| //===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This family of functions perform manipulations on basic blocks, and |
| // instructions contained within basic blocks. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/CFG.h" |
| #include "llvm/Analysis/DomTreeUpdater.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/MemoryDependenceAnalysis.h" |
| #include "llvm/Analysis/MemorySSAUpdater.h" |
| #include "llvm/Analysis/PostDominators.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/User.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/IR/ValueHandle.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| void llvm::DetatchDeadBlocks( |
| ArrayRef<BasicBlock *> BBs, |
| SmallVectorImpl<DominatorTree::UpdateType> *Updates) { |
| for (auto *BB : BBs) { |
| // Loop through all of our successors and make sure they know that one |
| // of their predecessors is going away. |
| SmallPtrSet<BasicBlock *, 4> UniqueSuccessors; |
| for (BasicBlock *Succ : successors(BB)) { |
| Succ->removePredecessor(BB); |
| if (Updates && UniqueSuccessors.insert(Succ).second) |
| Updates->push_back({DominatorTree::Delete, BB, Succ}); |
| } |
| |
| // Zap all the instructions in the block. |
| while (!BB->empty()) { |
| Instruction &I = BB->back(); |
| // If this instruction is used, replace uses with an arbitrary value. |
| // Because control flow can't get here, we don't care what we replace the |
| // value with. Note that since this block is unreachable, and all values |
| // contained within it must dominate their uses, that all uses will |
| // eventually be removed (they are themselves dead). |
| if (!I.use_empty()) |
| I.replaceAllUsesWith(UndefValue::get(I.getType())); |
| BB->getInstList().pop_back(); |
| } |
| new UnreachableInst(BB->getContext(), BB); |
| assert(BB->getInstList().size() == 1 && |
| isa<UnreachableInst>(BB->getTerminator()) && |
| "The successor list of BB isn't empty before " |
| "applying corresponding DTU updates."); |
| } |
| } |
| |
| void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU) { |
| DeleteDeadBlocks({BB}, DTU); |
| } |
| |
| void llvm::DeleteDeadBlocks(ArrayRef <BasicBlock *> BBs, |
| DomTreeUpdater *DTU) { |
| #ifndef NDEBUG |
| // Make sure that all predecessors of each dead block is also dead. |
| SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end()); |
| assert(Dead.size() == BBs.size() && "Duplicating blocks?"); |
| for (auto *BB : Dead) |
| for (BasicBlock *Pred : predecessors(BB)) |
| assert(Dead.count(Pred) && "All predecessors must be dead!"); |
| #endif |
| |
| SmallVector<DominatorTree::UpdateType, 4> Updates; |
| DetatchDeadBlocks(BBs, DTU ? &Updates : nullptr); |
| |
| if (DTU) |
| DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); |
| |
| for (BasicBlock *BB : BBs) |
| if (DTU) |
| DTU->deleteBB(BB); |
| else |
| BB->eraseFromParent(); |
| } |
| |
| void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, |
| MemoryDependenceResults *MemDep) { |
| if (!isa<PHINode>(BB->begin())) return; |
| |
| while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { |
| if (PN->getIncomingValue(0) != PN) |
| PN->replaceAllUsesWith(PN->getIncomingValue(0)); |
| else |
| PN->replaceAllUsesWith(UndefValue::get(PN->getType())); |
| |
| if (MemDep) |
| MemDep->removeInstruction(PN); // Memdep updates AA itself. |
| |
| PN->eraseFromParent(); |
| } |
| } |
| |
| bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) { |
| // Recursively deleting a PHI may cause multiple PHIs to be deleted |
| // or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete. |
| SmallVector<WeakTrackingVH, 8> PHIs; |
| for (PHINode &PN : BB->phis()) |
| PHIs.push_back(&PN); |
| |
| bool Changed = false; |
| for (unsigned i = 0, e = PHIs.size(); i != e; ++i) |
| if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) |
| Changed |= RecursivelyDeleteDeadPHINode(PN, TLI); |
