| //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the library calls simplifier. It does not implement |
| // any pass, but can't be used by other passes to do simplifications. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/SimplifyLibCalls.h" |
| #include "llvm/ADT/APSInt.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Analysis/CaptureTracking.h" |
| #include "llvm/Analysis/Loads.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Transforms/Utils/BuildLibCalls.h" |
| |
| using namespace llvm; |
| using namespace PatternMatch; |
| |
| static cl::opt<bool> |
| EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, |
| cl::init(false), |
| cl::desc("Enable unsafe double to float " |
| "shrinking for math lib calls")); |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Helper Functions |
| //===----------------------------------------------------------------------===// |
| |
| static bool ignoreCallingConv(LibFunc Func) { |
| return Func == LibFunc_abs || Func == LibFunc_labs || |
| Func == LibFunc_llabs || Func == LibFunc_strlen; |
| } |
| |
| static bool isCallingConvCCompatible(CallInst *CI) { |
| switch(CI->getCallingConv()) { |
| default: |
| return false; |
| case llvm::CallingConv::C: |
| return true; |
| case llvm::CallingConv::ARM_APCS: |
| case llvm::CallingConv::ARM_AAPCS: |
| case llvm::CallingConv::ARM_AAPCS_VFP: { |
| |
| // The iOS ABI diverges from the standard in some cases, so for now don't |
| // try to simplify those calls. |
| if (Triple(CI->getModule()->getTargetTriple()).isiOS()) |
| return false; |
| |
| auto *FuncTy = CI->getFunctionType(); |
| |
| if (!FuncTy->getReturnType()->isPointerTy() && |
| !FuncTy->getReturnType()->isIntegerTy() && |
| !FuncTy->getReturnType()->isVoidTy()) |
| return false; |
| |
| for (auto Param : FuncTy->params()) { |
| if (!Param->isPointerTy() && !Param->isIntegerTy()) |
| return false; |
| } |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// Return true if it is only used in equality comparisons with With. |
| static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { |
| for (User *U : V->users()) { |
| if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) |
| if (IC->isEquality() && IC->getOperand(1) == With) |
| continue; |
| // Unknown instruction. |
| return false; |
| } |
| return true; |
| } |
| |
| static bool callHasFloatingPointArgument(const CallInst *CI) { |
| return any_of(CI->operands(), [](const Use &OI) { |
| return OI->getType()->isFloatingPointTy(); |
| }); |
| } |
| |
| static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { |
| if (Base < 2 || Base > 36) |
| // handle special zero base |
| if (Base != 0) |
| return nullptr; |
| |
| char *End; |
| std::string nptr = Str.str(); |
| errno = 0; |
| long long int Result = strtoll(nptr.c_str(), &End, Base); |
| if (errno) |
| return nullptr; |
| |
| // if we assume all possible target locales are ASCII supersets, |
| // then if strtoll successfully parses a number on the host, |
| // it will also successfully parse the same way on the target |
| if (*End != '\0') |
| return nullptr; |
| |
| if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) |
| return nullptr; |
| |
| return ConstantInt::get(CI->getType(), Result); |
| } |
| |
| static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B, |
| const TargetLibraryInfo *TLI) { |
| CallInst *FOpen = dyn_cast<CallInst>(File); |
| if (!FOpen) |
| return false; |
| |
| Function *InnerCallee = FOpen->getCalledFunction(); |
| if (!InnerCallee) |
| return false; |
| |
| LibFunc Func; |
| if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || |
| Func != LibFunc_fopen) |
| return false; |
| |
| inferLibFuncAttributes(*CI->getCalledFunction(), *TLI); |
| if (PointerMayBeCaptured(File, true, true)) |
| return false; |
| |
| return true; |
| } |
| |
| static bool isOnlyUsedInComparisonWithZero(Value *V) { |
| for (User *U : V->users()) { |
| if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) |
| if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) |
| if (C->isNullValue()) |
| continue; |
| // Unknown instruction. |
| return false; |
| } |
| return true; |
| } |
| |
| static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, |
| const DataLayout &DL) { |
| if (!isOnlyUsedInComparisonWithZero(CI)) |
| return false; |
| |
| if (!isDereferenceableAndAlignedPointer(Str, 1, APInt(64, Len), DL)) |
| return false; |
| |
| if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) |
| return false; |
| |
| return true; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // String and Memory Library Call Optimizations |
| //===----------------------------------------------------------------------===// |
| |
| Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { |
| // Extract some information from the instruction |
| Value *Dst = CI->getArgOperand(0); |
| Value *Src = CI->getArgOperand(1); |
| |
| // See if we can get the length of the input string. |
| uint64_t Len = GetStringLength(Src); |
| if (Len == 0) |
| return nullptr; |
| --Len; // Unbias length. |
| |
| // Handle the simple, do-nothing case: strcat(x, "") -> x |
| if (Len == 0) |
| return Dst; |
| |
| return emitStrLenMemCpy(Src, Dst, Len, B); |
| } |
| |
| Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, |
| IRBuilder<> &B) { |
| // We need to find the end of the destination string. That's where the |
| // memory is to be moved to. We just generate a call to strlen. |
| Value *DstLen = emitStrLen(Dst, B, DL, TLI); |
| if (!DstLen) |
| return nullptr; |
| |
| // Now that we have the destination's length, we must index into the |
| // destination's pointer to get the actual memcpy destination (end of |
| // the string .. we're concatenating). |
| Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); |
| |
| // We have enough information to now generate the memcpy call to do the |
| // concatenation for us. Make a memcpy to copy the nul byte with align = 1. |
| B.CreateMemCpy(CpyDst, 1, Src, 1, |
| ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); |
| return Dst; |
| } |
| |
| Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { |
| // Extract some information from the instruction. |
| Value *Dst = CI->getArgOperand(0); |
| Value *Src = CI->getArgOperand(1); |
| uint64_t Len; |
| |
| // We don't do anything if length is not constant. |
| if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) |
| Len = LengthArg->getZExtValue(); |
| else |
| return nullptr; |
| |
| // See if we can get the length of the input string. |
| uint64_t SrcLen = GetStringLength(Src); |
| if (SrcLen == 0) |
| return nullptr; |
| --SrcLen; // Unbias length. |
| |
| // Handle the simple, do-nothing cases: |
| // strncat(x, "", c) -> x |
| // strncat(x, c, 0) -> x |
| if (SrcLen == 0 || Len == 0) |
| return Dst; |
| |
| // We don't optimize this case. |
| if (Len < SrcLen) |
| return nullptr; |
| |
| // strncat(x, s, c) -> strcat(x, s) |
| // s is constant so the strcat can be optimized further. |
| return emitStrLenMemCpy(Src, Dst, SrcLen, B); |
| } |
| |
| Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { |
| Function *Callee = CI->getCalledFunction(); |
| FunctionType *FT = Callee->getFunctionType(); |
| Value *SrcStr = CI->getArgOperand(0); |
| |
| // If the second operand is non-constant, see if we can compute the length |
| // of the input string and turn this into memchr. |
| ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); |
| if (!CharC) { |
| uint64_t Len = GetStringLength(SrcStr); |
| if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. |
| return nullptr; |
| |
| return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. |
| ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), |
| B, DL, TLI); |
| } |
| |
| // Otherwise, the character is a constant, see if the first argument is |
| // a string literal. If so, we can constant fold. |
| StringRef Str; |
| if (!getConstantStringInfo(SrcStr, Str)) { |
| if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) |
| return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), |
| "strchr"); |
| return nullptr; |
| } |
| |
| // Compute the offset, make sure to handle the case when we're searching for |
| // zero (a weird way to spell strlen). |
| size_t I = (0xFF & CharC->getSExtValue()) == 0 |
| ? Str.size() |
| : Str.find(CharC->getSExtValue()); |
| if (I == StringRef::npos) // Didn't find the char. strchr returns null. |
| return Constant::getNullValue(CI->getType()); |
| |
| // strchr(s+n,c) -> gep(s+n+i,c) |
| return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); |
| } |
| |
| Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { |
| Value *SrcStr = CI->getArgOperand(0); |
| ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); |
| |
| // Cannot fold anything if we're not looking for a constant. |
| if (!CharC) |
| return nullptr; |
| |
| StringRef Str; |
| if (!getConstantStringInfo(SrcStr, Str)) { |
| // strrchr(s, 0) -> strchr(s, 0) |
| if (CharC->isZero()) |
| return emitStrChr(SrcStr, '\0', B, TLI); |
| return nullptr; |
| } |
| |
| // Compute the offset. |
| size_t I = (0xFF & CharC->getSExtValue()) == 0 |
| ? Str.size() |
| : Str.rfind(CharC->getSExtValue()); |
| if (I == StringRef::npos) // Didn't find the char. Return null. |
| return Constant::getNullValue(CI->getType()); |
| |
| // strrchr(s+n,c) -> gep(s+n+i,c) |
| return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); |
| } |
| |
| Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { |
| Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); |
| if (Str1P == Str2P) // strcmp(x,x) -> 0 |
| return ConstantInt::get(CI->getType(), 0); |
| |
| StringRef Str1, Str2; |
| bool HasStr1 = getConstantStringInfo(Str1P, Str1); |
| bool HasStr2 = getConstantStringInfo(Str2P, Str2); |
| |
| // strcmp(x, y) -> cnst (if both x and y are constant strings) |
| if (HasStr1 && HasStr2) |
| return ConstantInt::get(CI->getType(), Str1.compare(Str2)); |
| |
| if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x |
| return B.CreateNeg(B.CreateZExt( |
| B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); |
| |
| if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x |
| return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), |
| CI->getType()); |
| |
| // strcmp(P, "x") -> memcmp(P, "x", 2) |
| uint64_t Len1 = GetStringLength(Str1P); |
| uint64_t Len2 = GetStringLength(Str2P); |
| if (Len1 && Len2) { |
| return emitMemCmp(Str1P, Str2P, |
| ConstantInt::get(DL.getIntPtrType(CI->getContext()), |
| std::min(Len1, Len2)), |
| B, DL, TLI); |
| } |
| |
| // strcmp to memcmp |
| if (!HasStr1 && HasStr2) { |
| if (canTransformToMemCmp(CI, Str1P, Len2, DL)) |
| return emitMemCmp( |
| Str1P, Str2P, |
| ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, |
| TLI); |
| } else if (HasStr1 && !HasStr2) { |
