| //===- Local.cpp - Functions to perform local transformations -------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This family of functions perform various local transformations to the |
| // program. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseMapInfo.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/Hashing.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/TinyPtrVector.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/DomTreeUpdater.h" |
| #include "llvm/Analysis/EHPersonalities.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/LazyValueInfo.h" |
| #include "llvm/Analysis/MemoryBuiltins.h" |
| #include "llvm/Analysis/MemorySSAUpdater.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/Analysis/VectorUtils.h" |
| #include "llvm/BinaryFormat/Dwarf.h" |
| #include "llvm/IR/Argument.h" |
| #include "llvm/IR/Attributes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/ConstantRange.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DIBuilder.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GetElementPtrTypeIterator.h" |
| #include "llvm/IR/GlobalObject.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Use.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/Utils/ValueMapper.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <climits> |
| #include <cstdint> |
| #include <iterator> |
| #include <map> |
| #include <utility> |
| |
| using namespace llvm; |
| using namespace llvm::PatternMatch; |
| |
| #define DEBUG_TYPE "local" |
| |
| STATISTIC(NumRemoved, "Number of unreachable basic blocks removed"); |
| |
| //===----------------------------------------------------------------------===// |
| // Local constant propagation. |
| // |
| |
| /// ConstantFoldTerminator - If a terminator instruction is predicated on a |
| /// constant value, convert it into an unconditional branch to the constant |
| /// destination. This is a nontrivial operation because the successors of this |
| /// basic block must have their PHI nodes updated. |
| /// Also calls RecursivelyDeleteTriviallyDeadInstructions() on any branch/switch |
| /// conditions and indirectbr addresses this might make dead if |
| /// DeleteDeadConditions is true. |
| bool llvm::ConstantFoldTerminator(BasicBlock *BB, bool DeleteDeadConditions, |
| const TargetLibraryInfo *TLI, |
| DomTreeUpdater *DTU) { |
| Instruction *T = BB->getTerminator(); |
| IRBuilder<> Builder(T); |
| |
| // Branch - See if we are conditional jumping on constant |
| if (auto *BI = dyn_cast<BranchInst>(T)) { |
| if (BI->isUnconditional()) return false; // Can't optimize uncond branch |
| BasicBlock *Dest1 = BI->getSuccessor(0); |
| BasicBlock *Dest2 = BI->getSuccessor(1); |
| |
| if (auto *Cond = dyn_cast<ConstantInt>(BI->getCondition())) { |
| // Are we branching on constant? |
| // YES. Change to unconditional branch... |
| BasicBlock *Destination = Cond->getZExtValue() ? Dest1 : Dest2; |
| BasicBlock *OldDest = Cond->getZExtValue() ? Dest2 : Dest1; |
| |
| // Let the basic block know that we are letting go of it. Based on this, |
| // it will adjust it's PHI nodes. |
| OldDest->removePredecessor(BB); |
| |
| // Replace the conditional branch with an unconditional one. |
| Builder.CreateBr(Destination); |
| BI->eraseFromParent(); |
| if (DTU) |
| DTU->deleteEdgeRelaxed(BB, OldDest); |
| return true; |
| } |
| |
| if (Dest2 == Dest1) { // Conditional branch to same location? |
| // This branch matches something like this: |
| // br bool %cond, label %Dest, label %Dest |
| // and changes it into: br label %Dest |
| |
| // Let the basic block know that we are letting go of one copy of it. |
| assert(BI->getParent() && "Terminator not inserted in block!"); |
| Dest1->removePredecessor(BI->getParent()); |
| |
| // Replace the conditional branch with an unconditional one. |
| Builder.CreateBr(Dest1); |
| Value *Cond = BI->getCondition(); |
| BI->eraseFromParent(); |
| if (DeleteDeadConditions) |
| RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); |
| return true; |
| } |
| return false; |
| } |
| |
| if (auto *SI = dyn_cast<SwitchInst>(T)) { |
| // If we are switching on a constant, we can convert the switch to an |
| // unconditional branch. |
| auto *CI = dyn_cast<ConstantInt>(SI->getCondition()); |
| BasicBlock *DefaultDest = SI->getDefaultDest(); |
| BasicBlock *TheOnlyDest = DefaultDest; |
| |
| // If the default is unreachable, ignore it when searching for TheOnlyDest. |
| if (isa<UnreachableInst>(DefaultDest->getFirstNonPHIOrDbg()) && |
| SI->getNumCases() > 0) { |
| TheOnlyDest = SI->case_begin()->getCaseSuccessor(); |
| } |
| |
| // Figure out which case it goes to. |
| for (auto i = SI->case_begin(), e = SI->case_end(); i != e;) { |
| // Found case matching a constant operand? |
| if (i->getCaseValue() == CI) { |
| TheOnlyDest = i->getCaseSuccessor(); |
| break; |
| } |
| |
| // Check to see if this branch is going to the same place as the default |
| // dest. If so, eliminate it as an explicit compare. |
| if (i->getCaseSuccessor() == DefaultDest) { |
| MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); |
| unsigned NCases = SI->getNumCases(); |
| // Fold the case metadata into the default if there will be any branches |
| // left, unless the metadata doesn't match the switch. |
| if (NCases > 1 && MD && MD->getNumOperands() == 2 + NCases) { |
| // Collect branch weights into a vector. |
| SmallVector<uint32_t, 8> Weights; |
| for (unsigned MD_i = 1, MD_e = MD->getNumOperands(); MD_i < MD_e; |
| ++MD_i) { |
| auto *CI = mdconst::extract<ConstantInt>(MD->getOperand(MD_i)); |
| Weights.push_back(CI->getValue().getZExtValue()); |
| } |
| // Merge weight of this case to the default weight. |
| unsigned idx = i->getCaseIndex(); |
| Weights[0] += Weights[idx+1]; |
| // Remove weight for this case. |
| std::swap(Weights[idx+1], Weights.back()); |
| Weights.pop_back(); |
| SI->setMetadata(LLVMContext::MD_prof, |
| MDBuilder(BB->getContext()). |
| createBranchWeights(Weights)); |
| } |
| // Remove this entry. |
| BasicBlock *ParentBB = SI->getParent(); |
| DefaultDest->removePredecessor(ParentBB); |
| i = SI->removeCase(i); |
| e = SI->case_end(); |
| if (DTU) |
| DTU->deleteEdgeRelaxed(ParentBB, DefaultDest); |
| continue; |
| } |
| |
| // Otherwise, check to see if the switch only branches to one destination. |
| // We do this by reseting "TheOnlyDest" to null when we find two non-equal |
| // destinations. |
| if (i->getCaseSuccessor() != TheOnlyDest) |
| TheOnlyDest = nullptr; |
| |
| // Increment this iterator as we haven't removed the case. |
| ++i; |
| } |
| |
| if (CI && !TheOnlyDest) { |
| // Branching on a constant, but not any of the cases, go to the default |
| // successor. |
| TheOnlyDest = SI->getDefaultDest(); |
| } |
| |
| // If we found a single destination that we can fold the switch into, do so |
| // now. |
| if (TheOnlyDest) { |
| // Insert the new branch. |
| Builder.CreateBr(TheOnlyDest); |
| BasicBlock *BB = SI->getParent(); |
| std::vector <DominatorTree::UpdateType> Updates; |
| if (DTU) |
| Updates.reserve(SI->getNumSuccessors() - 1); |
| |
| // Remove entries from PHI nodes which we no longer branch to... |
| for (BasicBlock *Succ : successors(SI)) { |
| // Found case matching a constant operand? |
| if (Succ == TheOnlyDest) { |
| TheOnlyDest = nullptr; // Don't modify the first branch to TheOnlyDest |
| } else { |
| Succ->removePredecessor(BB); |
| if (DTU) |
| Updates.push_back({DominatorTree::Delete, BB, Succ}); |
| } |
| } |
| |
| // Delete the old switch. |
| Value *Cond = SI->getCondition(); |
| SI->eraseFromParent(); |
| if (DeleteDeadConditions) |
| RecursivelyDeleteTriviallyDeadInstructions(Cond, TLI); |
| if (DTU) |
| DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); |
| return true; |
| } |
| |
| if (SI->getNumCases() == 1) { |
| // Otherwise, we can fold this switch into a conditional branch |
| // instruction if it has only one non-default destination. |
| auto FirstCase = *SI->case_begin(); |
| Value *Cond = Builder.CreateICmpEQ(SI->getCondition(), |
| FirstCase.getCaseValue(), "cond"); |
| |
| // Insert the new branch. |
| BranchInst *NewBr = Builder.CreateCondBr(Cond, |
| FirstCase.getCaseSuccessor(), |
| SI->getDefaultDest()); |
| MDNode *MD = SI->getMetadata(LLVMContext::MD_prof); |
| if (MD && MD->getNumOperands() == 3) { |
| ConstantInt *SICase = |
| mdconst::dyn_extract<ConstantInt>(MD->getOperand(2)); |
| ConstantInt *SIDef = |
| mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); |
| assert(SICase && SIDef); |
| // The TrueWeight should be the weight for the single case of SI. |
| NewBr->setMetadata(LLVMContext::MD_prof, |
| MDBuilder(BB->getContext()). |
| createBranchWeights(SICase->getValue().getZExtValue(), |
| SIDef->getValue().getZExtValue())); |
| } |
| |
| // Update make.implicit metadata to the newly-created conditional branch. |
| MDNode *MakeImplicitMD = SI->getMetadata(LLVMContext::MD_make_implicit); |
| if (MakeImplicitMD) |
| NewBr->setMetadata(LLVMContext::MD_make_implicit, MakeImplicitMD); |
| |
| // Delete the old switch. |
| SI->eraseFromParent(); |
| return true; |
| } |
| return false; |
| } |
| |
| if (auto *IBI = dyn_cast<IndirectBrInst>(T)) { |
| // indirectbr blockaddress(@F, @BB) -> br label @BB |
| if (auto *BA = |
| dyn_cast<BlockAddress>(IBI->getAddress()->stripPointerCasts())) { |
| BasicBlock *TheOnlyDest = BA->getBasicBlock(); |
| std::vector <DominatorTree::UpdateType> Updates; |
| if (DTU) |
| Updates.reserve(IBI->getNumDestinations() - 1); |
| |
| // Insert the new branch. |
| Builder.CreateBr(TheOnlyDest); |
| |
| for (unsigned i = 0, e = IBI->getNumDestinations(); i != e; ++i) { |
| if (IBI->getDestination(i) == TheOnlyDest) { |
| TheOnlyDest = nullptr; |
| } else { |
| BasicBlock *ParentBB = IBI->getParent(); |
| BasicBlock *DestBB = IBI->getDestination(i); |
| DestBB->removePredecessor(ParentBB); |
| if (DTU) |
| Updates.push_back({DominatorTree::Delete, ParentBB, DestBB}); |
| } |
| } |
| Value *Address = IBI->getAddress(); |
| IBI->eraseFromParent(); |
| if (DeleteDeadConditions) |
| RecursivelyDeleteTriviallyDeadInstructions(Address, TLI); |
| |
| // If we didn't find our destination in the IBI successor list, then we |
| // have undefined behavior. Replace the unconditional branch with an |
| // 'unreachable' instruction. |
| if (TheOnlyDest) { |
| BB->getTerminator()->eraseFromParent(); |
| new UnreachableInst(BB->getContext(), BB); |
| } |
| |
| if (DTU) |
| DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Local dead code elimination. |
| // |
| |
| /// isInstructionTriviallyDead - Return true if the result produced by the |
| /// instruction is not used, and the instruction has no side effects. |
| /// |
| bool llvm::isInstructionTriviallyDead(Instruction *I, |
| const TargetLibraryInfo *TLI) { |
| if (!I->use_empty()) |
| return false; |
| return wouldInstructionBeTriviallyDead(I, TLI); |
| } |
| |
| bool llvm::wouldInstructionBeTriviallyDead(Instruction *I, |
| const TargetLibraryInfo *TLI) { |
| if (I->isTerminator()) |
| return false; |
| |
| // We don't want the landingpad-like instructions removed by anything this |
| // general. |
| if (I->isEHPad()) |
| return false; |
| |
| // We don't want debug info removed by anything this general, unless |
| // debug info is empty. |
| if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(I)) { |
| if (DDI->getAddress()) |
| return false; |
| return true; |
| } |
| if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(I)) { |
| if (DVI->getValue()) |
| return false; |
| return true; |
| } |
| if (DbgLabelInst *DLI = dyn_cast<DbgLabelInst>(I)) { |
| if (DLI->getLabel()) |
| return false; |
| return true; |
| } |
| |
| if (!I->mayHaveSideEffects()) |
| return true; |
| |
| // Special case intrinsics that "may have side effects" but can be deleted |
| // when dead. |
| if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| // Safe to delete llvm.stacksave and launder.invariant.group if dead. |
| if (II->getIntrinsicID() == Intrinsic::stacksave || |
| II->getIntrinsicID() == Intrinsic::launder_invariant_group) |
| return true; |
| |
| // Lifetime intrinsics are dead when their right-hand is undef. |
| if (II->isLifetimeStartOrEnd()) |
| return isa<UndefValue>(II->getArgOperand(1)); |
| |
| // Assumptions are dead if their condition is trivially true. Guards on |
| // true are operationally no-ops. In the future we can consider more |
| // sophisticated tradeoffs for guards considering potential for check |
