| //===- AArch64LegalizerInfo.cpp ----------------------------------*- C++ -*-==// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// This file implements the targeting of the Machinelegalizer class for |
| /// AArch64. |
| /// \todo This should be generated by TableGen. |
| //===----------------------------------------------------------------------===// |
| |
| #include "AArch64LegalizerInfo.h" |
| #include "AArch64Subtarget.h" |
| #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Type.h" |
| |
| #define DEBUG_TYPE "aarch64-legalinfo" |
| |
| using namespace llvm; |
| using namespace LegalizeActions; |
| using namespace LegalizeMutations; |
| using namespace LegalityPredicates; |
| |
| AArch64LegalizerInfo::AArch64LegalizerInfo(const AArch64Subtarget &ST) { |
| using namespace TargetOpcode; |
| const LLT p0 = LLT::pointer(0, 64); |
| const LLT s1 = LLT::scalar(1); |
| const LLT s8 = LLT::scalar(8); |
| const LLT s16 = LLT::scalar(16); |
| const LLT s32 = LLT::scalar(32); |
| const LLT s64 = LLT::scalar(64); |
| const LLT s128 = LLT::scalar(128); |
| const LLT s256 = LLT::scalar(256); |
| const LLT s512 = LLT::scalar(512); |
| const LLT v16s8 = LLT::vector(16, 8); |
| const LLT v8s8 = LLT::vector(8, 8); |
| const LLT v4s8 = LLT::vector(4, 8); |
| const LLT v8s16 = LLT::vector(8, 16); |
| const LLT v4s16 = LLT::vector(4, 16); |
| const LLT v2s16 = LLT::vector(2, 16); |
| const LLT v2s32 = LLT::vector(2, 32); |
| const LLT v4s32 = LLT::vector(4, 32); |
| const LLT v2s64 = LLT::vector(2, 64); |
| const LLT v2p0 = LLT::vector(2, p0); |
| |
| getActionDefinitionsBuilder(G_IMPLICIT_DEF) |
| .legalFor({p0, s1, s8, s16, s32, s64, v4s32, v2s64}) |
| .clampScalar(0, s1, s64) |
| .widenScalarToNextPow2(0, 8) |
| .fewerElementsIf( |
| [=](const LegalityQuery &Query) { |
| return Query.Types[0].isVector() && |
| (Query.Types[0].getElementType() != s64 || |
| Query.Types[0].getNumElements() != 2); |
| }, |
| [=](const LegalityQuery &Query) { |
| LLT EltTy = Query.Types[0].getElementType(); |
| if (EltTy == s64) |
| return std::make_pair(0, LLT::vector(2, 64)); |
| return std::make_pair(0, EltTy); |
| }); |
| |
| getActionDefinitionsBuilder(G_PHI) |
| .legalFor({p0, s16, s32, s64, v2s32, v4s32, v2s64}) |
| .clampScalar(0, s16, s64) |
| .widenScalarToNextPow2(0); |
| |
| getActionDefinitionsBuilder(G_BSWAP) |
| .legalFor({s32, s64}) |
| .clampScalar(0, s16, s64) |
| .widenScalarToNextPow2(0); |
| |
| getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR}) |
| .legalFor({s32, s64, v2s32, v4s32, v2s64, v8s16, v16s8}) |
| .clampScalar(0, s32, s64) |
| .widenScalarToNextPow2(0) |
| .clampNumElements(0, v2s32, v4s32) |
| .clampNumElements(0, v2s64, v2s64) |
| .moreElementsToNextPow2(0); |
| |
| getActionDefinitionsBuilder(G_SHL) |
| .legalFor({{s32, s32}, {s64, s64}, |
| {v2s32, v2s32}, {v4s32, v4s32}, {v2s64, v2s64}}) |
| .clampScalar(1, s32, s64) |
| .clampScalar(0, s32, s64) |
| .widenScalarToNextPow2(0) |
