blob: 9c94fe2f258ca82aff5a1e50e5d66a7fd514f5f7 [file] [log] [blame]
//===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file declares the SelectionDAG class, and transitively defines the
// SDNode class and subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_SELECTIONDAG_H
#define LLVM_CODEGEN_SELECTIONDAG_H
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/ilist.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/CodeGen/DAGCombine.h"
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/ISDOpcodes.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/SelectionDAGNodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ArrayRecycler.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MachineValueType.h"
#include "llvm/Support/RecyclingAllocator.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <map>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
namespace llvm {
class BlockAddress;
class Constant;
class ConstantFP;
class ConstantInt;
class DataLayout;
struct fltSemantics;
class GlobalValue;
struct KnownBits;
class LLVMContext;
class MachineBasicBlock;
class MachineConstantPoolValue;
class MCSymbol;
class OptimizationRemarkEmitter;
class SDDbgValue;
class SDDbgLabel;
class SelectionDAG;
class SelectionDAGTargetInfo;
class TargetLibraryInfo;
class TargetLowering;
class TargetMachine;
class TargetSubtargetInfo;
class Value;
class SDVTListNode : public FoldingSetNode {
friend struct FoldingSetTrait<SDVTListNode>;
/// A reference to an Interned FoldingSetNodeID for this node.
/// The Allocator in SelectionDAG holds the data.
/// SDVTList contains all types which are frequently accessed in SelectionDAG.
/// The size of this list is not expected to be big so it won't introduce
/// a memory penalty.
FoldingSetNodeIDRef FastID;
const EVT *VTs;
unsigned int NumVTs;
/// The hash value for SDVTList is fixed, so cache it to avoid
/// hash calculation.
unsigned HashValue;
public:
SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) :
FastID(ID), VTs(VT), NumVTs(Num) {
HashValue = ID.ComputeHash();
}
SDVTList getSDVTList() {
SDVTList result = {VTs, NumVTs};
return result;
}
};
/// Specialize FoldingSetTrait for SDVTListNode
/// to avoid computing temp FoldingSetNodeID and hash value.
template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> {
static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) {
ID = X.FastID;
}
static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID,
unsigned IDHash, FoldingSetNodeID &TempID) {
if (X.HashValue != IDHash)
return false;
return ID == X.FastID;
}
static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) {
return X.HashValue;
}
};
template <> struct ilist_alloc_traits<SDNode> {
static void deleteNode(SDNode *) {
llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!");
}
};
/// Keeps track of dbg_value information through SDISel. We do
/// not build SDNodes for these so as not to perturb the generated code;
/// instead the info is kept off to the side in this structure. Each SDNode may
/// have one or more associated dbg_value entries. This information is kept in
/// DbgValMap.
/// Byval parameters are handled separately because they don't use alloca's,
/// which busts the normal mechanism. There is good reason for handling all
/// parameters separately: they may not have code generated for them, they
/// should always go at the beginning of the function regardless of other code
/// motion, and debug info for them is potentially useful even if the parameter
/// is unused. Right now only byval parameters are handled separately.
class SDDbgInfo {
BumpPtrAllocator Alloc;
SmallVector<SDDbgValue*, 32> DbgValues;
SmallVector<SDDbgValue*, 32> ByvalParmDbgValues;
SmallVector<SDDbgLabel*, 4> DbgLabels;
using DbgValMapType = DenseMap<const SDNode *, SmallVector<SDDbgValue *, 2>>;
DbgValMapType DbgValMap;
public:
SDDbgInfo() = default;
SDDbgInfo(const SDDbgInfo &) = delete;
SDDbgInfo &operator=(const SDDbgInfo &) = delete;
void add(SDDbgValue *V, const SDNode *Node, bool isParameter) {
if (isParameter) {
ByvalParmDbgValues.push_back(V);
} else DbgValues.push_back(V);
if (Node)
DbgValMap[Node].push_back(V);
}
void add(SDDbgLabel *L) {
DbgLabels.push_back(L);
}
/// Invalidate all DbgValues attached to the node and remove
/// it from the Node-to-DbgValues map.