| |
| return Changed; |
| } |
| |
| bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU, |
| LoopInfo *LI, MemorySSAUpdater *MSSAU, |
| MemoryDependenceResults *MemDep) { |
| if (BB->hasAddressTaken()) |
| return false; |
| |
| // Can't merge if there are multiple predecessors, or no predecessors. |
| BasicBlock *PredBB = BB->getUniquePredecessor(); |
| if (!PredBB) return false; |
| |
| // Don't break self-loops. |
| if (PredBB == BB) return false; |
| // Don't break unwinding instructions. |
| if (PredBB->getTerminator()->isExceptionalTerminator()) |
| return false; |
| |
| // Can't merge if there are multiple distinct successors. |
| if (PredBB->getUniqueSuccessor() != BB) |
| return false; |
| |
| // Can't merge if there is PHI loop. |
| for (PHINode &PN : BB->phis()) |
| for (Value *IncValue : PN.incoming_values()) |
| if (IncValue == &PN) |
| return false; |
| |
| // Begin by getting rid of unneeded PHIs. |
| SmallVector<AssertingVH<Value>, 4> IncomingValues; |
| if (isa<PHINode>(BB->front())) { |
| for (PHINode &PN : BB->phis()) |
| if (!isa<PHINode>(PN.getIncomingValue(0)) || |
| cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB) |
| IncomingValues.push_back(PN.getIncomingValue(0)); |
| FoldSingleEntryPHINodes(BB, MemDep); |
| } |
| |
| // DTU update: Collect all the edges that exit BB. |
| // These dominator edges will be redirected from Pred. |
| std::vector<DominatorTree::UpdateType> Updates; |
| if (DTU) { |
| Updates.reserve(1 + (2 * succ_size(BB))); |
| Updates.push_back({DominatorTree::Delete, PredBB, BB}); |
| for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) { |
| Updates.push_back({DominatorTree::Delete, BB, *I}); |
| Updates.push_back({DominatorTree::Insert, PredBB, *I}); |
| } |
| } |
| |
| if (MSSAU) |
| MSSAU->moveAllAfterMergeBlocks(BB, PredBB, &*(BB->begin())); |
| |
| // Delete the unconditional branch from the predecessor... |
| PredBB->getInstList().pop_back(); |
| |
| // Make all PHI nodes that referred to BB now refer to Pred as their |
| // source... |
| BB->replaceAllUsesWith(PredBB); |
| |
| // Move all definitions in the successor to the predecessor... |
| PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); |
| new UnreachableInst(BB->getContext(), BB); |
| |
| // Eliminate duplicate dbg.values describing the entry PHI node post-splice. |
| for (auto Incoming : IncomingValues) { |
| if (isa<Instruction>(*Incoming)) { |
| SmallVector<DbgValueInst *, 2> DbgValues; |
| SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2> |
| DbgValueSet; |
| llvm::findDbgValues(DbgValues, Incoming); |
| for (auto &DVI : DbgValues) { |
| auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()}); |
| if (!R.second) |
| DVI->eraseFromParent(); |
| } |
| } |
| } |
| |
| // Inherit predecessors name if it exists. |
| if (!PredBB->hasName()) |
| PredBB->takeName(BB); |
| |
| if (LI) |
| LI->removeBlock(BB); |
| |
| if (MemDep) |
| MemDep->invalidateCachedPredecessors(); |
| |
| // Finally, erase the old block and update dominator info. |
| if (DTU) { |
| assert(BB->getInstList().size() == 1 && |
| isa<UnreachableInst>(BB->getTerminator()) && |
| "The successor list of BB isn't empty before " |
| "applying corresponding DTU updates."); |
| DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true); |
| DTU->deleteBB(BB); |
| } |
| |
| else { |
| BB->eraseFromParent(); // Nuke BB if DTU is nullptr. |
| } |
| return true; |
| } |
| |
| void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, |
| BasicBlock::iterator &BI, Value *V) { |
| Instruction &I = *BI; |
| // Replaces all of the uses of the instruction with uses of the value |
| I.replaceAllUsesWith(V); |
| |
| // Make sure to propagate a name if there is one already. |
| if (I.hasName() && !V->hasName()) |
| V->takeName(&I); |
| |
| // Delete the unnecessary instruction now... |