| .clampNumElements(0, v2s32, v4s32) |
| .clampNumElements(0, v2s64, v2s64) |
| .moreElementsToNextPow2(0) |
| .minScalarSameAs(1, 0); |
| |
| getActionDefinitionsBuilder(G_GEP) |
| .legalFor({{p0, s64}}) |
| .clampScalar(1, s64, s64); |
| |
| getActionDefinitionsBuilder(G_PTR_MASK).legalFor({p0}); |
| |
| getActionDefinitionsBuilder({G_SDIV, G_UDIV}) |
| .legalFor({s32, s64}) |
| .clampScalar(0, s32, s64) |
| .widenScalarToNextPow2(0) |
| .scalarize(0); |
| |
| getActionDefinitionsBuilder({G_LSHR, G_ASHR}) |
| .legalFor({{s32, s32}, {s64, s64}, {v2s32, v2s32}, {v4s32, v4s32}}) |
| .clampScalar(1, s32, s64) |
| .clampScalar(0, s32, s64) |
| .minScalarSameAs(1, 0); |
| |
| getActionDefinitionsBuilder({G_SREM, G_UREM}) |
| .lowerFor({s1, s8, s16, s32, s64}); |
| |
| getActionDefinitionsBuilder({G_SMULO, G_UMULO}) |
| .lowerFor({{s64, s1}}); |
| |
| getActionDefinitionsBuilder({G_SMULH, G_UMULH}).legalFor({s32, s64}); |
| |
| getActionDefinitionsBuilder({G_UADDE, G_USUBE, G_SADDO, G_SSUBO, G_UADDO}) |
| .legalFor({{s32, s1}, {s64, s1}}); |
| |
| getActionDefinitionsBuilder({G_FADD, G_FSUB, G_FMA, G_FMUL, G_FDIV, G_FNEG}) |
| .legalFor({s32, s64, v2s64, v4s32, v2s32}); |
| |
| getActionDefinitionsBuilder({G_FREM, G_FPOW}).libcallFor({s32, s64}); |
| |
| getActionDefinitionsBuilder({G_FCEIL, G_FABS, G_FSQRT, G_FFLOOR}) |
| // If we don't have full FP16 support, then scalarize the elements of |
| // vectors containing fp16 types. |
| .fewerElementsIf( |
| [=, &ST](const LegalityQuery &Query) { |
| const auto &Ty = Query.Types[0]; |
| return Ty.isVector() && Ty.getElementType() == s16 && |
| !ST.hasFullFP16(); |
| }, |
| [=](const LegalityQuery &Query) { return std::make_pair(0, s16); }) |
| // If we don't have full FP16 support, then widen s16 to s32 if we |
| // encounter it. |
| .widenScalarIf( |
| [=, &ST](const LegalityQuery &Query) { |
| return Query.Types[0] == s16 && !ST.hasFullFP16(); |
| }, |
| [=](const LegalityQuery &Query) { return std::make_pair(0, s32); }) |
| .legalFor({s16, s32, s64, v2s32, v4s32, v2s64, v2s16, v4s16, v8s16}); |
| |
| getActionDefinitionsBuilder( |
| {G_FCOS, G_FSIN, G_FLOG10, G_FLOG, G_FLOG2, G_FEXP, G_FEXP2}) |
| // We need a call for these, so we always need to scalarize. |
| .scalarize(0) |
| // Regardless of FP16 support, widen 16-bit elements to 32-bits. |
| .minScalar(0, s32) |
| .libcallFor({s32, s64, v2s32, v4s32, v2s64}); |
| |
| getActionDefinitionsBuilder(G_INSERT) |
| .unsupportedIf([=](const LegalityQuery &Query) { |
| return Query.Types[0].getSizeInBits() <= Query.Types[1].getSizeInBits(); |
| }) |
| .legalIf([=](const LegalityQuery &Query) { |
| const LLT &Ty0 = Query.Types[0]; |
| const LLT &Ty1 = Query.Types[1]; |
| if (Ty0 != s32 && Ty0 != s64 && Ty0 != p0) |
| return false; |
| return isPowerOf2_32(Ty1.getSizeInBits()) && |
| (Ty1.getSizeInBits() == 1 || Ty1.getSizeInBits() >= 8); |
| }) |
| .clampScalar(0, s32, s64) |