| if (canTransformToMemCmp(CI, Str2P, Len1, DL)) |
| return emitMemCmp( |
| Str1P, Str2P, |
| ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, |
| TLI); |
| } |
| |
| return nullptr; |
| } |
| |
| Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { |
| Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); |
| if (Str1P == Str2P) // strncmp(x,x,n) -> 0 |
| return ConstantInt::get(CI->getType(), 0); |
| |
| // Get the length argument if it is constant. |
| uint64_t Length; |
| if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) |
| Length = LengthArg->getZExtValue(); |
| else |
| return nullptr; |
| |
| if (Length == 0) // strncmp(x,y,0) -> 0 |
| return ConstantInt::get(CI->getType(), 0); |
| |
| if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) |
| return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); |
| |
| StringRef Str1, Str2; |
| bool HasStr1 = getConstantStringInfo(Str1P, Str1); |
| bool HasStr2 = getConstantStringInfo(Str2P, Str2); |
| |
| // strncmp(x, y) -> cnst (if both x and y are constant strings) |
| if (HasStr1 && HasStr2) { |
| StringRef SubStr1 = Str1.substr(0, Length); |
| StringRef SubStr2 = Str2.substr(0, Length); |
| return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); |
| } |
| |
| if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x |
| return B.CreateNeg(B.CreateZExt( |
| B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); |
| |
| if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x |
| return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), |
| CI->getType()); |
| |
| uint64_t Len1 = GetStringLength(Str1P); |
| uint64_t Len2 = GetStringLength(Str2P); |
| |
| // strncmp to memcmp |
| if (!HasStr1 && HasStr2) { |
| Len2 = std::min(Len2, Length); |
| if (canTransformToMemCmp(CI, Str1P, Len2, DL)) |
| return emitMemCmp( |
| Str1P, Str2P, |
| ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, |
| TLI); |
| } else if (HasStr1 && !HasStr2) { |
| Len1 = std::min(Len1, Length); |
| if (canTransformToMemCmp(CI, Str2P, Len1, DL)) |
| return emitMemCmp( |
| Str1P, Str2P, |
| ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, |
| TLI); |
| } |
| |
| return nullptr; |
| } |
| |
| Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { |
| Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); |
| if (Dst == Src) // strcpy(x,x) -> x |
| return Src; |
| |
| // See if we can get the length of the input string. |
| uint64_t Len = GetStringLength(Src); |
| if (Len == 0) |
| return nullptr; |
| |
| // We have enough information to now generate the memcpy call to do the |
| // copy for us. Make a memcpy to copy the nul byte with align = 1. |
| B.CreateMemCpy(Dst, 1, Src, 1, |
| ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); |
| return Dst; |
| } |
| |
| Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { |
| Function *Callee = CI->getCalledFunction(); |
| Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); |
| if (Dst == Src) { // stpcpy(x,x) -> x+strlen(x) |
| Value *StrLen = emitStrLen(Src, B, DL, TLI); |
| return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; |
| } |
| |
| // See if we can get the length of the input string. |
| uint64_t Len = GetStringLength(Src); |
| if (Len == 0) |
| return nullptr; |
| |
| Type *PT = Callee->getFunctionType()->getParamType(0); |
| Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); |
| Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, |
| ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); |
| |
| // We have enough information to now generate the memcpy call to do the |
| // copy for us. Make a memcpy to copy the nul byte with align = 1. |
| B.CreateMemCpy(Dst, 1, Src, 1, LenV); |
| return DstEnd; |
| } |
| |
| Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { |
| Function *Callee = CI->getCalledFunction(); |
| Value *Dst = CI->getArgOperand(0); |
| Value *Src = CI->getArgOperand(1); |
| Value *LenOp = CI->getArgOperand(2); |
| |
| // See if we can get the length of the input string. |
| uint64_t SrcLen = GetStringLength(Src); |
| if (SrcLen == 0) |
| return nullptr; |
| --SrcLen; |
| |
| if (SrcLen == 0) { |
| // strncpy(x, "", y) -> memset(align 1 x, '\0', y) |
| B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); |
| return Dst; |
| } |
| |
| uint64_t Len; |
| if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) |
| Len = LengthArg->getZExtValue(); |
| else |
| return nullptr; |
| |
| if (Len == 0) |
| return Dst; // strncpy(x, y, 0) -> x |
| |
| // Let strncpy handle the zero padding |
| if (Len > SrcLen + 1) |
| return nullptr; |
| |
| Type *PT = Callee->getFunctionType()->getParamType(0); |
| // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] |
| B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len)); |
| |
| return Dst; |
| } |
| |
| Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B, |
| unsigned CharSize) { |
| Value *Src = CI->getArgOperand(0); |
| |
| // Constant folding: strlen("xyz") -> 3 |
| if (uint64_t Len = GetStringLength(Src, CharSize)) |
| return ConstantInt::get(CI->getType(), Len - 1); |
| |
| // If s is a constant pointer pointing to a string literal, we can fold |
| // strlen(s + x) to strlen(s) - x, when x is known to be in the range |
| // [0, strlen(s)] or the string has a single null terminator '\0' at the end. |
| // We only try to simplify strlen when the pointer s points to an array |
| // of i8. Otherwise, we would need to scale the offset x before doing the |
| // subtraction. This will make the optimization more complex, and it's not |
| // very useful because calling strlen for a pointer of other types is |
| // very uncommon. |
| if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { |
| if (!isGEPBasedOnPointerToString(GEP, CharSize)) |
| return nullptr; |
| |
| ConstantDataArraySlice Slice; |
| if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { |
| uint64_t NullTermIdx; |
| if (Slice.Array == nullptr) { |
| NullTermIdx = 0; |
| } else { |
| NullTermIdx = ~((uint64_t)0); |
| for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { |
| if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { |
| NullTermIdx = I; |
| break; |
| } |
| } |
| // If the string does not have '\0', leave it to strlen to compute |
| // its length. |
| if (NullTermIdx == ~((uint64_t)0)) |
| return nullptr; |
| } |
| |
| Value *Offset = GEP->getOperand(2); |
| KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); |
| Known.Zero.flipAllBits(); |
| uint64_t ArrSize = |
| cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); |
| |
| // KnownZero's bits are flipped, so zeros in KnownZero now represent |
| // bits known to be zeros in Offset, and ones in KnowZero represent |
| // bits unknown in Offset. Therefore, Offset is known to be in range |
| // [0, NullTermIdx] when the flipped KnownZero is non-negative and |
| // unsigned-less-than NullTermIdx. |
| // |
| // If Offset is not provably in the range [0, NullTermIdx], we can still |
| // optimize if we can prove that the program has undefined behavior when |
| // Offset is outside that range. That is the case when GEP->getOperand(0) |
| // is a pointer to an object whose memory extent is NullTermIdx+1. |
| if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || |
| (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && |
| NullTermIdx == ArrSize - 1)) { |
| Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); |
| return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), |
| Offset); |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| // strlen(x?"foo":"bars") --> x ? 3 : 4 |
| if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { |
| uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); |
| uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); |
| if (LenTrue && LenFalse) { |
| ORE.emit([&]() { |
| return OptimizationRemark("instcombine", "simplify-libcalls", CI) |
| << "folded strlen(select) to select of constants"; |
| }); |
| return B.CreateSelect(SI->getCondition(), |
| ConstantInt::get(CI->getType(), LenTrue - 1), |
| ConstantInt::get(CI->getType(), LenFalse - 1)); |
| } |
| } |
| |
| // strlen(x) != 0 --> *x != 0 |
| // strlen(x) == 0 --> *x == 0 |
| if (isOnlyUsedInZeroEqualityComparison(CI)) |
| return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), |
| CI->getType()); |
| |
| return nullptr; |
| } |
| |
| Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { |
| return optimizeStringLength(CI, B, 8); |
| } |
| |
| Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) { |
| Module &M = *CI->getModule(); |
| unsigned WCharSize = TLI->getWCharSize(M) * 8; |
| // We cannot perform this optimization without wchar_size metadata. |
| if (WCharSize == 0) |
| return nullptr; |
| |
| return optimizeStringLength(CI, B, WCharSize); |
| } |
| |
| Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { |
| StringRef S1, S2; |
| bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); |
| bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); |
| |
| // strpbrk(s, "") -> nullptr |
| // strpbrk("", s) -> nullptr |
| if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) |
| return Constant::getNullValue(CI->getType()); |
| |
| // Constant folding. |
| if (HasS1 && HasS2) { |
| size_t I = S1.find_first_of(S2); |
| if (I == StringRef::npos) // No match. |
| return Constant::getNullValue(CI->getType()); |
| |
| return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), |
| "strpbrk"); |
| } |
| |
| // strpbrk(s, "a") -> strchr(s, 'a') |
| if (HasS2 && S2.size() == 1) |
| return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); |
| |
| return nullptr; |
| } |
| |
| Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { |
| Value *EndPtr = CI->getArgOperand(1); |
| if (isa<ConstantPointerNull>(EndPtr)) { |
| // With a null EndPtr, this function won't capture the main argument. |
| // It would be readonly too, except that it still may write to errno. |
| CI->addParamAttr(0, Attribute::NoCapture); |
| } |
| |
| return nullptr; |
| } |
| |
| Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { |
| StringRef S1, S2; |
| bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); |
| bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); |
| |
| // strspn(s, "") -> 0 |
| // strspn("", s) -> 0 |
| if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) |
| return Constant::getNullValue(CI->getType()); |
| |
| // Constant folding. |
| if (HasS1 && HasS2) { |
| size_t Pos = S1.find_first_not_of(S2); |
| if (Pos == StringRef::npos) |
| Pos = S1.size(); |
| return ConstantInt::get(CI->getType(), Pos); |
| } |
| |
| return nullptr; |
| } |
| |
| Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { |
| StringRef S1, S2; |
| bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); |
| bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); |
| |
| // strcspn("", s) -> 0 |
| if (HasS1 && S1.empty()) |