void erase(const SDNode *Node);
void clear() {
DbgValMap.clear();
DbgValues.clear();
ByvalParmDbgValues.clear();
DbgLabels.clear();
Alloc.Reset();
}
BumpPtrAllocator &getAlloc() { return Alloc; }
bool empty() const {
return DbgValues.empty() && ByvalParmDbgValues.empty() && DbgLabels.empty();
}
ArrayRef<SDDbgValue*> getSDDbgValues(const SDNode *Node) const {
auto I = DbgValMap.find(Node);
if (I != DbgValMap.end())
return I->second;
return ArrayRef<SDDbgValue*>();
}
using DbgIterator = SmallVectorImpl<SDDbgValue*>::iterator;
using DbgLabelIterator = SmallVectorImpl<SDDbgLabel*>::iterator;
DbgIterator DbgBegin() { return DbgValues.begin(); }
DbgIterator DbgEnd() { return DbgValues.end(); }
DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); }
DbgIterator ByvalParmDbgEnd() { return ByvalParmDbgValues.end(); }
DbgLabelIterator DbgLabelBegin() { return DbgLabels.begin(); }
DbgLabelIterator DbgLabelEnd() { return DbgLabels.end(); }
};
void checkForCycles(const SelectionDAG *DAG, bool force = false);
/// This is used to represent a portion of an LLVM function in a low-level
/// Data Dependence DAG representation suitable for instruction selection.
/// This DAG is constructed as the first step of instruction selection in order
/// to allow implementation of machine specific optimizations
/// and code simplifications.
///
/// The representation used by the SelectionDAG is a target-independent
/// representation, which has some similarities to the GCC RTL representation,
/// but is significantly more simple, powerful, and is a graph form instead of a
/// linear form.
///
class SelectionDAG {
const TargetMachine &TM;
const SelectionDAGTargetInfo *TSI = nullptr;
const TargetLowering *TLI = nullptr;
const TargetLibraryInfo *LibInfo = nullptr;
MachineFunction *MF;
Pass *SDAGISelPass = nullptr;
LLVMContext *Context;
CodeGenOpt::Level OptLevel;
LegacyDivergenceAnalysis * DA = nullptr;
FunctionLoweringInfo * FLI = nullptr;
/// The function-level optimization remark emitter. Used to emit remarks
/// whenever manipulating the DAG.
OptimizationRemarkEmitter *ORE;
/// The starting token.
SDNode EntryNode;
/// The root of the entire DAG.
SDValue Root;
/// A linked list of nodes in the current DAG.
ilist<SDNode> AllNodes;
/// The AllocatorType for allocating SDNodes. We use
/// pool allocation with recycling.
using NodeAllocatorType = RecyclingAllocator<BumpPtrAllocator, SDNode,
sizeof(LargestSDNode),
alignof(MostAlignedSDNode)>;
/// Pool allocation for nodes.
NodeAllocatorType NodeAllocator;
/// This structure is used to memoize nodes, automatically performing
/// CSE with existing nodes when a duplicate is requested.
FoldingSet<SDNode> CSEMap;
/// Pool allocation for machine-opcode SDNode operands.
BumpPtrAllocator OperandAllocator;
ArrayRecycler<SDUse> OperandRecycler;
/// Pool allocation for misc. objects that are created once per SelectionDAG.
BumpPtrAllocator Allocator;
/// Tracks dbg_value and dbg_label information through SDISel.
SDDbgInfo *DbgInfo;
uint16_t NextPersistentId = 0;
public:
/// Clients of various APIs that cause global effects on
/// the DAG can optionally implement this interface. This allows the clients
/// to handle the various sorts of updates that happen.
///
/// A DAGUpdateListener automatically registers itself with DAG when it is
/// constructed, and removes itself when destroyed in RAII fashion.
struct DAGUpdateListener {
DAGUpdateListener *const Next;
SelectionDAG &DAG;
explicit DAGUpdateListener(SelectionDAG &D)
: Next(D.UpdateListeners), DAG(D) {
DAG.UpdateListeners = this;
}
virtual ~DAGUpdateListener() {
assert(DAG.UpdateListeners == this &&
"DAGUpdateListeners must be destroyed in LIFO order");
DAG.UpdateListeners = Next;
}
/// The node N that was deleted and, if E is not null, an
/// equivalent node E that replaced it.
