| //===-- SimplifyIndVar.cpp - Induction variable simplification ------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements induction variable simplification. It does |
| // not define any actual pass or policy, but provides a single function to |
| // simplify a loop's induction variables based on ScalarEvolution. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/SimplifyIndVar.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "indvars" |
| |
| STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); |
| STATISTIC(NumElimOperand, "Number of IV operands folded into a use"); |
| STATISTIC(NumFoldedUser, "Number of IV users folded into a constant"); |
| STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); |
| STATISTIC( |
| NumSimplifiedSDiv, |
| "Number of IV signed division operations converted to unsigned division"); |
| STATISTIC( |
| NumSimplifiedSRem, |
| "Number of IV signed remainder operations converted to unsigned remainder"); |
| STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); |
| |
| namespace { |
| /// This is a utility for simplifying induction variables |
| /// based on ScalarEvolution. It is the primary instrument of the |
| /// IndvarSimplify pass, but it may also be directly invoked to cleanup after |
| /// other loop passes that preserve SCEV. |
| class SimplifyIndvar { |
| Loop *L; |
| LoopInfo *LI; |
| ScalarEvolution *SE; |
| DominatorTree *DT; |
| SCEVExpander &Rewriter; |
| SmallVectorImpl<WeakTrackingVH> &DeadInsts; |
| |
| bool Changed; |
| |
| public: |
| SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT, |
| LoopInfo *LI, SCEVExpander &Rewriter, |
| SmallVectorImpl<WeakTrackingVH> &Dead) |
| : L(Loop), LI(LI), SE(SE), DT(DT), Rewriter(Rewriter), DeadInsts(Dead), |
| Changed(false) { |
| assert(LI && "IV simplification requires LoopInfo"); |
| } |
| |
| bool hasChanged() const { return Changed; } |
| |
| /// Iteratively perform simplification on a worklist of users of the |
| /// specified induction variable. This is the top-level driver that applies |
| /// all simplifications to users of an IV. |
| void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr); |
| |
| Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand); |
| |
| bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand); |
| bool replaceIVUserWithLoopInvariant(Instruction *UseInst); |
| |
| bool eliminateOverflowIntrinsic(CallInst *CI); |
| bool eliminateTrunc(TruncInst *TI); |
| bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand); |
| bool makeIVComparisonInvariant(ICmpInst *ICmp, Value *IVOperand); |
| void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); |
| void simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand, |
| bool IsSigned); |
| void replaceRemWithNumerator(BinaryOperator *Rem); |
| void replaceRemWithNumeratorOrZero(BinaryOperator *Rem); |
| void replaceSRemWithURem(BinaryOperator *Rem); |
| bool eliminateSDiv(BinaryOperator *SDiv); |
| bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand); |
| bool strengthenRightShift(BinaryOperator *BO, Value *IVOperand); |
| }; |
| } |
| |
| /// Fold an IV operand into its use. This removes increments of an |
| /// aligned IV when used by a instruction that ignores the low bits. |
| /// |
| /// IVOperand is guaranteed SCEVable, but UseInst may not be. |
| /// |
| /// Return the operand of IVOperand for this induction variable if IVOperand can |
| /// be folded (in case more folding opportunities have been exposed). |
| /// Otherwise return null. |
| Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) { |
| Value *IVSrc = nullptr; |
| const unsigned OperIdx = 0; |
| const SCEV *FoldedExpr = nullptr; |
| bool MustDropExactFlag = false; |
| switch (UseInst->getOpcode()) { |
| default: |
| return nullptr; |
| case Instruction::UDiv: |
| case Instruction::LShr: |
| // We're only interested in the case where we know something about |
| // the numerator and have a constant denominator. |
| if (IVOperand != UseInst->getOperand(OperIdx) || |
| !isa<ConstantInt>(UseInst->getOperand(1))) |
| return nullptr; |
| |
| // Attempt to fold a binary operator with constant operand. |
| // e.g. ((I + 1) >> 2) => I >> 2 |
| if (!isa<BinaryOperator>(IVOperand) |
| || !isa<ConstantInt>(IVOperand->getOperand(1))) |