| return Constant::getNullValue(CI->getType()); |
| |
| // Constant folding. |
| if (HasS1 && HasS2) { |
| size_t Pos = S1.find_first_of(S2); |
| if (Pos == StringRef::npos) |
| Pos = S1.size(); |
| return ConstantInt::get(CI->getType(), Pos); |
| } |
| |
| // strcspn(s, "") -> strlen(s) |
| if (HasS2 && S2.empty()) |
| return emitStrLen(CI->getArgOperand(0), B, DL, TLI); |
| |
| return nullptr; |
| } |
| |
| Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { |
| // fold strstr(x, x) -> x. |
| if (CI->getArgOperand(0) == CI->getArgOperand(1)) |
| return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); |
| |
| // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 |
| if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { |
| Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); |
| if (!StrLen) |
| return nullptr; |
| Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), |
| StrLen, B, DL, TLI); |
| if (!StrNCmp) |
| return nullptr; |
| for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { |
| ICmpInst *Old = cast<ICmpInst>(*UI++); |
| Value *Cmp = |
| B.CreateICmp(Old->getPredicate(), StrNCmp, |
| ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); |
| replaceAllUsesWith(Old, Cmp); |
| } |
| return CI; |
| } |
| |
| // See if either input string is a constant string. |
| StringRef SearchStr, ToFindStr; |
| bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); |
| bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); |
| |
| // fold strstr(x, "") -> x. |
| if (HasStr2 && ToFindStr.empty()) |
| return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); |
| |
| // If both strings are known, constant fold it. |
| if (HasStr1 && HasStr2) { |
| size_t Offset = SearchStr.find(ToFindStr); |
| |
| if (Offset == StringRef::npos) // strstr("foo", "bar") -> null |
| return Constant::getNullValue(CI->getType()); |
| |
| // strstr("abcd", "bc") -> gep((char*)"abcd", 1) |
| Value *Result = castToCStr(CI->getArgOperand(0), B); |
| Result = |
| B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); |
| return B.CreateBitCast(Result, CI->getType()); |
| } |
| |
| // fold strstr(x, "y") -> strchr(x, 'y'). |
| if (HasStr2 && ToFindStr.size() == 1) { |
| Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); |
| return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; |
| } |
| return nullptr; |
| } |
| |
| Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { |
| Value *SrcStr = CI->getArgOperand(0); |
| ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); |
| ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); |
| |
| // memchr(x, y, 0) -> null |
| if (LenC && LenC->isZero()) |
| return Constant::getNullValue(CI->getType()); |
| |
| // From now on we need at least constant length and string. |
| StringRef Str; |
| if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) |
| return nullptr; |
| |
| // Truncate the string to LenC. If Str is smaller than LenC we will still only |
| // scan the string, as reading past the end of it is undefined and we can just |
| // return null if we don't find the char. |
| Str = Str.substr(0, LenC->getZExtValue()); |
| |
| // If the char is variable but the input str and length are not we can turn |
| // this memchr call into a simple bit field test. Of course this only works |
| // when the return value is only checked against null. |
| // |
| // It would be really nice to reuse switch lowering here but we can't change |
| // the CFG at this point. |
| // |
| // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0 |
| // after bounds check. |
| if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { |
| unsigned char Max = |
| *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), |
| reinterpret_cast<const unsigned char *>(Str.end())); |
| |
| // Make sure the bit field we're about to create fits in a register on the |
| // target. |
| // FIXME: On a 64 bit architecture this prevents us from using the |
| // interesting range of alpha ascii chars. We could do better by emitting |
| // two bitfields or shifting the range by 64 if no lower chars are used. |
| if (!DL.fitsInLegalInteger(Max + 1)) |
| return nullptr; |
| |
| // For the bit field use a power-of-2 type with at least 8 bits to avoid |
| // creating unnecessary illegal types. |
| unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); |
| |
| // Now build the bit field. |
| APInt Bitfield(Width, 0); |
| for (char C : Str) |
| Bitfield.setBit((unsigned char)C); |
| Value *BitfieldC = B.getInt(Bitfield); |
| |
| // Adjust width of "C" to the bitfield width, then mask off the high bits. |
| Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); |
| C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); |
| |
| // First check that the bit field access is within bounds. |
| Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), |
| "memchr.bounds"); |
| |
| // Create code that checks if the given bit is set in the field. |
| Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); |
| Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); |
| |
| // Finally merge both checks and cast to pointer type. The inttoptr |
| // implicitly zexts the i1 to intptr type. |
| return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); |
| } |
| |
| // Check if all arguments are constants. If so, we can constant fold. |
| if (!CharC) |
| return nullptr; |
| |
| // Compute the offset. |
| size_t I = Str.find(CharC->getSExtValue() & 0xFF); |
| if (I == StringRef::npos) // Didn't find the char. memchr returns null. |
| return Constant::getNullValue(CI->getType()); |
| |
| // memchr(s+n,c,l) -> gep(s+n+i,c) |
| return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); |
| } |
| |
| Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { |
| Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); |
| |
| if (LHS == RHS) // memcmp(s,s,x) -> 0 |
| return Constant::getNullValue(CI->getType()); |
| |
| // Make sure we have a constant length. |
| ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); |
| if (!LenC) |
| return nullptr; |
| |
| uint64_t Len = LenC->getZExtValue(); |
| if (Len == 0) // memcmp(s1,s2,0) -> 0 |
| return Constant::getNullValue(CI->getType()); |
| |
| // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS |
| if (Len == 1) { |
| Value *LHSV = |
| B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), |
| CI->getType(), "lhsv"); |
| Value *RHSV = |
| B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), |
| CI->getType(), "rhsv"); |
| return B.CreateSub(LHSV, RHSV, "chardiff"); |
| } |
| |
| // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 |
| // TODO: The case where both inputs are constants does not need to be limited |
| // to legal integers or equality comparison. See block below this. |
| if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { |
| IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); |
| unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); |
| |
| // First, see if we can fold either argument to a constant. |
| Value *LHSV = nullptr; |
| if (auto *LHSC = dyn_cast<Constant>(LHS)) { |
| LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); |
| LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); |
| } |
| Value *RHSV = nullptr; |
| if (auto *RHSC = dyn_cast<Constant>(RHS)) { |
| RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); |
| RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); |
| } |
| |
| // Don't generate unaligned loads. If either source is constant data, |
| // alignment doesn't matter for that source because there is no load. |
| if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && |
| (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { |
| if (!LHSV) { |
| Type *LHSPtrTy = |
| IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); |
| LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); |
| } |
| if (!RHSV) { |
| Type *RHSPtrTy = |
| IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); |
| RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); |
| } |
| return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); |
| } |
| } |
| |
| // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). |
| // TODO: This is limited to i8 arrays. |
| StringRef LHSStr, RHSStr; |
| if (getConstantStringInfo(LHS, LHSStr) && |
| getConstantStringInfo(RHS, RHSStr)) { |
| // Make sure we're not reading out-of-bounds memory. |
| if (Len > LHSStr.size() || Len > RHSStr.size()) |
| return nullptr; |
| // Fold the memcmp and normalize the result. This way we get consistent |
| // results across multiple platforms. |
| uint64_t Ret = 0; |
| int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); |
| if (Cmp < 0) |
| Ret = -1; |
| else if (Cmp > 0) |
| Ret = 1; |
| return ConstantInt::get(CI->getType(), Ret); |
| } |
| |
| return nullptr; |
| } |
| |
| Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { |
| // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) |
| B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, |
| CI->getArgOperand(2)); |
| return CI->getArgOperand(0); |
| } |
| |
| Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { |
| // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) |
| B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, |
| CI->getArgOperand(2)); |
| return CI->getArgOperand(0); |
| } |
| |
| /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). |
| Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) { |
| // This has to be a memset of zeros (bzero). |
| auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); |
| if (!FillValue || FillValue->getZExtValue() != 0) |
| return nullptr; |
| |
| // TODO: We should handle the case where the malloc has more than one use. |
| // This is necessary to optimize common patterns such as when the result of |
| // the malloc is checked against null or when a memset intrinsic is used in |
| // place of a memset library call. |
| auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); |
| if (!Malloc || !Malloc->hasOneUse()) |
| return nullptr; |
| |
| // Is the inner call really malloc()? |
| Function *InnerCallee = Malloc->getCalledFunction(); |
| if (!InnerCallee) |
| return nullptr; |
| |
| LibFunc Func; |
| if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || |
| Func != LibFunc_malloc) |
| return nullptr; |
| |
| // The memset must cover the same number of bytes that are malloc'd. |
| if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) |
| return nullptr; |
| |
| // Replace the malloc with a calloc. We need the data layout to know what the |
| // actual size of a 'size_t' parameter is. |
| B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); |
| const DataLayout &DL = Malloc->getModule()->getDataLayout(); |
| IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); |
| Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), |