| BI = BIL.erase(BI); |
| } |
| |
| void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, |
| BasicBlock::iterator &BI, Instruction *I) { |
| assert(I->getParent() == nullptr && |
| "ReplaceInstWithInst: Instruction already inserted into basic block!"); |
| |
| // Copy debug location to newly added instruction, if it wasn't already set |
| // by the caller. |
| if (!I->getDebugLoc()) |
| I->setDebugLoc(BI->getDebugLoc()); |
| |
| // Insert the new instruction into the basic block... |
| BasicBlock::iterator New = BIL.insert(BI, I); |
| |
| // Replace all uses of the old instruction, and delete it. |
| ReplaceInstWithValue(BIL, BI, I); |
| |
| // Move BI back to point to the newly inserted instruction |
| BI = New; |
| } |
| |
| void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { |
| BasicBlock::iterator BI(From); |
| ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); |
| } |
| |
| BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT, |
| LoopInfo *LI, MemorySSAUpdater *MSSAU) { |
| unsigned SuccNum = GetSuccessorNumber(BB, Succ); |
| |
| // If this is a critical edge, let SplitCriticalEdge do it. |
| Instruction *LatchTerm = BB->getTerminator(); |
| if (SplitCriticalEdge( |
| LatchTerm, SuccNum, |
| CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA())) |
| return LatchTerm->getSuccessor(SuccNum); |
| |
| // If the edge isn't critical, then BB has a single successor or Succ has a |
| // single pred. Split the block. |
| if (BasicBlock *SP = Succ->getSinglePredecessor()) { |
| // If the successor only has a single pred, split the top of the successor |
| // block. |
| assert(SP == BB && "CFG broken"); |
| SP = nullptr; |
| return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU); |
| } |
| |
| // Otherwise, if BB has a single successor, split it at the bottom of the |
| // block. |
| assert(BB->getTerminator()->getNumSuccessors() == 1 && |
| "Should have a single succ!"); |
| return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU); |
| } |
| |
| unsigned |
| llvm::SplitAllCriticalEdges(Function &F, |
| const CriticalEdgeSplittingOptions &Options) { |
| unsigned NumBroken = 0; |
| for (BasicBlock &BB : F) { |
| Instruction *TI = BB.getTerminator(); |
| if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI)) |
| for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) |
| if (SplitCriticalEdge(TI, i, Options)) |
| ++NumBroken; |
| } |
| return NumBroken; |
| } |
| |
| BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, |
| DominatorTree *DT, LoopInfo *LI, |
| MemorySSAUpdater *MSSAU) { |
| BasicBlock::iterator SplitIt = SplitPt->getIterator(); |
| while (isa<PHINode>(SplitIt) || SplitIt->isEHPad()) |
| ++SplitIt; |
| BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split"); |
| |
| // The new block lives in whichever loop the old one did. This preserves |
| // LCSSA as well, because we force the split point to be after any PHI nodes. |
| if (LI) |
| if (Loop *L = LI->getLoopFor(Old)) |
| L->addBasicBlockToLoop(New, *LI); |
| |
| if (DT) |
| // Old dominates New. New node dominates all other nodes dominated by Old. |
| if (DomTreeNode *OldNode = DT->getNode(Old)) { |
| std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); |
| |
| DomTreeNode *NewNode = DT->addNewBlock(New, Old); |
| for (DomTreeNode *I : Children) |
| DT->changeImmediateDominator(I, NewNode); |
| } |
| |
| // Move MemoryAccesses still tracked in Old, but part of New now. |
| // Update accesses in successor blocks accordingly. |
| if (MSSAU) |
| MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin())); |
| |
| return New; |
| } |
| |
| /// Update DominatorTree, LoopInfo, and LCCSA analysis information. |
| static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB, |
| ArrayRef<BasicBlock *> Preds, |
| DominatorTree *DT, LoopInfo *LI, |
| MemorySSAUpdater *MSSAU, |