| return nullptr; |
| |
| IVSrc = IVOperand->getOperand(0); |
| // IVSrc must be the (SCEVable) IV, since the other operand is const. |
| assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand"); |
| |
| ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1)); |
| if (UseInst->getOpcode() == Instruction::LShr) { |
| // Get a constant for the divisor. See createSCEV. |
| uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth(); |
| if (D->getValue().uge(BitWidth)) |
| return nullptr; |
| |
| D = ConstantInt::get(UseInst->getContext(), |
| APInt::getOneBitSet(BitWidth, D->getZExtValue())); |
| } |
| FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D)); |
| // We might have 'exact' flag set at this point which will no longer be |
| // correct after we make the replacement. |
| if (UseInst->isExact() && |
| SE->getSCEV(IVSrc) != SE->getMulExpr(FoldedExpr, SE->getSCEV(D))) |
| MustDropExactFlag = true; |
| } |
| // We have something that might fold it's operand. Compare SCEVs. |
| if (!SE->isSCEVable(UseInst->getType())) |
| return nullptr; |
| |
| // Bypass the operand if SCEV can prove it has no effect. |
| if (SE->getSCEV(UseInst) != FoldedExpr) |
| return nullptr; |
| |
| LLVM_DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand |
| << " -> " << *UseInst << '\n'); |
| |
| UseInst->setOperand(OperIdx, IVSrc); |
| assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper"); |
| |
| if (MustDropExactFlag) |
| UseInst->dropPoisonGeneratingFlags(); |
| |
| ++NumElimOperand; |
| Changed = true; |
| if (IVOperand->use_empty()) |
| DeadInsts.emplace_back(IVOperand); |
| return IVSrc; |
| } |
| |
| bool SimplifyIndvar::makeIVComparisonInvariant(ICmpInst *ICmp, |
| Value *IVOperand) { |
| unsigned IVOperIdx = 0; |
| ICmpInst::Predicate Pred = ICmp->getPredicate(); |
| if (IVOperand != ICmp->getOperand(0)) { |
| // Swapped |
| assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); |
| IVOperIdx = 1; |
| Pred = ICmpInst::getSwappedPredicate(Pred); |
| } |
| |
| // Get the SCEVs for the ICmp operands (in the specific context of the |
| // current loop) |
| const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); |
| const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); |
| const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); |
| |
| ICmpInst::Predicate InvariantPredicate; |
| const SCEV *InvariantLHS, *InvariantRHS; |
| |
| auto *PN = dyn_cast<PHINode>(IVOperand); |
| if (!PN) |
| return false; |
| if (!SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate, |
| InvariantLHS, InvariantRHS)) |
| return false; |
| |
| // Rewrite the comparison to a loop invariant comparison if it can be done |
| // cheaply, where cheaply means "we don't need to emit any new |
| // instructions". |
| |
| SmallDenseMap<const SCEV*, Value*> CheapExpansions; |
| CheapExpansions[S] = ICmp->getOperand(IVOperIdx); |
| CheapExpansions[X] = ICmp->getOperand(1 - IVOperIdx); |
| |
| // TODO: Support multiple entry loops? (We currently bail out of these in |
| // the IndVarSimplify pass) |
| if (auto *BB = L->getLoopPredecessor()) { |
| const int Idx = PN->getBasicBlockIndex(BB); |
| if (Idx >= 0) { |
| Value *Incoming = PN->getIncomingValue(Idx); |
| const SCEV *IncomingS = SE->getSCEV(Incoming); |
| CheapExpansions[IncomingS] = Incoming; |
| } |
| } |
| Value *NewLHS = CheapExpansions[InvariantLHS]; |
| Value *NewRHS = CheapExpansions[InvariantRHS]; |
| |
| if (!NewLHS) |
| if (auto *ConstLHS = dyn_cast<SCEVConstant>(InvariantLHS)) |
| NewLHS = ConstLHS->getValue(); |
| if (!NewRHS) |
| if (auto *ConstRHS = dyn_cast<SCEVConstant>(InvariantRHS)) |
| NewRHS = ConstRHS->getValue(); |
| |
| if (!NewLHS || !NewRHS) |
| // We could not find an existing value to replace either LHS or RHS. |
| // Generating new instructions has subtler tradeoffs, so avoid doing that |
| // for now. |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n'); |
| ICmp->setPredicate(InvariantPredicate); |
| ICmp->setOperand(0, NewLHS); |
| ICmp->setOperand(1, NewRHS); |
| return true; |
| } |
| |
| /// SimplifyIVUsers helper for eliminating useless |
| /// comparisons against an induction variable. |
| void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { |
| unsigned IVOperIdx = 0; |
| ICmpInst::Predicate Pred = ICmp->getPredicate(); |