| .widenScalarToNextPow2(0) |
| .maxScalarIf(typeInSet(0, {s32}), 1, s16) |
| .maxScalarIf(typeInSet(0, {s64}), 1, s32) |
| .widenScalarToNextPow2(1); |
| |
| getActionDefinitionsBuilder(G_EXTRACT) |
| .unsupportedIf([=](const LegalityQuery &Query) { |
| return Query.Types[0].getSizeInBits() >= Query.Types[1].getSizeInBits(); |
| }) |
| .legalIf([=](const LegalityQuery &Query) { |
| const LLT &Ty0 = Query.Types[0]; |
| const LLT &Ty1 = Query.Types[1]; |
| if (Ty1 != s32 && Ty1 != s64) |
| return false; |
| if (Ty1 == p0) |
| return true; |
| return isPowerOf2_32(Ty0.getSizeInBits()) && |
| (Ty0.getSizeInBits() == 1 || Ty0.getSizeInBits() >= 8); |
| }) |
| .clampScalar(1, s32, s64) |
| .widenScalarToNextPow2(1) |
| .maxScalarIf(typeInSet(1, {s32}), 0, s16) |
| .maxScalarIf(typeInSet(1, {s64}), 0, s32) |
| .widenScalarToNextPow2(0); |
| |
| getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD}) |
| .legalForTypesWithMemDesc({{s32, p0, 8, 8}, |
| {s32, p0, 16, 8}, |
| {s32, p0, 32, 8}, |
| {s64, p0, 64, 8}, |
| {p0, p0, 64, 8}, |
| {v2s32, p0, 64, 8}}) |
| .clampScalar(0, s32, s64) |
| .widenScalarToNextPow2(0) |
| // TODO: We could support sum-of-pow2's but the lowering code doesn't know |
| // how to do that yet. |
| .unsupportedIfMemSizeNotPow2() |
| // Lower anything left over into G_*EXT and G_LOAD |
| .lower(); |
| |
| auto IsPtrVecPred = [=](const LegalityQuery &Query) { |
| const LLT &ValTy = Query.Types[0]; |
| if (!ValTy.isVector()) |
| return false; |
| const LLT EltTy = ValTy.getElementType(); |
| return EltTy.isPointer() && EltTy.getAddressSpace() == 0; |
| }; |
| |
| getActionDefinitionsBuilder(G_LOAD) |
| .legalForTypesWithMemDesc({{s8, p0, 8, 8}, |
| {s16, p0, 16, 8}, |
| {s32, p0, 32, 8}, |
| {s64, p0, 64, 8}, |
| {p0, p0, 64, 8}, |
| {v16s8, p0, 128, 8}, |
| {v4s16, p0, 64, 8}, |
| {v8s16, p0, 128, 8}, |
| {v2s32, p0, 64, 8}, |
| {v4s32, p0, 128, 8}, |
| {v2s64, p0, 128, 8}}) |
| // These extends are also legal |
| .legalForTypesWithMemDesc({{s32, p0, 8, 8}, |
| {s32, p0, 16, 8}}) |
| .clampScalar(0, s8, s64) |
| .widenScalarToNextPow2(0) |
| // TODO: We could support sum-of-pow2's but the lowering code doesn't know |
| // how to do that yet. |
| .unsupportedIfMemSizeNotPow2() |
| // Lower any any-extending loads left into G_ANYEXT and G_LOAD |
| .lowerIf([=](const LegalityQuery &Query) { |
| return Query.Types[0].getSizeInBits() != Query.MMODescrs[0].SizeInBits; |
| }) |
| .clampMaxNumElements(0, s32, 2) |
| .clampMaxNumElements(0, s64, 1) |
| .customIf(IsPtrVecPred); |
| |
| getActionDefinitionsBuilder(G_STORE) |
| .legalForTypesWithMemDesc({{s8, p0, 8, 8}, |
| {s16, p0, 16, 8}, |
| {s32, p0, 32, 8}, |
| {s64, p0, 64, 8}, |
| {p0, p0, 64, 8}, |
| {v16s8, p0, 128, 8}, |
| {v4s16, p0, 64, 8}, |
| {v8s16, p0, 128, 8}, |
| {v2s32, p0, 64, 8}, |
| {v4s32, p0, 128, 8}, |
| {v2s64, p0, 128, 8}}) |
| .clampScalar(0, s8, s64) |
| .widenScalarToNextPow2(0) |