| bool PreserveLCSSA, bool &HasLoopExit) { |
| // Update dominator tree if available. |
| if (DT) { |
| if (OldBB == DT->getRootNode()->getBlock()) { |
| assert(NewBB == &NewBB->getParent()->getEntryBlock()); |
| DT->setNewRoot(NewBB); |
| } else { |
| // Split block expects NewBB to have a non-empty set of predecessors. |
| DT->splitBlock(NewBB); |
| } |
| } |
| |
| // Update MemoryPhis after split if MemorySSA is available |
| if (MSSAU) |
| MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds); |
| |
| // The rest of the logic is only relevant for updating the loop structures. |
| if (!LI) |
| return; |
| |
| assert(DT && "DT should be available to update LoopInfo!"); |
| Loop *L = LI->getLoopFor(OldBB); |
| |
| // If we need to preserve loop analyses, collect some information about how |
| // this split will affect loops. |
| bool IsLoopEntry = !!L; |
| bool SplitMakesNewLoopHeader = false; |
| for (BasicBlock *Pred : Preds) { |
| // Preds that are not reachable from entry should not be used to identify if |
| // OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks |
| // are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader |
| // as true and make the NewBB the header of some loop. This breaks LI. |
| if (!DT->isReachableFromEntry(Pred)) |
| continue; |
| // If we need to preserve LCSSA, determine if any of the preds is a loop |
| // exit. |
| if (PreserveLCSSA) |
| if (Loop *PL = LI->getLoopFor(Pred)) |
| if (!PL->contains(OldBB)) |
| HasLoopExit = true; |
| |
| // If we need to preserve LoopInfo, note whether any of the preds crosses |
| // an interesting loop boundary. |
| if (!L) |
| continue; |
| if (L->contains(Pred)) |
| IsLoopEntry = false; |
| else |
| SplitMakesNewLoopHeader = true; |
| } |
| |
| // Unless we have a loop for OldBB, nothing else to do here. |
| if (!L) |
| return; |
| |
| if (IsLoopEntry) { |
| // Add the new block to the nearest enclosing loop (and not an adjacent |
| // loop). To find this, examine each of the predecessors and determine which |
| // loops enclose them, and select the most-nested loop which contains the |
| // loop containing the block being split. |
| Loop *InnermostPredLoop = nullptr; |
| for (BasicBlock *Pred : Preds) { |
| if (Loop *PredLoop = LI->getLoopFor(Pred)) { |
| // Seek a loop which actually contains the block being split (to avoid |
| // adjacent loops). |
| while (PredLoop && !PredLoop->contains(OldBB)) |
| PredLoop = PredLoop->getParentLoop(); |
| |
| // Select the most-nested of these loops which contains the block. |
| if (PredLoop && PredLoop->contains(OldBB) && |
| (!InnermostPredLoop || |
| InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) |
| InnermostPredLoop = PredLoop; |
| } |
| } |
| |
| if (InnermostPredLoop) |
| InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI); |
| } else { |
| L->addBasicBlockToLoop(NewBB, *LI); |
| if (SplitMakesNewLoopHeader) |
| L->moveToHeader(NewBB); |
| } |
| } |
| |
| /// Update the PHI nodes in OrigBB to include the values coming from NewBB. |
| /// This also updates AliasAnalysis, if available. |
| static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB, |
| ArrayRef<BasicBlock *> Preds, BranchInst *BI, |
| bool HasLoopExit) { |
| // Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB. |
| SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end()); |
| for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) { |
| PHINode *PN = cast<PHINode>(I++); |
| |
| // Check to see if all of the values coming in are the same. If so, we |
| // don't need to create a new PHI node, unless it's needed for LCSSA. |
| Value *InVal = nullptr; |
| if (!HasLoopExit) { |
| InVal = PN->getIncomingValueForBlock(Preds[0]); |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| if (!PredSet.count(PN->getIncomingBlock(i))) |
| continue; |
| if (!InVal) |
