| //===- CloneFunction.cpp - Clone a function into another function ---------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the CloneFunctionInto interface, which is used as the |
| // low-level function cloner. This is used by the CloneFunction and function |
| // inliner to do the dirty work of copying the body of a function around. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/DomTreeUpdater.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DebugInfo.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/ValueMapper.h" |
| #include <map> |
| using namespace llvm; |
| |
| /// See comments in Cloning.h. |
| BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, |
| const Twine &NameSuffix, Function *F, |
| ClonedCodeInfo *CodeInfo, |
| DebugInfoFinder *DIFinder) { |
| DenseMap<const MDNode *, MDNode *> Cache; |
| BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); |
| if (BB->hasName()) |
| NewBB->setName(BB->getName() + NameSuffix); |
| |
| bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; |
| Module *TheModule = F ? F->getParent() : nullptr; |
| |
| // Loop over all instructions, and copy them over. |
| for (const Instruction &I : *BB) { |
| if (DIFinder && TheModule) |
| DIFinder->processInstruction(*TheModule, I); |
| |
| Instruction *NewInst = I.clone(); |
| if (I.hasName()) |
| NewInst->setName(I.getName() + NameSuffix); |
| NewBB->getInstList().push_back(NewInst); |
| VMap[&I] = NewInst; // Add instruction map to value. |
| |
| hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I)); |
| if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { |
| if (isa<ConstantInt>(AI->getArraySize())) |
| hasStaticAllocas = true; |
| else |
| hasDynamicAllocas = true; |
| } |
| } |
| |
| if (CodeInfo) { |
| CodeInfo->ContainsCalls |= hasCalls; |
| CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; |
| CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && |
| BB != &BB->getParent()->getEntryBlock(); |
| } |
| return NewBB; |
| } |
| |
| // Clone OldFunc into NewFunc, transforming the old arguments into references to |
| // VMap values. |
| // |
| void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, |
| ValueToValueMapTy &VMap, |
| bool ModuleLevelChanges, |
| SmallVectorImpl<ReturnInst*> &Returns, |
| const char *NameSuffix, ClonedCodeInfo *CodeInfo, |
| ValueMapTypeRemapper *TypeMapper, |
| ValueMaterializer *Materializer) { |
| assert(NameSuffix && "NameSuffix cannot be null!"); |
| |
| #ifndef NDEBUG |
| for (const Argument &I : OldFunc->args()) |
| assert(VMap.count(&I) && "No mapping from source argument specified!"); |
| #endif |
| |
| // Copy all attributes other than those stored in the AttributeList. We need |
| // to remap the parameter indices of the AttributeList. |
| AttributeList NewAttrs = NewFunc->getAttributes(); |
| NewFunc->copyAttributesFrom(OldFunc); |
| NewFunc->setAttributes(NewAttrs); |
| |
| // Fix up the personality function that got copied over. |
| if (OldFunc->hasPersonalityFn()) |
| NewFunc->setPersonalityFn( |
| MapValue(OldFunc->getPersonalityFn(), VMap, |
| ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, |
| TypeMapper, Materializer)); |
| |
| SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size()); |
| AttributeList OldAttrs = OldFunc->getAttributes(); |
| |
| // Clone any argument attributes that are present in the VMap. |
| for (const Argument &OldArg : OldFunc->args()) { |
| if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { |
| NewArgAttrs[NewArg->getArgNo()] = |
| OldAttrs.getParamAttributes(OldArg.getArgNo()); |
| } |
| } |
| |
| NewFunc->setAttributes( |
| AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(), |
| OldAttrs.getRetAttributes(), NewArgAttrs)); |
| |
| bool MustCloneSP = |
| OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent(); |
| DISubprogram *SP = OldFunc->getSubprogram(); |
| if (SP) { |
| assert(!MustCloneSP || ModuleLevelChanges); |
| // Add mappings for some DebugInfo nodes that we don't want duplicated |
| // even if they're distinct. |
| auto &MD = VMap.MD(); |
| MD[SP->getUnit()].reset(SP->getUnit()); |
| MD[SP->getType()].reset(SP->getType()); |
| MD[SP->getFile()].reset(SP->getFile()); |
| // If we're not cloning into the same module, no need to clone the |
| // subprogram |
| if (!MustCloneSP) |
| MD[SP].reset(SP); |
| } |
| |
| SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; |
| OldFunc->getAllMetadata(MDs); |
| for (auto MD : MDs) { |