| ICmpInst::Predicate OriginalPred = Pred; |
| if (IVOperand != ICmp->getOperand(0)) { |
| // Swapped |
| assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); |
| IVOperIdx = 1; |
| Pred = ICmpInst::getSwappedPredicate(Pred); |
| } |
| |
| // Get the SCEVs for the ICmp operands (in the specific context of the |
| // current loop) |
| const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); |
| const SCEV *S = SE->getSCEVAtScope(ICmp->getOperand(IVOperIdx), ICmpLoop); |
| const SCEV *X = SE->getSCEVAtScope(ICmp->getOperand(1 - IVOperIdx), ICmpLoop); |
| |
| // If the condition is always true or always false, replace it with |
| // a constant value. |
| if (SE->isKnownPredicate(Pred, S, X)) { |
| ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); |
| DeadInsts.emplace_back(ICmp); |
| LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); |
| } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) { |
| ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); |
| DeadInsts.emplace_back(ICmp); |
| LLVM_DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); |
| } else if (makeIVComparisonInvariant(ICmp, IVOperand)) { |
| // fallthrough to end of function |
| } else if (ICmpInst::isSigned(OriginalPred) && |
| SE->isKnownNonNegative(S) && SE->isKnownNonNegative(X)) { |
| // If we were unable to make anything above, all we can is to canonicalize |
| // the comparison hoping that it will open the doors for other |
| // optimizations. If we find out that we compare two non-negative values, |
| // we turn the instruction's predicate to its unsigned version. Note that |
| // we cannot rely on Pred here unless we check if we have swapped it. |
| assert(ICmp->getPredicate() == OriginalPred && "Predicate changed?"); |
| LLVM_DEBUG(dbgs() << "INDVARS: Turn to unsigned comparison: " << *ICmp |
| << '\n'); |
| ICmp->setPredicate(ICmpInst::getUnsignedPredicate(OriginalPred)); |
| } else |
| return; |
| |
| ++NumElimCmp; |
| Changed = true; |
| } |
| |
| bool SimplifyIndvar::eliminateSDiv(BinaryOperator *SDiv) { |
| // Get the SCEVs for the ICmp operands. |
| auto *N = SE->getSCEV(SDiv->getOperand(0)); |
| auto *D = SE->getSCEV(SDiv->getOperand(1)); |
| |
| // Simplify unnecessary loops away. |
| const Loop *L = LI->getLoopFor(SDiv->getParent()); |
| N = SE->getSCEVAtScope(N, L); |
| D = SE->getSCEVAtScope(D, L); |
| |
| // Replace sdiv by udiv if both of the operands are non-negative |
| if (SE->isKnownNonNegative(N) && SE->isKnownNonNegative(D)) { |
| auto *UDiv = BinaryOperator::Create( |
| BinaryOperator::UDiv, SDiv->getOperand(0), SDiv->getOperand(1), |
| SDiv->getName() + ".udiv", SDiv); |
| UDiv->setIsExact(SDiv->isExact()); |
| SDiv->replaceAllUsesWith(UDiv); |
| LLVM_DEBUG(dbgs() << "INDVARS: Simplified sdiv: " << *SDiv << '\n'); |
| ++NumSimplifiedSDiv; |
| Changed = true; |
| DeadInsts.push_back(SDiv); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| // i %s n -> i %u n if i >= 0 and n >= 0 |
| void SimplifyIndvar::replaceSRemWithURem(BinaryOperator *Rem) { |
| auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); |
| auto *URem = BinaryOperator::Create(BinaryOperator::URem, N, D, |
| Rem->getName() + ".urem", Rem); |
| Rem->replaceAllUsesWith(URem); |
| LLVM_DEBUG(dbgs() << "INDVARS: Simplified srem: " << *Rem << '\n'); |
| ++NumSimplifiedSRem; |
| Changed = true; |
| DeadInsts.emplace_back(Rem); |
| } |
| |
| // i % n --> i if i is in [0,n). |
| void SimplifyIndvar::replaceRemWithNumerator(BinaryOperator *Rem) { |
| Rem->replaceAllUsesWith(Rem->getOperand(0)); |
| LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); |
| ++NumElimRem; |
| Changed = true; |
| DeadInsts.emplace_back(Rem); |
| } |
| |
| // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). |
| void SimplifyIndvar::replaceRemWithNumeratorOrZero(BinaryOperator *Rem) { |
| auto *T = Rem->getType(); |
| auto *N = Rem->getOperand(0), *D = Rem->getOperand(1); |
| ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, N, D); |
| SelectInst *Sel = |
| SelectInst::Create(ICmp, ConstantInt::get(T, 0), N, "iv.rem", Rem); |
| Rem->replaceAllUsesWith(Sel); |
| LLVM_DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); |
| ++NumElimRem; |
| Changed = true; |
| DeadInsts.emplace_back(Rem); |
| } |
| |