| InVal = PN->getIncomingValue(i); |
| else if (InVal != PN->getIncomingValue(i)) { |
| InVal = nullptr; |
| break; |
| } |
| } |
| } |
| |
| if (InVal) { |
| // If all incoming values for the new PHI would be the same, just don't |
| // make a new PHI. Instead, just remove the incoming values from the old |
| // PHI. |
| |
| // NOTE! This loop walks backwards for a reason! First off, this minimizes |
| // the cost of removal if we end up removing a large number of values, and |
| // second off, this ensures that the indices for the incoming values |
| // aren't invalidated when we remove one. |
| for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) |
| if (PredSet.count(PN->getIncomingBlock(i))) |
| PN->removeIncomingValue(i, false); |
| |
| // Add an incoming value to the PHI node in the loop for the preheader |
| // edge. |
| PN->addIncoming(InVal, NewBB); |
| continue; |
| } |
| |
| // If the values coming into the block are not the same, we need a new |
| // PHI. |
| // Create the new PHI node, insert it into NewBB at the end of the block |
| PHINode *NewPHI = |
| PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI); |
| |
| // NOTE! This loop walks backwards for a reason! First off, this minimizes |
| // the cost of removal if we end up removing a large number of values, and |
| // second off, this ensures that the indices for the incoming values aren't |
| // invalidated when we remove one. |
| for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) { |
| BasicBlock *IncomingBB = PN->getIncomingBlock(i); |
| if (PredSet.count(IncomingBB)) { |
| Value *V = PN->removeIncomingValue(i, false); |
| NewPHI->addIncoming(V, IncomingBB); |
| } |
| } |
| |
| PN->addIncoming(NewPHI, NewBB); |
| } |
| } |
| |
| BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, |
| ArrayRef<BasicBlock *> Preds, |
| const char *Suffix, DominatorTree *DT, |
| LoopInfo *LI, MemorySSAUpdater *MSSAU, |
| bool PreserveLCSSA) { |
| // Do not attempt to split that which cannot be split. |
| if (!BB->canSplitPredecessors()) |
| return nullptr; |
| |
| // For the landingpads we need to act a bit differently. |
| // Delegate this work to the SplitLandingPadPredecessors. |
| if (BB->isLandingPad()) { |
| SmallVector<BasicBlock*, 2> NewBBs; |
| std::string NewName = std::string(Suffix) + ".split-lp"; |
| |
| SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT, |
| LI, MSSAU, PreserveLCSSA); |
| return NewBBs[0]; |
| } |
| |
| // Create new basic block, insert right before the original block. |
| BasicBlock *NewBB = BasicBlock::Create( |
| BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB); |
| |
| // The new block unconditionally branches to the old block. |
| BranchInst *BI = BranchInst::Create(BB, NewBB); |
| BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc()); |
| |
| // Move the edges from Preds to point to NewBB instead of BB. |
| for (unsigned i = 0, e = Preds.size(); i != e; ++i) { |
| // This is slightly more strict than necessary; the minimum requirement |
| // is that there be no more than one indirectbr branching to BB. And |
| // all BlockAddress uses would need to be updated. |
| assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && |
| "Cannot split an edge from an IndirectBrInst"); |
| assert(!isa<CallBrInst>(Preds[i]->getTerminator()) && |
| "Cannot split an edge from a CallBrInst"); |
| Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); |
| } |
| |
| // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI |
| // node becomes an incoming value for BB's phi node. However, if the Preds |
| // list is empty, we need to insert dummy entries into the PHI nodes in BB to |
| // account for the newly created predecessor. |
| if (Preds.empty()) { |
| // Insert dummy values as the incoming value. |
| for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) |
| cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); |
| } |
| |
| // Update DominatorTree, LoopInfo, and LCCSA analysis information. |
| bool HasLoopExit = false; |
| UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA, |
| HasLoopExit); |
| |
| if (!Preds.empty()) { |
| // Update the PHI nodes in BB with the values coming from NewBB. |
| UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit); |
| } |
| |
| return NewBB; |
| } |
| |
| void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB, |
| ArrayRef<BasicBlock *> Preds, |
| const char *Suffix1, const char *Suffix2, |
| SmallVectorImpl<BasicBlock *> &NewBBs, |
| DominatorTree *DT, LoopInfo *LI, |
| MemorySSAUpdater *MSSAU, |
| bool PreserveLCSSA) { |
| assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!"); |
| |
| // Create a new basic block for OrigBB's predecessors listed in Preds. Insert |
| // it right before the original block. |
| BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(), |
| OrigBB->getName() + Suffix1, |
| OrigBB->getParent(), OrigBB); |
| NewBBs.push_back(NewBB1); |
| |
| // The new block unconditionally branches to the old block. |
| BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1); |
| BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); |
| |
| // Move the edges from Preds to point to NewBB1 instead of OrigBB. |
| for (unsigned i = 0, e = Preds.size(); i != e; ++i) { |
| // This is slightly more strict than necessary; the minimum requirement |
| // is that there be no more than one indirectbr branching to BB. And |
| // all BlockAddress uses would need to be updated. |
| assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && |
| "Cannot split an edge from an IndirectBrInst"); |
| Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1); |
| } |
| |
| bool HasLoopExit = false; |
| UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA, |
| HasLoopExit); |
| |
| // Update the PHI nodes in OrigBB with the values coming from NewBB1. |
| UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit); |
| |
| // Move the remaining edges from OrigBB to point to NewBB2. |
| SmallVector<BasicBlock*, 8> NewBB2Preds; |
| for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB); |
| i != e; ) { |
| BasicBlock *Pred = *i++; |
| if (Pred == NewBB1) continue; |
| assert(!isa<IndirectBrInst>(Pred->getTerminator()) && |
| "Cannot split an edge from an IndirectBrInst"); |
| NewBB2Preds.push_back(Pred); |
| e = pred_end(OrigBB); |
| } |
| |
| BasicBlock *NewBB2 = nullptr; |
| if (!NewBB2Preds.empty()) { |
| // Create another basic block for the rest of OrigBB's predecessors. |
| NewBB2 = BasicBlock::Create(OrigBB->getContext(), |
| OrigBB->getName() + Suffix2, |
| OrigBB->getParent(), OrigBB); |
| NewBBs.push_back(NewBB2); |
| |
| // The new block unconditionally branches to the old block. |
| BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2); |
| BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc()); |
| |
| // Move the remaining edges from OrigBB to point to NewBB2. |
| for (BasicBlock *NewBB2Pred : NewBB2Preds) |
| NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2); |
| |
| // Update DominatorTree, LoopInfo, and LCCSA analysis information. |
| HasLoopExit = false; |
| UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU, |
| PreserveLCSSA, HasLoopExit); |
| |
| // Update the PHI nodes in OrigBB with the values coming from NewBB2. |
| UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit); |
| } |
| |
| LandingPadInst *LPad = OrigBB->getLandingPadInst(); |
| Instruction *Clone1 = LPad->clone(); |
| Clone1->setName(Twine("lpad") + Suffix1); |
| NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1); |
| |
| if (NewBB2) { |
| Instruction *Clone2 = LPad->clone(); |
| Clone2->setName(Twine("lpad") + Suffix2); |
| NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2); |
| |
