| //===-- LoopUtils.cpp - Loop Utility functions -------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines common loop utility functions. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/LoopUtils.h" |
| #include "llvm/ADT/ScopeExit.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/BasicAliasAnalysis.h" |
| #include "llvm/Analysis/DomTreeUpdater.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/MustExecute.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" |
| #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/DIBuilder.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| #define DEBUG_TYPE "loop-utils" |
| |
| static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced"; |
| |
| bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI, |
| bool PreserveLCSSA) { |
| bool Changed = false; |
| |
| // We re-use a vector for the in-loop predecesosrs. |
| SmallVector<BasicBlock *, 4> InLoopPredecessors; |
| |
| auto RewriteExit = [&](BasicBlock *BB) { |
| assert(InLoopPredecessors.empty() && |
| "Must start with an empty predecessors list!"); |
| auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); }); |
| |
| // See if there are any non-loop predecessors of this exit block and |
| // keep track of the in-loop predecessors. |
| bool IsDedicatedExit = true; |
| for (auto *PredBB : predecessors(BB)) |
| if (L->contains(PredBB)) { |
| if (isa<IndirectBrInst>(PredBB->getTerminator())) |
| // We cannot rewrite exiting edges from an indirectbr. |
| return false; |
| if (isa<CallBrInst>(PredBB->getTerminator())) |
| // We cannot rewrite exiting edges from a callbr. |
| return false; |
| |
| InLoopPredecessors.push_back(PredBB); |
| } else { |
| IsDedicatedExit = false; |
| } |
| |
| assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!"); |
| |
| // Nothing to do if this is already a dedicated exit. |
| if (IsDedicatedExit) |
| return false; |
| |
| auto *NewExitBB = SplitBlockPredecessors( |
| BB, InLoopPredecessors, ".loopexit", DT, LI, nullptr, PreserveLCSSA); |
| |
| if (!NewExitBB) |
| LLVM_DEBUG( |
| dbgs() << "WARNING: Can't create a dedicated exit block for loop: " |
| << *L << "\n"); |
| else |
| LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " |
| << NewExitBB->getName() << "\n"); |
| return true; |
| }; |
| |
| // Walk the exit blocks directly rather than building up a data structure for |
| // them, but only visit each one once. |
| SmallPtrSet<BasicBlock *, 4> Visited; |
| for (auto *BB : L->blocks()) |
| for (auto *SuccBB : successors(BB)) { |
| // We're looking for exit blocks so skip in-loop successors. |
| if (L->contains(SuccBB)) |
| continue; |
| |
| // Visit each exit block exactly once. |
| if (!Visited.insert(SuccBB).second) |
| continue; |
| |
| Changed |= RewriteExit(SuccBB); |
| } |
| |
| return Changed; |
| } |
| |
| /// Returns the instructions that use values defined in the loop. |
| SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) { |
| SmallVector<Instruction *, 8> UsedOutside; |
| |
| for (auto *Block : L->getBlocks()) |
| // FIXME: I believe that this could use copy_if if the Inst reference could |
| // be adapted into a pointer. |
| for (auto &Inst : *Block) { |
| auto Users = Inst.users(); |
| if (any_of(Users, [&](User *U) { |
| auto *Use = cast<Instruction>(U); |
| return !L->contains(Use->getParent()); |
| })) |
| UsedOutside.push_back(&Inst); |
| } |
| |
| return UsedOutside; |
| } |
| |
| void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) { |
| // By definition, all loop passes need the LoopInfo analysis and the |
| // Dominator tree it depends on. Because they all participate in the loop |
| // pass manager, they must also preserve these. |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addPreserved<DominatorTreeWrapperPass>(); |
| AU.addRequired<LoopInfoWrapperPass>(); |
| AU.addPreserved<LoopInfoWrapperPass>(); |
| |
| // We must also preserve LoopSimplify and LCSSA. We locally access their IDs |
| // here because users shouldn't directly get them from this header. |
| extern char &LoopSimplifyID; |
| extern char &LCSSAID; |
| AU.addRequiredID(LoopSimplifyID); |
| AU.addPreservedID(LoopSimplifyID); |
| AU.addRequiredID(LCSSAID); |
| AU.addPreservedID(LCSSAID); |
