blob: 9b770dde261f707aad4f14e4513dfff34fbc4742 [file] [log] [blame]
//===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Armv6 introduced instructions to perform 32-bit SIMD operations. The
/// purpose of this pass is do some IR pattern matching to create ACLE
/// DSP intrinsics, which map on these 32-bit SIMD operations.
/// This pass runs only when unaligned accesses is supported/enabled.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Pass.h"
#include "llvm/PassRegistry.h"
#include "llvm/PassSupport.h"
#include "llvm/Support/Debug.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "ARM.h"
#include "ARMSubtarget.h"
using namespace llvm;
using namespace PatternMatch;
#define DEBUG_TYPE "arm-parallel-dsp"
STATISTIC(NumSMLAD , "Number of smlad instructions generated");
static cl::opt<bool>
DisableParallelDSP("disable-arm-parallel-dsp", cl::Hidden, cl::init(false),
cl::desc("Disable the ARM Parallel DSP pass"));
namespace {
struct OpChain;
struct BinOpChain;
struct Reduction;
using OpChainList = SmallVector<std::unique_ptr<OpChain>, 8>;
using ReductionList = SmallVector<Reduction, 8>;
using ValueList = SmallVector<Value*, 8>;
using MemInstList = SmallVector<LoadInst*, 8>;
using PMACPair = std::pair<BinOpChain*,BinOpChain*>;
using PMACPairList = SmallVector<PMACPair, 8>;
using Instructions = SmallVector<Instruction*,16>;
using MemLocList = SmallVector<MemoryLocation, 4>;
struct OpChain {
Instruction *Root;
ValueList AllValues;
MemInstList VecLd; // List of all load instructions.
MemLocList MemLocs; // All memory locations read by this tree.
bool ReadOnly = true;
OpChain(Instruction *I, ValueList &vl) : Root(I), AllValues(vl) { }
virtual ~OpChain() = default;
void SetMemoryLocations() {
const auto Size = LocationSize::unknown();
for (auto *V : AllValues) {
if (auto *I = dyn_cast<Instruction>(V)) {
if (I->mayWriteToMemory())
ReadOnly = false;
if (auto *Ld = dyn_cast<LoadInst>(V))
MemLocs.push_back(MemoryLocation(Ld->getPointerOperand(), Size));
}
}
}
unsigned size() const { return AllValues.size(); }
};
// 'BinOpChain' and 'Reduction' are just some bookkeeping data structures.
// 'Reduction' contains the phi-node and accumulator statement from where we
// start pattern matching, and 'BinOpChain' the multiplication
// instructions that are candidates for parallel execution.
struct BinOpChain : public OpChain {
ValueList LHS; // List of all (narrow) left hand operands.
ValueList RHS; // List of all (narrow) right hand operands.
bool Exchange = false;
BinOpChain(Instruction *I, ValueList &lhs, ValueList &rhs) :
OpChain(I, lhs), LHS(lhs), RHS(rhs) {
for (auto *V : RHS)
AllValues.push_back(V);
}
bool AreSymmetrical(BinOpChain *Other);
};
struct Reduction {
PHINode *Phi; // The Phi-node from where we start
// pattern matching.
Instruction *AccIntAdd; // The accumulating integer add statement,
// i.e, the reduction statement.
OpChainList MACCandidates; // The MAC candidates associated with
// this reduction statement.