| NewFunc->addMetadata( |
| MD.first, |
| *MapMetadata(MD.second, VMap, |
| ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, |
| TypeMapper, Materializer)); |
| } |
| |
| // When we remap instructions, we want to avoid duplicating inlined |
| // DISubprograms, so record all subprograms we find as we duplicate |
| // instructions and then freeze them in the MD map. |
| // We also record information about dbg.value and dbg.declare to avoid |
| // duplicating the types. |
| DebugInfoFinder DIFinder; |
| |
| // Loop over all of the basic blocks in the function, cloning them as |
| // appropriate. Note that we save BE this way in order to handle cloning of |
| // recursive functions into themselves. |
| // |
| for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); |
| BI != BE; ++BI) { |
| const BasicBlock &BB = *BI; |
| |
| // Create a new basic block and copy instructions into it! |
| BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo, |
| ModuleLevelChanges ? &DIFinder : nullptr); |
| |
| // Add basic block mapping. |
| VMap[&BB] = CBB; |
| |
| // It is only legal to clone a function if a block address within that |
| // function is never referenced outside of the function. Given that, we |
| // want to map block addresses from the old function to block addresses in |
| // the clone. (This is different from the generic ValueMapper |
| // implementation, which generates an invalid blockaddress when |
| // cloning a function.) |
| if (BB.hasAddressTaken()) { |
| Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), |
| const_cast<BasicBlock*>(&BB)); |
| VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); |
| } |
| |
| // Note return instructions for the caller. |
| if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) |
| Returns.push_back(RI); |
| } |
| |
| for (DISubprogram *ISP : DIFinder.subprograms()) |
| if (ISP != SP) |
| VMap.MD()[ISP].reset(ISP); |
| |
| for (DICompileUnit *CU : DIFinder.compile_units()) |
| VMap.MD()[CU].reset(CU); |
| |
| for (DIType *Type : DIFinder.types()) |
| VMap.MD()[Type].reset(Type); |
| |
| // Loop over all of the instructions in the function, fixing up operand |
| // references as we go. This uses VMap to do all the hard work. |
| for (Function::iterator BB = |
| cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(), |
| BE = NewFunc->end(); |
| BB != BE; ++BB) |
| // Loop over all instructions, fixing each one as we find it... |
| for (Instruction &II : *BB) |
| RemapInstruction(&II, VMap, |
| ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, |
| TypeMapper, Materializer); |
| } |
| |
| /// Return a copy of the specified function and add it to that function's |
| /// module. Also, any references specified in the VMap are changed to refer to |
| /// their mapped value instead of the original one. If any of the arguments to |
| /// the function are in the VMap, the arguments are deleted from the resultant |
| /// function. The VMap is updated to include mappings from all of the |
| /// instructions and basicblocks in the function from their old to new values. |
| /// |
| Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap, |
| ClonedCodeInfo *CodeInfo) { |
| std::vector<Type*> ArgTypes; |
| |
| // The user might be deleting arguments to the function by specifying them in |
| // the VMap. If so, we need to not add the arguments to the arg ty vector |
| // |
| for (const Argument &I : F->args()) |
| if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet? |
| ArgTypes.push_back(I.getType()); |
| |
| // Create a new function type... |
| FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), |
| ArgTypes, F->getFunctionType()->isVarArg()); |
| |
| // Create the new function... |
| Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(), |
| F->getName(), F->getParent()); |
| |
| // Loop over the arguments, copying the names of the mapped arguments over... |
| Function::arg_iterator DestI = NewF->arg_begin(); |
| for (const Argument & I : F->args()) |
| if (VMap.count(&I) == 0) { // Is this argument preserved? |
| DestI->setName(I.getName()); // Copy the name over... |
| VMap[&I] = &*DestI++; // Add mapping to VMap |
| } |
| |
| SmallVector<ReturnInst*, 8> Returns; // Ignore returns cloned. |
| CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "", |
| CodeInfo); |
| |
| return NewF; |
| } |
| |
| |
| |
| namespace { |
| /// This is a private class used to implement CloneAndPruneFunctionInto. |
| struct PruningFunctionCloner { |