| // This is used in the LPPassManager to perform LCSSA verification on passes |
| // which preserve lcssa form |
| AU.addRequired<LCSSAVerificationPass>(); |
| AU.addPreserved<LCSSAVerificationPass>(); |
| |
| // Loop passes are designed to run inside of a loop pass manager which means |
| // that any function analyses they require must be required by the first loop |
| // pass in the manager (so that it is computed before the loop pass manager |
| // runs) and preserved by all loop pasess in the manager. To make this |
| // reasonably robust, the set needed for most loop passes is maintained here. |
| // If your loop pass requires an analysis not listed here, you will need to |
| // carefully audit the loop pass manager nesting structure that results. |
| AU.addRequired<AAResultsWrapperPass>(); |
| AU.addPreserved<AAResultsWrapperPass>(); |
| AU.addPreserved<BasicAAWrapperPass>(); |
| AU.addPreserved<GlobalsAAWrapperPass>(); |
| AU.addPreserved<SCEVAAWrapperPass>(); |
| AU.addRequired<ScalarEvolutionWrapperPass>(); |
| AU.addPreserved<ScalarEvolutionWrapperPass>(); |
| } |
| |
| /// Manually defined generic "LoopPass" dependency initialization. This is used |
| /// to initialize the exact set of passes from above in \c |
| /// getLoopAnalysisUsage. It can be used within a loop pass's initialization |
| /// with: |
| /// |
| /// INITIALIZE_PASS_DEPENDENCY(LoopPass) |
| /// |
| /// As-if "LoopPass" were a pass. |
| void llvm::initializeLoopPassPass(PassRegistry &Registry) { |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(LoopSimplify) |
| INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) |
| } |
| |
| /// Find string metadata for loop |
| /// |
| /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an |
| /// operand or null otherwise. If the string metadata is not found return |
| /// Optional's not-a-value. |
| Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop, |
| StringRef Name) { |
| MDNode *MD = findOptionMDForLoop(TheLoop, Name); |
| if (!MD) |
| return None; |
| switch (MD->getNumOperands()) { |
| case 1: |
| return nullptr; |
| case 2: |
| return &MD->getOperand(1); |
| default: |
| llvm_unreachable("loop metadata has 0 or 1 operand"); |
| } |
| } |
| |
| static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop, |
| StringRef Name) { |
| MDNode *MD = findOptionMDForLoop(TheLoop, Name); |
| if (!MD) |
| return None; |
| switch (MD->getNumOperands()) { |
| case 1: |
| // When the value is absent it is interpreted as 'attribute set'. |
| return true; |
| case 2: |
| if (ConstantInt *IntMD = |
| mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get())) |
| return IntMD->getZExtValue(); |
| return true; |
| } |
| llvm_unreachable("unexpected number of options"); |
| } |
| |
| static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) { |
| return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false); |
| } |
| |
| llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop, |
| StringRef Name) { |
| const MDOperand *AttrMD = |
| findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr); |
| if (!AttrMD) |
| return None; |
| |
| ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get()); |
| if (!IntMD) |
| return None; |
| |
| return IntMD->getSExtValue(); |
| } |
| |
| Optional<MDNode *> llvm::makeFollowupLoopID( |
| MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions, |
| const char *InheritOptionsExceptPrefix, bool AlwaysNew) { |
| if (!OrigLoopID) { |
| if (AlwaysNew) |
| return nullptr; |
| return None; |
| } |
| |
| assert(OrigLoopID->getOperand(0) == OrigLoopID); |
| |
| bool InheritAllAttrs = !InheritOptionsExceptPrefix; |
| bool InheritSomeAttrs = |
| InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0'; |
| SmallVector<Metadata *, 8> MDs; |
| MDs.push_back(nullptr); |
| |
| bool Changed = false; |
| if (InheritAllAttrs || InheritSomeAttrs) { |
| for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) { |
| MDNode *Op = cast<MDNode>(Existing.get()); |
| |
| auto InheritThisAttribute = [InheritSomeAttrs, |
| InheritOptionsExceptPrefix](MDNode *Op) { |
| if (!InheritSomeAttrs) |
| return false; |
| |
| // Skip malformatted attribute metadata nodes. |
| if (Op->getNumOperands() == 0) |