| // widening, but for now we keep things simple. |
| if (II->getIntrinsicID() == Intrinsic::assume || |
| II->getIntrinsicID() == Intrinsic::experimental_guard) { |
| if (ConstantInt *Cond = dyn_cast<ConstantInt>(II->getArgOperand(0))) |
| return !Cond->isZero(); |
| |
| return false; |
| } |
| } |
| |
| if (isAllocLikeFn(I, TLI)) |
| return true; |
| |
| if (CallInst *CI = isFreeCall(I, TLI)) |
| if (Constant *C = dyn_cast<Constant>(CI->getArgOperand(0))) |
| return C->isNullValue() || isa<UndefValue>(C); |
| |
| if (auto *Call = dyn_cast<CallBase>(I)) |
| if (isMathLibCallNoop(Call, TLI)) |
| return true; |
| |
| return false; |
| } |
| |
| /// RecursivelyDeleteTriviallyDeadInstructions - If the specified value is a |
| /// trivially dead instruction, delete it. If that makes any of its operands |
| /// trivially dead, delete them too, recursively. Return true if any |
| /// instructions were deleted. |
| bool llvm::RecursivelyDeleteTriviallyDeadInstructions( |
| Value *V, const TargetLibraryInfo *TLI, MemorySSAUpdater *MSSAU) { |
| Instruction *I = dyn_cast<Instruction>(V); |
| if (!I || !isInstructionTriviallyDead(I, TLI)) |
| return false; |
| |
| SmallVector<Instruction*, 16> DeadInsts; |
| DeadInsts.push_back(I); |
| RecursivelyDeleteTriviallyDeadInstructions(DeadInsts, TLI, MSSAU); |
| |
| return true; |
| } |
| |
| void llvm::RecursivelyDeleteTriviallyDeadInstructions( |
| SmallVectorImpl<Instruction *> &DeadInsts, const TargetLibraryInfo *TLI, |
| MemorySSAUpdater *MSSAU) { |
| // Process the dead instruction list until empty. |
| while (!DeadInsts.empty()) { |
| Instruction &I = *DeadInsts.pop_back_val(); |
| assert(I.use_empty() && "Instructions with uses are not dead."); |
| assert(isInstructionTriviallyDead(&I, TLI) && |
| "Live instruction found in dead worklist!"); |
| |
| // Don't lose the debug info while deleting the instructions. |
| salvageDebugInfo(I); |
| |
| // Null out all of the instruction's operands to see if any operand becomes |
| // dead as we go. |
| for (Use &OpU : I.operands()) { |
| Value *OpV = OpU.get(); |
| OpU.set(nullptr); |
| |
| if (!OpV->use_empty()) |
| continue; |
| |
| // If the operand is an instruction that became dead as we nulled out the |
| // operand, and if it is 'trivially' dead, delete it in a future loop |
| // iteration. |
| if (Instruction *OpI = dyn_cast<Instruction>(OpV)) |
| if (isInstructionTriviallyDead(OpI, TLI)) |
| DeadInsts.push_back(OpI); |
| } |
| if (MSSAU) |
| MSSAU->removeMemoryAccess(&I); |
| |
| I.eraseFromParent(); |
| } |
| } |
| |
| bool llvm::replaceDbgUsesWithUndef(Instruction *I) { |
| SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; |
| findDbgUsers(DbgUsers, I); |
| for (auto *DII : DbgUsers) { |
| Value *Undef = UndefValue::get(I->getType()); |
| DII->setOperand(0, MetadataAsValue::get(DII->getContext(), |
| ValueAsMetadata::get(Undef))); |
| } |
| return !DbgUsers.empty(); |
| } |
| |
| /// areAllUsesEqual - Check whether the uses of a value are all the same. |
| /// This is similar to Instruction::hasOneUse() except this will also return |
| /// true when there are no uses or multiple uses that all refer to the same |
| /// value. |
| static bool areAllUsesEqual(Instruction *I) { |
| Value::user_iterator UI = I->user_begin(); |
| Value::user_iterator UE = I->user_end(); |
| if (UI == UE) |
| return true; |
| |
| User *TheUse = *UI; |
| for (++UI; UI != UE; ++UI) { |
| if (*UI != TheUse) |
| return false; |
| } |
| return true; |
| } |
| |
| /// RecursivelyDeleteDeadPHINode - If the specified value is an effectively |
| /// dead PHI node, due to being a def-use chain of single-use nodes that |
| /// either forms a cycle or is terminated by a trivially dead instruction, |
| /// delete it. If that makes any of its operands trivially dead, delete them |
| /// too, recursively. Return true if a change was made. |
| bool llvm::RecursivelyDeleteDeadPHINode(PHINode *PN, |
| const TargetLibraryInfo *TLI) { |
| SmallPtrSet<Instruction*, 4> Visited; |
| for (Instruction *I = PN; areAllUsesEqual(I) && !I->mayHaveSideEffects(); |
| I = cast<Instruction>(*I->user_begin())) { |
| if (I->use_empty()) |
| return RecursivelyDeleteTriviallyDeadInstructions(I, TLI); |
| |
| // If we find an instruction more than once, we're on a cycle that |
| // won't prove fruitful. |
| if (!Visited.insert(I).second) { |
| // Break the cycle and delete the instruction and its operands. |
| I->replaceAllUsesWith(UndefValue::get(I->getType())); |
| (void)RecursivelyDeleteTriviallyDeadInstructions(I, TLI); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| static bool |
| simplifyAndDCEInstruction(Instruction *I, |
| SmallSetVector<Instruction *, 16> &WorkList, |
| const DataLayout &DL, |
| const TargetLibraryInfo *TLI) { |
| if (isInstructionTriviallyDead(I, TLI)) { |
| salvageDebugInfo(*I); |
| |
| // Null out all of the instruction's operands to see if any operand becomes |
| // dead as we go. |
| for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { |
| Value *OpV = I->getOperand(i); |
| I->setOperand(i, nullptr); |
| |
| if (!OpV->use_empty() || I == OpV) |
| continue; |
| |
| // If the operand is an instruction that became dead as we nulled out the |
| // operand, and if it is 'trivially' dead, delete it in a future loop |
| // iteration. |
| if (Instruction *OpI = dyn_cast<Instruction>(OpV)) |
| if (isInstructionTriviallyDead(OpI, TLI)) |
| WorkList.insert(OpI); |
| } |
| |
| I->eraseFromParent(); |
| |
| return true; |
| } |
| |
| if (Value *SimpleV = SimplifyInstruction(I, DL)) { |
| // Add the users to the worklist. CAREFUL: an instruction can use itself, |
| // in the case of a phi node. |
| for (User *U : I->users()) { |
| if (U != I) { |
| WorkList.insert(cast<Instruction>(U)); |
| } |
| } |
| |
| // Replace the instruction with its simplified value. |
| bool Changed = false; |
| if (!I->use_empty()) { |
| I->replaceAllUsesWith(SimpleV); |
| Changed = true; |
| } |
| if (isInstructionTriviallyDead(I, TLI)) { |
| I->eraseFromParent(); |
| Changed = true; |
| } |
| return Changed; |
| } |
| return false; |
| } |
| |
| /// SimplifyInstructionsInBlock - Scan the specified basic block and try to |
| /// simplify any instructions in it and recursively delete dead instructions. |
| /// |
| /// This returns true if it changed the code, note that it can delete |
| /// instructions in other blocks as well in this block. |
| bool llvm::SimplifyInstructionsInBlock(BasicBlock *BB, |
| const TargetLibraryInfo *TLI) { |
| bool MadeChange = false; |
| const DataLayout &DL = BB->getModule()->getDataLayout(); |
| |
| #ifndef NDEBUG |
| // In debug builds, ensure that the terminator of the block is never replaced |
| // or deleted by these simplifications. The idea of simplification is that it |
| // cannot introduce new instructions, and there is no way to replace the |
| // terminator of a block without introducing a new instruction. |
| AssertingVH<Instruction> TerminatorVH(&BB->back()); |
| #endif |
| |
| SmallSetVector<Instruction *, 16> WorkList; |
| // Iterate over the original function, only adding insts to the worklist |
| // if they actually need to be revisited. This avoids having to pre-init |
| // the worklist with the entire function's worth of instructions. |
| for (BasicBlock::iterator BI = BB->begin(), E = std::prev(BB->end()); |
| BI != E;) { |
| assert(!BI->isTerminator()); |
| Instruction *I = &*BI; |
| ++BI; |
| |
| // We're visiting this instruction now, so make sure it's not in the |
| // worklist from an earlier visit. |
| if (!WorkList.count(I)) |
| MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); |
| } |
| |
| while (!WorkList.empty()) { |
| Instruction *I = WorkList.pop_back_val(); |
| MadeChange |= simplifyAndDCEInstruction(I, WorkList, DL, TLI); |
| } |
| return MadeChange; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Control Flow Graph Restructuring. |
| // |
| |
| /// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this |
| /// method is called when we're about to delete Pred as a predecessor of BB. If |
| /// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred. |
| /// |
| /// Unlike the removePredecessor method, this attempts to simplify uses of PHI |
| /// nodes that collapse into identity values. For example, if we have: |
| /// x = phi(1, 0, 0, 0) |
| /// y = and x, z |
| /// |
| /// .. and delete the predecessor corresponding to the '1', this will attempt to |
| /// recursively fold the and to 0. |
| void llvm::RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred, |
| DomTreeUpdater *DTU) { |
| // This only adjusts blocks with PHI nodes. |
| if (!isa<PHINode>(BB->begin())) |
| return; |
| |
| // Remove the entries for Pred from the PHI nodes in BB, but do not simplify |
| // them down. This will leave us with single entry phi nodes and other phis |
| // that can be removed. |
| BB->removePredecessor(Pred, true); |
| |
| WeakTrackingVH PhiIt = &BB->front(); |
| while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) { |
| PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt)); |
| Value *OldPhiIt = PhiIt; |
| |
| if (!recursivelySimplifyInstruction(PN)) |
| continue; |
| |
| // If recursive simplification ended up deleting the next PHI node we would |
| // iterate to, then our iterator is invalid, restart scanning from the top |
| // of the block. |
| if (PhiIt != OldPhiIt) PhiIt = &BB->front(); |
| } |
| if (DTU) |
| DTU->deleteEdgeRelaxed(Pred, BB); |
| } |
| |
| /// MergeBasicBlockIntoOnlyPred - DestBB is a block with one predecessor and its |
| /// predecessor is known to have one successor (DestBB!). Eliminate the edge |
| /// between them, moving the instructions in the predecessor into DestBB and |
| /// deleting the predecessor block. |
| void llvm::MergeBasicBlockIntoOnlyPred(BasicBlock *DestBB, |
| DomTreeUpdater *DTU) { |
| |
| // If BB has single-entry PHI nodes, fold them. |
| while (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { |
| Value *NewVal = PN->getIncomingValue(0); |
| // Replace self referencing PHI with undef, it must be dead. |
| if (NewVal == PN) NewVal = UndefValue::get(PN->getType()); |
| PN->replaceAllUsesWith(NewVal); |
| PN->eraseFromParent(); |
| } |
| |
| BasicBlock *PredBB = DestBB->getSinglePredecessor(); |
| assert(PredBB && "Block doesn't have a single predecessor!"); |
| |
| bool ReplaceEntryBB = false; |
| if (PredBB == &DestBB->getParent()->getEntryBlock()) |
| ReplaceEntryBB = true; |
| |
| // DTU updates: Collect all the edges that enter |
| // PredBB. These dominator edges will be redirected to DestBB. |
| SmallVector<DominatorTree::UpdateType, 32> Updates; |
| |
| if (DTU) { |
| Updates.push_back({DominatorTree::Delete, PredBB, DestBB}); |
| for (auto I = pred_begin(PredBB), E = pred_end(PredBB); I != E; ++I) { |
| Updates.push_back({DominatorTree::Delete, *I, PredBB}); |
| // This predecessor of PredBB may already have DestBB as a successor. |
| if (llvm::find(successors(*I), DestBB) == succ_end(*I)) |
| Updates.push_back({DominatorTree::Insert, *I, DestBB}); |
| } |
| } |
| |
| // Zap anything that took the address of DestBB. Not doing this will give the |
| // address an invalid value. |
| if (DestBB->hasAddressTaken()) { |
| BlockAddress *BA = BlockAddress::get(DestBB); |
| Constant *Replacement = |
| ConstantInt::get(Type::getInt32Ty(BA->getContext()), 1); |
| BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, |
| BA->getType())); |
| BA->destroyConstant(); |
| } |
| |
| // Anything that branched to PredBB now branches to DestBB. |
| PredBB->replaceAllUsesWith(DestBB); |
| |
| // Splice all the instructions from PredBB to DestBB. |
| PredBB->getTerminator()->eraseFromParent(); |
| DestBB->getInstList().splice(DestBB->begin(), PredBB->getInstList()); |
| new UnreachableInst(PredBB->getContext(), PredBB); |
| |
| // If the PredBB is the entry block of the function, move DestBB up to |
| // become the entry block after we erase PredBB. |
| if (ReplaceEntryBB) |
| DestBB->moveAfter(PredBB); |
| |
| if (DTU) { |
| assert(PredBB->getInstList().size() == 1 && |
| isa<UnreachableInst>(PredBB->getTerminator()) && |
| "The successor list of PredBB isn't empty before " |
| "applying corresponding DTU updates."); |
| DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); |
| DTU->deleteBB(PredBB); |
| // Recalculation of DomTree is needed when updating a forward DomTree and |
| // the Entry BB is replaced. |
| if (ReplaceEntryBB && DTU->hasDomTree()) { |