virtual void NodeDeleted(SDNode *N, SDNode *E);
/// The node N that was updated.
virtual void NodeUpdated(SDNode *N);
};
struct DAGNodeDeletedListener : public DAGUpdateListener {
std::function<void(SDNode *, SDNode *)> Callback;
DAGNodeDeletedListener(SelectionDAG &DAG,
std::function<void(SDNode *, SDNode *)> Callback)
: DAGUpdateListener(DAG), Callback(std::move(Callback)) {}
void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); }
private:
virtual void anchor();
};
/// When true, additional steps are taken to
/// ensure that getConstant() and similar functions return DAG nodes that
/// have legal types. This is important after type legalization since
/// any illegally typed nodes generated after this point will not experience
/// type legalization.
bool NewNodesMustHaveLegalTypes = false;
private:
/// DAGUpdateListener is a friend so it can manipulate the listener stack.
friend struct DAGUpdateListener;
/// Linked list of registered DAGUpdateListener instances.
/// This stack is maintained by DAGUpdateListener RAII.
DAGUpdateListener *UpdateListeners = nullptr;
/// Implementation of setSubgraphColor.
/// Return whether we had to truncate the search.
bool setSubgraphColorHelper(SDNode *N, const char *Color,
DenseSet<SDNode *> &visited,
int level, bool &printed);
template <typename SDNodeT, typename... ArgTypes>
SDNodeT *newSDNode(ArgTypes &&... Args) {
return new (NodeAllocator.template Allocate<SDNodeT>())
SDNodeT(std::forward<ArgTypes>(Args)...);
}
/// Build a synthetic SDNodeT with the given args and extract its subclass
/// data as an integer (e.g. for use in a folding set).
///
/// The args to this function are the same as the args to SDNodeT's
/// constructor, except the second arg (assumed to be a const DebugLoc&) is
/// omitted.
template <typename SDNodeT, typename... ArgTypes>
static uint16_t getSyntheticNodeSubclassData(unsigned IROrder,
ArgTypes &&... Args) {
// The compiler can reduce this expression to a constant iff we pass an
// empty DebugLoc. Thankfully, the debug location doesn't have any bearing
// on the subclass data.
return SDNodeT(IROrder, DebugLoc(), std::forward<ArgTypes>(Args)...)
.getRawSubclassData();
}
template <typename SDNodeTy>
static uint16_t getSyntheticNodeSubclassData(unsigned Opc, unsigned Order,
SDVTList VTs, EVT MemoryVT,
MachineMemOperand *MMO) {
return SDNodeTy(Opc, Order, DebugLoc(), VTs, MemoryVT, MMO)
.getRawSubclassData();
}
void createOperands(SDNode *Node, ArrayRef<SDValue> Vals);
void removeOperands(SDNode *Node) {
if (!Node->OperandList)
return;
OperandRecycler.deallocate(
ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands),
Node->OperandList);
Node->NumOperands = 0;
Node->OperandList = nullptr;
}
void CreateTopologicalOrder(std::vector<SDNode*>& Order);
public:
explicit SelectionDAG(const TargetMachine &TM, CodeGenOpt::Level);
SelectionDAG(const SelectionDAG &) = delete;
SelectionDAG &operator=(const SelectionDAG &) = delete;
~SelectionDAG();
/// Prepare this SelectionDAG to process code in the given MachineFunction.
void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE,
Pass *PassPtr, const TargetLibraryInfo *LibraryInfo,
LegacyDivergenceAnalysis * Divergence);
void setFunctionLoweringInfo(FunctionLoweringInfo * FuncInfo) {
FLI = FuncInfo;
}
/// Clear state and free memory necessary to make this
/// SelectionDAG ready to process a new block.
void clear();
MachineFunction &getMachineFunction() const { return *MF; }
const Pass *getPass() const { return SDAGISelPass; }
const DataLayout &getDataLayout() const { return MF->getDataLayout(); }
const TargetMachine &getTarget() const { return TM; }
const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); }
const TargetLowering &getTargetLoweringInfo() const { return *TLI; }
const TargetLibraryInfo &getLibInfo() const { return *LibInfo; }
const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; }
LLVMContext *getContext() const {return Context; }
OptimizationRemarkEmitter &getORE() const { return *ORE; }
/// Pop up a GraphViz/gv window with the DAG rendered using 'dot'.
void viewGraph(const std::string &Title);
void viewGraph();
#ifndef NDEBUG
std::map<const SDNode *, std::string> NodeGraphAttrs;
#endif
/// Clear all previously defined node graph attributes.