PMACPairList PMACPairs;
Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { };
};
class WidenedLoad {
LoadInst *NewLd = nullptr;
SmallVector<LoadInst*, 4> Loads;
public:
WidenedLoad(SmallVectorImpl<LoadInst*> &Lds, LoadInst *Wide)
: NewLd(Wide) {
for (auto *I : Lds)
Loads.push_back(I);
}
LoadInst *getLoad() {
return NewLd;
}
};
class ARMParallelDSP : public LoopPass {
ScalarEvolution *SE;
AliasAnalysis *AA;
TargetLibraryInfo *TLI;
DominatorTree *DT;
LoopInfo *LI;
Loop *L;
const DataLayout *DL;
Module *M;
std::map<LoadInst*, LoadInst*> LoadPairs;
std::map<LoadInst*, std::unique_ptr<WidenedLoad>> WideLoads;
bool RecordSequentialLoads(BasicBlock *BB);
bool InsertParallelMACs(Reduction &Reduction);
bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem);
LoadInst* CreateLoadIns(IRBuilder<NoFolder> &IRB,
SmallVectorImpl<LoadInst*> &Loads,
IntegerType *LoadTy);
void CreateParallelMACPairs(Reduction &R);
Instruction *CreateSMLADCall(SmallVectorImpl<LoadInst*> &VecLd0,
SmallVectorImpl<LoadInst*> &VecLd1,
Instruction *Acc, bool Exchange,
Instruction *InsertAfter);
/// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate
/// Dual performs two signed 16x16-bit multiplications. It adds the
/// products to a 32-bit accumulate operand. Optionally, the instruction can
/// exchange the halfwords of the second operand before performing the
/// arithmetic.
bool MatchSMLAD(Function &F);
public:
static char ID;
ARMParallelDSP() : LoopPass(ID) { }
void getAnalysisUsage(AnalysisUsage &AU) const override {
LoopPass::getAnalysisUsage(AU);
AU.addRequired<AssumptionCacheTracker>();
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addRequired<AAResultsWrapperPass>();
AU.addRequired<TargetLibraryInfoWrapperPass>();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addRequired<TargetPassConfig>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.setPreservesCFG();
}
bool runOnLoop(Loop *TheLoop, LPPassManager &) override {
if (DisableParallelDSP)
return false;
L = TheLoop;
SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
auto &TPC = getAnalysis<TargetPassConfig>();
BasicBlock *Header = TheLoop->getHeader();
if (!Header)
return false;
// TODO: We assume the loop header and latch to be the same block.
// This is not a fundamental restriction, but lifting this would just
// require more work to do the transformation and then patch up the CFG.
if (Header != TheLoop->getLoopLatch()) {
LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not "
"running pass ARMParallelDSP\n");
return false;
}
Function &F = *Header->getParent();
M = F.getParent();
DL = &M->getDataLayout();
auto &TM = TPC.getTM<TargetMachine>();
auto *ST = &TM.getSubtarget<ARMSubtarget>(F);
if (!ST->allowsUnalignedMem()) {
LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not "
"running pass ARMParallelDSP\n");
return false;
}
if (!ST->hasDSP()) {
LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass "
"ARMParallelDSP\n");
return false;
}
LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI);
LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n");
LLVM_DEBUG(dbgs() << " - " << F.getName() << "\n\n");
if (!RecordSequentialLoads(Header)) {
LLVM_DEBUG(dbgs() << " - No sequential loads found.\n");
return false;
}
bool Changes = MatchSMLAD(F);
return Changes;
}
};
}
// MaxBitwidth: the maximum supported bitwidth of the elements in the DSP
// instructions, which is set to 16. So here we should collect all i8 and i16
// narrow operations.
// TODO: we currently only collect i16, and will support i8 later, so that's
// why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth.
template<unsigned MaxBitWidth>
static bool IsNarrowSequence(Value *V, ValueList &VL) {
ConstantInt *CInt;
if (match(V, m_ConstantInt(CInt))) {
// TODO: if a constant is used, it needs to fit within the bit width.
return false;
}
auto *I = dyn_cast<Instruction>(V);
if (!I)
return false;
Value *Val, *LHS, *RHS;
if (match(V, m_Trunc(m_Value(Val)))) {
if (cast<TruncInst>(I)->getDestTy()->getIntegerBitWidth() == MaxBitWidth)
return IsNarrowSequence<MaxBitWidth>(Val, VL);
} else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) {
// TODO: we need to implement sadd16/sadd8 for this, which enables to
// also do the rewrite for smlad8.ll, but it is unsupported for now.