| // TODO: We could support sum-of-pow2's but the lowering code doesn't know |
| // how to do that yet. |
| .unsupportedIfMemSizeNotPow2() |
| .lowerIf([=](const LegalityQuery &Query) { |
| return Query.Types[0].isScalar() && |
| Query.Types[0].getSizeInBits() != Query.MMODescrs[0].SizeInBits; |
| }) |
| .clampMaxNumElements(0, s32, 2) |
| .clampMaxNumElements(0, s64, 1) |
| .customIf(IsPtrVecPred); |
| |
| // Constants |
| getActionDefinitionsBuilder(G_CONSTANT) |
| .legalFor({p0, s32, s64}) |
| .clampScalar(0, s32, s64) |
| .widenScalarToNextPow2(0); |
| getActionDefinitionsBuilder(G_FCONSTANT) |
| .legalFor({s32, s64}) |
| .clampScalar(0, s32, s64); |
| |
| getActionDefinitionsBuilder(G_ICMP) |
| .legalFor({{s32, s32}, |
| {s32, s64}, |
| {s32, p0}, |
| {v4s32, v4s32}, |
| {v2s32, v2s32}, |
| {v2s64, v2s64}, |
| {v2s64, v2p0}, |
| {v4s16, v4s16}, |
| {v8s16, v8s16}, |
| {v8s8, v8s8}, |
| {v16s8, v16s8}}) |
| .clampScalar(0, s32, s32) |
| .clampScalar(1, s32, s64) |
| .minScalarEltSameAsIf( |
| [=](const LegalityQuery &Query) { |
| const LLT &Ty = Query.Types[0]; |
| const LLT &SrcTy = Query.Types[1]; |
| return Ty.isVector() && !SrcTy.getElementType().isPointer() && |
| Ty.getElementType() != SrcTy.getElementType(); |
| }, |
| 0, 1) |
| .minScalarOrEltIf( |
| [=](const LegalityQuery &Query) { return Query.Types[1] == v2s16; }, |
| 1, s32) |
| .minScalarOrEltIf( |
| [=](const LegalityQuery &Query) { return Query.Types[1] == v2p0; }, 0, |
| s64) |
| .widenScalarOrEltToNextPow2(1); |
| |
| getActionDefinitionsBuilder(G_FCMP) |
| .legalFor({{s32, s32}, {s32, s64}}) |
| .clampScalar(0, s32, s32) |
| .clampScalar(1, s32, s64) |
| .widenScalarToNextPow2(1); |
| |
| // Extensions |
| getActionDefinitionsBuilder({G_ZEXT, G_SEXT, G_ANYEXT}) |
| .legalForCartesianProduct({s8, s16, s32, s64}, {s1, s8, s16, s32}); |
| |
| getActionDefinitionsBuilder(G_TRUNC).alwaysLegal(); |
| |
| // FP conversions |
| getActionDefinitionsBuilder(G_FPTRUNC).legalFor( |
| {{s16, s32}, {s16, s64}, {s32, s64}, {v4s16, v4s32}, {v2s32, v2s64}}); |
| getActionDefinitionsBuilder(G_FPEXT).legalFor( |
| {{s32, s16}, {s64, s16}, {s64, s32}, {v4s32, v4s16}, {v2s64, v2s32}}); |
| |
| // Conversions |
| getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI}) |
| .legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32}) |
| .clampScalar(0, s32, s64) |
| .widenScalarToNextPow2(0) |
| .clampScalar(1, s32, s64) |
| .widenScalarToNextPow2(1); |
| |
| getActionDefinitionsBuilder({G_SITOFP, G_UITOFP}) |
| .legalForCartesianProduct({s32, s64, v2s64, v4s32, v2s32}) |
| .clampScalar(1, s32, s64) |
| .widenScalarToNextPow2(1) |
| .clampScalar(0, s32, s64) |
| .widenScalarToNextPow2(0); |
| |
| // Control-flow |
| getActionDefinitionsBuilder(G_BRCOND).legalFor({s1, s8, s16, s32}); |
| getActionDefinitionsBuilder(G_BRINDIRECT).legalFor({p0}); |
| |
| // Select |
| // FIXME: We can probably do a bit better than just scalarizing vector |
| // selects. |
