blob: a03e7ef57b7bf26e4290e56af708ead3093dedbb [file] [log] [blame]
//===- MipsInstructionSelector.cpp ------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the InstructionSelector class for
/// Mips.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "MipsRegisterBankInfo.h"
#include "MipsTargetMachine.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelectorImpl.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#define DEBUG_TYPE "mips-isel"
using namespace llvm;
namespace {
#define GET_GLOBALISEL_PREDICATE_BITSET
#include "MipsGenGlobalISel.inc"
#undef GET_GLOBALISEL_PREDICATE_BITSET
class MipsInstructionSelector : public InstructionSelector {
public:
MipsInstructionSelector(const MipsTargetMachine &TM, const MipsSubtarget &STI,
const MipsRegisterBankInfo &RBI);
bool select(MachineInstr &I, CodeGenCoverage &CoverageInfo) const override;
static const char *getName() { return DEBUG_TYPE; }
private:
bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const;
bool materialize32BitImm(unsigned DestReg, APInt Imm,
MachineIRBuilder &B) const;
bool selectCopy(MachineInstr &I, MachineRegisterInfo &MRI) const;
const MipsTargetMachine &TM;
const MipsSubtarget &STI;
const MipsInstrInfo &TII;
const MipsRegisterInfo &TRI;
const MipsRegisterBankInfo &RBI;
#define GET_GLOBALISEL_PREDICATES_DECL
#include "MipsGenGlobalISel.inc"
#undef GET_GLOBALISEL_PREDICATES_DECL
#define GET_GLOBALISEL_TEMPORARIES_DECL
#include "MipsGenGlobalISel.inc"
#undef GET_GLOBALISEL_TEMPORARIES_DECL
};
} // end anonymous namespace
#define GET_GLOBALISEL_IMPL
#include "MipsGenGlobalISel.inc"
#undef GET_GLOBALISEL_IMPL
MipsInstructionSelector::MipsInstructionSelector(
const MipsTargetMachine &TM, const MipsSubtarget &STI,
const MipsRegisterBankInfo &RBI)
: InstructionSelector(), TM(TM), STI(STI), TII(*STI.getInstrInfo()),
TRI(*STI.getRegisterInfo()), RBI(RBI),
#define GET_GLOBALISEL_PREDICATES_INIT
#include "MipsGenGlobalISel.inc"
#undef GET_GLOBALISEL_PREDICATES_INIT
#define GET_GLOBALISEL_TEMPORARIES_INIT
#include "MipsGenGlobalISel.inc"
#undef GET_GLOBALISEL_TEMPORARIES_INIT
{
}
bool MipsInstructionSelector::selectCopy(MachineInstr &I,
MachineRegisterInfo &MRI) const {
unsigned DstReg = I.getOperand(0).getReg();
if (TargetRegisterInfo::isPhysicalRegister(DstReg))
return true;
const RegisterBank *RegBank = RBI.getRegBank(DstReg, MRI, TRI);
const unsigned DstSize = MRI.getType(DstReg).getSizeInBits();
const TargetRegisterClass *RC = &Mips::GPR32RegClass;
if (RegBank->getID() == Mips::FPRBRegBankID) {
if (DstSize == 32)
RC = &Mips::FGR32RegClass;
else if (DstSize == 64)
RC = STI.isFP64bit() ? &Mips::FGR64RegClass : &Mips::AFGR64RegClass;
else
llvm_unreachable("Unsupported destination size");
}
if (!RBI.constrainGenericRegister(DstReg, *RC, MRI)) {
LLVM_DEBUG(dbgs() << "Failed to constrain " << TII.getName(I.getOpcode())
<< " operand\n");
return false;
}
return true;
}
bool MipsInstructionSelector::materialize32BitImm(unsigned DestReg, APInt Imm,
MachineIRBuilder &B) const {
assert(Imm.getBitWidth() == 32 && "Unsupported immediate size.");
// Ori zero extends immediate. Used for values with zeros in high 16 bits.
if (Imm.getHiBits(16).isNullValue()) {
MachineInstr *Inst = B.buildInstr(Mips::ORi, {DestReg}, {Mips::ZERO})
.addImm(Imm.getLoBits(16).getLimitedValue());
return constrainSelectedInstRegOperands(*Inst, TII, TRI, RBI);
}
// Lui places immediate in high 16 bits and sets low 16 bits to zero.
if (Imm.getLoBits(16).isNullValue()) {
MachineInstr *Inst = B.buildInstr(Mips::LUi, {DestReg}, {})
.addImm(Imm.getHiBits(16).getLimitedValue());
return constrainSelectedInstRegOperands(*Inst, TII, TRI, RBI);
}
// ADDiu sign extends immediate. Used for values with 1s in high 17 bits.