return false;
} else if (match(V, m_ZExtOrSExt(m_Value(Val)))) {
if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth)
return false;
if (match(Val, m_Load(m_Value()))) {
VL.push_back(Val);
VL.push_back(I);
return true;
}
}
return false;
}
template<typename MemInst>
static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1,
const DataLayout &DL, ScalarEvolution &SE) {
if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE))
return true;
return false;
}
bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1,
MemInstList &VecMem) {
if (!Ld0 || !Ld1)
return false;
if (!LoadPairs.count(Ld0) || LoadPairs[Ld0] != Ld1)
return false;
LLVM_DEBUG(dbgs() << "Loads are sequential and valid:\n";
dbgs() << "Ld0:"; Ld0->dump();
dbgs() << "Ld1:"; Ld1->dump();
);
VecMem.clear();
VecMem.push_back(Ld0);
VecMem.push_back(Ld1);
return true;
}
/// Iterate through the block and record base, offset pairs of loads as well as
/// maximal sequences of sequential loads.
bool ARMParallelDSP::RecordSequentialLoads(BasicBlock *BB) {
SmallVector<LoadInst*, 8> Loads;
for (auto &I : *BB) {
auto *Ld = dyn_cast<LoadInst>(&I);
if (!Ld || !Ld->isSimple() ||
!Ld->hasOneUse() || !isa<SExtInst>(Ld->user_back()))
continue;
Loads.push_back(Ld);
}
for (auto *Ld0 : Loads) {
for (auto *Ld1 : Loads) {
if (Ld0 == Ld1)
continue;
if (AreSequentialAccesses<LoadInst>(Ld0, Ld1, *DL, *SE)) {
LoadPairs[Ld0] = Ld1;
break;
}
}
}
LLVM_DEBUG(if (!LoadPairs.empty()) {
dbgs() << "Consecutive load pairs:\n";
for (auto &MapIt : LoadPairs) {
LLVM_DEBUG(dbgs() << *MapIt.first << ", "
<< *MapIt.second << "\n");
}
});
return LoadPairs.size() > 1;
}
void ARMParallelDSP::CreateParallelMACPairs(Reduction &R) {
OpChainList &Candidates = R.MACCandidates;
PMACPairList &PMACPairs = R.PMACPairs;
const unsigned Elems = Candidates.size();
if (Elems < 2)
return;
auto CanPair = [&](BinOpChain *PMul0, BinOpChain *PMul1) {
if (!PMul0->AreSymmetrical(PMul1))
return false;
// The first elements of each vector should be loads with sexts. If we
// find that its two pairs of consecutive loads, then these can be
// transformed into two wider loads and the users can be replaced with
// DSP intrinsics.
for (unsigned x = 0; x < PMul0->LHS.size(); x += 2) {
auto *Ld0 = dyn_cast<LoadInst>(PMul0->LHS[x]);
auto *Ld1 = dyn_cast<LoadInst>(PMul1->LHS[x]);
auto *Ld2 = dyn_cast<LoadInst>(PMul0->RHS[x]);
auto *Ld3 = dyn_cast<LoadInst>(PMul1->RHS[x]);
if (!Ld0 || !Ld1 || !Ld2 || !Ld3)
return false;
LLVM_DEBUG(dbgs() << "Loads:\n"
<< " - " << *Ld0 << "\n"
<< " - " << *Ld1 << "\n"
<< " - " << *Ld2 << "\n"
<< " - " << *Ld3 << "\n");
if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd)) {
if (AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
PMACPairs.push_back(std::make_pair(PMul0, PMul1));
return true;
} else if (AreSequentialLoads(Ld3, Ld2, PMul1->VecLd)) {
LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
LLVM_DEBUG(dbgs() << " exchanging Ld2 and Ld3\n");
PMul1->Exchange = true;
PMACPairs.push_back(std::make_pair(PMul0, PMul1));
return true;
}
} else if (AreSequentialLoads(Ld1, Ld0, PMul0->VecLd) &&
AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
LLVM_DEBUG(dbgs() << " exchanging Ld0 and Ld1\n");
LLVM_DEBUG(dbgs() << " and swapping muls\n");
PMul0->Exchange = true;
// Only the second operand can be exchanged, so swap the muls.