| getActionDefinitionsBuilder(G_SELECT) |
| .legalFor({{s32, s1}, {s64, s1}, {p0, s1}}) |
| .clampScalar(0, s32, s64) |
| .widenScalarToNextPow2(0) |
| .scalarize(0); |
| |
| // Pointer-handling |
| getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({p0}); |
| getActionDefinitionsBuilder(G_GLOBAL_VALUE).legalFor({p0}); |
| |
| getActionDefinitionsBuilder(G_PTRTOINT) |
| .legalForCartesianProduct({s1, s8, s16, s32, s64}, {p0}) |
| .maxScalar(0, s64) |
| .widenScalarToNextPow2(0, /*Min*/ 8); |
| |
| getActionDefinitionsBuilder(G_INTTOPTR) |
| .unsupportedIf([&](const LegalityQuery &Query) { |
| return Query.Types[0].getSizeInBits() != Query.Types[1].getSizeInBits(); |
| }) |
| .legalFor({{p0, s64}}); |
| |
| // Casts for 32 and 64-bit width type are just copies. |
| // Same for 128-bit width type, except they are on the FPR bank. |
| getActionDefinitionsBuilder(G_BITCAST) |
| // FIXME: This is wrong since G_BITCAST is not allowed to change the |
| // number of bits but it's what the previous code described and fixing |
| // it breaks tests. |
| .legalForCartesianProduct({s1, s8, s16, s32, s64, s128, v16s8, v8s8, v4s8, |
| v8s16, v4s16, v2s16, v4s32, v2s32, v2s64, |
| v2p0}); |
| |
| getActionDefinitionsBuilder(G_VASTART).legalFor({p0}); |
| |
| // va_list must be a pointer, but most sized types are pretty easy to handle |
| // as the destination. |
| getActionDefinitionsBuilder(G_VAARG) |
| .customForCartesianProduct({s8, s16, s32, s64, p0}, {p0}) |
| .clampScalar(0, s8, s64) |
| .widenScalarToNextPow2(0, /*Min*/ 8); |
| |
| if (ST.hasLSE()) { |
| getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG_WITH_SUCCESS) |
| .lowerIf(all( |
| typeInSet(0, {s8, s16, s32, s64}), typeIs(1, s1), typeIs(2, p0), |
| atomicOrderingAtLeastOrStrongerThan(0, AtomicOrdering::Monotonic))); |
| |
| getActionDefinitionsBuilder( |
| {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB, G_ATOMICRMW_AND, |
| G_ATOMICRMW_OR, G_ATOMICRMW_XOR, G_ATOMICRMW_MIN, G_ATOMICRMW_MAX, |
| G_ATOMICRMW_UMIN, G_ATOMICRMW_UMAX, G_ATOMIC_CMPXCHG}) |
| .legalIf(all( |
| typeInSet(0, {s8, s16, s32, s64}), typeIs(1, p0), |
| atomicOrderingAtLeastOrStrongerThan(0, AtomicOrdering::Monotonic))); |
| } |
| |
| getActionDefinitionsBuilder(G_BLOCK_ADDR).legalFor({p0}); |
| |
| // Merge/Unmerge |
| for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) { |
| unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1; |
| unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0; |
| |
| auto notValidElt = [](const LegalityQuery &Query, unsigned TypeIdx) { |
| const LLT &Ty = Query.Types[TypeIdx]; |
| if (Ty.isVector()) { |
| const LLT &EltTy = Ty.getElementType(); |
| if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 64) |
| return true; |
| if (!isPowerOf2_32(EltTy.getSizeInBits())) |
| return true; |
| } |
| return false; |
| }; |
| |
| // FIXME: This rule is horrible, but specifies the same as what we had |