| /// SimplifyIVUsers helper for eliminating useless remainder operations |
| /// operating on an induction variable or replacing srem by urem. |
| void SimplifyIndvar::simplifyIVRemainder(BinaryOperator *Rem, Value *IVOperand, |
| bool IsSigned) { |
| auto *NValue = Rem->getOperand(0); |
| auto *DValue = Rem->getOperand(1); |
| // We're only interested in the case where we know something about |
| // the numerator, unless it is a srem, because we want to replace srem by urem |
| // in general. |
| bool UsedAsNumerator = IVOperand == NValue; |
| if (!UsedAsNumerator && !IsSigned) |
| return; |
| |
| const SCEV *N = SE->getSCEV(NValue); |
| |
| // Simplify unnecessary loops away. |
| const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); |
| N = SE->getSCEVAtScope(N, ICmpLoop); |
| |
| bool IsNumeratorNonNegative = !IsSigned || SE->isKnownNonNegative(N); |
| |
| // Do not proceed if the Numerator may be negative |
| if (!IsNumeratorNonNegative) |
| return; |
| |
| const SCEV *D = SE->getSCEV(DValue); |
| D = SE->getSCEVAtScope(D, ICmpLoop); |
| |
| if (UsedAsNumerator) { |
| auto LT = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; |
| if (SE->isKnownPredicate(LT, N, D)) { |
| replaceRemWithNumerator(Rem); |
| return; |
| } |
| |
| auto *T = Rem->getType(); |
| const auto *NLessOne = SE->getMinusSCEV(N, SE->getOne(T)); |
| if (SE->isKnownPredicate(LT, NLessOne, D)) { |
| replaceRemWithNumeratorOrZero(Rem); |
| return; |
| } |
| } |
| |
| // Try to replace SRem with URem, if both N and D are known non-negative. |
| // Since we had already check N, we only need to check D now |
| if (!IsSigned || !SE->isKnownNonNegative(D)) |
| return; |
| |
| replaceSRemWithURem(Rem); |
| } |
| |
| bool SimplifyIndvar::eliminateOverflowIntrinsic(CallInst *CI) { |
| auto *F = CI->getCalledFunction(); |
| if (!F) |
| return false; |
| |
| typedef const SCEV *(ScalarEvolution::*OperationFunctionTy)( |
| const SCEV *, const SCEV *, SCEV::NoWrapFlags, unsigned); |
| typedef const SCEV *(ScalarEvolution::*ExtensionFunctionTy)( |
| const SCEV *, Type *, unsigned); |
| |
| OperationFunctionTy Operation; |
| ExtensionFunctionTy Extension; |
| |
| Instruction::BinaryOps RawOp; |
| |
| // We always have exactly one of nsw or nuw. If NoSignedOverflow is false, we |
| // have nuw. |
| bool NoSignedOverflow; |
| |
| switch (F->getIntrinsicID()) { |
| default: |
| return false; |
| |
| case Intrinsic::sadd_with_overflow: |
| Operation = &ScalarEvolution::getAddExpr; |
| Extension = &ScalarEvolution::getSignExtendExpr; |
| RawOp = Instruction::Add; |
| NoSignedOverflow = true; |
| break; |
| |
| case Intrinsic::uadd_with_overflow: |
| Operation = &ScalarEvolution::getAddExpr; |
| Extension = &ScalarEvolution::getZeroExtendExpr; |
| RawOp = Instruction::Add; |
| NoSignedOverflow = false; |
| break; |
| |
| case Intrinsic::ssub_with_overflow: |
| Operation = &ScalarEvolution::getMinusSCEV; |
| Extension = &ScalarEvolution::getSignExtendExpr; |
| RawOp = Instruction::Sub; |
| NoSignedOverflow = true; |
| break; |
| |
| case Intrinsic::usub_with_overflow: |
| Operation = &ScalarEvolution::getMinusSCEV; |
| Extension = &ScalarEvolution::getZeroExtendExpr; |
| RawOp = Instruction::Sub; |
| NoSignedOverflow = false; |
| break; |
| } |
| |
| const SCEV *LHS = SE->getSCEV(CI->getArgOperand(0)); |
| const SCEV *RHS = SE->getSCEV(CI->getArgOperand(1)); |
| |
| auto *NarrowTy = cast<IntegerType>(LHS->getType()); |
| auto *WideTy = |
| IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); |
| |
| const SCEV *A = |
| (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), |
| WideTy, 0); |
| const SCEV *B = |
| (SE->*Operation)((SE->*Extension)(LHS, WideTy, 0), |
| (SE->*Extension)(RHS, WideTy, 0), SCEV::FlagAnyWrap, 0); |
| |
| if (A != B) |
| return false; |
| |
| // Proved no overflow, nuke the overflow check and, if possible, the overflow |
| // intrinsic as well. |
| |
| BinaryOperator *NewResult = BinaryOperator::Create( |
| RawOp, CI->getArgOperand(0), CI->getArgOperand(1), "", CI); |
| |
| if (NoSignedOverflow) |
| NewResult->setHasNoSignedWrap(true); |
| else |
| NewResult->setHasNoUnsignedWrap(true); |
| |
| SmallVector<ExtractValueInst *, 4> ToDelete; |
| |
| for (auto *U : CI->users()) { |
| if (auto *EVI = dyn_cast<ExtractValueInst>(U)) { |