PMACPairs.push_back(std::make_pair(PMul1, PMul0));
return true;
}
}
return false;
};
SmallPtrSet<const Instruction*, 4> Paired;
for (unsigned i = 0; i < Elems; ++i) {
BinOpChain *PMul0 = static_cast<BinOpChain*>(Candidates[i].get());
if (Paired.count(PMul0->Root))
continue;
for (unsigned j = 0; j < Elems; ++j) {
if (i == j)
continue;
BinOpChain *PMul1 = static_cast<BinOpChain*>(Candidates[j].get());
if (Paired.count(PMul1->Root))
continue;
const Instruction *Mul0 = PMul0->Root;
const Instruction *Mul1 = PMul1->Root;
if (Mul0 == Mul1)
continue;
assert(PMul0 != PMul1 && "expected different chains");
if (CanPair(PMul0, PMul1)) {
Paired.insert(Mul0);
Paired.insert(Mul1);
break;
}
}
}
}
bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction) {
Instruction *Acc = Reduction.Phi;
Instruction *InsertAfter = Reduction.AccIntAdd;
for (auto &Pair : Reduction.PMACPairs) {
BinOpChain *PMul0 = Pair.first;
BinOpChain *PMul1 = Pair.second;
LLVM_DEBUG(dbgs() << "Found parallel MACs!!\n";
dbgs() << "- "; PMul0->Root->dump();
dbgs() << "- "; PMul1->Root->dump());
Acc = CreateSMLADCall(PMul0->VecLd, PMul1->VecLd, Acc, PMul1->Exchange,
InsertAfter);
InsertAfter = Acc;
}
if (Acc != Reduction.Phi) {
LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump());
Reduction.AccIntAdd->replaceAllUsesWith(Acc);
return true;
}
return false;
}
static void MatchReductions(Function &F, Loop *TheLoop, BasicBlock *Header,
ReductionList &Reductions) {
RecurrenceDescriptor RecDesc;
const bool HasFnNoNaNAttr =
F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
const BasicBlock *Latch = TheLoop->getLoopLatch();
// We need a preheader as getIncomingValueForBlock assumes there is one.
if (!TheLoop->getLoopPreheader()) {
LLVM_DEBUG(dbgs() << "No preheader found, bailing out\n");
return;
}
for (PHINode &Phi : Header->phis()) {
const auto *Ty = Phi.getType();
if (!Ty->isIntegerTy(32) && !Ty->isIntegerTy(64))
continue;
const bool IsReduction =
RecurrenceDescriptor::AddReductionVar(&Phi,
RecurrenceDescriptor::RK_IntegerAdd,
TheLoop, HasFnNoNaNAttr, RecDesc);
if (!IsReduction)
continue;
Instruction *Acc = dyn_cast<Instruction>(Phi.getIncomingValueForBlock(Latch));
if (!Acc)
continue;
Reductions.push_back(Reduction(&Phi, Acc));
}
LLVM_DEBUG(
dbgs() << "\nAccumulating integer additions (reductions) found:\n";
for (auto &R : Reductions) {
dbgs() << "- "; R.Phi->dump();
dbgs() << "-> "; R.AccIntAdd->dump();
}
);
}
static void AddMACCandidate(OpChainList &Candidates,
Instruction *Mul,
Value *MulOp0, Value *MulOp1) {
assert(Mul->getOpcode() == Instruction::Mul &&
"expected mul instruction");
ValueList LHS;
ValueList RHS;
if (IsNarrowSequence<16>(MulOp0, LHS) &&
IsNarrowSequence<16>(MulOp1, RHS)) {
Candidates.push_back(make_unique<BinOpChain>(Mul, LHS, RHS));
}
}
static void MatchParallelMACSequences(Reduction &R,
OpChainList &Candidates) {
Instruction *Acc = R.AccIntAdd;
LLVM_DEBUG(dbgs() << "\n- Analysing:\t" << *Acc << "\n");
// Returns false to signal the search should be stopped.