| // before with the particularly strange definitions removed (e.g. |
| // s8 = G_MERGE_VALUES s32, s32). |
| // Part of the complexity comes from these ops being extremely flexible. For |
| // example, you can build/decompose vectors with it, concatenate vectors, |
| // etc. and in addition to this you can also bitcast with it at the same |
| // time. We've been considering breaking it up into multiple ops to make it |
| // more manageable throughout the backend. |
| getActionDefinitionsBuilder(Op) |
| // Break up vectors with weird elements into scalars |
| .fewerElementsIf( |
| [=](const LegalityQuery &Query) { return notValidElt(Query, 0); }, |
| scalarize(0)) |
| .fewerElementsIf( |
| [=](const LegalityQuery &Query) { return notValidElt(Query, 1); }, |
| scalarize(1)) |
| // Clamp the big scalar to s8-s512 and make it either a power of 2, 192, |
| // or 384. |
| .clampScalar(BigTyIdx, s8, s512) |
| .widenScalarIf( |
| [=](const LegalityQuery &Query) { |
| const LLT &Ty = Query.Types[BigTyIdx]; |
| return !isPowerOf2_32(Ty.getSizeInBits()) && |
| Ty.getSizeInBits() % 64 != 0; |
| }, |
| [=](const LegalityQuery &Query) { |
| // Pick the next power of 2, or a multiple of 64 over 128. |
| // Whichever is smaller. |
| const LLT &Ty = Query.Types[BigTyIdx]; |
| unsigned NewSizeInBits = 1 |
| << Log2_32_Ceil(Ty.getSizeInBits() + 1); |
| if (NewSizeInBits >= 256) { |
| unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1); |
| if (RoundedTo < NewSizeInBits) |
| NewSizeInBits = RoundedTo; |
| } |
| return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits)); |
| }) |
| // Clamp the little scalar to s8-s256 and make it a power of 2. It's not |
| // worth considering the multiples of 64 since 2*192 and 2*384 are not |
| // valid. |
| .clampScalar(LitTyIdx, s8, s256) |
| .widenScalarToNextPow2(LitTyIdx, /*Min*/ 8) |
| // So at this point, we have s8, s16, s32, s64, s128, s192, s256, s384, |
| // s512, <X x s8>, <X x s16>, <X x s32>, or <X x s64>. |
| // At this point it's simple enough to accept the legal types. |
| .legalIf([=](const LegalityQuery &Query) { |
| const LLT &BigTy = Query.Types[BigTyIdx]; |
| const LLT &LitTy = Query.Types[LitTyIdx]; |
| if (BigTy.isVector() && BigTy.getSizeInBits() < 32) |
| return false; |
| if (LitTy.isVector() && LitTy.getSizeInBits() < 32) |
| return false; |
| return BigTy.getSizeInBits() % LitTy.getSizeInBits() == 0; |
| }) |
| // Any vectors left are the wrong size. Scalarize them. |
| .scalarize(0) |
| .scalarize(1); |
| } |
| |
| getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT) |
| .unsupportedIf([=](const LegalityQuery &Query) { |
| const LLT &EltTy = Query.Types[1].getElementType(); |
| return Query.Types[0] != EltTy; |
| }) |
| .minScalar(2, s64) |
| .legalIf([=](const LegalityQuery &Query) { |
| const LLT &VecTy = Query.Types[1]; |
| return VecTy == v2s16 || VecTy == v4s16 || VecTy == v4s32 || |
| VecTy == v2s64 || VecTy == v2s32; |
| }); |
| |