if (Imm.isSignedIntN(16)) {
MachineInstr *Inst = B.buildInstr(Mips::ADDiu, {DestReg}, {Mips::ZERO})
.addImm(Imm.getLoBits(16).getLimitedValue());
return constrainSelectedInstRegOperands(*Inst, TII, TRI, RBI);
}
// Values that cannot be materialized with single immediate instruction.
unsigned LUiReg = B.getMRI()->createVirtualRegister(&Mips::GPR32RegClass);
MachineInstr *LUi = B.buildInstr(Mips::LUi, {LUiReg}, {})
.addImm(Imm.getHiBits(16).getLimitedValue());
MachineInstr *ORi = B.buildInstr(Mips::ORi, {DestReg}, {LUiReg})
.addImm(Imm.getLoBits(16).getLimitedValue());
if (!constrainSelectedInstRegOperands(*LUi, TII, TRI, RBI))
return false;
if (!constrainSelectedInstRegOperands(*ORi, TII, TRI, RBI))
return false;
return true;
}
/// Returning Opc indicates that we failed to select MIPS instruction opcode.
static unsigned selectLoadStoreOpCode(unsigned Opc, unsigned MemSizeInBytes) {
if (Opc == TargetOpcode::G_STORE)
switch (MemSizeInBytes) {
case 4:
return Mips::SW;
case 2:
return Mips::SH;
case 1:
return Mips::SB;
default:
return Opc;
}
else
// Unspecified extending load is selected into zeroExtending load.
switch (MemSizeInBytes) {
case 4:
return Mips::LW;
case 2:
return Opc == TargetOpcode::G_SEXTLOAD ? Mips::LH : Mips::LHu;
case 1:
return Opc == TargetOpcode::G_SEXTLOAD ? Mips::LB : Mips::LBu;
default:
return Opc;
}
}
bool MipsInstructionSelector::select(MachineInstr &I,
CodeGenCoverage &CoverageInfo) const {
MachineBasicBlock &MBB = *I.getParent();
MachineFunction &MF = *MBB.getParent();
MachineRegisterInfo &MRI = MF.getRegInfo();
if (!isPreISelGenericOpcode(I.getOpcode())) {
if (I.isCopy())
return selectCopy(I, MRI);
return true;
}
if (I.getOpcode() == Mips::G_MUL) {
MachineInstr *Mul = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::MUL))
.add(I.getOperand(0))
.add(I.getOperand(1))
.add(I.getOperand(2));
if (!constrainSelectedInstRegOperands(*Mul, TII, TRI, RBI))
return false;
Mul->getOperand(3).setIsDead(true);
Mul->getOperand(4).setIsDead(true);
I.eraseFromParent();
return true;
}
if (selectImpl(I, CoverageInfo))
return true;
MachineInstr *MI = nullptr;
using namespace TargetOpcode;
switch (I.getOpcode()) {
case G_UMULH: {
unsigned PseudoMULTuReg = MRI.createVirtualRegister(&Mips::ACC64RegClass);
MachineInstr *PseudoMULTu, *PseudoMove;
PseudoMULTu = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::PseudoMULTu))
.addDef(PseudoMULTuReg)
.add(I.getOperand(1))
.add(I.getOperand(2));
if (!constrainSelectedInstRegOperands(*PseudoMULTu, TII, TRI, RBI))
return false;
PseudoMove = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::PseudoMFHI))
.addDef(I.getOperand(0).getReg())
.addUse(PseudoMULTuReg);
if (!constrainSelectedInstRegOperands(*PseudoMove, TII, TRI, RBI))
return false;
I.eraseFromParent();
return true;
}
case G_GEP: {
MI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::ADDu))
.add(I.getOperand(0))
.add(I.getOperand(1))
.add(I.getOperand(2));
break;
}
case G_FRAME_INDEX: {
MI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::ADDiu))
.add(I.getOperand(0))
.add(I.getOperand(1))
.addImm(0);
break;
}
case G_BRCOND: {
MI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::BNE))
.add(I.getOperand(0))
.addUse(Mips::ZERO)
.add(I.getOperand(1));
break;
}
case G_PHI: {
const unsigned DestReg = I.getOperand(0).getReg();
const unsigned DestRegBank = RBI.getRegBank(DestReg, MRI, TRI)->getID();
const unsigned OpSize = MRI.getType(DestReg).getSizeInBits();