| Malloc->getArgOperand(0), Malloc->getAttributes(), |
| B, *TLI); |
| if (!Calloc) |
| return nullptr; |
| |
| Malloc->replaceAllUsesWith(Calloc); |
| eraseFromParent(Malloc); |
| |
| return Calloc; |
| } |
| |
| Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { |
| if (auto *Calloc = foldMallocMemset(CI, B)) |
| return Calloc; |
| |
| // memset(p, v, n) -> llvm.memset(align 1 p, v, n) |
| Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); |
| B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); |
| return CI->getArgOperand(0); |
| } |
| |
| Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) { |
| if (isa<ConstantPointerNull>(CI->getArgOperand(0))) |
| return emitMalloc(CI->getArgOperand(1), B, DL, TLI); |
| |
| return nullptr; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Math Library Optimizations |
| //===----------------------------------------------------------------------===// |
| |
| // Replace a libcall \p CI with a call to intrinsic \p IID |
| static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) { |
| // Propagate fast-math flags from the existing call to the new call. |
| IRBuilder<>::FastMathFlagGuard Guard(B); |
| B.setFastMathFlags(CI->getFastMathFlags()); |
| |
| Module *M = CI->getModule(); |
| Value *V = CI->getArgOperand(0); |
| Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); |
| CallInst *NewCall = B.CreateCall(F, V); |
| NewCall->takeName(CI); |
| return NewCall; |
| } |
| |
| /// Return a variant of Val with float type. |
| /// Currently this works in two cases: If Val is an FPExtension of a float |
| /// value to something bigger, simply return the operand. |
| /// If Val is a ConstantFP but can be converted to a float ConstantFP without |
| /// loss of precision do so. |
| static Value *valueHasFloatPrecision(Value *Val) { |
| if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { |
| Value *Op = Cast->getOperand(0); |
| if (Op->getType()->isFloatTy()) |
| return Op; |
| } |
| if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { |
| APFloat F = Const->getValueAPF(); |
| bool losesInfo; |
| (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, |
| &losesInfo); |
| if (!losesInfo) |
| return ConstantFP::get(Const->getContext(), F); |
| } |
| return nullptr; |
| } |
| |
| /// Shrink double -> float functions. |
| static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B, |
| bool isBinary, bool isPrecise = false) { |
| if (!CI->getType()->isDoubleTy()) |
| return nullptr; |
| |
| // If not all the uses of the function are converted to float, then bail out. |
| // This matters if the precision of the result is more important than the |
| // precision of the arguments. |
| if (isPrecise) |
| for (User *U : CI->users()) { |
| FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); |
| if (!Cast || !Cast->getType()->isFloatTy()) |
| return nullptr; |
| } |
| |
| // If this is something like 'g((double) float)', convert to 'gf(float)'. |
| Value *V[2]; |
| V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); |
| V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; |
| if (!V[0] || (isBinary && !V[1])) |
| return nullptr; |
| |
| // If call isn't an intrinsic, check that it isn't within a function with the |
| // same name as the float version of this call, otherwise the result is an |
| // infinite loop. For example, from MinGW-w64: |
| // |
| // float expf(float val) { return (float) exp((double) val); } |
| Function *CalleeFn = CI->getCalledFunction(); |
| StringRef CalleeNm = CalleeFn->getName(); |
| AttributeList CalleeAt = CalleeFn->getAttributes(); |
| if (CalleeFn && !CalleeFn->isIntrinsic()) { |
| const Function *Fn = CI->getFunction(); |
| StringRef FnName = Fn->getName(); |
| if (FnName.back() == 'f' && |
| FnName.size() == (CalleeNm.size() + 1) && |
| FnName.startswith(CalleeNm)) |
| return nullptr; |
| } |
| |
| // Propagate the math semantics from the current function to the new function. |
| IRBuilder<>::FastMathFlagGuard Guard(B); |
| B.setFastMathFlags(CI->getFastMathFlags()); |
| |
| // g((double) float) -> (double) gf(float) |
| Value *R; |
| if (CalleeFn->isIntrinsic()) { |
| Module *M = CI->getModule(); |
| Intrinsic::ID IID = CalleeFn->getIntrinsicID(); |
| Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); |
| R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); |
| } |
| else |
| R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeNm, B, CalleeAt) |
| : emitUnaryFloatFnCall(V[0], CalleeNm, B, CalleeAt); |
| |
| return B.CreateFPExt(R, B.getDoubleTy()); |
| } |
| |
| /// Shrink double -> float for unary functions. |
| static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, |
| bool isPrecise = false) { |
| return optimizeDoubleFP(CI, B, false, isPrecise); |
| } |
| |
| /// Shrink double -> float for binary functions. |
| static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B, |
| bool isPrecise = false) { |
| return optimizeDoubleFP(CI, B, true, isPrecise); |
| } |
| |
| // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) |
| Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) { |
| if (!CI->isFast()) |
| return nullptr; |
| |
| // Propagate fast-math flags from the existing call to new instructions. |
| IRBuilder<>::FastMathFlagGuard Guard(B); |
| B.setFastMathFlags(CI->getFastMathFlags()); |
| |
| Value *Real, *Imag; |
| if (CI->getNumArgOperands() == 1) { |
| Value *Op = CI->getArgOperand(0); |
| assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); |
| Real = B.CreateExtractValue(Op, 0, "real"); |
| Imag = B.CreateExtractValue(Op, 1, "imag"); |
| } else { |
| assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); |
| Real = CI->getArgOperand(0); |
| Imag = CI->getArgOperand(1); |
| } |
| |
| Value *RealReal = B.CreateFMul(Real, Real); |
| Value *ImagImag = B.CreateFMul(Imag, Imag); |
| |
| Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, |
| CI->getType()); |
| return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); |
| } |
| |
| static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, |
| IRBuilder<> &B) { |
| if (!isa<FPMathOperator>(Call)) |
| return nullptr; |
| |
| IRBuilder<>::FastMathFlagGuard Guard(B); |
| B.setFastMathFlags(Call->getFastMathFlags()); |
| |
| // TODO: Can this be shared to also handle LLVM intrinsics? |
| Value *X; |
| switch (Func) { |
| case LibFunc_sin: |
| case LibFunc_sinf: |
| case LibFunc_sinl: |
| case LibFunc_tan: |
| case LibFunc_tanf: |
| case LibFunc_tanl: |
| // sin(-X) --> -sin(X) |
| // tan(-X) --> -tan(X) |
| if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) |
| return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); |
| break; |
| case LibFunc_cos: |
| case LibFunc_cosf: |
| case LibFunc_cosl: |
| // cos(-X) --> cos(X) |
| if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) |
| return B.CreateCall(Call->getCalledFunction(), X, "cos"); |
| break; |
| default: |
| break; |
| } |
| return nullptr; |
| } |
| |
| static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { |
| // Multiplications calculated using Addition Chains. |
| // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html |
| |
| assert(Exp != 0 && "Incorrect exponent 0 not handled"); |
| |
| if (InnerChain[Exp]) |
| return InnerChain[Exp]; |
| |
| static const unsigned AddChain[33][2] = { |
| {0, 0}, // Unused. |
| {0, 0}, // Unused (base case = pow1). |
| {1, 1}, // Unused (pre-computed). |
| {1, 2}, {2, 2}, {2, 3}, {3, 3}, {2, 5}, {4, 4}, |
| {1, 8}, {5, 5}, {1, 10}, {6, 6}, {4, 9}, {7, 7}, |
| {3, 12}, {8, 8}, {8, 9}, {2, 16}, {1, 18}, {10, 10}, |
| {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, |
| {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, |
| }; |
| |
| InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), |
| getPow(InnerChain, AddChain[Exp][1], B)); |
| return InnerChain[Exp]; |
| } |
| |
| /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); |
| /// exp2(n * x) for pow(2.0 ** n, x); exp10(x) for pow(10.0, x). |
| Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) { |
| Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); |
| AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); |
| Module *Mod = Pow->getModule(); |
| Type *Ty = Pow->getType(); |
| bool Ignored; |
| |
| // Evaluate special cases related to a nested function as the base. |
| |
| // pow(exp(x), y) -> exp(x * y) |
| // pow(exp2(x), y) -> exp2(x * y) |
| // If exp{,2}() is used only once, it is better to fold two transcendental |
| // math functions into one. If used again, exp{,2}() would still have to be |
| // called with the original argument, then keep both original transcendental |
| // functions. However, this transformation is only safe with fully relaxed |
| // math semantics, since, besides rounding differences, it changes overflow |
| // and underflow behavior quite dramatically. For example: |
| // pow(exp(1000), 0.001) = pow(inf, 0.001) = inf |
| // Whereas: |
| // exp(1000 * 0.001) = exp(1) |
| // TODO: Loosen the requirement for fully relaxed math semantics. |
| // TODO: Handle exp10() when more targets have it available. |
| CallInst *BaseFn = dyn_cast<CallInst>(Base); |
| if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { |
| LibFunc LibFn; |
| |
| Function *CalleeFn = BaseFn->getCalledFunction(); |
| if (CalleeFn && |
| TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { |
| StringRef ExpName; |
| Intrinsic::ID ID; |
| Value *ExpFn; |
| LibFunc LibFnFloat; |
| LibFunc LibFnDouble; |
| LibFunc LibFnLongDouble; |
| |
| switch (LibFn) { |
| default: |
| return nullptr; |
| case LibFunc_expf: case LibFunc_exp: case LibFunc_expl: |
| ExpName = TLI->getName(LibFunc_exp); |
| ID = Intrinsic::exp; |
| LibFnFloat = LibFunc_expf; |
| LibFnDouble = LibFunc_exp; |
| LibFnLongDouble = LibFunc_expl; |
| break; |
| case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: |
| ExpName = TLI->getName(LibFunc_exp2); |
| ID = Intrinsic::exp2; |
| LibFnFloat = LibFunc_exp2f; |
| LibFnDouble = LibFunc_exp2; |
| LibFnLongDouble = LibFunc_exp2l; |
| break; |
| } |
| |
| // Create new exp{,2}() with the product as its argument. |
| Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); |
| ExpFn = BaseFn->doesNotAccessMemory() |
| ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), |
| FMul, ExpName) |
| : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, |
| LibFnLongDouble, B, |
| BaseFn->getAttributes()); |
| |
| // Since the new exp{,2}() is different from the original one, dead code |
| // elimination cannot be trusted to remove it, since it may have side |
| // effects (e.g., errno). When the only consumer for the original |
| // exp{,2}() is pow(), then it has to be explicitly erased. |
| BaseFn->replaceAllUsesWith(ExpFn); |
| eraseFromParent(BaseFn); |
| |
| return ExpFn; |
| } |
| } |
| |