| return true; |
| Metadata *NameMD = Op->getOperand(0).get(); |
| if (!isa<MDString>(NameMD)) |
| return true; |
| StringRef AttrName = cast<MDString>(NameMD)->getString(); |
| |
| // Do not inherit excluded attributes. |
| return !AttrName.startswith(InheritOptionsExceptPrefix); |
| }; |
| |
| if (InheritThisAttribute(Op)) |
| MDs.push_back(Op); |
| else |
| Changed = true; |
| } |
| } else { |
| // Modified if we dropped at least one attribute. |
| Changed = OrigLoopID->getNumOperands() > 1; |
| } |
| |
| bool HasAnyFollowup = false; |
| for (StringRef OptionName : FollowupOptions) { |
| MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName); |
| if (!FollowupNode) |
| continue; |
| |
| HasAnyFollowup = true; |
| for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) { |
| MDs.push_back(Option.get()); |
| Changed = true; |
| } |
| } |
| |
| // Attributes of the followup loop not specified explicity, so signal to the |
| // transformation pass to add suitable attributes. |
| if (!AlwaysNew && !HasAnyFollowup) |
| return None; |
| |
| // If no attributes were added or remove, the previous loop Id can be reused. |
| if (!AlwaysNew && !Changed) |
| return OrigLoopID; |
| |
| // No attributes is equivalent to having no !llvm.loop metadata at all. |
| if (MDs.size() == 1) |
| return nullptr; |
| |
| // Build the new loop ID. |
| MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs); |
| FollowupLoopID->replaceOperandWith(0, FollowupLoopID); |
| return FollowupLoopID; |
| } |
| |
| bool llvm::hasDisableAllTransformsHint(const Loop *L) { |
| return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced); |
| } |
| |
| TransformationMode llvm::hasUnrollTransformation(Loop *L) { |
| if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable")) |
| return TM_SuppressedByUser; |
| |
| Optional<int> Count = |
| getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count"); |
| if (Count.hasValue()) |
| return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; |
| |
| if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable")) |
| return TM_ForcedByUser; |
| |
| if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full")) |
| return TM_ForcedByUser; |
| |
| if (hasDisableAllTransformsHint(L)) |
| return TM_Disable; |
| |
| return TM_Unspecified; |
| } |
| |
| TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) { |
| if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable")) |
| return TM_SuppressedByUser; |
| |
| Optional<int> Count = |
| getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count"); |
| if (Count.hasValue()) |
| return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser; |
| |
| if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable")) |
| return TM_ForcedByUser; |
| |
| if (hasDisableAllTransformsHint(L)) |
| return TM_Disable; |
| |
| return TM_Unspecified; |
| } |
| |
| TransformationMode llvm::hasVectorizeTransformation(Loop *L) { |
| Optional<bool> Enable = |
| getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable"); |
| |
| if (Enable == false) |
| return TM_SuppressedByUser; |
| |
| Optional<int> VectorizeWidth = |
| getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width"); |
| Optional<int> InterleaveCount = |
| getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count"); |
| |
| // 'Forcing' vector width and interleave count to one effectively disables |
| // this tranformation. |
| if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1) |
| return TM_SuppressedByUser; |
| |
| if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized")) |
| return TM_Disable; |
| |
| if (Enable == true) |
| return TM_ForcedByUser; |
| |
| if (VectorizeWidth == 1 && InterleaveCount == 1) |
| return TM_Disable; |
| |
| if (VectorizeWidth > 1 || InterleaveCount > 1) |
| return TM_Enable; |
| |
| if (hasDisableAllTransformsHint(L)) |
| return TM_Disable; |
| |
| return TM_Unspecified; |
| } |
| |
| TransformationMode llvm::hasDistributeTransformation(Loop *L) { |
| if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable")) |
| return TM_ForcedByUser; |
| |
| if (hasDisableAllTransformsHint(L)) |
| return TM_Disable; |
| |
| return TM_Unspecified; |
| } |
| |
| TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) { |
| if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable")) |
| return TM_SuppressedByUser; |
| |
| if (hasDisableAllTransformsHint(L)) |
| return TM_Disable; |
| |
| return TM_Unspecified; |
| } |
| |
| /// Does a BFS from a given node to all of its children inside a given loop. |
| /// The returned vector of nodes includes the starting point. |
| SmallVector<DomTreeNode *, 16> |
| llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) { |
| SmallVector<DomTreeNode *, 16> Worklist; |
| auto AddRegionToWorklist = [&](DomTreeNode *DTN) { |
| // Only include subregions in the top level loop. |
| BasicBlock *BB = DTN->getBlock(); |
| if (CurLoop->contains(BB)) |
| Worklist.push_back(DTN); |
| }; |
| |
| AddRegionToWorklist(N); |
| |
| for (size_t I = 0; I < Worklist.size(); I++) |
| for (DomTreeNode *Child : Worklist[I]->getChildren()) |
| AddRegionToWorklist(Child); |
| |
| return Worklist; |
| } |
| |
| void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr, |
| ScalarEvolution *SE = nullptr, |
| LoopInfo *LI = nullptr) { |
| assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!"); |
| auto *Preheader = L->getLoopPreheader(); |
| assert(Preheader && "Preheader should exist!"); |
| |
| // Now that we know the removal is safe, remove the loop by changing the |
| // branch from the preheader to go to the single exit block. |
| // |
| // Because we're deleting a large chunk of code at once, the sequence in which |
| // we remove things is very important to avoid invalidation issues. |
| |
| // Tell ScalarEvolution that the loop is deleted. Do this before |
| // deleting the loop so that ScalarEvolution can look at the loop |
| // to determine what it needs to clean up. |
| if (SE) |
| SE->forgetLoop(L); |
| |
| auto *ExitBlock = L->getUniqueExitBlock(); |
| assert(ExitBlock && "Should have a unique exit block!"); |
| assert(L->hasDedicatedExits() && "Loop should have dedicated exits!"); |
| |
| auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator()); |
| assert(OldBr && "Preheader must end with a branch"); |
| assert(OldBr->isUnconditional() && "Preheader must have a single successor"); |
| // Connect the preheader to the exit block. Keep the old edge to the header |
| // around to perform the dominator tree update in two separate steps |
| // -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge |
| // preheader -> header. |
| // |
| // |
| // 0. Preheader 1. Preheader 2. Preheader |
| // | | | | |
| // V | V | |
| // Header <--\ | Header <--\ | Header <--\ |
| // | | | | | | | | | | | |
| // | V | | | V | | | V | |
| // | Body --/ | | Body --/ | | Body --/ |
| // V V V V V |
| // Exit Exit Exit |
| // |
| // By doing this is two separate steps we can perform the dominator tree |
| // update without using the batch update API. |
| // |
| // Even when the loop is never executed, we cannot remove the edge from the |
| // source block to the exit block. Consider the case where the unexecuted loop |
| // branches back to an outer loop. If we deleted the loop and removed the edge |
| // coming to this inner loop, this will break the outer loop structure (by |
| // deleting the backedge of the outer loop). If the outer loop is indeed a |
| // non-loop, it will be deleted in a future iteration of loop deletion pass. |
| IRBuilder<> Builder(OldBr); |
| Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock); |
| // Remove the old branch. The conditional branch becomes a new terminator. |
| OldBr->eraseFromParent(); |
| |
| // Rewrite phis in the exit block to get their inputs from the Preheader |
| // instead of the exiting block. |
| for (PHINode &P : ExitBlock->phis()) { |
| // Set the zero'th element of Phi to be from the preheader and remove all |
| // other incoming values. Given the loop has dedicated exits, all other |
| // incoming values must be from the exiting blocks. |
| int PredIndex = 0; |
| P.setIncomingBlock(PredIndex, Preheader); |
| // Removes all incoming values from all other exiting blocks (including |
| // duplicate values from an exiting block). |
| // Nuke all entries except the zero'th entry which is the preheader entry. |