| if (EVI->getIndices()[0] == 1) |
| EVI->replaceAllUsesWith(ConstantInt::getFalse(CI->getContext())); |
| else { |
| assert(EVI->getIndices()[0] == 0 && "Only two possibilities!"); |
| EVI->replaceAllUsesWith(NewResult); |
| } |
| ToDelete.push_back(EVI); |
| } |
| } |
| |
| for (auto *EVI : ToDelete) |
| EVI->eraseFromParent(); |
| |
| if (CI->use_empty()) |
| CI->eraseFromParent(); |
| |
| return true; |
| } |
| |
| bool SimplifyIndvar::eliminateTrunc(TruncInst *TI) { |
| // It is always legal to replace |
| // icmp <pred> i32 trunc(iv), n |
| // with |
| // icmp <pred> i64 sext(trunc(iv)), sext(n), if pred is signed predicate. |
| // Or with |
| // icmp <pred> i64 zext(trunc(iv)), zext(n), if pred is unsigned predicate. |
| // Or with either of these if pred is an equality predicate. |
| // |
| // If we can prove that iv == sext(trunc(iv)) or iv == zext(trunc(iv)) for |
| // every comparison which uses trunc, it means that we can replace each of |
| // them with comparison of iv against sext/zext(n). We no longer need trunc |
| // after that. |
| // |
| // TODO: Should we do this if we can widen *some* comparisons, but not all |
| // of them? Sometimes it is enough to enable other optimizations, but the |
| // trunc instruction will stay in the loop. |
| Value *IV = TI->getOperand(0); |
| Type *IVTy = IV->getType(); |
| const SCEV *IVSCEV = SE->getSCEV(IV); |
| const SCEV *TISCEV = SE->getSCEV(TI); |
| |
| // Check if iv == zext(trunc(iv)) and if iv == sext(trunc(iv)). If so, we can |
| // get rid of trunc |
| bool DoesSExtCollapse = false; |
| bool DoesZExtCollapse = false; |
| if (IVSCEV == SE->getSignExtendExpr(TISCEV, IVTy)) |
| DoesSExtCollapse = true; |
| if (IVSCEV == SE->getZeroExtendExpr(TISCEV, IVTy)) |
| DoesZExtCollapse = true; |
| |
| // If neither sext nor zext does collapse, it is not profitable to do any |
| // transform. Bail. |
| if (!DoesSExtCollapse && !DoesZExtCollapse) |
| return false; |
| |
| // Collect users of the trunc that look like comparisons against invariants. |
| // Bail if we find something different. |
| SmallVector<ICmpInst *, 4> ICmpUsers; |
| for (auto *U : TI->users()) { |
| // We don't care about users in unreachable blocks. |
| if (isa<Instruction>(U) && |
| !DT->isReachableFromEntry(cast<Instruction>(U)->getParent())) |
| continue; |
| if (ICmpInst *ICI = dyn_cast<ICmpInst>(U)) { |
| if (ICI->getOperand(0) == TI && L->isLoopInvariant(ICI->getOperand(1))) { |
| assert(L->contains(ICI->getParent()) && "LCSSA form broken?"); |
| // If we cannot get rid of trunc, bail. |
| if (ICI->isSigned() && !DoesSExtCollapse) |
| return false; |
| if (ICI->isUnsigned() && !DoesZExtCollapse) |
| return false; |
| // For equality, either signed or unsigned works. |
| ICmpUsers.push_back(ICI); |
| } else |
| return false; |
| } else |
| return false; |
| } |
| |
| auto CanUseZExt = [&](ICmpInst *ICI) { |
| // Unsigned comparison can be widened as unsigned. |
| if (ICI->isUnsigned()) |
| return true; |
| // Is it profitable to do zext? |
| if (!DoesZExtCollapse) |
| return false; |
| // For equality, we can safely zext both parts. |
| if (ICI->isEquality()) |
| return true; |
| // Otherwise we can only use zext when comparing two non-negative or two |
| // negative values. But in practice, we will never pass DoesZExtCollapse |
| // check for a negative value, because zext(trunc(x)) is non-negative. So |
| // it only make sense to check for non-negativity here. |
| const SCEV *SCEVOP1 = SE->getSCEV(ICI->getOperand(0)); |
| const SCEV *SCEVOP2 = SE->getSCEV(ICI->getOperand(1)); |
| return SE->isKnownNonNegative(SCEVOP1) && SE->isKnownNonNegative(SCEVOP2); |
| }; |
| // Replace all comparisons against trunc with comparisons against IV. |
| for (auto *ICI : ICmpUsers) { |
| auto *Op1 = ICI->getOperand(1); |
| Instruction *Ext = nullptr; |
| // For signed/unsigned predicate, replace the old comparison with comparison |
| // of immediate IV against sext/zext of the invariant argument. If we can |
| // use either sext or zext (i.e. we are dealing with equality predicate), |
| // then prefer zext as a more canonical form. |
| // TODO: If we see a signed comparison which can be turned into unsigned, |
| // we can do it here for canonicalization purposes. |
| ICmpInst::Predicate Pred = ICI->getPredicate(); |