/// Intended to be used from a debugging tool (eg. gdb).
void clearGraphAttrs();
/// Set graph attributes for a node. (eg. "color=red".)
void setGraphAttrs(const SDNode *N, const char *Attrs);
/// Get graph attributes for a node. (eg. "color=red".)
/// Used from getNodeAttributes.
const std::string getGraphAttrs(const SDNode *N) const;
/// Convenience for setting node color attribute.
void setGraphColor(const SDNode *N, const char *Color);
/// Convenience for setting subgraph color attribute.
void setSubgraphColor(SDNode *N, const char *Color);
using allnodes_const_iterator = ilist<SDNode>::const_iterator;
allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); }
allnodes_const_iterator allnodes_end() const { return AllNodes.end(); }
using allnodes_iterator = ilist<SDNode>::iterator;
allnodes_iterator allnodes_begin() { return AllNodes.begin(); }
allnodes_iterator allnodes_end() { return AllNodes.end(); }
ilist<SDNode>::size_type allnodes_size() const {
return AllNodes.size();
}
iterator_range<allnodes_iterator> allnodes() {
return make_range(allnodes_begin(), allnodes_end());
}
iterator_range<allnodes_const_iterator> allnodes() const {
return make_range(allnodes_begin(), allnodes_end());
}
/// Return the root tag of the SelectionDAG.
const SDValue &getRoot() const { return Root; }
/// Return the token chain corresponding to the entry of the function.
SDValue getEntryNode() const {
return SDValue(const_cast<SDNode *>(&EntryNode), 0);
}
/// Set the current root tag of the SelectionDAG.
///
const SDValue &setRoot(SDValue N) {
assert((!N.getNode() || N.getValueType() == MVT::Other) &&
"DAG root value is not a chain!");
if (N.getNode())
checkForCycles(N.getNode(), this);
Root = N;
if (N.getNode())
checkForCycles(this);
return Root;
}
#ifndef NDEBUG
void VerifyDAGDiverence();
#endif
/// This iterates over the nodes in the SelectionDAG, folding
/// certain types of nodes together, or eliminating superfluous nodes. The
/// Level argument controls whether Combine is allowed to produce nodes and
/// types that are illegal on the target.
void Combine(CombineLevel Level, AliasAnalysis *AA,
CodeGenOpt::Level OptLevel);
/// This transforms the SelectionDAG into a SelectionDAG that
/// only uses types natively supported by the target.
/// Returns "true" if it made any changes.
///
/// Note that this is an involved process that may invalidate pointers into
/// the graph.
bool LegalizeTypes();
/// This transforms the SelectionDAG into a SelectionDAG that is
/// compatible with the target instruction selector, as indicated by the
/// TargetLowering object.
///
/// Note that this is an involved process that may invalidate pointers into
/// the graph.
void Legalize();
/// Transforms a SelectionDAG node and any operands to it into a node
/// that is compatible with the target instruction selector, as indicated by
/// the TargetLowering object.
///
/// \returns true if \c N is a valid, legal node after calling this.
///
/// This essentially runs a single recursive walk of the \c Legalize process
/// over the given node (and its operands). This can be used to incrementally
/// legalize the DAG. All of the nodes which are directly replaced,
/// potentially including N, are added to the output parameter \c
/// UpdatedNodes so that the delta to the DAG can be understood by the
/// caller.
///
/// When this returns false, N has been legalized in a way that make the
/// pointer passed in no longer valid. It may have even been deleted from the
/// DAG, and so it shouldn't be used further. When this returns true, the
/// N passed in is a legal node, and can be immediately processed as such.
/// This may still have done some work on the DAG, and will still populate
/// UpdatedNodes with any new nodes replacing those originally in the DAG.
bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes);
/// This transforms the SelectionDAG into a SelectionDAG
/// that only uses vector math operations supported by the target. This is
/// necessary as a separate step from Legalize because unrolling a vector
/// operation can introduce illegal types, which requires running
/// LegalizeTypes again.