| // Evaluate special cases related to a constant base. |
| |
| const APFloat *BaseF; |
| if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) |
| return nullptr; |
| |
| // pow(2.0 ** n, x) -> exp2(n * x) |
| if (hasUnaryFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { |
| APFloat BaseR = APFloat(1.0); |
| BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); |
| BaseR = BaseR / *BaseF; |
| bool IsInteger = BaseF->isInteger(), |
| IsReciprocal = BaseR.isInteger(); |
| const APFloat *NF = IsReciprocal ? &BaseR : BaseF; |
| APSInt NI(64, false); |
| if ((IsInteger || IsReciprocal) && |
| !NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) && |
| NI > 1 && NI.isPowerOf2()) { |
| double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); |
| Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); |
| if (Pow->doesNotAccessMemory()) |
| return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), |
| FMul, "exp2"); |
| else |
| return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, |
| LibFunc_exp2l, B, Attrs); |
| } |
| } |
| |
| // pow(10.0, x) -> exp10(x) |
| // TODO: There is no exp10() intrinsic yet, but some day there shall be one. |
| if (match(Base, m_SpecificFP(10.0)) && |
| hasUnaryFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) |
| return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, |
| LibFunc_exp10l, B, Attrs); |
| |
| return nullptr; |
| } |
| |
| static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, |
| Module *M, IRBuilder<> &B, |
| const TargetLibraryInfo *TLI) { |
| // If errno is never set, then use the intrinsic for sqrt(). |
| if (NoErrno) { |
| Function *SqrtFn = |
| Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); |
| return B.CreateCall(SqrtFn, V, "sqrt"); |
| } |
| |
| // Otherwise, use the libcall for sqrt(). |
| if (hasUnaryFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, |
| LibFunc_sqrtl)) |
| // TODO: We also should check that the target can in fact lower the sqrt() |
| // libcall. We currently have no way to ask this question, so we ask if |
| // the target has a sqrt() libcall, which is not exactly the same. |
| return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, |
| LibFunc_sqrtl, B, Attrs); |
| |
| return nullptr; |
| } |
| |
| /// Use square root in place of pow(x, +/-0.5). |
| Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) { |
| Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); |
| AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); |
| Module *Mod = Pow->getModule(); |
| Type *Ty = Pow->getType(); |
| |
| const APFloat *ExpoF; |
| if (!match(Expo, m_APFloat(ExpoF)) || |
| (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) |
| return nullptr; |
| |
| Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); |
| if (!Sqrt) |
| return nullptr; |
| |
| // Handle signed zero base by expanding to fabs(sqrt(x)). |
| if (!Pow->hasNoSignedZeros()) { |
| Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); |
| Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); |
| } |
| |
| // Handle non finite base by expanding to |
| // (x == -infinity ? +infinity : sqrt(x)). |
| if (!Pow->hasNoInfs()) { |
| Value *PosInf = ConstantFP::getInfinity(Ty), |
| *NegInf = ConstantFP::getInfinity(Ty, true); |
| Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); |
| Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); |
| } |
| |
| // If the exponent is negative, then get the reciprocal. |
| if (ExpoF->isNegative()) |
| Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); |
| |
| return Sqrt; |
| } |
| |
| Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) { |
| Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); |
| Function *Callee = Pow->getCalledFunction(); |
| StringRef Name = Callee->getName(); |
| Type *Ty = Pow->getType(); |
| Value *Shrunk = nullptr; |
| bool Ignored; |
| |
| // Bail out if simplifying libcalls to pow() is disabled. |
| if (!hasUnaryFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl)) |
| return nullptr; |
| |
| // Propagate the math semantics from the call to any created instructions. |
| IRBuilder<>::FastMathFlagGuard Guard(B); |
| B.setFastMathFlags(Pow->getFastMathFlags()); |
| |
| // Shrink pow() to powf() if the arguments are single precision, |
| // unless the result is expected to be double precision. |
| if (UnsafeFPShrink && |
| Name == TLI->getName(LibFunc_pow) && hasFloatVersion(Name)) |
| Shrunk = optimizeBinaryDoubleFP(Pow, B, true); |
| |
| // Evaluate special cases related to the base. |
| |
| // pow(1.0, x) -> 1.0 |
| if (match(Base, m_FPOne())) |
| return Base; |
| |
| if (Value *Exp = replacePowWithExp(Pow, B)) |
| return Exp; |
| |
| // Evaluate special cases related to the exponent. |
| |
| // pow(x, -1.0) -> 1.0 / x |
| if (match(Expo, m_SpecificFP(-1.0))) |
| return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); |
| |
| // pow(x, 0.0) -> 1.0 |
| if (match(Expo, m_SpecificFP(0.0))) |
| return ConstantFP::get(Ty, 1.0); |
| |
| // pow(x, 1.0) -> x |
| if (match(Expo, m_FPOne())) |
| return Base; |
| |
| // pow(x, 2.0) -> x * x |
| if (match(Expo, m_SpecificFP(2.0))) |
| return B.CreateFMul(Base, Base, "square"); |
| |
| if (Value *Sqrt = replacePowWithSqrt(Pow, B)) |
| return Sqrt; |
| |
| // pow(x, n) -> x * x * x * ... |
| const APFloat *ExpoF; |
| if (Pow->isFast() && match(Expo, m_APFloat(ExpoF))) { |
| // We limit to a max of 7 multiplications, thus the maximum exponent is 32. |
| // If the exponent is an integer+0.5 we generate a call to sqrt and an |
| // additional fmul. |
| // TODO: This whole transformation should be backend specific (e.g. some |
| // backends might prefer libcalls or the limit for the exponent might |
| // be different) and it should also consider optimizing for size. |
| APFloat LimF(ExpoF->getSemantics(), 33.0), |
| ExpoA(abs(*ExpoF)); |
| if (ExpoA.compare(LimF) == APFloat::cmpLessThan) { |
| // This transformation applies to integer or integer+0.5 exponents only. |
| // For integer+0.5, we create a sqrt(Base) call. |
| Value *Sqrt = nullptr; |
| if (!ExpoA.isInteger()) { |
| APFloat Expo2 = ExpoA; |
| // To check if ExpoA is an integer + 0.5, we add it to itself. If there |
| // is no floating point exception and the result is an integer, then |
| // ExpoA == integer + 0.5 |
| if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) |
| return nullptr; |
| |
| if (!Expo2.isInteger()) |
| return nullptr; |
| |
| Sqrt = |
| getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), |
| Pow->doesNotAccessMemory(), Pow->getModule(), B, TLI); |
| } |
| |
| // We will memoize intermediate products of the Addition Chain. |
| Value *InnerChain[33] = {nullptr}; |
| InnerChain[1] = Base; |
| InnerChain[2] = B.CreateFMul(Base, Base, "square"); |
| |
| // We cannot readily convert a non-double type (like float) to a double. |
| // So we first convert it to something which could be converted to double. |
| ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); |
| Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); |
| |
| // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). |
| if (Sqrt) |
| FMul = B.CreateFMul(FMul, Sqrt); |
| |
| // If the exponent is negative, then get the reciprocal. |
| if (ExpoF->isNegative()) |
| FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); |
| |
| return FMul; |
| } |
| } |
| |
| return Shrunk; |
| } |
| |
| Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { |
| Function *Callee = CI->getCalledFunction(); |
| Value *Ret = nullptr; |
| StringRef Name = Callee->getName(); |
| if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) |
| Ret = optimizeUnaryDoubleFP(CI, B, true); |
| |
| Value *Op = CI->getArgOperand(0); |
| // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32 |
| // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32 |
| LibFunc LdExp = LibFunc_ldexpl; |
| if (Op->getType()->isFloatTy()) |
| LdExp = LibFunc_ldexpf; |
| else if (Op->getType()->isDoubleTy()) |
| LdExp = LibFunc_ldexp; |
| |
| if (TLI->has(LdExp)) { |
| Value *LdExpArg = nullptr; |
| if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { |
| if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) |
| LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); |
| } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { |
| if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) |
| LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); |
| } |
| |
| if (LdExpArg) { |
| Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); |
| if (!Op->getType()->isFloatTy()) |
| One = ConstantExpr::getFPExtend(One, Op->getType()); |
| |
| Module *M = CI->getModule(); |
| FunctionCallee NewCallee = M->getOrInsertFunction( |
| TLI->getName(LdExp), Op->getType(), Op->getType(), B.getInt32Ty()); |
| CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); |
| if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) |
| CI->setCallingConv(F->getCallingConv()); |
| |
| return CI; |
| } |
| } |
| return Ret; |
| } |
| |
| Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { |
| Function *Callee = CI->getCalledFunction(); |
| // If we can shrink the call to a float function rather than a double |
| // function, do that first. |
| StringRef Name = Callee->getName(); |
| if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) |
| if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) |
| return Ret; |
| |
| IRBuilder<>::FastMathFlagGuard Guard(B); |
| FastMathFlags FMF; |
| if (CI->isFast()) { |
| // If the call is 'fast', then anything we create here will also be 'fast'. |
| FMF.setFast(); |
| } else { |
| // At a minimum, no-nans-fp-math must be true. |
| if (!CI->hasNoNaNs()) |
| return nullptr; |
| // No-signed-zeros is implied by the definitions of fmax/fmin themselves: |
| // "Ideally, fmax would be sensitive to the sign of zero, for example |
| // fmax(-0. 0, +0. 0) would return +0; however, implementation in software |
| // might be impractical." |
| FMF.setNoSignedZeros(); |
| FMF.setNoNaNs(); |
| } |
| B.setFastMathFlags(FMF); |
| |
| // We have a relaxed floating-point environment. We can ignore NaN-handling |
| // and transform to a compare and select. We do not have to consider errno or |
| // exceptions, because fmin/fmax do not have those. |
| Value *Op0 = CI->getArgOperand(0); |
| Value *Op1 = CI->getArgOperand(1); |
| Value *Cmp = Callee->getName().startswith("fmin") ? |
| B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); |
| return B.CreateSelect(Cmp, Op0, Op1); |
| } |
| |
| Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { |
| Function *Callee = CI->getCalledFunction(); |
| Value *Ret = nullptr; |
| StringRef Name = Callee->getName(); |
| if (UnsafeFPShrink && hasFloatVersion(Name)) |
| Ret = optimizeUnaryDoubleFP(CI, B, true); |
| |
| if (!CI->isFast()) |
| return Ret; |
| Value *Op1 = CI->getArgOperand(0); |