| // The entry block was removed and there is no external interface for |
| // the dominator tree to be notified of this change. In this corner-case |
| // we recalculate the entire tree. |
| DTU->recalculate(*(DestBB->getParent())); |
| } |
| } |
| |
| else { |
| PredBB->eraseFromParent(); // Nuke BB if DTU is nullptr. |
| } |
| } |
| |
| /// CanMergeValues - Return true if we can choose one of these values to use |
| /// in place of the other. Note that we will always choose the non-undef |
| /// value to keep. |
| static bool CanMergeValues(Value *First, Value *Second) { |
| return First == Second || isa<UndefValue>(First) || isa<UndefValue>(Second); |
| } |
| |
| /// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an |
| /// almost-empty BB ending in an unconditional branch to Succ, into Succ. |
| /// |
| /// Assumption: Succ is the single successor for BB. |
| static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) { |
| assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!"); |
| |
| LLVM_DEBUG(dbgs() << "Looking to fold " << BB->getName() << " into " |
| << Succ->getName() << "\n"); |
| // Shortcut, if there is only a single predecessor it must be BB and merging |
| // is always safe |
| if (Succ->getSinglePredecessor()) return true; |
| |
| // Make a list of the predecessors of BB |
| SmallPtrSet<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB)); |
| |
| // Look at all the phi nodes in Succ, to see if they present a conflict when |
| // merging these blocks |
| for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { |
| PHINode *PN = cast<PHINode>(I); |
| |
| // If the incoming value from BB is again a PHINode in |
| // BB which has the same incoming value for *PI as PN does, we can |
| // merge the phi nodes and then the blocks can still be merged |
| PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB)); |
| if (BBPN && BBPN->getParent() == BB) { |
| for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { |
| BasicBlock *IBB = PN->getIncomingBlock(PI); |
| if (BBPreds.count(IBB) && |
| !CanMergeValues(BBPN->getIncomingValueForBlock(IBB), |
| PN->getIncomingValue(PI))) { |
| LLVM_DEBUG(dbgs() |
| << "Can't fold, phi node " << PN->getName() << " in " |
| << Succ->getName() << " is conflicting with " |
| << BBPN->getName() << " with regard to common predecessor " |
| << IBB->getName() << "\n"); |
| return false; |
| } |
| } |
| } else { |
| Value* Val = PN->getIncomingValueForBlock(BB); |
| for (unsigned PI = 0, PE = PN->getNumIncomingValues(); PI != PE; ++PI) { |
| // See if the incoming value for the common predecessor is equal to the |
| // one for BB, in which case this phi node will not prevent the merging |
| // of the block. |
| BasicBlock *IBB = PN->getIncomingBlock(PI); |
| if (BBPreds.count(IBB) && |
| !CanMergeValues(Val, PN->getIncomingValue(PI))) { |
| LLVM_DEBUG(dbgs() << "Can't fold, phi node " << PN->getName() |
| << " in " << Succ->getName() |
| << " is conflicting with regard to common " |
| << "predecessor " << IBB->getName() << "\n"); |
| return false; |
| } |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| using PredBlockVector = SmallVector<BasicBlock *, 16>; |
| using IncomingValueMap = DenseMap<BasicBlock *, Value *>; |
| |
| /// Determines the value to use as the phi node input for a block. |
| /// |
| /// Select between \p OldVal any value that we know flows from \p BB |
| /// to a particular phi on the basis of which one (if either) is not |
| /// undef. Update IncomingValues based on the selected value. |
| /// |
| /// \param OldVal The value we are considering selecting. |
| /// \param BB The block that the value flows in from. |
| /// \param IncomingValues A map from block-to-value for other phi inputs |
| /// that we have examined. |
| /// |
| /// \returns the selected value. |
| static Value *selectIncomingValueForBlock(Value *OldVal, BasicBlock *BB, |
| IncomingValueMap &IncomingValues) { |
| if (!isa<UndefValue>(OldVal)) { |
| assert((!IncomingValues.count(BB) || |
| IncomingValues.find(BB)->second == OldVal) && |
| "Expected OldVal to match incoming value from BB!"); |
| |
| IncomingValues.insert(std::make_pair(BB, OldVal)); |
| return OldVal; |
| } |
| |
| IncomingValueMap::const_iterator It = IncomingValues.find(BB); |
| if (It != IncomingValues.end()) return It->second; |
| |
| return OldVal; |
| } |
| |
| /// Create a map from block to value for the operands of a |
| /// given phi. |
| /// |
| /// Create a map from block to value for each non-undef value flowing |
| /// into \p PN. |
| /// |
| /// \param PN The phi we are collecting the map for. |
| /// \param IncomingValues [out] The map from block to value for this phi. |
| static void gatherIncomingValuesToPhi(PHINode *PN, |
| IncomingValueMap &IncomingValues) { |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| BasicBlock *BB = PN->getIncomingBlock(i); |
| Value *V = PN->getIncomingValue(i); |
| |
| if (!isa<UndefValue>(V)) |
| IncomingValues.insert(std::make_pair(BB, V)); |
| } |
| } |
| |
| /// Replace the incoming undef values to a phi with the values |
| /// from a block-to-value map. |
| /// |
| /// \param PN The phi we are replacing the undefs in. |
| /// \param IncomingValues A map from block to value. |
| static void replaceUndefValuesInPhi(PHINode *PN, |
| const IncomingValueMap &IncomingValues) { |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| Value *V = PN->getIncomingValue(i); |
| |
| if (!isa<UndefValue>(V)) continue; |
| |
| BasicBlock *BB = PN->getIncomingBlock(i); |
| IncomingValueMap::const_iterator It = IncomingValues.find(BB); |
| if (It == IncomingValues.end()) continue; |
| |
| PN->setIncomingValue(i, It->second); |
| } |
| } |
| |
| /// Replace a value flowing from a block to a phi with |
| /// potentially multiple instances of that value flowing from the |
| /// block's predecessors to the phi. |
| /// |
| /// \param BB The block with the value flowing into the phi. |
| /// \param BBPreds The predecessors of BB. |
| /// \param PN The phi that we are updating. |
| static void redirectValuesFromPredecessorsToPhi(BasicBlock *BB, |
| const PredBlockVector &BBPreds, |
| PHINode *PN) { |
| Value *OldVal = PN->removeIncomingValue(BB, false); |
| assert(OldVal && "No entry in PHI for Pred BB!"); |
| |
| IncomingValueMap IncomingValues; |
| |
| // We are merging two blocks - BB, and the block containing PN - and |
| // as a result we need to redirect edges from the predecessors of BB |
| // to go to the block containing PN, and update PN |
| // accordingly. Since we allow merging blocks in the case where the |
| // predecessor and successor blocks both share some predecessors, |
| // and where some of those common predecessors might have undef |
| // values flowing into PN, we want to rewrite those values to be |
| // consistent with the non-undef values. |
| |
| gatherIncomingValuesToPhi(PN, IncomingValues); |
| |
| // If this incoming value is one of the PHI nodes in BB, the new entries |
| // in the PHI node are the entries from the old PHI. |
| if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) { |
| PHINode *OldValPN = cast<PHINode>(OldVal); |
| for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i) { |
| // Note that, since we are merging phi nodes and BB and Succ might |
| // have common predecessors, we could end up with a phi node with |
| // identical incoming branches. This will be cleaned up later (and |
| // will trigger asserts if we try to clean it up now, without also |
| // simplifying the corresponding conditional branch). |
| BasicBlock *PredBB = OldValPN->getIncomingBlock(i); |
| Value *PredVal = OldValPN->getIncomingValue(i); |
| Value *Selected = selectIncomingValueForBlock(PredVal, PredBB, |
| IncomingValues); |
| |
| // And add a new incoming value for this predecessor for the |
| // newly retargeted branch. |
| PN->addIncoming(Selected, PredBB); |
| } |
| } else { |
| for (unsigned i = 0, e = BBPreds.size(); i != e; ++i) { |
| // Update existing incoming values in PN for this |
| // predecessor of BB. |
| BasicBlock *PredBB = BBPreds[i]; |
| Value *Selected = selectIncomingValueForBlock(OldVal, PredBB, |
| IncomingValues); |
| |
| // And add a new incoming value for this predecessor for the |
| // newly retargeted branch. |
| PN->addIncoming(Selected, PredBB); |
| } |
| } |
| |
| replaceUndefValuesInPhi(PN, IncomingValues); |
| } |
| |
| /// TryToSimplifyUncondBranchFromEmptyBlock - BB is known to contain an |
| /// unconditional branch, and contains no instructions other than PHI nodes, |
| /// potential side-effect free intrinsics and the branch. If possible, |
| /// eliminate BB by rewriting all the predecessors to branch to the successor |
| /// block and return true. If we can't transform, return false. |
| bool llvm::TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB, |
| DomTreeUpdater *DTU) { |
| assert(BB != &BB->getParent()->getEntryBlock() && |
| "TryToSimplifyUncondBranchFromEmptyBlock called on entry block!"); |
| |
| // We can't eliminate infinite loops. |
| BasicBlock *Succ = cast<BranchInst>(BB->getTerminator())->getSuccessor(0); |
| if (BB == Succ) return false; |
| |
| // Check to see if merging these blocks would cause conflicts for any of the |
| // phi nodes in BB or Succ. If not, we can safely merge. |
| if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false; |
| |
| // Check for cases where Succ has multiple predecessors and a PHI node in BB |
| // has uses which will not disappear when the PHI nodes are merged. It is |
| // possible to handle such cases, but difficult: it requires checking whether |
| // BB dominates Succ, which is non-trivial to calculate in the case where |
| // Succ has multiple predecessors. Also, it requires checking whether |
| // constructing the necessary self-referential PHI node doesn't introduce any |
| // conflicts; this isn't too difficult, but the previous code for doing this |
| // was incorrect. |
| // |
| // Note that if this check finds a live use, BB dominates Succ, so BB is |
| // something like a loop pre-header (or rarely, a part of an irreducible CFG); |
| // folding the branch isn't profitable in that case anyway. |
| if (!Succ->getSinglePredecessor()) { |
| BasicBlock::iterator BBI = BB->begin(); |
| while (isa<PHINode>(*BBI)) { |
| for (Use &U : BBI->uses()) { |
| if (PHINode* PN = dyn_cast<PHINode>(U.getUser())) { |
| if (PN->getIncomingBlock(U) != BB) |
| return false; |
| } else { |
| return false; |
| } |
| } |
| ++BBI; |
| } |
| } |
| |
| // We cannot fold the block if it's a branch to an already present callbr |
| // successor because that creates duplicate successors. |
| for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { |
| if (auto *CBI = dyn_cast<CallBrInst>((*I)->getTerminator())) { |
| if (Succ == CBI->getDefaultDest()) |
| return false; |
| for (unsigned i = 0, e = CBI->getNumIndirectDests(); i != e; ++i) |
| if (Succ == CBI->getIndirectDest(i)) |
| return false; |
| } |
| } |
| |
| LLVM_DEBUG(dbgs() << "Killing Trivial BB: \n" << *BB); |
| |
| SmallVector<DominatorTree::UpdateType, 32> Updates; |
| if (DTU) { |
| Updates.push_back({DominatorTree::Delete, BB, Succ}); |
| // All predecessors of BB will be moved to Succ. |
| for (auto I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { |
| Updates.push_back({DominatorTree::Delete, *I, BB}); |
| // This predecessor of BB may already have Succ as a successor. |
| if (llvm::find(successors(*I), Succ) == succ_end(*I)) |
| Updates.push_back({DominatorTree::Insert, *I, Succ}); |
| } |
| } |
| |
| if (isa<PHINode>(Succ->begin())) { |
| // If there is more than one pred of succ, and there are PHI nodes in |
| // the successor, then we need to add incoming edges for the PHI nodes |
| // |
| const PredBlockVector BBPreds(pred_begin(BB), pred_end(BB)); |
| |
| // Loop over all of the PHI nodes in the successor of BB. |
| for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) { |
| PHINode *PN = cast<PHINode>(I); |
| |
| redirectValuesFromPredecessorsToPhi(BB, BBPreds, PN); |
| } |
| } |
| |
| if (Succ->getSinglePredecessor()) { |
| // BB is the only predecessor of Succ, so Succ will end up with exactly |
| // the same predecessors BB had. |
| |
| // Copy over any phi, debug or lifetime instruction. |
| BB->getTerminator()->eraseFromParent(); |
| Succ->getInstList().splice(Succ->getFirstNonPHI()->getIterator(), |
| BB->getInstList()); |
| } else { |
| while (PHINode *PN = dyn_cast<PHINode>(&BB->front())) { |