| Function *NewFunc; |
| const Function *OldFunc; |
| ValueToValueMapTy &VMap; |
| bool ModuleLevelChanges; |
| const char *NameSuffix; |
| ClonedCodeInfo *CodeInfo; |
| |
| public: |
| PruningFunctionCloner(Function *newFunc, const Function *oldFunc, |
| ValueToValueMapTy &valueMap, bool moduleLevelChanges, |
| const char *nameSuffix, ClonedCodeInfo *codeInfo) |
| : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), |
| ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), |
| CodeInfo(codeInfo) {} |
| |
| /// The specified block is found to be reachable, clone it and |
| /// anything that it can reach. |
| void CloneBlock(const BasicBlock *BB, |
| BasicBlock::const_iterator StartingInst, |
| std::vector<const BasicBlock*> &ToClone); |
| }; |
| } |
| |
| /// The specified block is found to be reachable, clone it and |
| /// anything that it can reach. |
| void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, |
| BasicBlock::const_iterator StartingInst, |
| std::vector<const BasicBlock*> &ToClone){ |
| WeakTrackingVH &BBEntry = VMap[BB]; |
| |
| // Have we already cloned this block? |
| if (BBEntry) return; |
| |
| // Nope, clone it now. |
| BasicBlock *NewBB; |
| BBEntry = NewBB = BasicBlock::Create(BB->getContext()); |
| if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); |
| |
| // It is only legal to clone a function if a block address within that |
| // function is never referenced outside of the function. Given that, we |
| // want to map block addresses from the old function to block addresses in |
| // the clone. (This is different from the generic ValueMapper |
| // implementation, which generates an invalid blockaddress when |
| // cloning a function.) |
| // |
| // Note that we don't need to fix the mapping for unreachable blocks; |
| // the default mapping there is safe. |
| if (BB->hasAddressTaken()) { |
| Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), |
| const_cast<BasicBlock*>(BB)); |
| VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); |
| } |
| |
| bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; |
| |
| // Loop over all instructions, and copy them over, DCE'ing as we go. This |
| // loop doesn't include the terminator. |
| for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); |
| II != IE; ++II) { |
| |
| Instruction *NewInst = II->clone(); |
| |
| // Eagerly remap operands to the newly cloned instruction, except for PHI |
| // nodes for which we defer processing until we update the CFG. |
| if (!isa<PHINode>(NewInst)) { |
| RemapInstruction(NewInst, VMap, |
| ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); |
| |
| // If we can simplify this instruction to some other value, simply add |
| // a mapping to that value rather than inserting a new instruction into |
| // the basic block. |
| if (Value *V = |
| SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { |
| // On the off-chance that this simplifies to an instruction in the old |
| // function, map it back into the new function. |
| if (NewFunc != OldFunc) |
| if (Value *MappedV = VMap.lookup(V)) |
| V = MappedV; |
| |
| if (!NewInst->mayHaveSideEffects()) { |
| VMap[&*II] = V; |
| NewInst->deleteValue(); |
| continue; |
| } |
| } |
| } |
| |
| if (II->hasName()) |
| NewInst->setName(II->getName()+NameSuffix); |
| VMap[&*II] = NewInst; // Add instruction map to value. |
| NewBB->getInstList().push_back(NewInst); |
| hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); |
| |
| if (CodeInfo) |
| if (auto CS = ImmutableCallSite(&*II)) |
| if (CS.hasOperandBundles()) |
| CodeInfo->OperandBundleCallSites.push_back(NewInst); |
| |
| if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { |
| if (isa<ConstantInt>(AI->getArraySize())) |
| hasStaticAllocas = true; |
| else |
| hasDynamicAllocas = true; |
| } |
| } |
| |
| // Finally, clone over the terminator. |
| const Instruction *OldTI = BB->getTerminator(); |
| bool TerminatorDone = false; |
| if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { |
| if (BI->isConditional()) { |
| // If the condition was a known constant in the callee... |
| ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); |
| // Or is a known constant in the caller... |
| if (!Cond) { |
| Value *V = VMap.lookup(BI->getCondition()); |
| Cond = dyn_cast_or_null<ConstantInt>(V); |
| } |
| |
| // Constant fold to uncond branch! |
| if (Cond) { |
| BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); |