| auto *OpC = dyn_cast<CallInst>(Op1); |
| |
| // The earlier call must also be 'fast' in order to do these transforms. |
| if (!OpC || !OpC->isFast()) |
| return Ret; |
| |
| // log(pow(x,y)) -> y*log(x) |
| // This is only applicable to log, log2, log10. |
| if (Name != "log" && Name != "log2" && Name != "log10") |
| return Ret; |
| |
| IRBuilder<>::FastMathFlagGuard Guard(B); |
| FastMathFlags FMF; |
| FMF.setFast(); |
| B.setFastMathFlags(FMF); |
| |
| LibFunc Func; |
| Function *F = OpC->getCalledFunction(); |
| if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && |
| Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow)) |
| return B.CreateFMul(OpC->getArgOperand(1), |
| emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, |
| Callee->getAttributes()), "mul"); |
| |
| // log(exp2(y)) -> y*log(2) |
| if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && |
| TLI->has(Func) && Func == LibFunc_exp2) |
| return B.CreateFMul( |
| OpC->getArgOperand(0), |
| emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), |
| Callee->getName(), B, Callee->getAttributes()), |
| "logmul"); |
| return Ret; |
| } |
| |
| Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { |
| Function *Callee = CI->getCalledFunction(); |
| Value *Ret = nullptr; |
| // TODO: Once we have a way (other than checking for the existince of the |
| // libcall) to tell whether our target can lower @llvm.sqrt, relax the |
| // condition below. |
| if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || |
| Callee->getIntrinsicID() == Intrinsic::sqrt)) |
| Ret = optimizeUnaryDoubleFP(CI, B, true); |
| |
| if (!CI->isFast()) |
| return Ret; |
| |
| Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); |
| if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) |
| return Ret; |
| |
| // We're looking for a repeated factor in a multiplication tree, |
| // so we can do this fold: sqrt(x * x) -> fabs(x); |
| // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). |
| Value *Op0 = I->getOperand(0); |
| Value *Op1 = I->getOperand(1); |
| Value *RepeatOp = nullptr; |
| Value *OtherOp = nullptr; |
| if (Op0 == Op1) { |
| // Simple match: the operands of the multiply are identical. |
| RepeatOp = Op0; |
| } else { |
| // Look for a more complicated pattern: one of the operands is itself |
| // a multiply, so search for a common factor in that multiply. |
| // Note: We don't bother looking any deeper than this first level or for |
| // variations of this pattern because instcombine's visitFMUL and/or the |
| // reassociation pass should give us this form. |
| Value *OtherMul0, *OtherMul1; |
| if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { |
| // Pattern: sqrt((x * y) * z) |
| if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { |
| // Matched: sqrt((x * x) * z) |
| RepeatOp = OtherMul0; |
| OtherOp = Op1; |
| } |
| } |
| } |
| if (!RepeatOp) |
| return Ret; |
| |
| // Fast math flags for any created instructions should match the sqrt |
| // and multiply. |
| IRBuilder<>::FastMathFlagGuard Guard(B); |
| B.setFastMathFlags(I->getFastMathFlags()); |
| |
| // If we found a repeated factor, hoist it out of the square root and |
| // replace it with the fabs of that factor. |
| Module *M = Callee->getParent(); |
| Type *ArgType = I->getType(); |
| Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); |
| Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); |
| if (OtherOp) { |
| // If we found a non-repeated factor, we still need to get its square |
| // root. We then multiply that by the value that was simplified out |
| // of the square root calculation. |
| Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); |
| Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); |
| return B.CreateFMul(FabsCall, SqrtCall); |
| } |
| return FabsCall; |
| } |
| |
| // TODO: Generalize to handle any trig function and its inverse. |
| Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { |
| Function *Callee = CI->getCalledFunction(); |
| Value *Ret = nullptr; |
| StringRef Name = Callee->getName(); |
| if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) |
| Ret = optimizeUnaryDoubleFP(CI, B, true); |
| |
| Value *Op1 = CI->getArgOperand(0); |
| auto *OpC = dyn_cast<CallInst>(Op1); |
| if (!OpC) |
| return Ret; |
| |
| // Both calls must be 'fast' in order to remove them. |
| if (!CI->isFast() || !OpC->isFast()) |
| return Ret; |
| |
| // tan(atan(x)) -> x |
| // tanf(atanf(x)) -> x |
| // tanl(atanl(x)) -> x |
| LibFunc Func; |
| Function *F = OpC->getCalledFunction(); |
| if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && |
| ((Func == LibFunc_atan && Callee->getName() == "tan") || |
| (Func == LibFunc_atanf && Callee->getName() == "tanf") || |
| (Func == LibFunc_atanl && Callee->getName() == "tanl"))) |
| Ret = OpC->getArgOperand(0); |
| return Ret; |
| } |
| |
| static bool isTrigLibCall(CallInst *CI) { |
| // We can only hope to do anything useful if we can ignore things like errno |
| // and floating-point exceptions. |
| // We already checked the prototype. |
| return CI->hasFnAttr(Attribute::NoUnwind) && |
| CI->hasFnAttr(Attribute::ReadNone); |
| } |
| |
| static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, |
| bool UseFloat, Value *&Sin, Value *&Cos, |
| Value *&SinCos) { |
| Type *ArgTy = Arg->getType(); |
| Type *ResTy; |
| StringRef Name; |
| |
| Triple T(OrigCallee->getParent()->getTargetTriple()); |
| if (UseFloat) { |
| Name = "__sincospif_stret"; |
| |
| assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); |
| // x86_64 can't use {float, float} since that would be returned in both |
| // xmm0 and xmm1, which isn't what a real struct would do. |
| ResTy = T.getArch() == Triple::x86_64 |
| ? static_cast<Type *>(VectorType::get(ArgTy, 2)) |
| : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); |
| } else { |
| Name = "__sincospi_stret"; |
| ResTy = StructType::get(ArgTy, ArgTy); |
| } |
| |
| Module *M = OrigCallee->getParent(); |
| FunctionCallee Callee = |
| M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); |
| |
| if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { |
| // If the argument is an instruction, it must dominate all uses so put our |
| // sincos call there. |
| B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); |
| } else { |
| // Otherwise (e.g. for a constant) the beginning of the function is as |
| // good a place as any. |
| BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); |
| B.SetInsertPoint(&EntryBB, EntryBB.begin()); |
| } |
| |
| SinCos = B.CreateCall(Callee, Arg, "sincospi"); |
| |
| if (SinCos->getType()->isStructTy()) { |
| Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); |
| Cos = B.CreateExtractValue(SinCos, 1, "cospi"); |
| } else { |
| Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), |
| "sinpi"); |
| Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), |
| "cospi"); |
| } |
| } |
| |
| Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { |
| // Make sure the prototype is as expected, otherwise the rest of the |
| // function is probably invalid and likely to abort. |
| if (!isTrigLibCall(CI)) |
| return nullptr; |
| |
| Value *Arg = CI->getArgOperand(0); |
| SmallVector<CallInst *, 1> SinCalls; |
| SmallVector<CallInst *, 1> CosCalls; |
| SmallVector<CallInst *, 1> SinCosCalls; |
| |
| bool IsFloat = Arg->getType()->isFloatTy(); |
| |
| // Look for all compatible sinpi, cospi and sincospi calls with the same |
| // argument. If there are enough (in some sense) we can make the |
| // substitution. |
| Function *F = CI->getFunction(); |
| for (User *U : Arg->users()) |
| classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); |
| |
| // It's only worthwhile if both sinpi and cospi are actually used. |
| if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) |
| return nullptr; |
| |
| Value *Sin, *Cos, *SinCos; |
| insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); |
| |
| auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, |
| Value *Res) { |
| for (CallInst *C : Calls) |
| replaceAllUsesWith(C, Res); |
| }; |
| |
| replaceTrigInsts(SinCalls, Sin); |
| replaceTrigInsts(CosCalls, Cos); |
| replaceTrigInsts(SinCosCalls, SinCos); |
| |
| return nullptr; |
| } |
| |
| void LibCallSimplifier::classifyArgUse( |
| Value *Val, Function *F, bool IsFloat, |
| SmallVectorImpl<CallInst *> &SinCalls, |
| SmallVectorImpl<CallInst *> &CosCalls, |
| SmallVectorImpl<CallInst *> &SinCosCalls) { |
| CallInst *CI = dyn_cast<CallInst>(Val); |
| |
| if (!CI) |
| return; |
| |
| // Don't consider calls in other functions. |
| if (CI->getFunction() != F) |
| return; |
| |
| Function *Callee = CI->getCalledFunction(); |
| LibFunc Func; |
| if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || |
| !isTrigLibCall(CI)) |
| return; |
| |
| if (IsFloat) { |
| if (Func == LibFunc_sinpif) |
| SinCalls.push_back(CI); |
| else if (Func == LibFunc_cospif) |
| CosCalls.push_back(CI); |
| else if (Func == LibFunc_sincospif_stret) |
| SinCosCalls.push_back(CI); |
| } else { |
| if (Func == LibFunc_sinpi) |
| SinCalls.push_back(CI); |
| else if (Func == LibFunc_cospi) |
| CosCalls.push_back(CI); |
| else if (Func == LibFunc_sincospi_stret) |
| SinCosCalls.push_back(CI); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Integer Library Call Optimizations |
| //===----------------------------------------------------------------------===// |
| |
| Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { |
| // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 |
| Value *Op = CI->getArgOperand(0); |
| Type *ArgType = Op->getType(); |
| Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), |
| Intrinsic::cttz, ArgType); |
| Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); |
| V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); |
| V = B.CreateIntCast(V, B.getInt32Ty(), false); |
| |
| Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); |
| return B.CreateSelect(Cond, V, B.getInt32(0)); |
| } |
| |
| Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) { |
| // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) |
| Value *Op = CI->getArgOperand(0); |
| Type *ArgType = Op->getType(); |
| Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), |
| Intrinsic::ctlz, ArgType); |
| Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); |
| V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), |
| V); |
| return B.CreateIntCast(V, CI->getType(), false); |
| } |
| |
| Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { |
| // abs(x) -> x <s 0 ? -x : x |
| // The negation has 'nsw' because abs of INT_MIN is undefined. |
| Value *X = CI->getArgOperand(0); |
| Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); |
| Value *NegX = B.CreateNSWNeg(X, "neg"); |
| return B.CreateSelect(IsNeg, NegX, X); |
| } |
| |
| Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { |
| // isdigit(c) -> (c-'0') <u 10 |
| Value *Op = CI->getArgOperand(0); |
| Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); |
| Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); |
| return B.CreateZExt(Op, CI->getType()); |
| } |
| |
| Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { |
| // isascii(c) -> c <u 128 |
| Value *Op = CI->getArgOperand(0); |
| Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); |
| return B.CreateZExt(Op, CI->getType()); |
| } |
| |
| Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { |
| // toascii(c) -> c & 0x7f |
| return B.CreateAnd(CI->getArgOperand(0), |
| ConstantInt::get(CI->getType(), 0x7F)); |
| } |
| |
| Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) { |
| StringRef Str; |
| if (!getConstantStringInfo(CI->getArgOperand(0), Str)) |
| return nullptr; |
| |
| return convertStrToNumber(CI, Str, 10); |
| } |
| |
| Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) { |
| StringRef Str; |
| if (!getConstantStringInfo(CI->getArgOperand(0), Str)) |
| return nullptr; |
| |
| if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) |
| return nullptr; |
| |
| if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { |
| return convertStrToNumber(CI, Str, CInt->getSExtValue()); |
| } |
| |
| return nullptr; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Formatting and IO Library Call Optimizations |
| //===----------------------------------------------------------------------===// |
| |
| static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); |
| |
| Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, |
| int StreamArg) { |
| Function *Callee = CI->getCalledFunction(); |
| // Error reporting calls should be cold, mark them as such. |
| // This applies even to non-builtin calls: it is only a hint and applies to |
| // functions that the frontend might not understand as builtins. |
| |
| // This heuristic was suggested in: |
| // Improving Static Branch Prediction in a Compiler |
| // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu |
| // Proceedings of PACT'98, Oct. 1998, IEEE |
| if (!CI->hasFnAttr(Attribute::Cold) && |
| isReportingError(Callee, CI, StreamArg)) { |
| CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); |
| } |
| |
| return nullptr; |
| } |
| |
| static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { |
| if (!Callee || !Callee->isDeclaration()) |
| return false; |
| |
| if (StreamArg < 0) |
| return true; |
| |
| // These functions might be considered cold, but only if their stream |
| // argument is stderr. |
| |
| if (StreamArg >= (int)CI->getNumArgOperands()) |
| return false; |
| LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); |
| if (!LI) |
| return false; |
| GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); |
| if (!GV || !GV->isDeclaration()) |
| return false; |
| return GV->getName() == "stderr"; |
| } |
| |
| Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { |
| // Check for a fixed format string. |
| StringRef FormatStr; |
| if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) |
| return nullptr; |
| |
| // Empty format string -> noop. |
| if (FormatStr.empty()) // Tolerate printf's declared void. |
| return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); |
| |
| // Do not do any of the following transformations if the printf return value |
| // is used, in general the printf return value is not compatible with either |
| // putchar() or puts(). |
| if (!CI->use_empty()) |
| return nullptr; |
| |
| // printf("x") -> putchar('x'), even for "%" and "%%". |
| if (FormatStr.size() == 1 || FormatStr == "%%") |
| return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); |
| |
| // printf("%s", "a") --> putchar('a') |
| if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { |
| StringRef ChrStr; |
| if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) |
| return nullptr; |
| if (ChrStr.size() != 1) |
| return nullptr; |
| return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); |
| } |
| |
| // printf("foo\n") --> puts("foo") |
| if (FormatStr[FormatStr.size() - 1] == '\n' && |
| FormatStr.find('%') == StringRef::npos) { // No format characters. |
| // Create a string literal with no \n on it. We expect the constant merge |
| // pass to be run after this pass, to merge duplicate strings. |
| FormatStr = FormatStr.drop_back(); |
| Value *GV = B.CreateGlobalString(FormatStr, "str"); |
| return emitPutS(GV, B, TLI); |
| } |
| |
| // Optimize specific format strings. |
| // printf("%c", chr) --> putchar(chr) |
| if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && |
| CI->getArgOperand(1)->getType()->isIntegerTy()) |
| return emitPutChar(CI->getArgOperand(1), B, TLI); |
| |
| // printf("%s\n", str) --> puts(str) |
| if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && |
| CI->getArgOperand(1)->getType()->isPointerTy()) |
| return emitPutS(CI->getArgOperand(1), B, TLI); |
| return nullptr; |
| } |
| |
| Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { |
| |
| Function *Callee = CI->getCalledFunction(); |
| FunctionType *FT = Callee->getFunctionType(); |
| if (Value *V = optimizePrintFString(CI, B)) { |
| return V; |
| } |
| |
| // printf(format, ...) -> iprintf(format, ...) if no floating point |
| // arguments. |
| if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { |
| Module *M = B.GetInsertBlock()->getParent()->getParent(); |
| FunctionCallee IPrintFFn = |
| M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); |
| CallInst *New = cast<CallInst>(CI->clone()); |
| New->setCalledFunction(IPrintFFn); |
| B.Insert(New); |
| return New; |
| } |
| return nullptr; |
| } |
| |
| Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { |
| // Check for a fixed format string. |
| StringRef FormatStr; |
| if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) |
| return nullptr; |
| |
| // If we just have a format string (nothing else crazy) transform it. |
| if (CI->getNumArgOperands() == 2) { |
| // Make sure there's no % in the constant array. We could try to handle |
| // %% -> % in the future if we cared. |
| if (FormatStr.find('%') != StringRef::npos) |
| return nullptr; // we found a format specifier, bail out. |
| |
| // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) |
| B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, |
| ConstantInt::get(DL.getIntPtrType(CI->getContext()), |
| FormatStr.size() + 1)); // Copy the null byte. |
| return ConstantInt::get(CI->getType(), FormatStr.size()); |
| } |
| |
| // The remaining optimizations require the format string to be "%s" or "%c" |
| // and have an extra operand. |
| if (FormatStr.size() != 2 || FormatStr[0] != '%' || |
| CI->getNumArgOperands() < 3) |
| return nullptr; |
| |
| // Decode the second character of the format string. |
| if (FormatStr[1] == 'c') { |
| // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 |
| if (!CI->getArgOperand(2)->getType()->isIntegerTy()) |
| return nullptr; |
| Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); |
| Value *Ptr = castToCStr(CI->getArgOperand(0), B); |
| B.CreateStore(V, Ptr); |
| Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); |
| B.CreateStore(B.getInt8(0), Ptr); |
| |
| return ConstantInt::get(CI->getType(), 1); |
| } |
| |
| if (FormatStr[1] == 's') { |
| // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1) |
| if (!CI->getArgOperand(2)->getType()->isPointerTy()) |
| return nullptr; |
| |
| Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); |
| if (!Len) |
| return nullptr; |
| Value *IncLen = |
| B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); |
| B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen); |
| |
| // The sprintf result is the unincremented number of bytes in the string. |
| return B.CreateIntCast(Len, CI->getType(), false); |
| } |
| return nullptr; |
| } |
| |
| Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { |
| Function *Callee = CI->getCalledFunction(); |
| FunctionType *FT = Callee->getFunctionType(); |
| if (Value *V = optimizeSPrintFString(CI, B)) { |
| return V; |
| } |
| |
| // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating |
| // point arguments. |
| if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { |
| Module *M = B.GetInsertBlock()->getParent()->getParent(); |
| FunctionCallee SIPrintFFn = |
| M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); |
| CallInst *New = cast<CallInst>(CI->clone()); |
| New->setCalledFunction(SIPrintFFn); |
| B.Insert(New); |
| return New; |
| } |
| return nullptr; |
| } |
| |
| Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) { |
| // Check for a fixed format string. |
| StringRef FormatStr; |
| if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) |
| return nullptr; |
| |
| // Check for size |
| ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); |
| if (!Size) |
| return nullptr; |
| |
| uint64_t N = Size->getZExtValue(); |
| |
| // If we just have a format string (nothing else crazy) transform it. |
| if (CI->getNumArgOperands() == 3) { |
| // Make sure there's no % in the constant array. We could try to handle |
| // %% -> % in the future if we cared. |
| if (FormatStr.find('%') != StringRef::npos) |
| return nullptr; // we found a format specifier, bail out. |
| |
| if (N == 0) |
| return ConstantInt::get(CI->getType(), FormatStr.size()); |
| else if (N < FormatStr.size() + 1) |
| return nullptr; |
| |
| // sprintf(str, size, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, |
| // strlen(fmt)+1) |
| B.CreateMemCpy( |
| CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, |
| ConstantInt::get(DL.getIntPtrType(CI->getContext()), |
| FormatStr.size() + 1)); // Copy the null byte. |
| return ConstantInt::get(CI->getType(), FormatStr.size()); |
| } |
| |
| // The remaining optimizations require the format string to be "%s" or "%c" |
| // and have an extra operand. |
| if (FormatStr.size() == 2 && FormatStr[0] == '%' && |
| CI->getNumArgOperands() == 4) { |
| |
| // Decode the second character of the format string. |
| if (FormatStr[1] == 'c') { |
| if (N == 0) |
| return ConstantInt::get(CI->getType(), 1); |
| else if (N == 1) |
| return nullptr; |
| |
| // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 |
| if (!CI->getArgOperand(3)->getType()->isIntegerTy()) |
| return nullptr; |
| Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); |
| Value *Ptr = castToCStr(CI->getArgOperand(0), B); |
| B.CreateStore(V, Ptr); |
| Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); |
| B.CreateStore(B.getInt8(0), Ptr); |
| |
| return ConstantInt::get(CI->getType(), 1); |
| } |
| |
| if (FormatStr[1] == 's') { |
| // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) |
| StringRef Str; |
| if (!getConstantStringInfo(CI->getArgOperand(3), Str)) |
| return nullptr; |