| // We explicitly check for such uses in CanPropagatePredecessorsForPHIs. |
| assert(PN->use_empty() && "There shouldn't be any uses here!"); |
| PN->eraseFromParent(); |
| } |
| } |
| |
| // If the unconditional branch we replaced contains llvm.loop metadata, we |
| // add the metadata to the branch instructions in the predecessors. |
| unsigned LoopMDKind = BB->getContext().getMDKindID("llvm.loop"); |
| Instruction *TI = BB->getTerminator(); |
| if (TI) |
| if (MDNode *LoopMD = TI->getMetadata(LoopMDKind)) |
| for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { |
| BasicBlock *Pred = *PI; |
| Pred->getTerminator()->setMetadata(LoopMDKind, LoopMD); |
| } |
| |
| // Everything that jumped to BB now goes to Succ. |
| BB->replaceAllUsesWith(Succ); |
| if (!Succ->hasName()) Succ->takeName(BB); |
| |
| // Clear the successor list of BB to match updates applying to DTU later. |
| if (BB->getTerminator()) |
| BB->getInstList().pop_back(); |
| new UnreachableInst(BB->getContext(), BB); |
| assert(succ_empty(BB) && "The successor list of BB isn't empty before " |
| "applying corresponding DTU updates."); |
| |
| if (DTU) { |
| DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); |
| DTU->deleteBB(BB); |
| } else { |
| BB->eraseFromParent(); // Delete the old basic block. |
| } |
| return true; |
| } |
| |
| /// EliminateDuplicatePHINodes - Check for and eliminate duplicate PHI |
| /// nodes in this block. This doesn't try to be clever about PHI nodes |
| /// which differ only in the order of the incoming values, but instcombine |
| /// orders them so it usually won't matter. |
| bool llvm::EliminateDuplicatePHINodes(BasicBlock *BB) { |
| // This implementation doesn't currently consider undef operands |
| // specially. Theoretically, two phis which are identical except for |
| // one having an undef where the other doesn't could be collapsed. |
| |
| struct PHIDenseMapInfo { |
| static PHINode *getEmptyKey() { |
| return DenseMapInfo<PHINode *>::getEmptyKey(); |
| } |
| |
| static PHINode *getTombstoneKey() { |
| return DenseMapInfo<PHINode *>::getTombstoneKey(); |
| } |
| |
| static unsigned getHashValue(PHINode *PN) { |
| // Compute a hash value on the operands. Instcombine will likely have |
| // sorted them, which helps expose duplicates, but we have to check all |
| // the operands to be safe in case instcombine hasn't run. |
| return static_cast<unsigned>(hash_combine( |
| hash_combine_range(PN->value_op_begin(), PN->value_op_end()), |
| hash_combine_range(PN->block_begin(), PN->block_end()))); |
| } |
| |
| static bool isEqual(PHINode *LHS, PHINode *RHS) { |
| if (LHS == getEmptyKey() || LHS == getTombstoneKey() || |
| RHS == getEmptyKey() || RHS == getTombstoneKey()) |
| return LHS == RHS; |
| return LHS->isIdenticalTo(RHS); |
| } |
| }; |
| |
| // Set of unique PHINodes. |
| DenseSet<PHINode *, PHIDenseMapInfo> PHISet; |
| |
| // Examine each PHI. |
| bool Changed = false; |
| for (auto I = BB->begin(); PHINode *PN = dyn_cast<PHINode>(I++);) { |
| auto Inserted = PHISet.insert(PN); |
| if (!Inserted.second) { |
| // A duplicate. Replace this PHI with its duplicate. |
| PN->replaceAllUsesWith(*Inserted.first); |
| PN->eraseFromParent(); |
| Changed = true; |
| |
| // The RAUW can change PHIs that we already visited. Start over from the |
| // beginning. |
| PHISet.clear(); |
| I = BB->begin(); |
| } |
| } |
| |
| return Changed; |
| } |
| |
| /// enforceKnownAlignment - If the specified pointer points to an object that |
| /// we control, modify the object's alignment to PrefAlign. This isn't |
| /// often possible though. If alignment is important, a more reliable approach |
| /// is to simply align all global variables and allocation instructions to |
| /// their preferred alignment from the beginning. |
| static unsigned enforceKnownAlignment(Value *V, unsigned Align, |
| unsigned PrefAlign, |
| const DataLayout &DL) { |
| assert(PrefAlign > Align); |
| |
| V = V->stripPointerCasts(); |
| |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) { |
| // TODO: ideally, computeKnownBits ought to have used |
| // AllocaInst::getAlignment() in its computation already, making |
| // the below max redundant. But, as it turns out, |
| // stripPointerCasts recurses through infinite layers of bitcasts, |
| // while computeKnownBits is not allowed to traverse more than 6 |
| // levels. |
| Align = std::max(AI->getAlignment(), Align); |
| if (PrefAlign <= Align) |
| return Align; |
| |
| // If the preferred alignment is greater than the natural stack alignment |
| // then don't round up. This avoids dynamic stack realignment. |
| if (DL.exceedsNaturalStackAlignment(PrefAlign)) |
| return Align; |
| AI->setAlignment(PrefAlign); |
| return PrefAlign; |
| } |
| |
| if (auto *GO = dyn_cast<GlobalObject>(V)) { |
| // TODO: as above, this shouldn't be necessary. |
| Align = std::max(GO->getAlignment(), Align); |
| if (PrefAlign <= Align) |
| return Align; |
| |
| // If there is a large requested alignment and we can, bump up the alignment |
| // of the global. If the memory we set aside for the global may not be the |
| // memory used by the final program then it is impossible for us to reliably |
| // enforce the preferred alignment. |
| if (!GO->canIncreaseAlignment()) |
| return Align; |
| |
| GO->setAlignment(PrefAlign); |
| return PrefAlign; |
| } |
| |
| return Align; |
| } |
| |
| unsigned llvm::getOrEnforceKnownAlignment(Value *V, unsigned PrefAlign, |
| const DataLayout &DL, |
| const Instruction *CxtI, |
| AssumptionCache *AC, |
| const DominatorTree *DT) { |
| assert(V->getType()->isPointerTy() && |
| "getOrEnforceKnownAlignment expects a pointer!"); |
| |
| KnownBits Known = computeKnownBits(V, DL, 0, AC, CxtI, DT); |
| unsigned TrailZ = Known.countMinTrailingZeros(); |
| |
| // Avoid trouble with ridiculously large TrailZ values, such as |
| // those computed from a null pointer. |
| TrailZ = std::min(TrailZ, unsigned(sizeof(unsigned) * CHAR_BIT - 1)); |
| |
| unsigned Align = 1u << std::min(Known.getBitWidth() - 1, TrailZ); |
| |
| // LLVM doesn't support alignments larger than this currently. |
| Align = std::min(Align, +Value::MaximumAlignment); |
| |
| if (PrefAlign > Align) |
| Align = enforceKnownAlignment(V, Align, PrefAlign, DL); |
| |
| // We don't need to make any adjustment. |
| return Align; |
| } |
| |
| ///===---------------------------------------------------------------------===// |
| /// Dbg Intrinsic utilities |
| /// |
| |
| /// See if there is a dbg.value intrinsic for DIVar before I. |
| static bool LdStHasDebugValue(DILocalVariable *DIVar, DIExpression *DIExpr, |
| Instruction *I) { |
| // Since we can't guarantee that the original dbg.declare instrinsic |
| // is removed by LowerDbgDeclare(), we need to make sure that we are |
| // not inserting the same dbg.value intrinsic over and over. |
| BasicBlock::InstListType::iterator PrevI(I); |
| if (PrevI != I->getParent()->getInstList().begin()) { |
| --PrevI; |
| if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(PrevI)) |
| if (DVI->getValue() == I->getOperand(0) && |
| DVI->getVariable() == DIVar && |
| DVI->getExpression() == DIExpr) |
| return true; |
| } |
| return false; |
| } |
| |
| /// See if there is a dbg.value intrinsic for DIVar for the PHI node. |
| static bool PhiHasDebugValue(DILocalVariable *DIVar, |
| DIExpression *DIExpr, |
| PHINode *APN) { |
| // Since we can't guarantee that the original dbg.declare instrinsic |
| // is removed by LowerDbgDeclare(), we need to make sure that we are |
| // not inserting the same dbg.value intrinsic over and over. |
| SmallVector<DbgValueInst *, 1> DbgValues; |
| findDbgValues(DbgValues, APN); |
| for (auto *DVI : DbgValues) { |
| assert(DVI->getValue() == APN); |
| if ((DVI->getVariable() == DIVar) && (DVI->getExpression() == DIExpr)) |
| return true; |
| } |
| return false; |
| } |
| |
| /// Check if the alloc size of \p ValTy is large enough to cover the variable |
| /// (or fragment of the variable) described by \p DII. |
| /// |
| /// This is primarily intended as a helper for the different |
| /// ConvertDebugDeclareToDebugValue functions. The dbg.declare/dbg.addr that is |
| /// converted describes an alloca'd variable, so we need to use the |
| /// alloc size of the value when doing the comparison. E.g. an i1 value will be |
| /// identified as covering an n-bit fragment, if the store size of i1 is at |
| /// least n bits. |
| static bool valueCoversEntireFragment(Type *ValTy, DbgVariableIntrinsic *DII) { |
| const DataLayout &DL = DII->getModule()->getDataLayout(); |
| uint64_t ValueSize = DL.getTypeAllocSizeInBits(ValTy); |
| if (auto FragmentSize = DII->getFragmentSizeInBits()) |
| return ValueSize >= *FragmentSize; |
| // We can't always calculate the size of the DI variable (e.g. if it is a |
| // VLA). Try to use the size of the alloca that the dbg intrinsic describes |
| // intead. |
| if (DII->isAddressOfVariable()) |
| if (auto *AI = dyn_cast_or_null<AllocaInst>(DII->getVariableLocation())) |
| if (auto FragmentSize = AI->getAllocationSizeInBits(DL)) |
| return ValueSize >= *FragmentSize; |
| // Could not determine size of variable. Conservatively return false. |
| return false; |
| } |
| |
| /// Inserts a llvm.dbg.value intrinsic before a store to an alloca'd value |
| /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. |
| void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, |
| StoreInst *SI, DIBuilder &Builder) { |
| assert(DII->isAddressOfVariable()); |
| auto *DIVar = DII->getVariable(); |
| assert(DIVar && "Missing variable"); |
| auto *DIExpr = DII->getExpression(); |
| Value *DV = SI->getOperand(0); |
| |
| if (!valueCoversEntireFragment(SI->getValueOperand()->getType(), DII)) { |
| // FIXME: If storing to a part of the variable described by the dbg.declare, |
| // then we want to insert a dbg.value for the corresponding fragment. |
| LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " |
| << *DII << '\n'); |
| // For now, when there is a store to parts of the variable (but we do not |
| // know which part) we insert an dbg.value instrinsic to indicate that we |
| // know nothing about the variable's content. |
| DV = UndefValue::get(DV->getType()); |
| if (!LdStHasDebugValue(DIVar, DIExpr, SI)) |
| Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), |
| SI); |
| return; |
| } |
| |
| if (!LdStHasDebugValue(DIVar, DIExpr, SI)) |
| Builder.insertDbgValueIntrinsic(DV, DIVar, DIExpr, DII->getDebugLoc(), |
| SI); |
| } |
| |
| /// Inserts a llvm.dbg.value intrinsic before a load of an alloca'd value |
| /// that has an associated llvm.dbg.declare or llvm.dbg.addr intrinsic. |
| void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, |
| LoadInst *LI, DIBuilder &Builder) { |
| auto *DIVar = DII->getVariable(); |
| auto *DIExpr = DII->getExpression(); |
| assert(DIVar && "Missing variable"); |
| |
| if (LdStHasDebugValue(DIVar, DIExpr, LI)) |
| return; |
| |
| if (!valueCoversEntireFragment(LI->getType(), DII)) { |
| // FIXME: If only referring to a part of the variable described by the |
| // dbg.declare, then we want to insert a dbg.value for the corresponding |
| // fragment. |
| LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " |
| << *DII << '\n'); |
| return; |
| } |
| |
| // We are now tracking the loaded value instead of the address. In the |
| // future if multi-location support is added to the IR, it might be |
| // preferable to keep tracking both the loaded value and the original |
| // address in case the alloca can not be elided. |
| Instruction *DbgValue = Builder.insertDbgValueIntrinsic( |
| LI, DIVar, DIExpr, DII->getDebugLoc(), (Instruction *)nullptr); |
| DbgValue->insertAfter(LI); |
| } |
| |
| /// Inserts a llvm.dbg.value intrinsic after a phi that has an associated |
| /// llvm.dbg.declare or llvm.dbg.addr intrinsic. |
| void llvm::ConvertDebugDeclareToDebugValue(DbgVariableIntrinsic *DII, |
| PHINode *APN, DIBuilder &Builder) { |
| auto *DIVar = DII->getVariable(); |
| auto *DIExpr = DII->getExpression(); |
| assert(DIVar && "Missing variable"); |
| |
| if (PhiHasDebugValue(DIVar, DIExpr, APN)) |
| return; |
| |
| if (!valueCoversEntireFragment(APN->getType(), DII)) { |
| // FIXME: If only referring to a part of the variable described by the |
| // dbg.declare, then we want to insert a dbg.value for the corresponding |
| // fragment. |
| LLVM_DEBUG(dbgs() << "Failed to convert dbg.declare to dbg.value: " |
| << *DII << '\n'); |
| return; |