| VMap[OldTI] = BranchInst::Create(Dest, NewBB); |
| ToClone.push_back(Dest); |
| TerminatorDone = true; |
| } |
| } |
| } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { |
| // If switching on a value known constant in the caller. |
| ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); |
| if (!Cond) { // Or known constant after constant prop in the callee... |
| Value *V = VMap.lookup(SI->getCondition()); |
| Cond = dyn_cast_or_null<ConstantInt>(V); |
| } |
| if (Cond) { // Constant fold to uncond branch! |
| SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond); |
| BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor()); |
| VMap[OldTI] = BranchInst::Create(Dest, NewBB); |
| ToClone.push_back(Dest); |
| TerminatorDone = true; |
| } |
| } |
| |
| if (!TerminatorDone) { |
| Instruction *NewInst = OldTI->clone(); |
| if (OldTI->hasName()) |
| NewInst->setName(OldTI->getName()+NameSuffix); |
| NewBB->getInstList().push_back(NewInst); |
| VMap[OldTI] = NewInst; // Add instruction map to value. |
| |
| if (CodeInfo) |
| if (auto CS = ImmutableCallSite(OldTI)) |
| if (CS.hasOperandBundles()) |
| CodeInfo->OperandBundleCallSites.push_back(NewInst); |
| |
| // Recursively clone any reachable successor blocks. |
| const Instruction *TI = BB->getTerminator(); |
| for (const BasicBlock *Succ : successors(TI)) |
| ToClone.push_back(Succ); |
| } |
| |
| if (CodeInfo) { |
| CodeInfo->ContainsCalls |= hasCalls; |
| CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; |
| CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && |
| BB != &BB->getParent()->front(); |
| } |
| } |
| |
| /// This works like CloneAndPruneFunctionInto, except that it does not clone the |
| /// entire function. Instead it starts at an instruction provided by the caller |
| /// and copies (and prunes) only the code reachable from that instruction. |
| void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, |
| const Instruction *StartingInst, |
| ValueToValueMapTy &VMap, |
| bool ModuleLevelChanges, |
| SmallVectorImpl<ReturnInst *> &Returns, |
| const char *NameSuffix, |
| ClonedCodeInfo *CodeInfo) { |
| assert(NameSuffix && "NameSuffix cannot be null!"); |
| |
| ValueMapTypeRemapper *TypeMapper = nullptr; |
| ValueMaterializer *Materializer = nullptr; |
| |
| #ifndef NDEBUG |
| // If the cloning starts at the beginning of the function, verify that |
| // the function arguments are mapped. |
| if (!StartingInst) |
| for (const Argument &II : OldFunc->args()) |
| assert(VMap.count(&II) && "No mapping from source argument specified!"); |
| #endif |
| |
| PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, |
| NameSuffix, CodeInfo); |
| const BasicBlock *StartingBB; |
| if (StartingInst) |
| StartingBB = StartingInst->getParent(); |
| else { |
| StartingBB = &OldFunc->getEntryBlock(); |
| StartingInst = &StartingBB->front(); |
| } |
| |
| // Clone the entry block, and anything recursively reachable from it. |
| std::vector<const BasicBlock*> CloneWorklist; |
| PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist); |
| while (!CloneWorklist.empty()) { |
| const BasicBlock *BB = CloneWorklist.back(); |
| CloneWorklist.pop_back(); |
| PFC.CloneBlock(BB, BB->begin(), CloneWorklist); |
| } |
| |
| // Loop over all of the basic blocks in the old function. If the block was |
| // reachable, we have cloned it and the old block is now in the value map: |
| // insert it into the new function in the right order. If not, ignore it. |
| // |
| // Defer PHI resolution until rest of function is resolved. |
| SmallVector<const PHINode*, 16> PHIToResolve; |
| for (const BasicBlock &BI : *OldFunc) { |
| Value *V = VMap.lookup(&BI); |
| BasicBlock *NewBB = cast_or_null<BasicBlock>(V); |
| if (!NewBB) continue; // Dead block. |
| |
| // Add the new block to the new function. |
| NewFunc->getBasicBlockList().push_back(NewBB); |
| |
| // Handle PHI nodes specially, as we have to remove references to dead |
| // blocks. |
| for (const PHINode &PN : BI.phis()) { |
| // PHI nodes may have been remapped to non-PHI nodes by the caller or |
| // during the cloning process. |
| if (isa<PHINode>(VMap[&PN])) |
| PHIToResolve.push_back(&PN); |
| else |
| break; |
| } |
| |
| // Finally, remap the terminator instructions, as those can't be remapped |
| // until all BBs are mapped. |
| RemapInstruction(NewBB->getTerminator(), VMap, |
| ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, |
| TypeMapper, Materializer); |
| } |