std::function<bool(Value*)> Match =
[&Candidates, &Match](Value *V) -> bool {
auto *I = dyn_cast<Instruction>(V);
if (!I)
return false;
switch (I->getOpcode()) {
case Instruction::Add:
if (Match(I->getOperand(0)) || (Match(I->getOperand(1))))
return true;
break;
case Instruction::Mul: {
Value *MulOp0 = I->getOperand(0);
Value *MulOp1 = I->getOperand(1);
if (isa<SExtInst>(MulOp0) && isa<SExtInst>(MulOp1))
AddMACCandidate(Candidates, I, MulOp0, MulOp1);
return false;
}
case Instruction::SExt:
return Match(I->getOperand(0));
}
return false;
};
while (Match (Acc));
LLVM_DEBUG(dbgs() << "Finished matching MAC sequences, found "
<< Candidates.size() << " candidates.\n");
}
// Collects all instructions that are not part of the MAC chains, which is the
// set of instructions that can potentially alias with the MAC operands.
static void AliasCandidates(BasicBlock *Header, Instructions &Reads,
Instructions &Writes) {
for (auto &I : *Header) {
if (I.mayReadFromMemory())
Reads.push_back(&I);
if (I.mayWriteToMemory())
Writes.push_back(&I);
}
}
// Check whether statements in the basic block that write to memory alias with
// the memory locations accessed by the MAC-chains.
// TODO: we need the read statements when we accept more complicated chains.
static bool AreAliased(AliasAnalysis *AA, Instructions &Reads,
Instructions &Writes, OpChainList &MACCandidates) {
LLVM_DEBUG(dbgs() << "Alias checks:\n");
for (auto &MAC : MACCandidates) {
LLVM_DEBUG(dbgs() << "mul: "; MAC->Root->dump());
// At the moment, we allow only simple chains that only consist of reads,
// accumulate their result with an integer add, and thus that don't write
// memory, and simply bail if they do.
if (!MAC->ReadOnly)
return true;
// Now for all writes in the basic block, check that they don't alias with
// the memory locations accessed by our MAC-chain:
for (auto *I : Writes) {
LLVM_DEBUG(dbgs() << "- "; I->dump());
assert(MAC->MemLocs.size() >= 2 && "expecting at least 2 memlocs");
for (auto &MemLoc : MAC->MemLocs) {
if (isModOrRefSet(intersectModRef(AA->getModRefInfo(I, MemLoc),
ModRefInfo::ModRef))) {
LLVM_DEBUG(dbgs() << "Yes, aliases found\n");
return true;
}
}
}
}
LLVM_DEBUG(dbgs() << "OK: no aliases found!\n");
return false;
}
static bool CheckMACMemory(OpChainList &Candidates) {
for (auto &C : Candidates) {
// A mul has 2 operands, and a narrow op consist of sext and a load; thus
// we expect at least 4 items in this operand value list.
if (C->size() < 4) {
LLVM_DEBUG(dbgs() << "Operand list too short.\n");
return false;
}
C->SetMemoryLocations();
ValueList &LHS = static_cast<BinOpChain*>(C.get())->LHS;
ValueList &RHS = static_cast<BinOpChain*>(C.get())->RHS;
// Use +=2 to skip over the expected extend instructions.
for (unsigned i = 0, e = LHS.size(); i < e; i += 2) {
if (!isa<LoadInst>(LHS[i]) || !isa<LoadInst>(RHS[i]))
return false;
}
}
return true;
}
// Loop Pass that needs to identify integer add/sub reductions of 16-bit vector
// multiplications.