| |
| if (N == 0) |
| return ConstantInt::get(CI->getType(), Str.size()); |
| else if (N < Str.size() + 1) |
| return nullptr; |
| |
| B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1, |
| ConstantInt::get(CI->getType(), Str.size() + 1)); |
| |
| // The snprintf result is the unincremented number of bytes in the string. |
| return ConstantInt::get(CI->getType(), Str.size()); |
| } |
| } |
| return nullptr; |
| } |
| |
| Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) { |
| if (Value *V = optimizeSnPrintFString(CI, B)) { |
| return V; |
| } |
| |
| return nullptr; |
| } |
| |
| Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { |
| optimizeErrorReporting(CI, B, 0); |
| |
| // All the optimizations depend on the format string. |
| StringRef FormatStr; |
| if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) |
| return nullptr; |
| |
| // Do not do any of the following transformations if the fprintf return |
| // value is used, in general the fprintf return value is not compatible |
| // with fwrite(), fputc() or fputs(). |
| if (!CI->use_empty()) |
| return nullptr; |
| |
| // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) |
| if (CI->getNumArgOperands() == 2) { |
| // Could handle %% -> % if we cared. |
| if (FormatStr.find('%') != StringRef::npos) |
| return nullptr; // We found a format specifier. |
| |
| return emitFWrite( |
| CI->getArgOperand(1), |
| ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), |
| CI->getArgOperand(0), B, DL, TLI); |
| } |
| |
| // The remaining optimizations require the format string to be "%s" or "%c" |
| // and have an extra operand. |
| if (FormatStr.size() != 2 || FormatStr[0] != '%' || |
| CI->getNumArgOperands() < 3) |
| return nullptr; |
| |
| // Decode the second character of the format string. |
| if (FormatStr[1] == 'c') { |
| // fprintf(F, "%c", chr) --> fputc(chr, F) |
| if (!CI->getArgOperand(2)->getType()->isIntegerTy()) |
| return nullptr; |
| return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); |
| } |
| |
| if (FormatStr[1] == 's') { |
| // fprintf(F, "%s", str) --> fputs(str, F) |
| if (!CI->getArgOperand(2)->getType()->isPointerTy()) |
| return nullptr; |
| return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); |
| } |
| return nullptr; |
| } |
| |
| Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { |
| Function *Callee = CI->getCalledFunction(); |
| FunctionType *FT = Callee->getFunctionType(); |
| if (Value *V = optimizeFPrintFString(CI, B)) { |
| return V; |
| } |
| |
| // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no |
| // floating point arguments. |
| if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { |
| Module *M = B.GetInsertBlock()->getParent()->getParent(); |
| FunctionCallee FIPrintFFn = |
| M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); |
| CallInst *New = cast<CallInst>(CI->clone()); |
| New->setCalledFunction(FIPrintFFn); |
| B.Insert(New); |
| return New; |
| } |
| return nullptr; |
| } |
| |
| Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { |
| optimizeErrorReporting(CI, B, 3); |
| |
| // Get the element size and count. |
| ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); |
| ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); |
| if (SizeC && CountC) { |
| uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); |
| |
| // If this is writing zero records, remove the call (it's a noop). |
| if (Bytes == 0) |
| return ConstantInt::get(CI->getType(), 0); |
| |
| // If this is writing one byte, turn it into fputc. |
| // This optimisation is only valid, if the return value is unused. |
| if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) |
| Value *Char = B.CreateLoad(B.getInt8Ty(), |
| castToCStr(CI->getArgOperand(0), B), "char"); |
| Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); |
| return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; |
| } |
| } |
| |
| if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) |
| return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), |
| CI->getArgOperand(2), CI->getArgOperand(3), B, DL, |
| TLI); |
| |
| return nullptr; |
| } |
| |
| Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { |
| optimizeErrorReporting(CI, B, 1); |
| |
| // Don't rewrite fputs to fwrite when optimising for size because fwrite |
| // requires more arguments and thus extra MOVs are required. |
| if (CI->getFunction()->optForSize()) |
| return nullptr; |
| |
| // Check if has any use |
| if (!CI->use_empty()) { |
| if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) |
| return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, |
| TLI); |
| else |
| // We can't optimize if return value is used. |
| return nullptr; |
| } |
| |
| // fputs(s,F) --> fwrite(s,1,strlen(s),F) |
| uint64_t Len = GetStringLength(CI->getArgOperand(0)); |
| if (!Len) |
| return nullptr; |
| |
| // Known to have no uses (see above). |
| return emitFWrite( |
| CI->getArgOperand(0), |
| ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), |
| CI->getArgOperand(1), B, DL, TLI); |
| } |
| |
| Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) { |
| optimizeErrorReporting(CI, B, 1); |
| |
| if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) |
| return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, |
| TLI); |
| |
| return nullptr; |
| } |
| |
| Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) { |
| if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI)) |
| return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI); |
| |
| return nullptr; |
| } |
| |
| Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) { |
| if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI)) |
| return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), |
| CI->getArgOperand(2), B, TLI); |
| |
| return nullptr; |
| } |
| |
| Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) { |
| if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) |
| return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), |
| CI->getArgOperand(2), CI->getArgOperand(3), B, DL, |
| TLI); |
| |
| return nullptr; |
| } |
| |
| Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { |
| // Check for a constant string. |
| StringRef Str; |
| if (!getConstantStringInfo(CI->getArgOperand(0), Str)) |
| return nullptr; |
| |
| if (Str.empty() && CI->use_empty()) { |
| // puts("") -> putchar('\n') |
| Value *Res = emitPutChar(B.getInt32('\n'), B, TLI); |
| if (CI->use_empty() || !Res) |
| return Res; |
| return B.CreateIntCast(Res, CI->getType(), true); |
| } |
| |
| return nullptr; |
| } |
| |
| bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { |
| LibFunc Func; |
| SmallString<20> FloatFuncName = FuncName; |
| FloatFuncName += 'f'; |
| if (TLI->getLibFunc(FloatFuncName, Func)) |
| return TLI->has(Func); |
| return false; |
| } |
| |
| Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, |
| IRBuilder<> &Builder) { |
| LibFunc Func; |
| Function *Callee = CI->getCalledFunction(); |
| // Check for string/memory library functions. |
| if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { |
| // Make sure we never change the calling convention. |
| assert((ignoreCallingConv(Func) || |
| isCallingConvCCompatible(CI)) && |
| "Optimizing string/memory libcall would change the calling convention"); |
| switch (Func) { |
| case LibFunc_strcat: |
| return optimizeStrCat(CI, Builder); |
| case LibFunc_strncat: |
| return optimizeStrNCat(CI, Builder); |
| case LibFunc_strchr: |
| return optimizeStrChr(CI, Builder); |
| case LibFunc_strrchr: |
| return optimizeStrRChr(CI, Builder); |
| case LibFunc_strcmp: |
| return optimizeStrCmp(CI, Builder); |
| case LibFunc_strncmp: |
| return optimizeStrNCmp(CI, Builder); |
| case LibFunc_strcpy: |
| return optimizeStrCpy(CI, Builder); |
| case LibFunc_stpcpy: |
| return optimizeStpCpy(CI, Builder); |
| case LibFunc_strncpy: |
| return optimizeStrNCpy(CI, Builder); |
| case LibFunc_strlen: |
| return optimizeStrLen(CI, Builder); |
| case LibFunc_strpbrk: |
| return optimizeStrPBrk(CI, Builder); |
| case LibFunc_strtol: |
| case LibFunc_strtod: |
| case LibFunc_strtof: |
| case LibFunc_strtoul: |
| case LibFunc_strtoll: |
| case LibFunc_strtold: |
| case LibFunc_strtoull: |
| return optimizeStrTo(CI, Builder); |
| case LibFunc_strspn: |
| return optimizeStrSpn(CI, Builder); |
| case LibFunc_strcspn: |
| return optimizeStrCSpn(CI, Builder); |
| case LibFunc_strstr: |
| return optimizeStrStr(CI, Builder); |
| case LibFunc_memchr: |
| return optimizeMemChr(CI, Builder); |
| case LibFunc_memcmp: |
| return optimizeMemCmp(CI, Builder); |
| case LibFunc_memcpy: |
| return optimizeMemCpy(CI, Builder); |
| case LibFunc_memmove: |
| return optimizeMemMove(CI, Builder); |
| case LibFunc_memset: |
| return optimizeMemSet(CI, Builder); |
| case LibFunc_realloc: |
| return optimizeRealloc(CI, Builder); |
| case LibFunc_wcslen: |
| return optimizeWcslen(CI, Builder); |
| default: |
| break; |
| } |
| } |
| return nullptr; |
| } |
| |
| Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, |
| LibFunc Func, |
| IRBuilder<> &Builder) { |
| // Don't optimize calls that require strict floating point semantics. |
| if (CI->isStrictFP()) |
| return nullptr; |
| |
| if (Value *V = optimizeTrigReflections(CI, Func, Builder)) |
| return V; |
| |
| switch (Func) { |
| case LibFunc_sinpif: |
| case LibFunc_sinpi: |
| case LibFunc_cospif: |
| case LibFunc_cospi: |
| return optimizeSinCosPi(CI, Builder); |
| case LibFunc_powf: |
| case LibFunc_pow: |
| case LibFunc_powl: |
| return optimizePow(CI, Builder); |
| case LibFunc_exp2l: |
| case LibFunc_exp2: |
| case LibFunc_exp2f: |
| return optimizeExp2(CI, Builder); |
| case LibFunc_fabsf: |
| case LibFunc_fabs: |
| case LibFunc_fabsl: |
| return replaceUnaryCall(CI, Builder, Intrinsic::fabs); |
| case LibFunc_sqrtf: |
| case LibFunc_sqrt: |
| case LibFunc_sqrtl: |
| return optimizeSqrt(CI, Builder); |
| case LibFunc_log: |
| case LibFunc_log10: |
| case LibFunc_log1p: |
| case LibFunc_log2: |
| case LibFunc_logb: |
| return optimizeLog(CI, Builder); |
| case LibFunc_tan: |
| case LibFunc_tanf: |
| case LibFunc_tanl: |
| return optimizeTan(CI, Builder); |
| case LibFunc_ceil: |
| return replaceUnaryCall(CI, Builder, Intrinsic::ceil); |
| case LibFunc_floor: |
| return replaceUnaryCall(CI, Builder, Intrinsic::floor); |
| case LibFunc_round: |
| return replaceUnaryCall(CI, Builder, Intrinsic::round); |
| case LibFunc_nearbyint: |
| return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); |
| case LibFunc_rint: |
| return replaceUnaryCall(CI, Builder, Intrinsic::rint); |
| case LibFunc_trunc: |
| return replaceUnaryCall(CI, Builder, Intrinsic::trunc); |
| case LibFunc_acos: |
| case LibFunc_acosh: |
| case LibFunc_asin: |
| case LibFunc_asinh: |
| case LibFunc_atan: |
| case LibFunc_atanh: |
| case |