| if (CanUseZExt(ICI)) { |
| assert(DoesZExtCollapse && "Unprofitable zext?"); |
| Ext = new ZExtInst(Op1, IVTy, "zext", ICI); |
| Pred = ICmpInst::getUnsignedPredicate(Pred); |
| } else { |
| assert(DoesSExtCollapse && "Unprofitable sext?"); |
| Ext = new SExtInst(Op1, IVTy, "sext", ICI); |
| assert(Pred == ICmpInst::getSignedPredicate(Pred) && "Must be signed!"); |
| } |
| bool Changed; |
| L->makeLoopInvariant(Ext, Changed); |
| (void)Changed; |
| ICmpInst *NewICI = new ICmpInst(ICI, Pred, IV, Ext); |
| ICI->replaceAllUsesWith(NewICI); |
| DeadInsts.emplace_back(ICI); |
| } |
| |
| // Trunc no longer needed. |
| TI->replaceAllUsesWith(UndefValue::get(TI->getType())); |
| DeadInsts.emplace_back(TI); |
| return true; |
| } |
| |
| /// Eliminate an operation that consumes a simple IV and has no observable |
| /// side-effect given the range of IV values. IVOperand is guaranteed SCEVable, |
| /// but UseInst may not be. |
| bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst, |
| Instruction *IVOperand) { |
| if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { |
| eliminateIVComparison(ICmp, IVOperand); |
| return true; |
| } |
| if (BinaryOperator *Bin = dyn_cast<BinaryOperator>(UseInst)) { |
| bool IsSRem = Bin->getOpcode() == Instruction::SRem; |
| if (IsSRem || Bin->getOpcode() == Instruction::URem) { |
| simplifyIVRemainder(Bin, IVOperand, IsSRem); |
| return true; |
| } |
| |
| if (Bin->getOpcode() == Instruction::SDiv) |
| return eliminateSDiv(Bin); |
| } |
| |
| if (auto *CI = dyn_cast<CallInst>(UseInst)) |
| if (eliminateOverflowIntrinsic(CI)) |
| return true; |
| |
| if (auto *TI = dyn_cast<TruncInst>(UseInst)) |
| if (eliminateTrunc(TI)) |
| return true; |
| |
| if (eliminateIdentitySCEV(UseInst, IVOperand)) |
| return true; |
| |
| return false; |
| } |
| |
| static Instruction *GetLoopInvariantInsertPosition(Loop *L, Instruction *Hint) { |
| if (auto *BB = L->getLoopPreheader()) |
| return BB->getTerminator(); |
| |
| return Hint; |
| } |
| |
| /// Replace the UseInst with a constant if possible. |
| bool SimplifyIndvar::replaceIVUserWithLoopInvariant(Instruction *I) { |
| if (!SE->isSCEVable(I->getType())) |
| return false; |
| |
| // Get the symbolic expression for this instruction. |
| const SCEV *S = SE->getSCEV(I); |
| |
| if (!SE->isLoopInvariant(S, L)) |
| return false; |
| |
| // Do not generate something ridiculous even if S is loop invariant. |
| if (Rewriter.isHighCostExpansion(S, L, I)) |
| return false; |
| |
| auto *IP = GetLoopInvariantInsertPosition(L, I); |
| auto *Invariant = Rewriter.expandCodeFor(S, I->getType(), IP); |
| |
| I->replaceAllUsesWith(Invariant); |
| LLVM_DEBUG(dbgs() << "INDVARS: Replace IV user: " << *I |
| << " with loop invariant: " << *S << '\n'); |
| ++NumFoldedUser; |
| Changed = true; |
| DeadInsts.emplace_back(I); |
| return true; |
| } |
| |
| /// Eliminate any operation that SCEV can prove is an identity function. |
| bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst, |
| Instruction *IVOperand) { |
| if (!SE->isSCEVable(UseInst->getType()) || |
| (UseInst->getType() != IVOperand->getType()) || |
| (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) |
| return false; |
| |
| // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the |
| // dominator tree, even if X is an operand to Y. For instance, in |
| // |
| // %iv = phi i32 {0,+,1} |
| // br %cond, label %left, label %merge |
| // |
| // left: |
| // %X = add i32 %iv, 0 |
| // br label %merge |
| // |
| // merge: |
| // %M = phi (%X, %iv) |
| // |
| // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and |
| // %M.replaceAllUsesWith(%X) would be incorrect. |
| |
| if (isa<PHINode>(UseInst)) |
| // If UseInst is not a PHI node then we know that IVOperand dominates |
| // UseInst directly from the legality of SSA. |
| if (!DT || !DT->dominates(IVOperand, UseInst)) |
| return false; |
| |
| if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand)) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); |
| |
| UseInst->replaceAllUsesWith(IVOperand); |
| ++NumElimIdentity; |
| Changed = true; |
| DeadInsts.emplace_back(UseInst); |
| return true; |
| } |
| |
| /// Annotate BO with nsw / nuw if it provably does not signed-overflow / |