| // NOTE! We need to remove Incoming Values in the reverse order as done |
| // below, to keep the indices valid for deletion (removeIncomingValues |
| // updates getNumIncomingValues and shifts all values down into the operand |
| // being deleted). |
| for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i) |
| P.removeIncomingValue(e - i, false); |
| |
| assert((P.getNumIncomingValues() == 1 && |
| P.getIncomingBlock(PredIndex) == Preheader) && |
| "Should have exactly one value and that's from the preheader!"); |
| } |
| |
| // Disconnect the loop body by branching directly to its exit. |
| Builder.SetInsertPoint(Preheader->getTerminator()); |
| Builder.CreateBr(ExitBlock); |
| // Remove the old branch. |
| Preheader->getTerminator()->eraseFromParent(); |
| |
| DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); |
| if (DT) { |
| // Update the dominator tree by informing it about the new edge from the |
| // preheader to the exit. |
| DTU.insertEdge(Preheader, ExitBlock); |
| // Inform the dominator tree about the removed edge. |
| DTU.deleteEdge(Preheader, L->getHeader()); |
| } |
| |
| // Use a map to unique and a vector to guarantee deterministic ordering. |
| llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet; |
| llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst; |
| |
| // Given LCSSA form is satisfied, we should not have users of instructions |
| // within the dead loop outside of the loop. However, LCSSA doesn't take |
| // unreachable uses into account. We handle them here. |
| // We could do it after drop all references (in this case all users in the |
| // loop will be already eliminated and we have less work to do but according |
| // to API doc of User::dropAllReferences only valid operation after dropping |
| // references, is deletion. So let's substitute all usages of |
| // instruction from the loop with undef value of corresponding type first. |
| for (auto *Block : L->blocks()) |
| for (Instruction &I : *Block) { |
| auto *Undef = UndefValue::get(I.getType()); |
| for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) { |
| Use &U = *UI; |
| ++UI; |
| if (auto *Usr = dyn_cast<Instruction>(U.getUser())) |
| if (L->contains(Usr->getParent())) |
| continue; |
| // If we have a DT then we can check that uses outside a loop only in |
| // unreachable block. |
| if (DT) |
| assert(!DT->isReachableFromEntry(U) && |
| "Unexpected user in reachable block"); |
| U.set(Undef); |
| } |
| auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I); |
| if (!DVI) |
| continue; |
| auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()}); |
| if (Key != DeadDebugSet.end()) |
| continue; |
| DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()}); |
| DeadDebugInst.push_back(DVI); |
| } |
| |
| // After the loop has been deleted all the values defined and modified |
| // inside the loop are going to be unavailable. |
| // Since debug values in the loop have been deleted, inserting an undef |
| // dbg.value truncates the range of any dbg.value before the loop where the |
| // loop used to be. This is particularly important for constant values. |
| DIBuilder DIB(*ExitBlock->getModule()); |
| for (auto *DVI : DeadDebugInst) |
| DIB.insertDbgValueIntrinsic( |
| UndefValue::get(Builder.getInt32Ty()), DVI->getVariable(), |
| DVI->getExpression(), DVI->getDebugLoc(), ExitBlock->getFirstNonPHI()); |
| |
| // Remove the block from the reference counting scheme, so that we can |
| // delete it freely later. |
| for (auto *Block : L->blocks()) |
| Block->dropAllReferences(); |
| |
| if (LI) { |
| // Erase the instructions and the blocks without having to worry |
| // about ordering because we already dropped the references. |
| // NOTE: This iteration is safe because erasing the block does not remove |
| // its entry from the loop's block list. We do that in the next section. |
| for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end(); |
| LpI != LpE; ++LpI) |
| (*LpI)->eraseFromParent(); |
| |
| // Finally, the blocks from loopinfo. This has to happen late because |
| // otherwise our loop iterators won't work. |
| |
| SmallPtrSet<BasicBlock *, 8> blocks; |
| blocks.insert(L->block_begin(), L->block_end()); |
| for (BasicBlock *BB : blocks) |