| |
| // Defer PHI resolution until rest of function is resolved, PHI resolution |
| // requires the CFG to be up-to-date. |
| for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { |
| const PHINode *OPN = PHIToResolve[phino]; |
| unsigned NumPreds = OPN->getNumIncomingValues(); |
| const BasicBlock *OldBB = OPN->getParent(); |
| BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); |
| |
| // Map operands for blocks that are live and remove operands for blocks |
| // that are dead. |
| for (; phino != PHIToResolve.size() && |
| PHIToResolve[phino]->getParent() == OldBB; ++phino) { |
| OPN = PHIToResolve[phino]; |
| PHINode *PN = cast<PHINode>(VMap[OPN]); |
| for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { |
| Value *V = VMap.lookup(PN->getIncomingBlock(pred)); |
| if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { |
| Value *InVal = MapValue(PN->getIncomingValue(pred), |
| VMap, |
| ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); |
| assert(InVal && "Unknown input value?"); |
| PN->setIncomingValue(pred, InVal); |
| PN->setIncomingBlock(pred, MappedBlock); |
| } else { |
| PN->removeIncomingValue(pred, false); |
| --pred; // Revisit the next entry. |
| --e; |
| } |
| } |
| } |
| |
| // The loop above has removed PHI entries for those blocks that are dead |
| // and has updated others. However, if a block is live (i.e. copied over) |
| // but its terminator has been changed to not go to this block, then our |
| // phi nodes will have invalid entries. Update the PHI nodes in this |
| // case. |
| PHINode *PN = cast<PHINode>(NewBB->begin()); |
| NumPreds = pred_size(NewBB); |
| if (NumPreds != PN->getNumIncomingValues()) { |
| assert(NumPreds < PN->getNumIncomingValues()); |
| // Count how many times each predecessor comes to this block. |
| std::map<BasicBlock*, unsigned> PredCount; |
| for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); |
| PI != E; ++PI) |
| --PredCount[*PI]; |
| |
| // Figure out how many entries to remove from each PHI. |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| ++PredCount[PN->getIncomingBlock(i)]; |
| |
| // At this point, the excess predecessor entries are positive in the |
| // map. Loop over all of the PHIs and remove excess predecessor |
| // entries. |
| BasicBlock::iterator I = NewBB->begin(); |
| for (; (PN = dyn_cast<PHINode>(I)); ++I) { |
| for (const auto &PCI : PredCount) { |
| BasicBlock *Pred = PCI.first; |
| for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove) |
| PN->removeIncomingValue(Pred, false); |
| } |
| } |
| } |
| |
| // If the loops above have made these phi nodes have 0 or 1 operand, |
| // replace them with undef or the input value. We must do this for |
| // correctness, because 0-operand phis are not valid. |
| PN = cast<PHINode>(NewBB->begin()); |
| if (PN->getNumIncomingValues() == 0) { |
| BasicBlock::iterator I = NewBB->begin(); |
| BasicBlock::const_iterator OldI = OldBB->begin(); |
| while ((PN = dyn_cast<PHINode>(I++))) { |
| Value *NV = UndefValue::get(PN->getType()); |
| PN->replaceAllUsesWith(NV); |
| assert(VMap[&*OldI] == PN && "VMap mismatch"); |
| VMap[&*OldI] = NV; |
| PN->eraseFromParent(); |
| ++OldI; |
| } |
| } |
| } |
| |
| // Make a second pass over the PHINodes now that all of them have been |
| // remapped into the new function, simplifying the PHINode and performing any |
| // recursive simplifications exposed. This will transparently update the |
| // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce |
| // two PHINodes, the iteration over the old PHIs remains valid, and the |
| // mapping will just map us to the new node (which may not even be a PHI |
| // node). |
| const DataLayout &DL = NewFunc->getParent()->getDataLayout(); |
| SmallSetVector<const Value *, 8> Worklist; |
| for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) |
| if (isa<PHINode>(VMap[PHIToResolve[Idx]])) |
| Worklist.insert(PHIToResolve[Idx]); |
| |
| // Note that we must test the size on each iteration, the worklist can grow. |
| for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { |
| const Value *OrigV = Worklist[Idx]; |
| auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV)); |
| if (!I) |
| continue; |
| |
| // Skip over non-intrinsic callsites, we don't want to remove any nodes from |
| // the CGSCC. |
| CallSite CS = CallSite(I); |
| if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic()) |
| continue; |
| |
| // See if this instruction simplifies. |