| /// unsigned-overflow. Returns true if anything changed, false otherwise. |
| bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO, |
| Value *IVOperand) { |
| |
| // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`. |
| if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap()) |
| return false; |
| |
| const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *, |
| SCEV::NoWrapFlags, unsigned); |
| switch (BO->getOpcode()) { |
| default: |
| return false; |
| |
| case Instruction::Add: |
| GetExprForBO = &ScalarEvolution::getAddExpr; |
| break; |
| |
| case Instruction::Sub: |
| GetExprForBO = &ScalarEvolution::getMinusSCEV; |
| break; |
| |
| case Instruction::Mul: |
| GetExprForBO = &ScalarEvolution::getMulExpr; |
| break; |
| } |
| |
| unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth(); |
| Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2); |
| const SCEV *LHS = SE->getSCEV(BO->getOperand(0)); |
| const SCEV *RHS = SE->getSCEV(BO->getOperand(1)); |
| |
| bool Changed = false; |
| |
| if (!BO->hasNoUnsignedWrap()) { |
| const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy); |
| const SCEV *OpAfterExtend = (SE->*GetExprForBO)( |
| SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy), |
| SCEV::FlagAnyWrap, 0u); |
| if (ExtendAfterOp == OpAfterExtend) { |
| BO->setHasNoUnsignedWrap(); |
| SE->forgetValue(BO); |
| Changed = true; |
| } |
| } |
| |
| if (!BO->hasNoSignedWrap()) { |
| const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy); |
| const SCEV *OpAfterExtend = (SE->*GetExprForBO)( |
| SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy), |
| SCEV::FlagAnyWrap, 0u); |
| if (ExtendAfterOp == OpAfterExtend) { |
| BO->setHasNoSignedWrap(); |
| SE->forgetValue(BO); |
| Changed = true; |
| } |
| } |
| |
| return Changed; |
| } |
| |
| /// Annotate the Shr in (X << IVOperand) >> C as exact using the |
| /// information from the IV's range. Returns true if anything changed, false |
| /// otherwise. |
| bool SimplifyIndvar::strengthenRightShift(BinaryOperator *BO, |
| Value *IVOperand) { |
| using namespace llvm::PatternMatch; |
| |
| if (BO->getOpcode() == Instruction::Shl) { |
| bool Changed = false; |
| ConstantRange IVRange = SE->getUnsignedRange(SE->getSCEV(IVOperand)); |
| for (auto *U : BO->users()) { |
| const APInt *C; |
| if (match(U, |
| m_AShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C))) || |
| match(U, |
| m_LShr(m_Shl(m_Value(), m_Specific(IVOperand)), m_APInt(C)))) { |
| BinaryOperator *Shr = cast<BinaryOperator>(U); |
| if (!Shr->isExact() && IVRange.getUnsignedMin().uge(*C)) { |
| Shr->setIsExact(true); |
| Changed = true; |
| } |
| } |
| } |
| return Changed; |
| } |
| |
| return false; |
| } |
| |
| /// Add all uses of Def to the current IV's worklist. |
| static void pushIVUsers( |
| Instruction *Def, Loop *L, |
| SmallPtrSet<Instruction*,16> &Simplified, |
| SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { |
| |
| for (User *U : Def->users()) { |
| Instruction *UI = cast<Instruction>(U); |
| |
| // Avoid infinite or exponential worklist processing. |
| // Also ensure unique worklist users. |
| // If Def is a LoopPhi, it may not be in the Simplified set, so check for |
| // self edges first. |
| if (UI == Def) |
| continue; |
| |
| // Only change the current Loop, do not change the other parts (e.g. other |
| // Loops). |
| if (!L->contains(UI)) |
| continue; |
| |
| // Do not push the same instruction more than once. |
| if (!Simplified.insert(UI).second) |
| continue; |
| |
| SimpleIVUsers.push_back(std::make_pair(UI, Def)); |
| } |
| } |
| |
| /// Return true if this instruction generates a simple SCEV |
| /// expression in terms of that IV. |
| /// |
| /// This is similar to IVUsers' isInteresting() but processes each instruction |
| /// non-recursively when the operand is already known to be a simpleIVUser. |
| /// |
| static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { |
| if (!SE->isSCEVable(I->getType())) |
| return false; |
| |
| // Get the symbolic expression for this instruction. |
| const SCEV *S = SE->getSCEV(I); |
| |
| // Only consider affine recurrences. |
| const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); |
| if (AR && AR->getLoop() == L) |
| return true; |
| |
| return false; |
| } |
| |