if (DestRegBank != Mips::GPRBRegBankID || OpSize != 32)
return false;
const TargetRegisterClass *DefRC = &Mips::GPR32RegClass;
I.setDesc(TII.get(TargetOpcode::PHI));
return RBI.constrainGenericRegister(DestReg, *DefRC, MRI);
}
case G_STORE:
case G_LOAD:
case G_ZEXTLOAD:
case G_SEXTLOAD: {
const unsigned DestReg = I.getOperand(0).getReg();
const unsigned DestRegBank = RBI.getRegBank(DestReg, MRI, TRI)->getID();
const unsigned OpSize = MRI.getType(DestReg).getSizeInBits();
const unsigned OpMemSizeInBytes = (*I.memoperands_begin())->getSize();
if (DestRegBank != Mips::GPRBRegBankID || OpSize != 32)
return false;
const unsigned NewOpc =
selectLoadStoreOpCode(I.getOpcode(), OpMemSizeInBytes);
if (NewOpc == I.getOpcode())
return false;
MI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(NewOpc))
.add(I.getOperand(0))
.add(I.getOperand(1))
.addImm(0)
.addMemOperand(*I.memoperands_begin());
break;
}
case G_UDIV:
case G_UREM:
case G_SDIV:
case G_SREM: {
unsigned HILOReg = MRI.createVirtualRegister(&Mips::ACC64RegClass);
bool IsSigned = I.getOpcode() == G_SREM || I.getOpcode() == G_SDIV;
bool IsDiv = I.getOpcode() == G_UDIV || I.getOpcode() == G_SDIV;
MachineInstr *PseudoDIV, *PseudoMove;
PseudoDIV = BuildMI(MBB, I, I.getDebugLoc(),
TII.get(IsSigned ? Mips::PseudoSDIV : Mips::PseudoUDIV))
.addDef(HILOReg)
.add(I.getOperand(1))
.add(I.getOperand(2));
if (!constrainSelectedInstRegOperands(*PseudoDIV, TII, TRI, RBI))
return false;
PseudoMove = BuildMI(MBB, I, I.getDebugLoc(),
TII.get(IsDiv ? Mips::PseudoMFLO : Mips::PseudoMFHI))
.addDef(I.getOperand(0).getReg())
.addUse(HILOReg);
if (!constrainSelectedInstRegOperands(*PseudoMove, TII, TRI, RBI))
return false;
I.eraseFromParent();
return true;
}
case G_SELECT: {
// Handle operands with pointer type.
MI = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::MOVN_I_I))
.add(I.getOperand(0))
.add(I.getOperand(2))
.add(I.getOperand(1))
.add(I.getOperand(3));
break;
}
case G_CONSTANT: {
MachineIRBuilder B(I);
if (!materialize32BitImm(I.getOperand(0).getReg(),
I.getOperand(1).getCImm()->getValue(), B))
return false;
I.eraseFromParent();
return true;
}
case G_FCONSTANT: {
const APFloat &FPimm = I.getOperand(1).getFPImm()->getValueAPF();
APInt APImm = FPimm.bitcastToAPInt();
unsigned Size = MRI.getType(I.getOperand(0).getReg()).getSizeInBits();
if (Size == 32) {
unsigned GPRReg = MRI.createVirtualRegister(&Mips::GPR32RegClass);
MachineIRBuilder B(I);
if (!materialize32BitImm(GPRReg, APImm, B))
return false;
MachineInstrBuilder MTC1 =
B.buildInstr(Mips::MTC1, {I.getOperand(0).getReg()}, {GPRReg});
if (!MTC1.constrainAllUses(TII, TRI, RBI))
return false;
}
if (Size == 64) {
unsigned GPRRegHigh = MRI.createVirtualRegister(&Mips::GPR32RegClass);
unsigned GPRRegLow = MRI.createVirtualRegister(&Mips::GPR32RegClass);
MachineIRBuilder B(I);
if (!materialize32BitImm(GPRRegHigh, APImm.getHiBits(32).trunc(32), B))
return false;
if (!materialize32BitImm(GPRRegLow, APImm.getLoBits(32).trunc(32), B))
return false;
MachineInstrBuilder PairF64 = B.buildInstr(
STI.isFP64bit() ? Mips::BuildPairF64_64 : Mips::BuildPairF64,
{I.getOperand(0).getReg()}, {GPRRegLow, GPRRegHigh});
if (!PairF64.constrainAllUses(TII, TRI, RBI))
return false;
}
I.eraseFromParent();
return true;
}
case G_GLOBAL_VALUE: {
if (MF.getTarget().isPositionIndependent())
return false;
const llvm::GlobalValue *GVal = I.getOperand(1).getGlobal();
unsigned LUiReg = MRI.createVirtualRegister(&Mips::GPR32RegClass);