| Value *SimpleV = SimplifyInstruction(I, DL); |
| if (!SimpleV) |
| continue; |
| |
| // Stash away all the uses of the old instruction so we can check them for |
| // recursive simplifications after a RAUW. This is cheaper than checking all |
| // uses of To on the recursive step in most cases. |
| for (const User *U : OrigV->users()) |
| Worklist.insert(cast<Instruction>(U)); |
| |
| // Replace the instruction with its simplified value. |
| I->replaceAllUsesWith(SimpleV); |
| |
| // If the original instruction had no side effects, remove it. |
| if (isInstructionTriviallyDead(I)) |
| I->eraseFromParent(); |
| else |
| VMap[OrigV] = I; |
| } |
| |
| // Now that the inlined function body has been fully constructed, go through |
| // and zap unconditional fall-through branches. This happens all the time when |
| // specializing code: code specialization turns conditional branches into |
| // uncond branches, and this code folds them. |
| Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator(); |
| Function::iterator I = Begin; |
| while (I != NewFunc->end()) { |
| // We need to simplify conditional branches and switches with a constant |
| // operand. We try to prune these out when cloning, but if the |
| // simplification required looking through PHI nodes, those are only |
| // available after forming the full basic block. That may leave some here, |
| // and we still want to prune the dead code as early as possible. |
| // |
| // Do the folding before we check if the block is dead since we want code |
| // like |
| // bb: |
| // br i1 undef, label %bb, label %bb |
| // to be simplified to |
| // bb: |
| // br label %bb |
| // before we call I->getSinglePredecessor(). |
| ConstantFoldTerminator(&*I); |
| |
| // Check if this block has become dead during inlining or other |
| // simplifications. Note that the first block will appear dead, as it has |
| // not yet been wired up properly. |
| if (I != Begin && (pred_begin(&*I) == pred_end(&*I) || |
| I->getSinglePredecessor() == &*I)) { |
| BasicBlock *DeadBB = &*I++; |
| DeleteDeadBlock(DeadBB); |
| continue; |
| } |
| |
| BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); |
| if (!BI || BI->isConditional()) { ++I; continue; } |
| |
| BasicBlock *Dest = BI->getSuccessor(0); |
| if (!Dest->getSinglePredecessor()) { |
| ++I; continue; |
| } |
| |
| // We shouldn't be able to get single-entry PHI nodes here, as instsimplify |
| // above should have zapped all of them.. |
| assert(!isa<PHINode>(Dest->begin())); |
| |
| // We know all single-entry PHI nodes in the inlined function have been |
| // removed, so we just need to splice the blocks. |
| BI->eraseFromParent(); |
| |
| // Make all PHI nodes that referred to Dest now refer to I as their source. |
| Dest->replaceAllUsesWith(&*I); |
| |
| // Move all the instructions in the succ to the pred. |
| I->getInstList().splice(I->end(), Dest->getInstList()); |
| |
| // Remove the dest block. |
| Dest->eraseFromParent(); |
| |
| // Do not increment I, iteratively merge all things this block branches to. |
| } |
| |
| // Make a final pass over the basic blocks from the old function to gather |
| // any return instructions which survived folding. We have to do this here |
| // because we can iteratively remove and merge returns above. |
| for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(), |
| E = NewFunc->end(); |
| I != E; ++I) |
| if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) |
| Returns.push_back(RI); |
| } |
| |
| |
| /// This works exactly like CloneFunctionInto, |
| /// except that it does some simple constant prop and DCE on the fly. The |
| /// effect of this is to copy significantly less code in cases where (for |
| /// example) a function call with constant arguments is inlined, and those |
| /// constant arguments cause a significant amount of code in the callee to be |
| /// dead. Since this doesn't produce an exact copy of the input, it can't be |
| /// used for things like CloneFunction or CloneModule. |
| void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, |
| ValueToValueMapTy &VMap, |
| bool ModuleLevelChanges, |
| SmallVectorImpl<ReturnInst*> &Returns, |
| const char *NameSuffix, |
| ClonedCodeInfo *CodeInfo, |
| Instruction *TheCall) { |
| CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap, |
| ModuleLevelChanges, Returns, NameSuffix, CodeInfo); |
| } |
| |
| /// Remaps instructions in \p Blocks using the mapping in \p VMap. |