| LI->removeBlock(BB); |
| |
| // The last step is to update LoopInfo now that we've eliminated this loop. |
| LI->erase(L); |
| } |
| } |
| |
| Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) { |
| // Only support loops with a unique exiting block, and a latch. |
| if (!L->getExitingBlock()) |
| return None; |
| |
| // Get the branch weights for the loop's backedge. |
| BranchInst *LatchBR = |
| dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator()); |
| if (!LatchBR || LatchBR->getNumSuccessors() != 2) |
| return None; |
| |
| assert((LatchBR->getSuccessor(0) == L->getHeader() || |
| LatchBR->getSuccessor(1) == L->getHeader()) && |
| "At least one edge out of the latch must go to the header"); |
| |
| // To estimate the number of times the loop body was executed, we want to |
| // know the number of times the backedge was taken, vs. the number of times |
| // we exited the loop. |
| uint64_t TrueVal, FalseVal; |
| if (!LatchBR->extractProfMetadata(TrueVal, FalseVal)) |
| return None; |
| |
| if (!TrueVal || !FalseVal) |
| return 0; |
| |
| // Divide the count of the backedge by the count of the edge exiting the loop, |
| // rounding to nearest. |
| if (LatchBR->getSuccessor(0) == L->getHeader()) |
| return (TrueVal + (FalseVal / 2)) / FalseVal; |
| else |
| return (FalseVal + (TrueVal / 2)) / TrueVal; |
| } |
| |
| bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop, |
| ScalarEvolution &SE) { |
| Loop *OuterL = InnerLoop->getParentLoop(); |
| if (!OuterL) |
| return true; |
| |
| // Get the backedge taken count for the inner loop |
| BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch(); |
| const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch); |
| if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) || |
| !InnerLoopBECountSC->getType()->isIntegerTy()) |
| return false; |
| |
| // Get whether count is invariant to the outer loop |
| ScalarEvolution::LoopDisposition LD = |
| SE.getLoopDisposition(InnerLoopBECountSC, OuterL); |
| if (LD != ScalarEvolution::LoopInvariant) |
| return false; |
| |
| return true; |
| } |
| |
| /// Adds a 'fast' flag to floating point operations. |
| static Value *addFastMathFlag(Value *V) { |
| if (isa<FPMathOperator>(V)) { |
| FastMathFlags Flags; |
| Flags.setFast(); |
| cast<Instruction>(V)->setFastMathFlags(Flags); |
| } |
| return V; |
| } |
| |
| Value *llvm::createMinMaxOp(IRBuilder<> &Builder, |
| RecurrenceDescriptor::MinMaxRecurrenceKind RK, |
| Value *Left, Value *Right) { |
| CmpInst::Predicate P = CmpInst::ICMP_NE; |
| switch (RK) { |
| default: |
| llvm_unreachable("Unknown min/max recurrence kind"); |
| case RecurrenceDescriptor::MRK_UIntMin: |
| P = CmpInst::ICMP_ULT; |
| break; |
| case RecurrenceDescriptor::MRK_UIntMax: |
| P = CmpInst::ICMP_UGT; |
| break; |
| case RecurrenceDescriptor::MRK_SIntMin: |
| P = CmpInst::ICMP_SLT; |
| break; |
| case RecurrenceDescriptor::MRK_SIntMax: |
| P = CmpInst::ICMP_SGT; |
| break; |
| case RecurrenceDescriptor::MRK_FloatMin: |
| P = CmpInst::FCMP_OLT; |
| break; |
| case RecurrenceDescriptor::MRK_FloatMax: |
| P = CmpInst::FCMP_OGT; |
| break; |
| } |
| |
| // We only match FP sequences that are 'fast', so we can unconditionally |
| // set it on any generated instructions. |
| IRBuilder<>::FastMathFlagGuard FMFG(Builder); |
| FastMathFlags FMF; |
| FMF.setFast(); |
| Builder.setFastMathFlags(FMF); |
| |
| Value *Cmp; |
| if (RK == RecurrenceDescriptor::MRK_FloatMin || |
| RK == RecurrenceDescriptor::MRK_FloatMax) |
| Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp"); |
| else |
| Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp"); |
| |
| Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select"); |
| return Select; |
| } |
| |
| // Helper to generate an ordered reduction. |
| Value * |
| llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src, |
| unsigned Op, |
| RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, |
| ArrayRef<Value *> RedOps) { |
| unsigned VF = Src->getType()->getVectorNumElements(); |
| |
| // Extract and apply reduction ops in ascending order: |
| // e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1] |
| Value *Result = Acc; |
| for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) { |