| } |
| |
| BasicBlock *BB = APN->getParent(); |
| auto InsertionPt = BB->getFirstInsertionPt(); |
| |
| // The block may be a catchswitch block, which does not have a valid |
| // insertion point. |
| // FIXME: Insert dbg.value markers in the successors when appropriate. |
| if (InsertionPt != BB->end()) |
| Builder.insertDbgValueIntrinsic(APN, DIVar, DIExpr, DII->getDebugLoc(), |
| &*InsertionPt); |
| } |
| |
| /// Determine whether this alloca is either a VLA or an array. |
| static bool isArray(AllocaInst *AI) { |
| return AI->isArrayAllocation() || |
| AI->getType()->getElementType()->isArrayTy(); |
| } |
| |
| /// LowerDbgDeclare - Lowers llvm.dbg.declare intrinsics into appropriate set |
| /// of llvm.dbg.value intrinsics. |
| bool llvm::LowerDbgDeclare(Function &F) { |
| DIBuilder DIB(*F.getParent(), /*AllowUnresolved*/ false); |
| SmallVector<DbgDeclareInst *, 4> Dbgs; |
| for (auto &FI : F) |
| for (Instruction &BI : FI) |
| if (auto DDI = dyn_cast<DbgDeclareInst>(&BI)) |
| Dbgs.push_back(DDI); |
| |
| if (Dbgs.empty()) |
| return false; |
| |
| for (auto &I : Dbgs) { |
| DbgDeclareInst *DDI = I; |
| AllocaInst *AI = dyn_cast_or_null<AllocaInst>(DDI->getAddress()); |
| // If this is an alloca for a scalar variable, insert a dbg.value |
| // at each load and store to the alloca and erase the dbg.declare. |
| // The dbg.values allow tracking a variable even if it is not |
| // stored on the stack, while the dbg.declare can only describe |
| // the stack slot (and at a lexical-scope granularity). Later |
| // passes will attempt to elide the stack slot. |
| if (!AI || isArray(AI)) |
| continue; |
| |
| // A volatile load/store means that the alloca can't be elided anyway. |
| if (llvm::any_of(AI->users(), [](User *U) -> bool { |
| if (LoadInst *LI = dyn_cast<LoadInst>(U)) |
| return LI->isVolatile(); |
| if (StoreInst *SI = dyn_cast<StoreInst>(U)) |
| return SI->isVolatile(); |
| return false; |
| })) |
| continue; |
| |
| for (auto &AIUse : AI->uses()) { |
| User *U = AIUse.getUser(); |
| if (StoreInst *SI = dyn_cast<StoreInst>(U)) { |
| if (AIUse.getOperandNo() == 1) |
| ConvertDebugDeclareToDebugValue(DDI, SI, DIB); |
| } else if (LoadInst *LI = dyn_cast<LoadInst>(U)) { |
| ConvertDebugDeclareToDebugValue(DDI, LI, DIB); |
| } else if (CallInst *CI = dyn_cast<CallInst>(U)) { |
| // This is a call by-value or some other instruction that takes a |
| // pointer to the variable. Insert a *value* intrinsic that describes |
| // the variable by dereferencing the alloca. |
| auto *DerefExpr = |
| DIExpression::append(DDI->getExpression(), dwarf::DW_OP_deref); |
| DIB.insertDbgValueIntrinsic(AI, DDI->getVariable(), DerefExpr, |
| DDI->getDebugLoc(), CI); |
| } |
| } |
| DDI->eraseFromParent(); |
| } |
| return true; |
| } |
| |
| /// Propagate dbg.value intrinsics through the newly inserted PHIs. |
| void llvm::insertDebugValuesForPHIs(BasicBlock *BB, |
| SmallVectorImpl<PHINode *> &InsertedPHIs) { |
| assert(BB && "No BasicBlock to clone dbg.value(s) from."); |
| if (InsertedPHIs.size() == 0) |
| return; |
| |
| // Map existing PHI nodes to their dbg.values. |
| ValueToValueMapTy DbgValueMap; |
| for (auto &I : *BB) { |
| if (auto DbgII = dyn_cast<DbgVariableIntrinsic>(&I)) { |
| if (auto *Loc = dyn_cast_or_null<PHINode>(DbgII->getVariableLocation())) |
| DbgValueMap.insert({Loc, DbgII}); |
| } |
| } |
| if (DbgValueMap.size() == 0) |
| return; |
| |
| // Then iterate through the new PHIs and look to see if they use one of the |
| // previously mapped PHIs. If so, insert a new dbg.value intrinsic that will |
| // propagate the info through the new PHI. |
| LLVMContext &C = BB->getContext(); |
| for (auto PHI : InsertedPHIs) { |
| BasicBlock *Parent = PHI->getParent(); |
| // Avoid inserting an intrinsic into an EH block. |
| if (Parent->getFirstNonPHI()->isEHPad()) |
| continue; |
| auto PhiMAV = MetadataAsValue::get(C, ValueAsMetadata::get(PHI)); |
| for (auto VI : PHI->operand_values()) { |
| auto V = DbgValueMap.find(VI); |
| if (V != DbgValueMap.end()) { |
| auto *DbgII = cast<DbgVariableIntrinsic>(V->second); |
| Instruction *NewDbgII = DbgII->clone(); |
| NewDbgII->setOperand(0, PhiMAV); |
| auto InsertionPt = Parent->getFirstInsertionPt(); |
| assert(InsertionPt != Parent->end() && "Ill-formed basic block"); |
| NewDbgII->insertBefore(&*InsertionPt); |
| } |
| } |
| } |
| } |
| |
| /// Finds all intrinsics declaring local variables as living in the memory that |
| /// 'V' points to. This may include a mix of dbg.declare and |
| /// dbg.addr intrinsics. |
| TinyPtrVector<DbgVariableIntrinsic *> llvm::FindDbgAddrUses(Value *V) { |
| // This function is hot. Check whether the value has any metadata to avoid a |
| // DenseMap lookup. |
| if (!V->isUsedByMetadata()) |
| return {}; |
| auto *L = LocalAsMetadata::getIfExists(V); |
| if (!L) |
| return {}; |
| auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L); |
| if (!MDV) |
| return {}; |
| |
| TinyPtrVector<DbgVariableIntrinsic *> Declares; |
| for (User *U : MDV->users()) { |
| if (auto *DII = dyn_cast<DbgVariableIntrinsic>(U)) |
| if (DII->isAddressOfVariable()) |
| Declares.push_back(DII); |
| } |
| |
| return Declares; |
| } |
| |
| void llvm::findDbgValues(SmallVectorImpl<DbgValueInst *> &DbgValues, Value *V) { |
| // This function is hot. Check whether the value has any metadata to avoid a |
| // DenseMap lookup. |
| if (!V->isUsedByMetadata()) |
| return; |
| if (auto *L = LocalAsMetadata::getIfExists(V)) |
| if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) |
| for (User *U : MDV->users()) |
| if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(U)) |
| DbgValues.push_back(DVI); |
| } |
| |
| void llvm::findDbgUsers(SmallVectorImpl<DbgVariableIntrinsic *> &DbgUsers, |
| Value *V) { |
| // This function is hot. Check whether the value has any metadata to avoid a |
| // DenseMap lookup. |
| if (!V->isUsedByMetadata()) |
| return; |
| if (auto *L = LocalAsMetadata::getIfExists(V)) |
| if (auto *MDV = MetadataAsValue::getIfExists(V->getContext(), L)) |
| for (User *U : MDV->users()) |
| if (DbgVariableIntrinsic *DII = dyn_cast<DbgVariableIntrinsic>(U)) |
| DbgUsers.push_back(DII); |
| } |
| |
| bool llvm::replaceDbgDeclare(Value *Address, Value *NewAddress, |
| Instruction *InsertBefore, DIBuilder &Builder, |
| bool DerefBefore, int Offset, bool DerefAfter) { |
| auto DbgAddrs = FindDbgAddrUses(Address); |
| for (DbgVariableIntrinsic *DII : DbgAddrs) { |
| DebugLoc Loc = DII->getDebugLoc(); |
| auto *DIVar = DII->getVariable(); |
| auto *DIExpr = DII->getExpression(); |
| assert(DIVar && "Missing variable"); |
| DIExpr = DIExpression::prepend(DIExpr, DerefBefore, Offset, DerefAfter); |
| // Insert llvm.dbg.declare immediately before InsertBefore, and remove old |
| // llvm.dbg.declare. |
| Builder.insertDeclare(NewAddress, DIVar, DIExpr, Loc, InsertBefore); |
| if (DII == InsertBefore) |
| InsertBefore = InsertBefore->getNextNode(); |
| DII->eraseFromParent(); |
| } |
| return !DbgAddrs.empty(); |
| } |
| |
| bool llvm::replaceDbgDeclareForAlloca(AllocaInst *AI, Value *NewAllocaAddress, |
| DIBuilder &Builder, bool DerefBefore, |
| int Offset, bool DerefAfter) { |
| return replaceDbgDeclare(AI, NewAllocaAddress, AI->getNextNode(), Builder, |
| DerefBefore, Offset, DerefAfter); |
| } |
| |
| static void replaceOneDbgValueForAlloca(DbgValueInst *DVI, Value *NewAddress, |
| DIBuilder &Builder, int Offset) { |
| DebugLoc Loc = DVI->getDebugLoc(); |
| auto *DIVar = DVI->getVariable(); |
| auto *DIExpr = DVI->getExpression(); |
| assert(DIVar && "Missing variable"); |
| |
| // This is an alloca-based llvm.dbg.value. The first thing it should do with |
| // the alloca pointer is dereference it. Otherwise we don't know how to handle |
| // it and give up. |
| if (!DIExpr || DIExpr->getNumElements() < 1 || |
| DIExpr->getElement(0) != dwarf::DW_OP_deref) |
| return; |
| |
| // Insert the offset immediately after the first deref. |
| // We could just change the offset argument of dbg.value, but it's unsigned... |
| if (Offset) { |
| SmallVector<uint64_t, 4> Ops; |
| Ops.push_back(dwarf::DW_OP_deref); |
| DIExpression::appendOffset(Ops, Offset); |
| Ops.append(DIExpr->elements_begin() + 1, DIExpr->elements_end()); |
| DIExpr = Builder.createExpression(Ops); |
| } |
| |
| Builder.insertDbgValueIntrinsic(NewAddress, DIVar, DIExpr, Loc, DVI); |
| DVI->eraseFromParent(); |
| } |
| |
| void llvm::replaceDbgValueForAlloca(AllocaInst *AI, Value *NewAllocaAddress, |
| DIBuilder &Builder, int Offset) { |
| if (auto *L = LocalAsMetadata::getIfExists(AI)) |
| if (auto *MDV = MetadataAsValue::getIfExists(AI->getContext(), L)) |
| for (auto UI = MDV->use_begin(), UE = MDV->use_end(); UI != UE;) { |
| Use &U = *UI++; |
| if (auto *DVI = dyn_cast<DbgValueInst>(U.getUser())) |
| replaceOneDbgValueForAlloca(DVI, NewAllocaAddress, Builder, Offset); |
| } |
| } |
| |
| /// Wrap \p V in a ValueAsMetadata instance. |
| static MetadataAsValue *wrapValueInMetadata(LLVMContext &C, Value *V) { |
| return MetadataAsValue::get(C, ValueAsMetadata::get(V)); |
| } |
| |
| bool llvm::salvageDebugInfo(Instruction &I) { |
| SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; |
| findDbgUsers(DbgUsers, &I); |
| if (DbgUsers.empty()) |
| return false; |
| |
| return salvageDebugInfoForDbgValues(I, DbgUsers); |
| } |
| |
| bool llvm::salvageDebugInfoForDbgValues( |
| Instruction &I, ArrayRef<DbgVariableIntrinsic *> DbgUsers) { |
| auto &Ctx = I.getContext(); |
| auto wrapMD = [&](Value *V) { return wrapValueInMetadata(Ctx, V); }; |
| |
| for (auto *DII : DbgUsers) { |
| // Do not add DW_OP_stack_value for DbgDeclare and DbgAddr, because they |
| // are implicitly pointing out the value as a DWARF memory location |
| // description. |
| bool StackValue = isa<DbgValueInst>(DII); |
| |
| DIExpression *DIExpr = |
| salvageDebugInfoImpl(I, DII->getExpression(), StackValue); |
| |
| // salvageDebugInfoImpl should fail on examining the first element of |
| // DbgUsers, or none of them. |
| if (!DIExpr) |
| return false; |
| |
| DII->setOperand(0, wrapMD(I.getOperand(0))); |
| DII->setOperand(2, MetadataAsValue::get(Ctx, DIExpr)); |
| LLVM_DEBUG(dbgs() << "SALVAGE: " << *DII << '\n'); |
| } |
| |
| return true; |
| } |
| |
| DIExpression *llvm::salvageDebugInfoImpl(Instruction &I, |
| DIExpression *SrcDIExpr, |
| bool WithStackValue) { |
| auto &M = *I.getModule(); |
| auto &DL = M.getDataLayout(); |
| |
| // Apply a vector of opcodes to the source DIExpression. |
| auto doSalvage = [&](SmallVectorImpl<uint64_t> &Ops) -> DIExpression * { |
| DIExpression *DIExpr = SrcDIExpr; |
| if (!Ops.empty()) { |
| DIExpr = DIExpression::prependOpcodes(DIExpr, Ops, WithStackValue); |
| } |
| return DIExpr; |
| }; |
| |
| // Apply the given offset to the source DIExpression. |
| auto applyOffset = [&](uint64_t Offset) -> DIExpression * { |
| SmallVector<uint64_t, 8> Ops; |
| DIExpression::appendOffset(Ops, Offset); |
| return doSalvage(Ops); |
| }; |
| |
| // initializer-list helper for applying operators to the source DIExpression. |
| auto applyOps = |
| [&](std::initializer_list<uint64_t> Opcodes) -> DIExpression * { |
| SmallVector<uint64_t, 8> Ops(Opcodes); |
| return doSalvage(Ops); |
| }; |
| |
| if (auto *CI = dyn_cast<CastInst>(&I)) { |
| if (!CI->isNoopCast(DL)) |
| return nullptr; |
| |
| // No-op casts are irrelevant for debug info. |
| return SrcDIExpr; |
| } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { |
| unsigned BitWidth = |
| M.getDataLayout().getIndexSizeInBits(GEP->getPointerAddressSpace()); |
| // Rewrite a constant GEP into a DIExpression. |
| APInt Offset(BitWidth, 0); |
| if (GEP->accumulateConstantOffset(M.getDataLayout(), Offset)) { |
| return applyOffset(Offset.getSExtValue()); |
| } else { |
| return nullptr; |
| } |
| } else if (auto *BI = dyn_cast<BinaryOperator>(&I)) { |
| // Rewrite binary operations with constant integer operands. |
| auto *ConstInt = dyn_cast<ConstantInt>(I.getOperand(1)); |
| if (!ConstInt || ConstInt->getBitWidth() > 64) |
| return nullptr; |
| |
| uint64_t Val = ConstInt->getSExtValue(); |
| switch (BI->getOpcode()) { |
| case Instruction::Add: |
| return applyOffset(Val); |
| case Instruction::Sub: |
| return applyOffset(-int64_t(Val)); |
| case Instruction::Mul: |
| return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mul}); |
| case Instruction::SDiv: |
| return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_div}); |
| case Instruction::SRem: |