| // Create a PHI node for the two cloned landingpad instructions only |
| // if the original landingpad instruction has some uses. |
| if (!LPad->use_empty()) { |
| assert(!LPad->getType()->isTokenTy() && |
| "Split cannot be applied if LPad is token type. Otherwise an " |
| "invalid PHINode of token type would be created."); |
| PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad); |
| PN->addIncoming(Clone1, NewBB1); |
| PN->addIncoming(Clone2, NewBB2); |
| LPad->replaceAllUsesWith(PN); |
| } |
| LPad->eraseFromParent(); |
| } else { |
| // There is no second clone. Just replace the landing pad with the first |
| // clone. |
| LPad->replaceAllUsesWith(Clone1); |
| LPad->eraseFromParent(); |
| } |
| } |
| |
| ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, |
| BasicBlock *Pred, |
| DomTreeUpdater *DTU) { |
| Instruction *UncondBranch = Pred->getTerminator(); |
| // Clone the return and add it to the end of the predecessor. |
| Instruction *NewRet = RI->clone(); |
| Pred->getInstList().push_back(NewRet); |
| |
| // If the return instruction returns a value, and if the value was a |
| // PHI node in "BB", propagate the right value into the return. |
| for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); |
| i != e; ++i) { |
| Value *V = *i; |
| Instruction *NewBC = nullptr; |
| if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) { |
| // Return value might be bitcasted. Clone and insert it before the |
| // return instruction. |
| V = BCI->getOperand(0); |
| NewBC = BCI->clone(); |
| Pred->getInstList().insert(NewRet->getIterator(), NewBC); |
| *i = NewBC; |
| } |
| if (PHINode *PN = dyn_cast<PHINode>(V)) { |
| if (PN->getParent() == BB) { |
| if (NewBC) |
| NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred)); |
| else |
| *i = PN->getIncomingValueForBlock(Pred); |
| } |
| } |
| } |
| |
| // Update any PHI nodes in the returning block to realize that we no |
| // longer branch to them. |
| BB->removePredecessor(Pred); |
| UncondBranch->eraseFromParent(); |
| |
| if (DTU) |
| DTU->deleteEdge(Pred, BB); |
| |
| return cast<ReturnInst>(NewRet); |
| } |
| |
| Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond, |
| Instruction *SplitBefore, |
| bool Unreachable, |
| MDNode *BranchWeights, |
| DominatorTree *DT, LoopInfo *LI) { |
| BasicBlock *Head = SplitBefore->getParent(); |
| BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); |
| Instruction *HeadOldTerm = Head->getTerminator(); |
| LLVMContext &C = Head->getContext(); |
| BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); |
| Instruction *CheckTerm; |
| if (Unreachable) |
| CheckTerm = new UnreachableInst(C, ThenBlock); |
| else |
| CheckTerm = BranchInst::Create(Tail, ThenBlock); |
| CheckTerm->setDebugLoc(SplitBefore->getDebugLoc()); |
| BranchInst *HeadNewTerm = |
| BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond); |
| HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); |
| ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); |
| |
| if (DT) { |
| if (DomTreeNode *OldNode = DT->getNode(Head)) { |
| std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); |
| |
| DomTreeNode *NewNode = DT->addNewBlock(Tail, Head); |
| for (DomTreeNode *Child : Children) |
| DT->changeImmediateDominator(Child, NewNode); |
| |
| // Head dominates ThenBlock. |
| DT->addNewBlock(ThenBlock, Head); |
| } |
| } |
| |
| if (LI) { |
| if (Loop *L = LI->getLoopFor(Head)) { |
| L->addBasicBlockToLoop(ThenBlock, *LI); |
| L->addBasicBlockToLoop(Tail, *LI); |
| } |
| } |
| |
| return CheckTerm; |
| } |
| |
| void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore, |
| Instruction **ThenTerm, |
| Instruction **ElseTerm, |
| MDNode *BranchWeights) { |
| BasicBlock *Head = SplitBefore->getParent(); |
| BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator()); |
| Instruction *HeadOldTerm = Head->getTerminator(); |