MachineInstr *LUi, *ADDiu;
LUi = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::LUi))
.addDef(LUiReg)
.addGlobalAddress(GVal);
LUi->getOperand(1).setTargetFlags(MipsII::MO_ABS_HI);
ADDiu = BuildMI(MBB, I, I.getDebugLoc(), TII.get(Mips::ADDiu))
.addDef(I.getOperand(0).getReg())
.addUse(LUiReg)
.addGlobalAddress(GVal);
ADDiu->getOperand(2).setTargetFlags(MipsII::MO_ABS_LO);
if (!constrainSelectedInstRegOperands(*LUi, TII, TRI, RBI))
return false;
if (!constrainSelectedInstRegOperands(*ADDiu, TII, TRI, RBI))
return false;
I.eraseFromParent();
return true;
}
case G_ICMP: {
struct Instr {
unsigned Opcode, Def, LHS, RHS;
Instr(unsigned Opcode, unsigned Def, unsigned LHS, unsigned RHS)
: Opcode(Opcode), Def(Def), LHS(LHS), RHS(RHS){};
bool hasImm() const {
if (Opcode == Mips::SLTiu || Opcode == Mips::XORi)
return true;
return false;
}
};
SmallVector<struct Instr, 2> Instructions;
unsigned ICMPReg = I.getOperand(0).getReg();
unsigned Temp = MRI.createVirtualRegister(&Mips::GPR32RegClass);
unsigned LHS = I.getOperand(2).getReg();
unsigned RHS = I.getOperand(3).getReg();
CmpInst::Predicate Cond =
static_cast<CmpInst::Predicate>(I.getOperand(1).getPredicate());
switch (Cond) {
case CmpInst::ICMP_EQ: // LHS == RHS -> (LHS ^ RHS) < 1
Instructions.emplace_back(Mips::XOR, Temp, LHS, RHS);
Instructions.emplace_back(Mips::SLTiu, ICMPReg, Temp, 1);
break;
case CmpInst::ICMP_NE: // LHS != RHS -> 0 < (LHS ^ RHS)
Instructions.emplace_back(Mips::XOR, Temp, LHS, RHS);
Instructions.emplace_back(Mips::SLTu, ICMPReg, Mips::ZERO, Temp);
break;
case CmpInst::ICMP_UGT: // LHS > RHS -> RHS < LHS
Instructions.emplace_back(Mips::SLTu, ICMPReg, RHS, LHS);
break;
case CmpInst::ICMP_UGE: // LHS >= RHS -> !(LHS < RHS)
Instructions.emplace_back(Mips::SLTu, Temp, LHS, RHS);
Instructions.emplace_back(Mips::XORi, ICMPReg, Temp, 1);
break;
case CmpInst::ICMP_ULT: // LHS < RHS -> LHS < RHS
Instructions.emplace_back(Mips::SLTu, ICMPReg, LHS, RHS);
break;
case CmpInst::ICMP_ULE: // LHS <= RHS -> !(RHS < LHS)
Instructions.emplace_back(Mips::SLTu, Temp, RHS, LHS);
Instructions.emplace_back(Mips::XORi, ICMPReg, Temp, 1);
break;
case CmpInst::ICMP_SGT: // LHS > RHS -> RHS < LHS
Instructions.emplace_back(Mips::SLT, ICMPReg, RHS, LHS);
break;
case CmpInst::ICMP_SGE: // LHS >= RHS -> !(LHS < RHS)
Instructions.emplace_back(Mips::SLT, Temp, LHS, RHS);
Instructions.emplace_back(Mips::XORi, ICMPReg, Temp, 1);
break;
case CmpInst::ICMP_SLT: // LHS < RHS -> LHS < RHS
Instructions.emplace_back(Mips::SLT, ICMPReg, LHS, RHS);
break;
case CmpInst::ICMP_SLE: // LHS <= RHS -> !(RHS < LHS)
Instructions.emplace_back(Mips::SLT, Temp, RHS, LHS);
Instructions.emplace_back(Mips::XORi, ICMPReg, Temp, 1);
break;
default:
return false;
}
MachineIRBuilder B(I);
for (const struct Instr &Instruction : Instructions) {
MachineInstrBuilder MIB = B.buildInstr(
Instruction.Opcode, {Instruction.Def}, {Instruction.LHS});
if (Instruction.hasImm())
MIB.addImm(Instruction.RHS);
else
MIB.addUse(Instruction.RHS);
if (!MIB.constrainAllUses(TII, TRI, RBI))
return false;
}
I.eraseFromParent();
return true;
}
default:
return false;
}
I.eraseFromParent();
return constrainSelectedInstRegOperands(*MI, TII, TRI, RBI);
}
namespace llvm {
InstructionSelector *createMipsInstructionSelector(const MipsTargetMachine &TM,
MipsSubtarget &Subtarget,
MipsRegisterBankInfo &RBI) {
return new MipsInstructionSelector(TM, Subtarget, RBI);
}
} // end namespace llvm