| return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_mod}); |
| case Instruction::Or: |
| return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_or}); |
| case Instruction::And: |
| return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_and}); |
| case Instruction::Xor: |
| return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_xor}); |
| case Instruction::Shl: |
| return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shl}); |
| case Instruction::LShr: |
| return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shr}); |
| case Instruction::AShr: |
| return applyOps({dwarf::DW_OP_constu, Val, dwarf::DW_OP_shra}); |
| default: |
| // TODO: Salvage constants from each kind of binop we know about. |
| return nullptr; |
| } |
| } else if (isa<LoadInst>(&I)) { |
| // Rewrite the load into DW_OP_deref. |
| return DIExpression::prepend(SrcDIExpr, DIExpression::WithDeref); |
| } |
| return nullptr; |
| } |
| |
| /// A replacement for a dbg.value expression. |
| using DbgValReplacement = Optional<DIExpression *>; |
| |
| /// Point debug users of \p From to \p To using exprs given by \p RewriteExpr, |
| /// possibly moving/deleting users to prevent use-before-def. Returns true if |
| /// changes are made. |
| static bool rewriteDebugUsers( |
| Instruction &From, Value &To, Instruction &DomPoint, DominatorTree &DT, |
| function_ref<DbgValReplacement(DbgVariableIntrinsic &DII)> RewriteExpr) { |
| // Find debug users of From. |
| SmallVector<DbgVariableIntrinsic *, 1> Users; |
| findDbgUsers(Users, &From); |
| if (Users.empty()) |
| return false; |
| |
| // Prevent use-before-def of To. |
| bool Changed = false; |
| SmallPtrSet<DbgVariableIntrinsic *, 1> DeleteOrSalvage; |
| if (isa<Instruction>(&To)) { |
| bool DomPointAfterFrom = From.getNextNonDebugInstruction() == &DomPoint; |
| |
| for (auto *DII : Users) { |
| // It's common to see a debug user between From and DomPoint. Move it |
| // after DomPoint to preserve the variable update without any reordering. |
| if (DomPointAfterFrom && DII->getNextNonDebugInstruction() == &DomPoint) { |
| LLVM_DEBUG(dbgs() << "MOVE: " << *DII << '\n'); |
| DII->moveAfter(&DomPoint); |
| Changed = true; |
| |
| // Users which otherwise aren't dominated by the replacement value must |
| // be salvaged or deleted. |
| } else if (!DT.dominates(&DomPoint, DII)) { |
| DeleteOrSalvage.insert(DII); |
| } |
| } |
| } |
| |
| // Update debug users without use-before-def risk. |
| for (auto *DII : Users) { |
| if (DeleteOrSalvage.count(DII)) |
| continue; |
| |
| LLVMContext &Ctx = DII->getContext(); |
| DbgValReplacement DVR = RewriteExpr(*DII); |
| if (!DVR) |
| continue; |
| |
| DII->setOperand(0, wrapValueInMetadata(Ctx, &To)); |
| DII->setOperand(2, MetadataAsValue::get(Ctx, *DVR)); |
| LLVM_DEBUG(dbgs() << "REWRITE: " << *DII << '\n'); |
| Changed = true; |
| } |
| |
| if (!DeleteOrSalvage.empty()) { |
| // Try to salvage the remaining debug users. |
| Changed |= salvageDebugInfo(From); |
| |
| // Delete the debug users which weren't salvaged. |
| for (auto *DII : DeleteOrSalvage) { |
| if (DII->getVariableLocation() == &From) { |
| LLVM_DEBUG(dbgs() << "Erased UseBeforeDef: " << *DII << '\n'); |
| DII->eraseFromParent(); |
| Changed = true; |
| } |
| } |
| } |
| |
| return Changed; |
| } |
| |
| /// Check if a bitcast between a value of type \p FromTy to type \p ToTy would |
| /// losslessly preserve the bits and semantics of the value. This predicate is |
| /// symmetric, i.e swapping \p FromTy and \p ToTy should give the same result. |
| /// |
| /// Note that Type::canLosslesslyBitCastTo is not suitable here because it |
| /// allows semantically unequivalent bitcasts, such as <2 x i64> -> <4 x i32>, |
| /// and also does not allow lossless pointer <-> integer conversions. |
| static bool isBitCastSemanticsPreserving(const DataLayout &DL, Type *FromTy, |
| Type *ToTy) { |
| // Trivially compatible types. |
| if (FromTy == ToTy) |
| return true; |
| |
| // Handle compatible pointer <-> integer conversions. |
| if (FromTy->isIntOrPtrTy() && ToTy->isIntOrPtrTy()) { |
| bool SameSize = DL.getTypeSizeInBits(FromTy) == DL.getTypeSizeInBits(ToTy); |
| bool LosslessConversion = !DL.isNonIntegralPointerType(FromTy) && |
| !DL.isNonIntegralPointerType(ToTy); |
| return SameSize && LosslessConversion; |
| } |
| |
| // TODO: This is not exhaustive. |
| return false; |
| } |
| |
| bool llvm::replaceAllDbgUsesWith(Instruction &From, Value &To, |
| Instruction &DomPoint, DominatorTree &DT) { |
| // Exit early if From has no debug users. |
| if (!From.isUsedByMetadata()) |
| return false; |
| |
| assert(&From != &To && "Can't replace something with itself"); |
| |
| Type *FromTy = From.getType(); |
| Type *ToTy = To.getType(); |
| |
| auto Identity = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { |
| return DII.getExpression(); |
| }; |
| |
| // Handle no-op conversions. |
| Module &M = *From.getModule(); |
| const DataLayout &DL = M.getDataLayout(); |
| if (isBitCastSemanticsPreserving(DL, FromTy, ToTy)) |
| return rewriteDebugUsers(From, To, DomPoint, DT, Identity); |
| |
| // Handle integer-to-integer widening and narrowing. |
| // FIXME: Use DW_OP_convert when it's available everywhere. |
| if (FromTy->isIntegerTy() && ToTy->isIntegerTy()) { |
| uint64_t FromBits = FromTy->getPrimitiveSizeInBits(); |
| uint64_t ToBits = ToTy->getPrimitiveSizeInBits(); |
| assert(FromBits != ToBits && "Unexpected no-op conversion"); |
| |
| // When the width of the result grows, assume that a debugger will only |
| // access the low `FromBits` bits when inspecting the source variable. |
| if (FromBits < ToBits) |
| return rewriteDebugUsers(From, To, DomPoint, DT, Identity); |
| |
| // The width of the result has shrunk. Use sign/zero extension to describe |
| // the source variable's high bits. |
| auto SignOrZeroExt = [&](DbgVariableIntrinsic &DII) -> DbgValReplacement { |
| DILocalVariable *Var = DII.getVariable(); |
| |
| // Without knowing signedness, sign/zero extension isn't possible. |
| auto Signedness = Var->getSignedness(); |
| if (!Signedness) |
| return None; |
| |
| bool Signed = *Signedness == DIBasicType::Signedness::Signed; |
| |
| if (!Signed) { |
| // In the unsigned case, assume that a debugger will initialize the |
| // high bits to 0 and do a no-op conversion. |
| return Identity(DII); |
| } else { |
| // In the signed case, the high bits are given by sign extension, i.e: |
| // (To >> (ToBits - 1)) * ((2 ^ FromBits) - 1) |
| // Calculate the high bits and OR them together with the low bits. |
| SmallVector<uint64_t, 8> Ops({dwarf::DW_OP_dup, dwarf::DW_OP_constu, |
| (ToBits - 1), dwarf::DW_OP_shr, |
| dwarf::DW_OP_lit0, dwarf::DW_OP_not, |
| dwarf::DW_OP_mul, dwarf::DW_OP_or}); |
| return DIExpression::appendToStack(DII.getExpression(), Ops); |
| } |
| }; |
| return rewriteDebugUsers(From, To, DomPoint, DT, SignOrZeroExt); |
| } |
| |
| // TODO: Floating-point conversions, vectors. |
| return false; |
| } |
| |
| unsigned llvm::removeAllNonTerminatorAndEHPadInstructions(BasicBlock *BB) { |
| unsigned NumDeadInst = 0; |
| // Delete the instructions backwards, as it has a reduced likelihood of |
| // having to update as many def-use and use-def chains. |
| Instruction *EndInst = BB->getTerminator(); // Last not to be deleted. |
| while (EndInst != &BB->front()) { |
| // Delete the next to last instruction. |
| Instruction *Inst = &*--EndInst->getIterator(); |
| if (!Inst->use_empty() && !Inst->getType()->isTokenTy()) |
| Inst->replaceAllUsesWith(UndefValue::get(Inst->getType())); |
| if (Inst->isEHPad() || Inst->getType()->isTokenTy()) { |
| EndInst = Inst; |
| continue; |
| } |
| if (!isa<DbgInfoIntrinsic>(Inst)) |
| ++NumDeadInst; |
| Inst->eraseFromParent(); |
| } |
| return NumDeadInst; |
| } |
| |
| unsigned llvm::changeToUnreachable(Instruction *I, bool UseLLVMTrap, |
| bool PreserveLCSSA, DomTreeUpdater *DTU) { |
| BasicBlock *BB = I->getParent(); |
| std::vector <DominatorTree::UpdateType> Updates; |
| |
| // Loop over all of the successors, removing BB's entry from any PHI |
| // nodes. |
| if (DTU) |
| Updates.reserve(BB->getTerminator()->getNumSuccessors()); |
| for (BasicBlock *Successor : successors(BB)) { |
| Successor->removePredecessor(BB, PreserveLCSSA); |
| if (DTU) |
| Updates.push_back({DominatorTree::Delete, BB, Successor}); |
| } |
| // Insert a call to llvm.trap right before this. This turns the undefined |
| // behavior into a hard fail instead of falling through into random code. |
| if (UseLLVMTrap) { |
| Function *TrapFn = |
| Intrinsic::getDeclaration(BB->getParent()->getParent(), Intrinsic::trap); |
| CallInst *CallTrap = CallInst::Create(TrapFn, "", I); |
| CallTrap->setDebugLoc(I->getDebugLoc()); |
| } |
| auto *UI = new UnreachableInst(I->getContext(), I); |
| UI->setDebugLoc(I->getDebugLoc()); |
| |
| // All instructions after this are dead. |
| unsigned NumInstrsRemoved = 0; |
| BasicBlock::iterator BBI = I->getIterator(), BBE = BB->end(); |
| while (BBI != BBE) { |
| if (!BBI->use_empty()) |
| BBI->replaceAllUsesWith(UndefValue::get(BBI->getType())); |
| BB->getInstList().erase(BBI++); |
| ++NumInstrsRemoved; |
| } |
| if (DTU) |
| DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); |
| return NumInstrsRemoved; |
| } |
| |
| /// changeToCall - Convert the specified invoke into a normal call. |
| static void changeToCall(InvokeInst *II, DomTreeUpdater *DTU = nullptr) { |
| SmallVector<Value*, 8> Args(II->arg_begin(), II->arg_end()); |
| SmallVector<OperandBundleDef, 1> OpBundles; |
| II->getOperandBundlesAsDefs(OpBundles); |
| CallInst *NewCall = CallInst::Create( |
| II->getFunctionType(), II->getCalledValue(), Args, OpBundles, "", II); |
| NewCall->takeName(II); |
| NewCall->setCallingConv(II->getCallingConv()); |
| NewCall->setAttributes(II->getAttributes()); |
| NewCall->setDebugLoc(II->getDebugLoc()); |
| NewCall->copyMetadata(*II); |
| II->replaceAllUsesWith(NewCall); |
| |
| // Follow the call by a branch to the normal destination. |
| BasicBlock *NormalDestBB = II->getNormalDest(); |
| BranchInst::Create(NormalDestBB, II); |
| |
| // Update PHI nodes in the unwind destination |
| BasicBlock *BB = II->getParent(); |
| BasicBlock *UnwindDestBB = II->getUnwindDest(); |
| UnwindDestBB->removePredecessor(BB); |
| II->eraseFromParent(); |
| if (DTU) |
| DTU->deleteEdgeRelaxed(BB, UnwindDestBB); |
| } |
| |
| BasicBlock *llvm::changeToInvokeAndSplitBasicBlock(CallInst *CI, |
| BasicBlock *UnwindEdge) { |
| BasicBlock *BB = CI->getParent(); |
| |
| // Convert this function call into an invoke instruction. First, split the |
| // basic block. |
| BasicBlock *Split = |
| BB->splitBasicBlock(CI->getIterator(), CI->getName() + ".noexc"); |
| |
| // Delete the unconditional branch inserted by splitBasicBlock |
| BB->getInstList().pop_back(); |
| |
| // Create the new invoke instruction. |
| SmallVector<Value *, 8> InvokeArgs(CI->arg_begin(), CI->arg_end()); |
| SmallVector<OperandBundleDef, 1> OpBundles; |
| |
| CI->getOperandBundlesAsDefs(OpBundles); |
| |
| // Note: we're round tripping operand bundles through memory here, and that |
| // can potentially be avoided with a cleverer API design that we do not have |
| // as of this time. |
| |
| InvokeInst *II = |
| InvokeInst::Create(CI->getFunctionType(), CI->getCalledValue(), Split, |
| UnwindEdge, InvokeArgs, OpBundles, CI->getName(), BB); |
| II->setDebugLoc(CI->getDebugLoc()); |
| II->setCallingConv(CI->getCallingConv()); |
| II->setAttributes(CI->getAttributes()); |
| |
| // Make sure that anything using the call now uses the invoke! This also |
| // updates the CallGraph if present, because it uses a WeakTrackingVH. |
| CI->replaceAllUsesWith(II); |
| |
| // Delete the original call |
| Split->getInstList().pop_front(); |
| return Split; |
| } |
| |
| static bool markAliveBlocks(Function &F, |
| SmallPtrSetImpl<BasicBlock *> &Reachable, |
| DomTreeUpdater *DTU = nullptr) { |
| SmallVector<BasicBlock*, 128> Worklist; |
| BasicBlock *BB = &F.front(); |
| Worklist.push_back(BB); |
| Reachable.insert(BB); |
| bool Changed = false; |
| do { |
| BB = Worklist.pop_back_val(); |
| |
| // Do a quick scan of the basic block, turning any obviously unreachable |
| // instructions into LLVM unreachable insts. The instruction combining pass |
| // canonicalizes unreachable insts into stores to null or undef. |
| for (Instruction &I : *BB) { |
| if (auto *CI = dyn_cast<CallInst>(&I)) { |
| Value *Callee = CI->getCalledValue(); |