// To use SMLAD:
// 1) we first need to find integer add reduction PHIs,
// 2) then from the PHI, look for this pattern:
//
// acc0 = phi i32 [0, %entry], [%acc1, %loop.body]
// ld0 = load i16
// sext0 = sext i16 %ld0 to i32
// ld1 = load i16
// sext1 = sext i16 %ld1 to i32
// mul0 = mul %sext0, %sext1
// ld2 = load i16
// sext2 = sext i16 %ld2 to i32
// ld3 = load i16
// sext3 = sext i16 %ld3 to i32
// mul1 = mul i32 %sext2, %sext3
// add0 = add i32 %mul0, %acc0
// acc1 = add i32 %add0, %mul1
//
// Which can be selected to:
//
// ldr.h r0
// ldr.h r1
// smlad r2, r0, r1, r2
//
// If constants are used instead of loads, these will need to be hoisted
// out and into a register.
//
// If loop invariants are used instead of loads, these need to be packed
// before the loop begins.
//
bool ARMParallelDSP::MatchSMLAD(Function &F) {
BasicBlock *Header = L->getHeader();
LLVM_DEBUG(dbgs() << "= Matching SMLAD =\n";
dbgs() << "Header block:\n"; Header->dump();
dbgs() << "Loop info:\n\n"; L->dump());
bool Changed = false;
ReductionList Reductions;
MatchReductions(F, L, Header, Reductions);
for (auto &R : Reductions) {
OpChainList MACCandidates;
MatchParallelMACSequences(R, MACCandidates);
if (!CheckMACMemory(MACCandidates))
continue;
R.MACCandidates = std::move(MACCandidates);
LLVM_DEBUG(dbgs() << "MAC candidates:\n";
for (auto &M : R.MACCandidates)
M->Root->dump();
dbgs() << "\n";);
}
// Collect all instructions that may read or write memory. Our alias
// analysis checks bail out if any of these instructions aliases with an
// instruction from the MAC-chain.
Instructions Reads, Writes;
AliasCandidates(Header, Reads, Writes);
for (auto &R : Reductions) {
if (AreAliased(AA, Reads, Writes, R.MACCandidates))
return false;
CreateParallelMACPairs(R);
Changed |= InsertParallelMACs(R);
}
LLVM_DEBUG(if (Changed) dbgs() << "Header block:\n"; Header->dump(););
return Changed;
}
LoadInst* ARMParallelDSP::CreateLoadIns(IRBuilder<NoFolder> &IRB,
SmallVectorImpl<LoadInst*> &Loads,
IntegerType *LoadTy) {
assert(Loads.size() == 2 && "currently only support widening two loads");
const unsigned AddrSpace = Loads[0]->getPointerAddressSpace();
Value *VecPtr = IRB.CreateBitCast(Loads[0]->getPointerOperand(),
LoadTy->getPointerTo(AddrSpace));
LoadInst *WideLoad = IRB.CreateAlignedLoad(LoadTy, VecPtr,
Loads[0]->getAlignment());
// Fix up users, Loads[0] needs trunc while Loads[1] needs a lshr and trunc.
Instruction *SExt0 = dyn_cast<SExtInst>(Loads[0]->user_back());
Instruction *SExt1 = dyn_cast<SExtInst>(Loads[1]->user_back());
assert((Loads[0]->hasOneUse() && Loads[1]->hasOneUse() && SExt0 && SExt1) &&
"Loads should have a single, extending, user");
std::function<void(Instruction*, Instruction*)> MoveAfter =
[&](Instruction* Source, Instruction* Sink) -> void {
if (DT->dominates(Source, Sink) ||
Source->getParent() != Sink->getParent() ||
isa<PHINode>(Source) || isa<PHINode>(Sink))
return;
Sink->moveAfter(Source);
for (auto &U : Sink->uses())
MoveAfter(Sink, cast<Instruction>(U.getUser()));
};
// From the wide load, create two values that equal the original two loads.