| getActionDefinitionsBuilder(G_INSERT_VECTOR_ELT) |
| .legalIf([=](const LegalityQuery &Query) { |
| const LLT &VecTy = Query.Types[0]; |
| // TODO: Support s8 and s16 |
| return VecTy == v2s32 || VecTy == v4s32 || VecTy == v2s64; |
| }); |
| |
| getActionDefinitionsBuilder(G_BUILD_VECTOR) |
| .legalFor({{v4s16, s16}, |
| {v8s16, s16}, |
| {v2s32, s32}, |
| {v4s32, s32}, |
| {v2p0, p0}, |
| {v2s64, s64}}) |
| .clampNumElements(0, v4s32, v4s32) |
| .clampNumElements(0, v2s64, v2s64) |
| |
| // Deal with larger scalar types, which will be implicitly truncated. |
| .legalIf([=](const LegalityQuery &Query) { |
| return Query.Types[0].getScalarSizeInBits() < |
| Query.Types[1].getSizeInBits(); |
| }) |
| .minScalarSameAs(1, 0); |
| |
| getActionDefinitionsBuilder(G_CTLZ).legalForCartesianProduct( |
| {s32, s64, v8s8, v16s8, v4s16, v8s16, v2s32, v4s32}) |
| .scalarize(1); |
| |
| getActionDefinitionsBuilder(G_SHUFFLE_VECTOR) |
| .legalIf([=](const LegalityQuery &Query) { |
| const LLT &DstTy = Query.Types[0]; |
| const LLT &SrcTy = Query.Types[1]; |
| // For now just support the TBL2 variant which needs the source vectors |
| // to be the same size as the dest. |
| if (DstTy != SrcTy) |
| return false; |
| for (auto &Ty : {v2s32, v4s32, v2s64}) { |
| if (DstTy == Ty) |
| return true; |
| } |
| return false; |
| }) |
| // G_SHUFFLE_VECTOR can have scalar sources (from 1 x s vectors), we |
| // just want those lowered into G_BUILD_VECTOR |
| .lowerIf([=](const LegalityQuery &Query) { |
| return !Query.Types[1].isVector(); |
| }) |
| .clampNumElements(0, v4s32, v4s32) |
| .clampNumElements(0, v2s64, v2s64); |
| |
| getActionDefinitionsBuilder(G_CONCAT_VECTORS) |
| .legalFor({{v4s32, v2s32}, {v8s16, v4s16}}); |
| |
| computeTables(); |
| verify(*ST.getInstrInfo()); |
| } |
| |
| bool AArch64LegalizerInfo::legalizeCustom(MachineInstr &MI, |
| MachineRegisterInfo &MRI, |
| MachineIRBuilder &MIRBuilder, |
| GISelChangeObserver &Observer) const { |
| switch (MI.getOpcode()) { |
| default: |
| // No idea what to do. |
| return false; |
| case TargetOpcode::G_VAARG: |
| return legalizeVaArg(MI, MRI, MIRBuilder); |
| case TargetOpcode::G_LOAD: |
| case TargetOpcode::G_STORE: |
| return legalizeLoadStore(MI, MRI, MIRBuilder, Observer); |
| } |
| |
| llvm_unreachable("expected switch to return"); |
| } |
| |
| bool AArch64LegalizerInfo::legalizeLoadStore( |
| MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &MIRBuilder, |
| GISelChangeObserver &Observer) const { |
| assert(MI.getOpcode() == TargetOpcode::G_STORE || |
| MI.getOpcode() == TargetOpcode::G_LOAD); |
| // Here we just try to handle vector loads/stores where our value type might |
| // have pointer elements, which the SelectionDAG importer can't handle. To |
| // allow the existing patterns for s64 to fire for p0, we just try to bitcast |
| // the value to use s64 types. |
| |
| // Custom legalization requires the instruction, if not deleted, must be fully |