| // Handle intrinsic calls. |
| if (Function *F = dyn_cast<Function>(Callee)) { |
| auto IntrinsicID = F->getIntrinsicID(); |
| // Assumptions that are known to be false are equivalent to |
| // unreachable. Also, if the condition is undefined, then we make the |
| // choice most beneficial to the optimizer, and choose that to also be |
| // unreachable. |
| if (IntrinsicID == Intrinsic::assume) { |
| if (match(CI->getArgOperand(0), m_CombineOr(m_Zero(), m_Undef()))) { |
| // Don't insert a call to llvm.trap right before the unreachable. |
| changeToUnreachable(CI, false, false, DTU); |
| Changed = true; |
| break; |
| } |
| } else if (IntrinsicID == Intrinsic::experimental_guard) { |
| // A call to the guard intrinsic bails out of the current |
| // compilation unit if the predicate passed to it is false. If the |
| // predicate is a constant false, then we know the guard will bail |
| // out of the current compile unconditionally, so all code following |
| // it is dead. |
| // |
| // Note: unlike in llvm.assume, it is not "obviously profitable" for |
| // guards to treat `undef` as `false` since a guard on `undef` can |
| // still be useful for widening. |
| if (match(CI->getArgOperand(0), m_Zero())) |
| if (!isa<UnreachableInst>(CI->getNextNode())) { |
| changeToUnreachable(CI->getNextNode(), /*UseLLVMTrap=*/false, |
| false, DTU); |
| Changed = true; |
| break; |
| } |
| } |
| } else if ((isa<ConstantPointerNull>(Callee) && |
| !NullPointerIsDefined(CI->getFunction())) || |
| isa<UndefValue>(Callee)) { |
| changeToUnreachable(CI, /*UseLLVMTrap=*/false, false, DTU); |
| Changed = true; |
| break; |
| } |
| if (CI->doesNotReturn()) { |
| // If we found a call to a no-return function, insert an unreachable |
| // instruction after it. Make sure there isn't *already* one there |
| // though. |
| if (!isa<UnreachableInst>(CI->getNextNode())) { |
| // Don't insert a call to llvm.trap right before the unreachable. |
| changeToUnreachable(CI->getNextNode(), false, false, DTU); |
| Changed = true; |
| } |
| break; |
| } |
| } else if (auto *SI = dyn_cast<StoreInst>(&I)) { |
| // Store to undef and store to null are undefined and used to signal |
| // that they should be changed to unreachable by passes that can't |
| // modify the CFG. |
| |
| // Don't touch volatile stores. |
| if (SI->isVolatile()) continue; |
| |
| Value *Ptr = SI->getOperand(1); |
| |
| if (isa<UndefValue>(Ptr) || |
| (isa<ConstantPointerNull>(Ptr) && |
| !NullPointerIsDefined(SI->getFunction(), |
| SI->getPointerAddressSpace()))) { |
| changeToUnreachable(SI, true, false, DTU); |
| Changed = true; |
| break; |
| } |
| } |
| } |
| |
| Instruction *Terminator = BB->getTerminator(); |
| if (auto *II = dyn_cast<InvokeInst>(Terminator)) { |
| // Turn invokes that call 'nounwind' functions into ordinary calls. |
| Value *Callee = II->getCalledValue(); |
| if ((isa<ConstantPointerNull>(Callee) && |
| !NullPointerIsDefined(BB->getParent())) || |
| isa<UndefValue>(Callee)) { |
| changeToUnreachable(II, true, false, DTU); |
| Changed = true; |
| } else if (II->doesNotThrow() && canSimplifyInvokeNoUnwind(&F)) { |
| if (II->use_empty() && II->onlyReadsMemory()) { |
| // jump to the normal destination branch. |
| BasicBlock *NormalDestBB = II->getNormalDest(); |
| BasicBlock *UnwindDestBB = II->getUnwindDest(); |
| BranchInst::Create(NormalDestBB, II); |
| UnwindDestBB->removePredecessor(II->getParent()); |
| II->eraseFromParent(); |
| if (DTU) |
| DTU->deleteEdgeRelaxed(BB, UnwindDestBB); |
| } else |
| changeToCall(II, DTU); |
| Changed = true; |
| } |
| } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Terminator)) { |
| // Remove catchpads which cannot be reached. |
| struct CatchPadDenseMapInfo { |
| static CatchPadInst *getEmptyKey() { |
| return DenseMapInfo<CatchPadInst *>::getEmptyKey(); |
| } |
| |
| static CatchPadInst *getTombstoneKey() { |
| return DenseMapInfo<CatchPadInst *>::getTombstoneKey(); |
| } |
| |
| static unsigned getHashValue(CatchPadInst *CatchPad) { |
| return static_cast<unsigned>(hash_combine_range( |
| CatchPad->value_op_begin(), CatchPad->value_op_end())); |
| } |
| |
| static bool isEqual(CatchPadInst *LHS, CatchPadInst *RHS) { |
| if (LHS == getEmptyKey() || LHS == getTombstoneKey() || |
| RHS == getEmptyKey() || RHS == getTombstoneKey()) |
| return LHS == RHS; |
| return LHS->isIdenticalTo(RHS); |
| } |
| }; |
| |
| // Set of unique CatchPads. |
| SmallDenseMap<CatchPadInst *, detail::DenseSetEmpty, 4, |
| CatchPadDenseMapInfo, detail::DenseSetPair<CatchPadInst *>> |
| HandlerSet; |
| detail::DenseSetEmpty Empty; |
| for (CatchSwitchInst::handler_iterator I = CatchSwitch->handler_begin(), |
| E = CatchSwitch->handler_end(); |
| I != E; ++I) { |
| BasicBlock *HandlerBB = *I; |
| auto *CatchPad = cast<CatchPadInst>(HandlerBB->getFirstNonPHI()); |
| if (!HandlerSet.insert({CatchPad, Empty}).second) { |
| CatchSwitch->removeHandler(I); |
| --I; |
| --E; |
| Changed = true; |
| } |
| } |
| } |
| |
| Changed |= ConstantFoldTerminator(BB, true, nullptr, DTU); |
| for (BasicBlock *Successor : successors(BB)) |
| if (Reachable.insert(Successor).second) |
| Worklist.push_back(Successor); |
| } while (!Worklist.empty()); |
| return Changed; |
| } |
| |
| void llvm::removeUnwindEdge(BasicBlock *BB, DomTreeUpdater *DTU) { |
| Instruction *TI = BB->getTerminator(); |
| |
| if (auto *II = dyn_cast<InvokeInst>(TI)) { |
| changeToCall(II, DTU); |
| return; |
| } |
| |
| Instruction *NewTI; |
| BasicBlock *UnwindDest; |
| |
| if (auto *CRI = dyn_cast<CleanupReturnInst>(TI)) { |
| NewTI = CleanupReturnInst::Create(CRI->getCleanupPad(), nullptr, CRI); |
| UnwindDest = CRI->getUnwindDest(); |
| } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) { |
| auto *NewCatchSwitch = CatchSwitchInst::Create( |
| CatchSwitch->getParentPad(), nullptr, CatchSwitch->getNumHandlers(), |
| CatchSwitch->getName(), CatchSwitch); |
| for (BasicBlock *PadBB : CatchSwitch->handlers()) |
| NewCatchSwitch->addHandler(PadBB); |
| |
| NewTI = NewCatchSwitch; |
| UnwindDest = CatchSwitch->getUnwindDest(); |
| } else { |
| llvm_unreachable("Could not find unwind successor"); |
| } |
| |
| NewTI->takeName(TI); |
| NewTI->setDebugLoc(TI->getDebugLoc()); |
| UnwindDest->removePredecessor(BB); |
| TI->replaceAllUsesWith(NewTI); |
| TI->eraseFromParent(); |
| if (DTU) |
| DTU->deleteEdgeRelaxed(BB, UnwindDest); |
| } |
| |
| /// removeUnreachableBlocks - Remove blocks that are not reachable, even |
| /// if they are in a dead cycle. Return true if a change was made, false |
| /// otherwise. If `LVI` is passed, this function preserves LazyValueInfo |
| /// after modifying the CFG. |
| bool llvm::removeUnreachableBlocks(Function &F, LazyValueInfo *LVI, |
| DomTreeUpdater *DTU, |
| MemorySSAUpdater *MSSAU) { |
| SmallPtrSet<BasicBlock*, 16> Reachable; |
| bool Changed = markAliveBlocks(F, Reachable, DTU); |
| |
| // If there are unreachable blocks in the CFG... |
| if (Reachable.size() == F.size()) |
| return Changed; |
| |
| assert(Reachable.size() < F.size()); |
| NumRemoved += F.size()-Reachable.size(); |
| |
| SmallPtrSet<BasicBlock *, 16> DeadBlockSet; |
| for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ++I) { |
| auto *BB = &*I; |
| if (Reachable.count(BB)) |
| continue; |
| DeadBlockSet.insert(BB); |
| } |
| |
| if (MSSAU) |
| MSSAU->removeBlocks(DeadBlockSet); |
| |
| // Loop over all of the basic blocks that are not reachable, dropping all of |
| // their internal references. Update DTU and LVI if available. |
| std::vector<DominatorTree::UpdateType> Updates; |
| for (auto *BB : DeadBlockSet) { |
| for (BasicBlock *Successor : successors(BB)) { |
| if (!DeadBlockSet.count(Successor)) |
| Successor->removePredecessor(BB); |
| if (DTU) |
| Updates.push_back({DominatorTree::Delete, BB, Successor}); |
| } |
| if (LVI) |
| LVI->eraseBlock(BB); |
| BB->dropAllReferences(); |
| } |
| for (Function::iterator I = ++F.begin(); I != F.end();) { |
| auto *BB = &*I; |
| if (Reachable.count(BB)) { |
| ++I; |
| continue; |
| } |
| if (DTU) { |
| // Remove the terminator of BB to clear the successor list of BB. |
| if (BB->getTerminator()) |
| BB->getInstList().pop_back(); |
| new UnreachableInst(BB->getContext(), BB); |
| assert(succ_empty(BB) && "The successor list of BB isn't empty before " |
| "applying corresponding DTU updates."); |
| ++I; |
| } else { |
| I = F.getBasicBlockList().erase(I); |
| } |
| } |
| |
| if (DTU) { |
| DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); |
| bool Deleted = false; |
| for (auto *BB : DeadBlockSet) { |
| if (DTU->isBBPendingDeletion(BB)) |
| --NumRemoved; |
| else |
| Deleted = true; |
| DTU->deleteBB(BB); |
| } |
| if (!Deleted) |
| return false; |
| } |
| return true; |
| } |
| |
| void llvm::combineMetadata(Instruction *K, const Instruction *J, |
| ArrayRef<unsigned> KnownIDs, bool DoesKMove) { |
| SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata; |
| K->dropUnknownNonDebugMetadata(KnownIDs); |
| K->getAllMetadataOtherThanDebugLoc(Metadata); |
| for (const auto &MD : Metadata) { |
| unsigned Kind = MD.first; |
| MDNode *JMD = J->getMetadata(Kind); |
| MDNode *KMD = MD.second; |
| |
| switch (Kind) { |
| default: |
| K->setMetadata(Kind, nullptr); // Remove unknown metadata |
| break; |
| case LLVMContext::MD_dbg: |
| llvm_unreachable("getAllMetadataOtherThanDebugLoc returned a MD_dbg"); |
| case LLVMContext::MD_tbaa: |
| K->setMetadata(Kind, MDNode::getMostGenericTBAA(JMD, KMD)); |
| break; |
| case LLVMContext::MD_alias_scope: |
| K->setMetadata(Kind, MDNode::getMostGenericAliasScope(JMD, KMD)); |
| break; |
| case LLVMContext::MD_noalias: |
| case LLVMContext::MD_mem_parallel_loop_access: |
| K->setMetadata(Kind, MDNode::intersect(JMD, KMD)); |
| break; |
| case LLVMContext::MD_access_group: |
| K->setMetadata(LLVMContext::MD_access_group, |
| intersectAccessGroups(K, J)); |
| break; |
| case LLVMContext::MD_range: |
| |
| // If K does move, use most generic range. Otherwise keep the range of |
| // K. |
| if (DoesKMove) |
| // FIXME: If K does move, we should drop the range info and nonnull. |
| // Currently this function is used with DoesKMove in passes |
| // doing hoisting/sinking and the current behavior of using the |
| // most generic range is correct in those cases. |
| K->setMetadata(Kind, MDNode::getMostGenericRange(JMD, KMD)); |
| break; |
| case LLVMContext::MD_fpmath: |
| K->setMetadata(Kind, MDNode::getMostGenericFPMath(JMD, KMD)); |
| break; |
| case LLVMContext::MD_invariant_load: |
| // Only set the !invariant.load if it is present in both instructions. |
| K->setMetadata(Kind, JMD); |
| break; |
| case LLVMContext::MD_nonnull: |
| // If K does move, keep nonull if it is present in both instructions. |
| if (DoesKMove) |
| K->setMetadata(Kind, JMD); |
| break; |
| case LLVMContext::MD_invariant_group: |
| // Preserve !invariant.group in K. |
| break; |
| case LLVMContext::MD_align: |
| K->setMetadata(Kind, |
| MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); |
| break; |
| case LLVMContext::MD_dereferenceable: |
| case LLVMContext::MD_dereferenceable_or_null: |
| K->setMetadata(Kind, |
| MDNode::getMostGenericAlignmentOrDereferenceable(JMD, KMD)); |
| break; |
| } |
| } |
| // Set !invariant.group from J if J has it. If both instructions have it |
| // then we will just pick it from J - even when they are different. |
| // Also make sure that K is load or store - f.e. combining bitcast with load |
| // could produce bitcast with invariant.group metadata, which is invalid. |
| // FIXME: we should try to preserve both invariant.group md if they are |
| // different, but right now instruction can only have one invariant.group. |
| if (auto *JMD = J->getMetadata(LLVMContext::MD_invariant_group)) |
| if (isa<LoadInst>(K) || isa<StoreInst>(K)) |
| K->setMetadata(LLVMContext::MD_invariant_group, JMD); |
| } |
| |
| void llvm::combineMetadataForCSE(Instruction *K, const Instruction *J, |
| bool KDominatesJ) { |
| unsigned KnownIDs[] = { |
| LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, |
| LLVMContext::MD_noalias, LLVMContext::MD_range, |
| LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, |
| LLVMContext::MD_invariant_group, LLVMContext::MD_align, |
| LLVMContext::MD_dereferenceable, |
| LLVMContext::MD_dereferenceable_or_null, |
| LLVMContext::MD_access_group}; |
| combineMetadata(K, J, KnownIDs, KDominatesJ); |
| } |
| |
| void llvm::patchReplacementInstruction(Instruction *I, Value *Repl) { |
