterUsed(ScratchReg1Index);
const int ScratchReg2Index = getUnusedFPRegister(MF.getRegInfo());
markRegisterUsed(ScratchReg2Index);
if (ScratchReg1Index == UNASSIGNED_INDEX ||
ScratchReg2Index == UNASSIGNED_INDEX) {
errs() << "Cannot allocate free scratch registers for the FixFSMULD "
"pass."
<< "\n";
} else {
// create fstod %f20,%f0
BuildMI(MBB, MBBI, DL, TII.get(SP::FSTOD))
.addReg(ScratchReg1Index)
.addReg(Reg1Index);
// create fstod %f21,%f2
BuildMI(MBB, MBBI, DL, TII.get(SP::FSTOD))
.addReg(ScratchReg2Index)
.addReg(Reg2Index);
// create fmuld %f0,%f2,%f8
BuildMI(MBB, MBBI, DL, TII.get(SP::FMULD))
.addReg(Reg3Index)
.addReg(ScratchReg1Index)
.addReg(ScratchReg2Index);
MI.eraseFromParent();
MBBI = NMBBI;
Modified = true;
}
}
}
}
return Modified;
}
//*****************************************************************************
//**** ReplaceFMULS pass
//*****************************************************************************
// This pass fixes the incorrectly working FMULS instruction that exists for
// some earlier versions of the LEON processor line.
//
// This pass converts the FMULS operands to double precision in scratch
// registers, then calculates the result with the FMULD instruction.
// The pass should replace operations of the form:
// fmuls %f20,%f21,%f8
// with the sequence:
// fstod %f20,%f0
// fstod %f21,%f2
// fmuld %f0,%f2,%f8
//
char ReplaceFMULS::ID = 0;
ReplaceFMULS::ReplaceFMULS() : LEONMachineFunctionPass(ID) {}
bool ReplaceFMULS::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
const int UNASSIGNED_INDEX = -1;
int Reg1Index = UNASSIGNED_INDEX;
int Reg2Index = UNASSIGNED_INDEX;
int Reg3Index = UNASSIGNED_INDEX;
if (Opcode == SP::FMULS && MI.getNumOperands() == 3) {
// take the registers from fmuls %f20,%f21,%f8
Reg1Index = MI.getOperand(0).getReg();
Reg2Index = MI.getOperand(1).getReg();
Reg3Index = MI.getOperand(2).getReg();
}
if (Reg1Index != UNASSIGNED_INDEX && Reg2Index != UNASSIGNED_INDEX &&
Reg3Index != UNASSIGNED_INDEX) {
clearUsedRegisterList();
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
// Whatever Reg3Index is hasn't been used yet, so we need to reserve it.
markRegisterUsed(Reg3Index);
const int ScratchReg1Index = getUnusedFPRegister(MF.getRegInfo());
markRegisterUsed(ScratchReg1Index);
const int ScratchReg2Index = getUnusedFPRegister(MF.getRegInfo());
markRegisterUsed(ScratchReg2Index);
if (ScratchReg1Index == UNASSIGNED_INDEX ||
ScratchReg2Index == UNASSIGNED_INDEX) {
errs() << "Cannot allocate free scratch registers for the "
"ReplaceFMULS pass."
<< "\n";
} else {
// create fstod %f20,%f0
BuildMI(MBB, MBBI, DL, TII.get(SP::FSTOD))
.addReg(ScratchReg1Index)
.addReg(Reg1Index);
// create fstod %f21,%f2
BuildMI(MBB, MBBI, DL, TII.get(SP::FSTOD))
.addReg(ScratchReg2Index)
.addReg(Reg2Index);
// create fmuld %f0,%f2,%f8
BuildMI(MBB, MBBI, DL, TII.get(SP::FMULD))
.addReg(Reg3Index)
.addReg(ScratchReg1Index)
.addReg(ScratchReg2Index);
MI.eraseFromParent();
MBBI = NMBBI;
Modified = true;
}
}
}
}
return Modified;
}
//*****************************************************************************
//**** DetectRoundChange pass
//*****************************************************************************
// To prevent any explicit change of the default rounding mode, this pass
// detects any call of the fesetround function.
// A warning is generated to ensure the user knows this has happened.
//
// Detects an erratum in UT699 LEON 3 processor
char DetectRoundChange::ID = 0;
DetectRoundChange::DetectRoundChange() : LEONMachineFunctionPass(ID) {}
bool DetectRoundChange::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
if (Opcode == SP::CALL && MI.getNumOperands() > 0) {
MachineOperand &MO = MI.getOperand(0);
if (MO.isGlobal()) {
StringRef FuncName = MO.getGlobal()->getName();
if (FuncName.compare_lower("fesetround") == 0) {
errs() << "Error: You are using the detectroundchange "
"option to detect rounding changes that will "
"cause LEON errata. The only way to fix this "
"is to remove the call to fesetround from "
"the source code.\n";
}
}
}
}
}
return Modified;
}
//*****************************************************************************
//**** FixAllFDIVSQRT pass
//*****************************************************************************
// This pass fixes the incorrectly working FDIVx and FSQRTx instructions that
// exist for some earlier versions of the LEON processor line. Five NOP
// instructions need to be inserted after these instructions to ensure the
// correct result is placed in the destination registers before they are used.
//
// This pass implements two fixes:
// 1) fixing the FSQRTS and FSQRTD instructions.
// 2) fixing the FDIVS and FDIVD instructions.
//
// FSQRTS and FDIVS are converted to FDIVD and FSQRTD respectively earlier in
// the pipeline when this option is enabled, so this pass needs only to deal
// with the changes that still need implementing for the "double" versions
// of these instructions.
//
char FixAllFDIVSQRT::ID = 0;
FixAllFDIVSQRT::FixAllFDIVSQRT() : LEONMachineFunctionPass(ID) {}
bool FixAllFDIVSQRT::runOnMachineFunction(MachineFunction &MF) {
Subtarget = &MF.getSubtarget<SparcSubtarget>();
const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
DebugLoc DL = DebugLoc();
bool Modified = false;
for (auto MFI = MF.begin(), E = MF.end(); MFI != E; ++MFI) {
MachineBasicBlock &MBB = *MFI;
for (auto MBBI = MBB.begin(), E = MBB.end(); MBBI != E; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
// Note: FDIVS and FSQRTS cannot be generated when this erratum fix is
// switched on so we don't need to check for them here. They will
// already have been converted to FSQRTD or FDIVD earlier in the
// pipeline.
if (Opcode == SP::FSQRTD || Opcode == SP::FDIVD) {
for (int InsertedCount = 0; InsertedCount < 5; InsertedCount++)
BuildMI(MBB, MBBI, DL, TII.get(SP::NOP));
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
for (int InsertedCount = 0; InsertedCount < 28; InsertedCount++)
BuildMI(MBB, NMBBI, DL, TII.get(SP::NOP));
Modified = true;
}
}
}
return Modified;
}