| /// Iteratively perform simplification on a worklist of users |
| /// of the specified induction variable. Each successive simplification may push |
| /// more users which may themselves be candidates for simplification. |
| /// |
| /// This algorithm does not require IVUsers analysis. Instead, it simplifies |
| /// instructions in-place during analysis. Rather than rewriting induction |
| /// variables bottom-up from their users, it transforms a chain of IVUsers |
| /// top-down, updating the IR only when it encounters a clear optimization |
| /// opportunity. |
| /// |
| /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. |
| /// |
| void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) { |
| if (!SE->isSCEVable(CurrIV->getType())) |
| return; |
| |
| // Instructions processed by SimplifyIndvar for CurrIV. |
| SmallPtrSet<Instruction*,16> Simplified; |
| |
| // Use-def pairs if IV users waiting to be processed for CurrIV. |
| SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; |
| |
| // Push users of the current LoopPhi. In rare cases, pushIVUsers may be |
| // called multiple times for the same LoopPhi. This is the proper thing to |
| // do for loop header phis that use each other. |
| pushIVUsers(CurrIV, L, Simplified, SimpleIVUsers); |
| |
| while (!SimpleIVUsers.empty()) { |
| std::pair<Instruction*, Instruction*> UseOper = |
| SimpleIVUsers.pop_back_val(); |
| Instruction *UseInst = UseOper.first; |
| |
| // If a user of the IndVar is trivially dead, we prefer just to mark it dead |
| // rather than try to do some complex analysis or transformation (such as |
| // widening) basing on it. |
| // TODO: Propagate TLI and pass it here to handle more cases. |
| if (isInstructionTriviallyDead(UseInst, /* TLI */ nullptr)) { |
| DeadInsts.emplace_back(UseInst); |
| continue; |
| } |
| |
| // Bypass back edges to avoid extra work. |
| if (UseInst == CurrIV) continue; |
| |
| // Try to replace UseInst with a loop invariant before any other |
| // simplifications. |
| if (replaceIVUserWithLoopInvariant(UseInst)) |
| continue; |
| |
| Instruction *IVOperand = UseOper.second; |
| for (unsigned N = 0; IVOperand; ++N) { |
| assert(N <= Simplified.size() && "runaway iteration"); |
| |
| Value *NewOper = foldIVUser(UseInst, IVOperand); |
| if (!NewOper) |
| break; // done folding |
| IVOperand = dyn_cast<Instruction>(NewOper); |
| } |
| if (!IVOperand) |
| continue; |
| |
| if (eliminateIVUser(UseInst, IVOperand)) { |
| pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); |
| continue; |
| } |
| |
| if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseInst)) { |
| if ((isa<OverflowingBinaryOperator>(BO) && |
| strengthenOverflowingOperation(BO, IVOperand)) || |
| (isa<ShlOperator>(BO) && strengthenRightShift(BO, IVOperand))) { |
| // re-queue uses of the now modified binary operator and fall |
| // through to the checks that remain. |
| pushIVUsers(IVOperand, L, Simplified, SimpleIVUsers); |
| } |
| } |
| |
| CastInst *Cast = dyn_cast<CastInst>(UseInst); |
| if (V && Cast) { |
| V->visitCast(Cast); |
| continue; |
| } |
| if (isSimpleIVUser(UseInst, L, SE)) { |
| pushIVUsers(UseInst, L, Simplified, SimpleIVUsers); |
| } |
| } |
| } |
| |
| namespace llvm { |
| |
| void IVVisitor::anchor() { } |
| |
| /// Simplify instructions that use this induction variable |
| /// by using ScalarEvolution to analyze the IV's recurrence. |
| bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT, |
| LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead, |
| SCEVExpander &Rewriter, IVVisitor *V) { |
| SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Rewriter, |
| Dead); |
| SIV.simplifyUsers(CurrIV, V); |
| return SIV.hasChanged(); |
| } |
| |
| /// Simplify users of induction variables within this |
| /// loop. This does not actually change or add IVs. |
| bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT, |
| LoopInfo *LI, SmallVectorImpl<WeakTrackingVH> &Dead) { |
| SCEVExpander Rewriter(*SE, SE->getDataLayout(), "indvars"); |
| #ifndef NDEBUG |
| Rewriter.setDebugType(DEBUG_TYPE); |
| #endif |
| bool Changed = false; |
| for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { |
| Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead, Rewriter); |
| } |
| return Changed; |
| } |
| |
| } // namespace llvm |