| void llvm::remapInstructionsInBlocks( |
| const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) { |
| // Rewrite the code to refer to itself. |
| for (auto *BB : Blocks) |
| for (auto &Inst : *BB) |
| RemapInstruction(&Inst, VMap, |
| RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); |
| } |
| |
| /// Clones a loop \p OrigLoop. Returns the loop and the blocks in \p |
| /// Blocks. |
| /// |
| /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block |
| /// \p LoopDomBB. Insert the new blocks before block specified in \p Before. |
| Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, |
| Loop *OrigLoop, ValueToValueMapTy &VMap, |
| const Twine &NameSuffix, LoopInfo *LI, |
| DominatorTree *DT, |
| SmallVectorImpl<BasicBlock *> &Blocks) { |
| assert(OrigLoop->getSubLoops().empty() && |
| "Loop to be cloned cannot have inner loop"); |
| Function *F = OrigLoop->getHeader()->getParent(); |
| Loop *ParentLoop = OrigLoop->getParentLoop(); |
| |
| Loop *NewLoop = LI->AllocateLoop(); |
| if (ParentLoop) |
| ParentLoop->addChildLoop(NewLoop); |
| else |
| LI->addTopLevelLoop(NewLoop); |
| |
| BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); |
| assert(OrigPH && "No preheader"); |
| BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); |
| // To rename the loop PHIs. |
| VMap[OrigPH] = NewPH; |
| Blocks.push_back(NewPH); |
| |
| // Update LoopInfo. |
| if (ParentLoop) |
| ParentLoop->addBasicBlockToLoop(NewPH, *LI); |
| |
| // Update DominatorTree. |
| DT->addNewBlock(NewPH, LoopDomBB); |
| |
| for (BasicBlock *BB : OrigLoop->getBlocks()) { |
| BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); |
| VMap[BB] = NewBB; |
| |
| // Update LoopInfo. |
| NewLoop->addBasicBlockToLoop(NewBB, *LI); |
| |
| // Add DominatorTree node. After seeing all blocks, update to correct IDom. |
| DT->addNewBlock(NewBB, NewPH); |
| |
| Blocks.push_back(NewBB); |
| } |
| |
| for (BasicBlock *BB : OrigLoop->getBlocks()) { |
| // Update DominatorTree. |
| BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); |
| DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]), |
| cast<BasicBlock>(VMap[IDomBB])); |
| } |
| |
| // Move them physically from the end of the block list. |
| F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), |
| NewPH); |
| F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), |
| NewLoop->getHeader()->getIterator(), F->end()); |
| |
| return NewLoop; |
| } |
| |
| /// Duplicate non-Phi instructions from the beginning of block up to |
| /// StopAt instruction into a split block between BB and its predecessor. |
| BasicBlock *llvm::DuplicateInstructionsInSplitBetween( |
| BasicBlock *BB, BasicBlock *PredBB, Instruction *StopAt, |
| ValueToValueMapTy &ValueMapping, DomTreeUpdater &DTU) { |
| |
| assert(count(successors(PredBB), BB) == 1 && |
| "There must be a single edge between PredBB and BB!"); |
| // We are going to have to map operands from the original BB block to the new |
| // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to |
| // account for entry from PredBB. |
| BasicBlock::iterator BI = BB->begin(); |
| for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) |
| ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); |
| |
| BasicBlock *NewBB = SplitEdge(PredBB, BB); |
| NewBB->setName(PredBB->getName() + ".split"); |
| Instruction *NewTerm = NewBB->getTerminator(); |
| |
| // FIXME: SplitEdge does not yet take a DTU, so we include the split edge |
| // in the update set here. |
| DTU.applyUpdates({{DominatorTree::Delete, PredBB, BB}, |
| {DominatorTree::Insert, PredBB, NewBB}, |
| {DominatorTree::Insert, NewBB, BB}}); |
| |
| // Clone the non-phi instructions of BB into NewBB, keeping track of the |
| // mapping and using it to remap operands in the cloned instructions. |
| // Stop once we see the terminator too. This covers the case where BB's |
| // terminator gets replaced and StopAt == BB's terminator. |
| for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) { |
| Instruction *New = BI->clone(); |
| New->setName(BI->getName()); |
| New->insertBefore(NewTerm); |
| ValueMapping[&*BI] = New; |
| |
| // Remap operands to patch up intra-block references. |
| for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) |
| if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { |
| auto I = ValueMapping.find(Inst); |
| if (I != ValueMapping.end()) |
| New->setOperand(i, I->second); |
| } |
| } |
| |
| return NewBB; |
| } |