Value *Bottom = IRB.CreateTrunc(WideLoad, Loads[0]->getType());
SExt0->setOperand(0, Bottom);
if (auto *I = dyn_cast<Instruction>(Bottom)) {
I->moveAfter(WideLoad);
MoveAfter(I, SExt0);
}
IntegerType *Ld1Ty = cast<IntegerType>(Loads[1]->getType());
Value *ShiftVal = ConstantInt::get(LoadTy, Ld1Ty->getBitWidth());
Value *Top = IRB.CreateLShr(WideLoad, ShiftVal);
if (auto *I = dyn_cast<Instruction>(Top))
MoveAfter(WideLoad, I);
Value *Trunc = IRB.CreateTrunc(Top, Ld1Ty);
SExt1->setOperand(0, Trunc);
if (auto *I = dyn_cast<Instruction>(Trunc))
MoveAfter(I, SExt1);
WideLoads.emplace(std::make_pair(Loads[0],
make_unique<WidenedLoad>(Loads, WideLoad)));
return WideLoad;
}
Instruction *ARMParallelDSP::CreateSMLADCall(SmallVectorImpl<LoadInst*> &VecLd0,
SmallVectorImpl<LoadInst*> &VecLd1,
Instruction *Acc, bool Exchange,
Instruction *InsertAfter) {
LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n"
<< "- " << *VecLd0[0] << "\n"
<< "- " << *VecLd0[1] << "\n"
<< "- " << *VecLd1[0] << "\n"
<< "- " << *VecLd1[1] << "\n"
<< "- " << *Acc << "\n"
<< "- Exchange: " << Exchange << "\n");
IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
++BasicBlock::iterator(InsertAfter));
// Replace the reduction chain with an intrinsic call
IntegerType *Ty = IntegerType::get(M->getContext(), 32);
LoadInst *WideLd0 = WideLoads.count(VecLd0[0]) ?
WideLoads[VecLd0[0]]->getLoad() : CreateLoadIns(Builder, VecLd0, Ty);
LoadInst *WideLd1 = WideLoads.count(VecLd1[0]) ?
WideLoads[VecLd1[0]]->getLoad() : CreateLoadIns(Builder, VecLd1, Ty);
Value* Args[] = { WideLd0, WideLd1, Acc };
Function *SMLAD = nullptr;
if (Exchange)
SMLAD = Acc->getType()->isIntegerTy(32) ?
Intrinsic::getDeclaration(M, Intrinsic::arm_smladx) :
Intrinsic::getDeclaration(M, Intrinsic::arm_smlaldx);
else
SMLAD = Acc->getType()->isIntegerTy(32) ?
Intrinsic::getDeclaration(M, Intrinsic::arm_smlad) :
Intrinsic::getDeclaration(M, Intrinsic::arm_smlald);
CallInst *Call = Builder.CreateCall(SMLAD, Args);
NumSMLAD++;
return Call;
}
// Compare the value lists in Other to this chain.
bool BinOpChain::AreSymmetrical(BinOpChain *Other) {
// Element-by-element comparison of Value lists returning true if they are
// instructions with the same opcode or constants with the same value.
auto CompareValueList = [](const ValueList &VL0,
const ValueList &VL1) {
if (VL0.size() != VL1.size()) {
LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: "
<< VL0.size() << " != " << VL1.size() << "\n");
return false;
}
const unsigned Pairs = VL0.size();
for (unsigned i = 0; i < Pairs; ++i) {
const Value *V0 = VL0[i];
const Value *V1 = VL1[i];
const auto *Inst0 = dyn_cast<Instruction>(V0);
const auto *Inst1 = dyn_cast<Instruction>(V1);
if (!Inst0 || !Inst1)
return false;
if (Inst0->isSameOperationAs(Inst1))
continue;
const APInt *C0, *C1;
if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1))
return false;
}
return true;
};
return CompareValueList(LHS, Other->LHS) &&
CompareValueList(RHS, Other->RHS);
}
Pass *llvm::createARMParallelDSPPass() {
return new ARMParallelDSP();
}
char ARMParallelDSP::ID = 0;
INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp",
"Transform loops to use DSP intrinsics", false, false)
INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp",
"Transform loops to use DSP intrinsics", false, false)