| LLVMContext &C = Head->getContext(); |
| BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); |
| BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail); |
| *ThenTerm = BranchInst::Create(Tail, ThenBlock); |
| (*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc()); |
| *ElseTerm = BranchInst::Create(Tail, ElseBlock); |
| (*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc()); |
| BranchInst *HeadNewTerm = |
| BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond); |
| HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights); |
| ReplaceInstWithInst(HeadOldTerm, HeadNewTerm); |
| } |
| |
| Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue, |
| BasicBlock *&IfFalse) { |
| PHINode *SomePHI = dyn_cast<PHINode>(BB->begin()); |
| BasicBlock *Pred1 = nullptr; |
| BasicBlock *Pred2 = nullptr; |
| |
| if (SomePHI) { |
| if (SomePHI->getNumIncomingValues() != 2) |
| return nullptr; |
| Pred1 = SomePHI->getIncomingBlock(0); |
| Pred2 = SomePHI->getIncomingBlock(1); |
| } else { |
| pred_iterator PI = pred_begin(BB), PE = pred_end(BB); |
| if (PI == PE) // No predecessor |
| return nullptr; |
| Pred1 = *PI++; |
| if (PI == PE) // Only one predecessor |
| return nullptr; |
| Pred2 = *PI++; |
| if (PI != PE) // More than two predecessors |
| return nullptr; |
| } |
| |
| // We can only handle branches. Other control flow will be lowered to |
| // branches if possible anyway. |
| BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator()); |
| BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator()); |
| if (!Pred1Br || !Pred2Br) |
| return nullptr; |
| |
| // Eliminate code duplication by ensuring that Pred1Br is conditional if |
| // either are. |
| if (Pred2Br->isConditional()) { |
| // If both branches are conditional, we don't have an "if statement". In |
| // reality, we could transform this case, but since the condition will be |
| // required anyway, we stand no chance of eliminating it, so the xform is |
| // probably not profitable. |
| if (Pred1Br->isConditional()) |
| return nullptr; |
| |
| std::swap(Pred1, Pred2); |
| std::swap(Pred1Br, Pred2Br); |
| } |
| |
| if (Pred1Br->isConditional()) { |
| // The only thing we have to watch out for here is to make sure that Pred2 |
| // doesn't have incoming edges from other blocks. If it does, the condition |
| // doesn't dominate BB. |
| if (!Pred2->getSinglePredecessor()) |
| return nullptr; |
| |
| // If we found a conditional branch predecessor, make sure that it branches |
| // to BB and Pred2Br. If it doesn't, this isn't an "if statement". |
| if (Pred1Br->getSuccessor(0) == BB && |
| Pred1Br->getSuccessor(1) == Pred2) { |
| IfTrue = Pred1; |
| IfFalse = Pred2; |
| } else if (Pred1Br->getSuccessor(0) == Pred2 && |
| Pred1Br->getSuccessor(1) == BB) { |
| IfTrue = Pred2; |
| IfFalse = Pred1; |
| } else { |
| // We know that one arm of the conditional goes to BB, so the other must |
| // go somewhere unrelated, and this must not be an "if statement". |
| return nullptr; |
| } |
| |
| return Pred1Br->getCondition(); |
| } |
| |
| // Ok, if we got here, both predecessors end with an unconditional branch to |
| // BB. Don't panic! If both blocks only have a single (identical) |
| // predecessor, and THAT is a conditional branch, then we're all ok! |
| BasicBlock *CommonPred = Pred1->getSinglePredecessor(); |
| if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor()) |
| return nullptr; |
| |
| // Otherwise, if this is a conditional branch, then we can use it! |
| BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator()); |
| if (!BI) return nullptr; |
| |
| assert(BI->isConditional() && "Two successors but not conditional?"); |
| if (BI->getSuccessor(0) == Pred1) { |
| IfTrue = Pred1; |
| IfFalse = Pred2; |
| } else { |
| IfTrue = Pred2; |
| IfFalse = Pred1; |
| } |
| return BI->getCondition(); |
| } |