| Value *Ext = |
| Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx)); |
| |
| if (Op != Instruction::ICmp && Op != Instruction::FCmp) { |
| Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext, |
| "bin.rdx"); |
| } else { |
| assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && |
| "Invalid min/max"); |
| Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext); |
| } |
| |
| if (!RedOps.empty()) |
| propagateIRFlags(Result, RedOps); |
| } |
| |
| return Result; |
| } |
| |
| // Helper to generate a log2 shuffle reduction. |
| Value * |
| llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op, |
| RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind, |
| ArrayRef<Value *> RedOps) { |
| unsigned VF = Src->getType()->getVectorNumElements(); |
| // VF is a power of 2 so we can emit the reduction using log2(VF) shuffles |
| // and vector ops, reducing the set of values being computed by half each |
| // round. |
| assert(isPowerOf2_32(VF) && |
| "Reduction emission only supported for pow2 vectors!"); |
| Value *TmpVec = Src; |
| SmallVector<Constant *, 32> ShuffleMask(VF, nullptr); |
| for (unsigned i = VF; i != 1; i >>= 1) { |
| // Move the upper half of the vector to the lower half. |
| for (unsigned j = 0; j != i / 2; ++j) |
| ShuffleMask[j] = Builder.getInt32(i / 2 + j); |
| |
| // Fill the rest of the mask with undef. |
| std::fill(&ShuffleMask[i / 2], ShuffleMask.end(), |
| UndefValue::get(Builder.getInt32Ty())); |
| |
| Value *Shuf = Builder.CreateShuffleVector( |
| TmpVec, UndefValue::get(TmpVec->getType()), |
| ConstantVector::get(ShuffleMask), "rdx.shuf"); |
| |
| if (Op != Instruction::ICmp && Op != Instruction::FCmp) { |
| // Floating point operations had to be 'fast' to enable the reduction. |
| TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op, |
| TmpVec, Shuf, "bin.rdx")); |
| } else { |
| assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid && |
| "Invalid min/max"); |
| TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf); |
| } |
| if (!RedOps.empty()) |
| propagateIRFlags(TmpVec, RedOps); |
| } |
| // The result is in the first element of the vector. |
| return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0)); |
| } |
| |
| /// Create a simple vector reduction specified by an opcode and some |
| /// flags (if generating min/max reductions). |
| Value *llvm::createSimpleTargetReduction( |
| IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode, |
| Value *Src, TargetTransformInfo::ReductionFlags Flags, |
| ArrayRef<Value *> RedOps) { |
| assert(isa<VectorType>(Src->getType()) && "Type must be a vector"); |
| |
| Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType()); |
| std::function<Value *()> BuildFunc; |
| using RD = RecurrenceDescriptor; |
| RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid; |
| // TODO: Support creating ordered reductions. |
| FastMathFlags FMFFast; |
| FMFFast.setFast(); |
| |
| switch (Opcode) { |
| case Instruction::Add: |
| BuildFunc = [&]() { return Builder.CreateAddReduce(Src); }; |
| break; |
| case Instruction::Mul: |
| BuildFunc = [&]() { return Builder.CreateMulReduce(Src); }; |
| break; |
| case Instruction::And: |
| BuildFunc = [&]() { return Builder.CreateAndReduce(Src); }; |
| break; |
| case Instruction::Or: |
| BuildFunc = [&]() { return Builder.CreateOrReduce(Src); }; |
| break; |
| case Instruction::Xor: |
| BuildFunc = [&]() { return Builder.CreateXorReduce(Src); }; |
| break; |
| case Instruction::FAdd: |
| BuildFunc = [&]() { |
| auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src); |
| cast<CallInst>(Rdx)->setFastMathFlags(FMFFast); |
| return Rdx; |
| }; |
| break; |
| case Instruction::FMul: |
| BuildFunc = [&]() { |
| auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src); |
| cast<CallInst>(Rdx)->setFastMathFlags(FMFFast); |
| return Rdx; |
| }; |
| break; |
| case Instruction::ICmp: |
| if (Flags.IsMaxOp) { |
| MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax; |
| BuildFunc = [&]() { |
| return Builder.CreateIntMaxReduce(Src, Flags.IsSigned); |
| }; |
| } else { |
| MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin; |
| BuildFunc = [&]() { |