| auto *ReplInst = dyn_cast<Instruction>(Repl); |
| if (!ReplInst) |
| return; |
| |
| // Patch the replacement so that it is not more restrictive than the value |
| // being replaced. |
| // Note that if 'I' is a load being replaced by some operation, |
| // for example, by an arithmetic operation, then andIRFlags() |
| // would just erase all math flags from the original arithmetic |
| // operation, which is clearly not wanted and not needed. |
| if (!isa<LoadInst>(I)) |
| ReplInst->andIRFlags(I); |
| |
| // FIXME: If both the original and replacement value are part of the |
| // same control-flow region (meaning that the execution of one |
| // guarantees the execution of the other), then we can combine the |
| // noalias scopes here and do better than the general conservative |
| // answer used in combineMetadata(). |
| |
| // In general, GVN unifies expressions over different control-flow |
| // regions, and so we need a conservative combination of the noalias |
| // scopes. |
| static const unsigned KnownIDs[] = { |
| LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, |
| LLVMContext::MD_noalias, LLVMContext::MD_range, |
| LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, |
| LLVMContext::MD_invariant_group, LLVMContext::MD_nonnull, |
| LLVMContext::MD_access_group}; |
| combineMetadata(ReplInst, I, KnownIDs, false); |
| } |
| |
| template <typename RootType, typename DominatesFn> |
| static unsigned replaceDominatedUsesWith(Value *From, Value *To, |
| const RootType &Root, |
| const DominatesFn &Dominates) { |
| assert(From->getType() == To->getType()); |
| |
| unsigned Count = 0; |
| for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); |
| UI != UE;) { |
| Use &U = *UI++; |
| if (!Dominates(Root, U)) |
| continue; |
| U.set(To); |
| LLVM_DEBUG(dbgs() << "Replace dominated use of '" << From->getName() |
| << "' as " << *To << " in " << *U << "\n"); |
| ++Count; |
| } |
| return Count; |
| } |
| |
| unsigned llvm::replaceNonLocalUsesWith(Instruction *From, Value *To) { |
| assert(From->getType() == To->getType()); |
| auto *BB = From->getParent(); |
| unsigned Count = 0; |
| |
| for (Value::use_iterator UI = From->use_begin(), UE = From->use_end(); |
| UI != UE;) { |
| Use &U = *UI++; |
| auto *I = cast<Instruction>(U.getUser()); |
| if (I->getParent() == BB) |
| continue; |
| U.set(To); |
| ++Count; |
| } |
| return Count; |
| } |
| |
| unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, |
| DominatorTree &DT, |
| const BasicBlockEdge &Root) { |
| auto Dominates = [&DT](const BasicBlockEdge &Root, const Use &U) { |
| return DT.dominates(Root, U); |
| }; |
| return ::replaceDominatedUsesWith(From, To, Root, Dominates); |
| } |
| |
| unsigned llvm::replaceDominatedUsesWith(Value *From, Value *To, |
| DominatorTree &DT, |
| const BasicBlock *BB) { |
| auto ProperlyDominates = [&DT](const BasicBlock *BB, const Use &U) { |
| auto *I = cast<Instruction>(U.getUser())->getParent(); |
| return DT.properlyDominates(BB, I); |
| }; |
| return ::replaceDominatedUsesWith(From, To, BB, ProperlyDominates); |
| } |
| |
| bool llvm::callsGCLeafFunction(const CallBase *Call, |
| const TargetLibraryInfo &TLI) { |
| // Check if the function is specifically marked as a gc leaf function. |
| if (Call->hasFnAttr("gc-leaf-function")) |
| return true; |
| if (const Function *F = Call->getCalledFunction()) { |
| if (F->hasFnAttribute("gc-leaf-function")) |
| return true; |
| |
| if (auto IID = F->getIntrinsicID()) |
| // Most LLVM intrinsics do not take safepoints. |
| return IID != Intrinsic::experimental_gc_statepoint && |
| IID != Intrinsic::experimental_deoptimize; |
| } |
| |
| // Lib calls can be materialized by some passes, and won't be |
| // marked as 'gc-leaf-function.' All available Libcalls are |
| // GC-leaf. |
| LibFunc LF; |
| if (TLI.getLibFunc(ImmutableCallSite(Call), LF)) { |
| return TLI.has(LF); |
| } |
| |
| return false; |
| } |
| |
| void llvm::copyNonnullMetadata(const LoadInst &OldLI, MDNode *N, |
| LoadInst &NewLI) { |
| auto *NewTy = NewLI.getType(); |
| |
| // This only directly applies if the new type is also a pointer. |
| if (NewTy->isPointerTy()) { |
| NewLI.setMetadata(LLVMContext::MD_nonnull, N); |
| return; |
| } |
| |
| // The only other translation we can do is to integral loads with !range |
| // metadata. |
| if (!NewTy->isIntegerTy()) |
| return; |
| |
| MDBuilder MDB(NewLI.getContext()); |
| const Value *Ptr = OldLI.getPointerOperand(); |
| auto *ITy = cast<IntegerType>(NewTy); |
| auto *NullInt = ConstantExpr::getPtrToInt( |
| ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); |
| auto *NonNullInt = ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); |
| NewLI.setMetadata(LLVMContext::MD_range, |
| MDB.createRange(NonNullInt, NullInt)); |
| } |
| |
| void llvm::copyRangeMetadata(const DataLayout &DL, const LoadInst &OldLI, |
| MDNode *N, LoadInst &NewLI) { |
| auto *NewTy = NewLI.getType(); |
| |
| // Give up unless it is converted to a pointer where there is a single very |
| // valuable mapping we can do reliably. |
| // FIXME: It would be nice to propagate this in more ways, but the type |
| // conversions make it hard. |
| if (!NewTy->isPointerTy()) |
| return; |
| |
| unsigned BitWidth = DL.getIndexTypeSizeInBits(NewTy); |
| if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { |
| MDNode *NN = MDNode::get(OldLI.getContext(), None); |
| NewLI.setMetadata(LLVMContext::MD_nonnull, NN); |
| } |
| } |
| |
| void llvm::dropDebugUsers(Instruction &I) { |
| SmallVector<DbgVariableIntrinsic *, 1> DbgUsers; |
| findDbgUsers(DbgUsers, &I); |
| for (auto *DII : DbgUsers) |
| DII->eraseFromParent(); |
| } |
| |
| void llvm::hoistAllInstructionsInto(BasicBlock *DomBlock, Instruction *InsertPt, |
| BasicBlock *BB) { |
| // Since we are moving the instructions out of its basic block, we do not |
| // retain their original debug locations (DILocations) and debug intrinsic |
| // instructions. |
| // |
| // Doing so would degrade the debugging experience and adversely affect the |
| // accuracy of profiling information. |
| // |
| // Currently, when hoisting the instructions, we take the following actions: |
| // - Remove their debug intrinsic instructions. |
| // - Set their debug locations to the values from the insertion point. |
| // |
| // As per PR39141 (comment #8), the more fundamental reason why the dbg.values |
| // need to be deleted, is because there will not be any instructions with a |
| // DILocation in either branch left after performing the transformation. We |
| // can only insert a dbg.value after the two branches are joined again. |
| // |
| // See PR38762, PR39243 for more details. |
| // |
| // TODO: Extend llvm.dbg.value to take more than one SSA Value (PR39141) to |
| // encode predicated DIExpressions that yield different results on different |
| // code paths. |
| for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;) { |
| Instruction *I = &*II; |
| I->dropUnknownNonDebugMetadata(); |
| if (I->isUsedByMetadata()) |
| dropDebugUsers(*I); |
| if (isa<DbgInfoIntrinsic>(I)) { |
| // Remove DbgInfo Intrinsics. |
| II = I->eraseFromParent(); |
| continue; |
| } |
| I->setDebugLoc(InsertPt->getDebugLoc()); |
| ++II; |
| } |
| DomBlock->getInstList().splice(InsertPt->getIterator(), BB->getInstList(), |
| BB->begin(), |
| BB->getTerminator()->getIterator()); |
| } |
| |
| namespace { |
| |
| /// A potential constituent of a bitreverse or bswap expression. See |
| /// collectBitParts for a fuller explanation. |
| struct BitPart { |
| BitPart(Value *P, unsigned BW) : Provider(P) { |
| Provenance.resize(BW); |
| } |
| |
| /// The Value that this is a bitreverse/bswap of. |
| Value *Provider; |
| |
| /// The "provenance" of each bit. Provenance[A] = B means that bit A |
| /// in Provider becomes bit B in the result of this expression. |
| SmallVector<int8_t, 32> Provenance; // int8_t means max size is i128. |
| |
| enum { Unset = -1 }; |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Analyze the specified subexpression and see if it is capable of providing |
| /// pieces of a bswap or bitreverse. The subexpression provides a potential |
| /// piece of a bswap or bitreverse if it can be proven that each non-zero bit in |
| /// the output of the expression came from a corresponding bit in some other |
| /// value. This function is recursive, and the end result is a mapping of |
| /// bitnumber to bitnumber. It is the caller's responsibility to validate that |
| /// the bitnumber to bitnumber mapping is correct for a bswap or bitreverse. |
| /// |
| /// For example, if the current subexpression if "(shl i32 %X, 24)" then we know |
| /// that the expression deposits the low byte of %X into the high byte of the |
| /// result and that all other bits are zero. This expression is accepted and a |
| /// BitPart is returned with Provider set to %X and Provenance[24-31] set to |
| /// [0-7]. |
| /// |
| /// To avoid revisiting values, the BitPart results are memoized into the |
| /// provided map. To avoid unnecessary copying of BitParts, BitParts are |
| /// constructed in-place in the \c BPS map. Because of this \c BPS needs to |
| /// store BitParts objects, not pointers. As we need the concept of a nullptr |
| /// BitParts (Value has been analyzed and the analysis failed), we an Optional |
| /// type instead to provide the same functionality. |
| /// |
| /// Because we pass around references into \c BPS, we must use a container that |
| /// does not invalidate internal references (std::map instead of DenseMap). |
| static const Optional<BitPart> & |
| collectBitParts(Value *V, bool MatchBSwaps, bool MatchBitReversals, |
| std::map<Value *, Optional<BitPart>> &BPS) { |
| auto I = BPS.find(V); |
| if (I != BPS.end()) |
| return I->second; |
| |
| auto &Result = BPS[V] = None; |
| auto BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); |
| |
| if (Instruction *I = dyn_cast<Instruction>(V)) { |
| // If this is an or instruction, it may be an inner node of the bswap. |
| if (I->getOpcode() == Instruction::Or) { |
| auto &A = collectBitParts(I->getOperand(0), MatchBSwaps, |
| MatchBitReversals, BPS); |
| auto &B = collectBitParts(I->getOperand(1), MatchBSwaps, |
| MatchBitReversals, BPS); |
| if (!A || !B) |
| return Result; |
| |
| // Try and merge the two together. |
| if (!A->Provider || A->Provider != B->Provider) |
| return Result; |
| |
| Result = BitPart(A->Provider, BitWidth); |
| for (unsigned i = 0; i < A->Provenance.size(); ++i) { |
| if (A->Provenance[i] != BitPart::Unset && |
| B->Provenance[i] != BitPart::Unset && |
| A->Provenance[i] != B->Provenance[i]) |
| return Result = None; |
| |
| if (A->Provenance[i] == BitPart::Unset) |
| Result->Provenance[i] = B->Provenance[i]; |
| else |
| Result->Provenance[i] = A->Provenance[i]; |
| } |
| |
| return Result; |
| } |
| |
| // If this is a logical shift by a constant, recurse then shift the result. |
| if (I->isLogicalShift() && isa<ConstantInt>(I->getOperand(1))) { |
| unsigned BitShift = |
| cast<ConstantInt>(I->getOperand(1))->getLimitedValue(~0U); |
| // Ensure the shift amount is defined. |
| if (BitShift > BitWidth) |
| return Result; |
| |
| auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, |
| MatchBitReversals, BPS); |
| if (!Res) |
| return Result; |
| Result = Res; |
| |
| // Perform the "shift" on BitProvenance. |
| auto &P = Result->Provenance; |
| if (I->getOpcode() == Instruction::Shl) { |
| P.erase(std::prev(P.end(), BitShift), P.end()); |
| P.insert(P.begin(), BitShift, BitPart::Unset); |
| } else { |
| P.erase(P.begin(), std::next(P.begin(), BitShift)); |
| P.insert(P.end(), BitShift, BitPart::Unset); |
| } |
| |
| return Result; |
| } |
| |
| // If this is a logical 'and' with a mask that clears bits, recurse then |
| // unset the appropriate bits. |
| if (I->getOpcode() == Instruction::And && |
| isa<ConstantInt>(I->getOperand(1))) { |
| APInt Bit(I->getType()->getPrimitiveSizeInBits(), 1); |
| const APInt &AndMask = cast<ConstantInt>(I->getOperand(1))->getValue(); |
| |
| // Check that the mask allows a multiple of 8 bits for a bswap, for an |
| // early exit. |
| unsigned NumMaskedBits = AndMask.countPopulation(); |
| if (!MatchBitReversals && NumMaskedBits % 8 != 0) |
| return Result; |
| |
| auto &Res = collectBitParts(I->getOperand(0), MatchBSwaps, |
| MatchBitReversals, BPS); |
| if (!Res) |
| return Result; |
| Result = Res; |
| |
| for (unsigned i = 0; i < BitWidth; ++i, Bit <<= 1 |