| // legalized. In order to allow further legalization of the inst, we create |
| // a new instruction and erase the existing one. |
| |
| unsigned ValReg = MI.getOperand(0).getReg(); |
| const LLT ValTy = MRI.getType(ValReg); |
| |
| if (!ValTy.isVector() || !ValTy.getElementType().isPointer() || |
| ValTy.getElementType().getAddressSpace() != 0) { |
| LLVM_DEBUG(dbgs() << "Tried to do custom legalization on wrong load/store"); |
| return false; |
| } |
| |
| MIRBuilder.setInstr(MI); |
| unsigned PtrSize = ValTy.getElementType().getSizeInBits(); |
| const LLT NewTy = LLT::vector(ValTy.getNumElements(), PtrSize); |
| auto &MMO = **MI.memoperands_begin(); |
| if (MI.getOpcode() == TargetOpcode::G_STORE) { |
| auto Bitcast = MIRBuilder.buildBitcast({NewTy}, {ValReg}); |
| MIRBuilder.buildStore(Bitcast.getReg(0), MI.getOperand(1).getReg(), MMO); |
| } else { |
| unsigned NewReg = MRI.createGenericVirtualRegister(NewTy); |
| auto NewLoad = MIRBuilder.buildLoad(NewReg, MI.getOperand(1).getReg(), MMO); |
| MIRBuilder.buildBitcast({ValReg}, {NewLoad}); |
| } |
| MI.eraseFromParent(); |
| return true; |
| } |
| |
| bool AArch64LegalizerInfo::legalizeVaArg(MachineInstr &MI, |
| MachineRegisterInfo &MRI, |
| MachineIRBuilder &MIRBuilder) const { |
| MIRBuilder.setInstr(MI); |
| MachineFunction &MF = MIRBuilder.getMF(); |
| unsigned Align = MI.getOperand(2).getImm(); |
| unsigned Dst = MI.getOperand(0).getReg(); |
| unsigned ListPtr = MI.getOperand(1).getReg(); |
| |
| LLT PtrTy = MRI.getType(ListPtr); |
| LLT IntPtrTy = LLT::scalar(PtrTy.getSizeInBits()); |
| |
| const unsigned PtrSize = PtrTy.getSizeInBits() / 8; |
| unsigned List = MRI.createGenericVirtualRegister(PtrTy); |
| MIRBuilder.buildLoad( |
| List, ListPtr, |
| *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad, |
| PtrSize, /* Align = */ PtrSize)); |
| |
| unsigned DstPtr; |
| if (Align > PtrSize) { |
| // Realign the list to the actual required alignment. |
| auto AlignMinus1 = MIRBuilder.buildConstant(IntPtrTy, Align - 1); |
| |
| unsigned ListTmp = MRI.createGenericVirtualRegister(PtrTy); |
| MIRBuilder.buildGEP(ListTmp, List, AlignMinus1.getReg(0)); |
| |
| DstPtr = MRI.createGenericVirtualRegister(PtrTy); |
| MIRBuilder.buildPtrMask(DstPtr, ListTmp, Log2_64(Align)); |
| } else |
| DstPtr = List; |
| |
| uint64_t ValSize = MRI.getType(Dst).getSizeInBits() / 8; |
| MIRBuilder.buildLoad( |
| Dst, DstPtr, |
| *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOLoad, |
| ValSize, std::max(Align, PtrSize))); |
| |
| auto Size = MIRBuilder.buildConstant(IntPtrTy, alignTo(ValSize, PtrSize)); |
| |
| unsigned NewList = MRI.createGenericVirtualRegister(PtrTy); |
| MIRBuilder.buildGEP(NewList, DstPtr, Size.getReg(0)); |
| |
| MIRBuilder.buildStore( |
| NewList, ListPtr, |
| *MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOStore, |
| PtrSize, /* Align = */ PtrSize)); |
| |
| MI.eraseFromParent(); |
| return true; |
| } |