| return Builder.CreateIntMinReduce(Src, Flags.IsSigned); |
| }; |
| } |
| break; |
| case Instruction::FCmp: |
| if (Flags.IsMaxOp) { |
| MinMaxKind = RD::MRK_FloatMax; |
| BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); }; |
| } else { |
| MinMaxKind = RD::MRK_FloatMin; |
| BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); }; |
| } |
| break; |
| default: |
| llvm_unreachable("Unhandled opcode"); |
| break; |
| } |
| if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags)) |
| return BuildFunc(); |
| return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, RedOps); |
| } |
| |
| /// Create a vector reduction using a given recurrence descriptor. |
| Value *llvm::createTargetReduction(IRBuilder<> &B, |
| const TargetTransformInfo *TTI, |
| RecurrenceDescriptor &Desc, Value *Src, |
| bool NoNaN) { |
| // TODO: Support in-order reductions based on the recurrence descriptor. |
| using RD = RecurrenceDescriptor; |
| RD::RecurrenceKind RecKind = Desc.getRecurrenceKind(); |
| TargetTransformInfo::ReductionFlags Flags; |
| Flags.NoNaN = NoNaN; |
| switch (RecKind) { |
| case RD::RK_FloatAdd: |
| return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags); |
| case RD::RK_FloatMult: |
| return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags); |
| case RD::RK_IntegerAdd: |
| return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags); |
| case RD::RK_IntegerMult: |
| return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags); |
| case RD::RK_IntegerAnd: |
| return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags); |
| case RD::RK_IntegerOr: |
| return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags); |
| case RD::RK_IntegerXor: |
| return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags); |
| case RD::RK_IntegerMinMax: { |
| RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind(); |
| Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax); |
| Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin); |
| return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags); |
| } |
| case RD::RK_FloatMinMax: { |
| Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax; |
| return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags); |
| } |
| default: |
| llvm_unreachable("Unhandled RecKind"); |
| } |
| } |
| |
| void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) { |
| auto *VecOp = dyn_cast<Instruction>(I); |
| if (!VecOp) |
| return; |
| auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0]) |
| : dyn_cast<Instruction>(OpValue); |
| if (!Intersection) |
| return; |
| const unsigned Opcode = Intersection->getOpcode(); |
| VecOp->copyIRFlags(Intersection); |
| for (auto *V : VL) { |
| auto *Instr = dyn_cast<Instruction>(V); |
| if (!Instr) |
| continue; |
| if (OpValue == nullptr || Opcode == Instr->getOpcode()) |
| VecOp->andIRFlags(V); |
| } |
| } |
| |
| bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L, |
| ScalarEvolution &SE) { |
| const SCEV *Zero = SE.getZero(S->getType()); |
| return SE.isAvailableAtLoopEntry(S, L) && |
| SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero); |
| } |
| |
| bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L, |
| ScalarEvolution &SE) { |
| const SCEV *Zero = SE.getZero(S->getType()); |
| return SE.isAvailableAtLoopEntry(S, L) && |
| SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero); |
| } |
| |
| bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, |
| bool Signed) { |
| unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); |
| APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) : |
| APInt::getMinValue(BitWidth); |
| auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; |
| return SE.isAvailableAtLoopEntry(S, L) && |
| SE.isLoopEntryGuardedByCond(L, Predicate, S, |
| SE.getConstant(Min)); |
| } |
| |
| bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE, |
| bool Signed) { |
| unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth(); |
| APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) : |
| APInt::getMaxValue(BitWidth); |
| auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; |
| return SE.isAvailableAtLoopEntry(S, L) && |
| SE.isLoopEntryGuardedByCond(L, Predicate, S, |
| SE.getConstant(Max)); |
| } |