///
/// This returns true if it made any changes; in that case, LegalizeTypes
/// is called again before Legalize.
///
/// Note that this is an involved process that may invalidate pointers into
/// the graph.
bool LegalizeVectors();
/// This method deletes all unreachable nodes in the SelectionDAG.
void RemoveDeadNodes();
/// Remove the specified node from the system. This node must
/// have no referrers.
void DeleteNode(SDNode *N);
/// Return an SDVTList that represents the list of values specified.
SDVTList getVTList(EVT VT);
SDVTList getVTList(EVT VT1, EVT VT2);
SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3);
SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4);
SDVTList getVTList(ArrayRef<EVT> VTs);
//===--------------------------------------------------------------------===//
// Node creation methods.
/// Create a ConstantSDNode wrapping a constant value.
/// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
///
/// If only legal types can be produced, this does the necessary
/// transformations (e.g., if the vector element type is illegal).
/// @{
SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT,
bool isTarget = false, bool isOpaque = false);
SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT,
bool isTarget = false, bool isOpaque = false);
SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget = false,
bool IsOpaque = false) {
return getConstant(APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL,
VT, IsTarget, IsOpaque);
}
SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
bool isTarget = false, bool isOpaque = false);
SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL,
bool isTarget = false);
SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT,
bool isOpaque = false) {
return getConstant(Val, DL, VT, true, isOpaque);
}
SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT,
bool isOpaque = false) {
return getConstant(Val, DL, VT, true, isOpaque);
}
SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT,
bool isOpaque = false) {
return getConstant(Val, DL, VT, true, isOpaque);
}
/// Create a true or false constant of type \p VT using the target's
/// BooleanContent for type \p OpVT.
SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT);
/// @}
/// Create a ConstantFPSDNode wrapping a constant value.
/// If VT is a vector type, the constant is splatted into a BUILD_VECTOR.
///
/// If only legal types can be produced, this does the necessary
/// transformations (e.g., if the vector element type is illegal).
/// The forms that take a double should only be used for simple constants
/// that can be exactly represented in VT. No checks are made.
/// @{
SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT,
bool isTarget = false);
SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT,
bool isTarget = false);
SDValue getConstantFP(const ConstantFP &V, const SDLoc &DL, EVT VT,
bool isTarget = false);
SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) {
return getConstantFP(Val, DL, VT, true);
}
SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) {
return getConstantFP(Val, DL, VT, true);
}
SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) {
return getConstantFP(Val, DL, VT, true);
}
/// @}
SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
int64_t offset = 0, bool isTargetGA = false,
unsigned char TargetFlags = 0);
SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT,
int64_t offset = 0,
unsigned char TargetFlags = 0) {
return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags);
}
SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);
SDValue getTargetFrameIndex(int FI, EVT VT) {
return getFrameIndex(FI, VT, true);
}
SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false,
unsigned char TargetFlags = 0);
SDValue getTargetJumpTable(int JTI, EVT VT, unsigned char TargetFlags = 0) {
return getJumpTable(JTI, VT, true, TargetFlags);
}
SDValue getConstantPool(const Constant *C, EVT VT,
unsigned Align = 0, int Offs = 0, bool isT=false,
unsigned char TargetFlags = 0);
SDValue getTargetConstantPool(const Constant *C, EVT VT,
unsigned Align = 0, int Offset = 0,
unsigned char TargetFlags = 0) {
return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
}
SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT,
unsigned Align = 0, int Offs = 0, bool isT=false,
unsigned char TargetFlags = 0);
SDValue getTargetConstantPool(MachineConstantPoolValue *C,
EVT VT, unsigned Align = 0,
int Offset = 0, unsigned char TargetFlags=0) {
return getConstantPool(C, VT, Align, Offset, true, TargetFlags);
}
SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0,
unsigned char TargetFlags = 0);
// When generating a branch to a BB, we don't in general know enough
// to provide debug info for the BB at that time, so keep this one around.
SDValue getBasicBlock(MachineBasicBlock *MBB);
SDValue getBasicBlock(MachineBasicBlock *MBB, SDLoc dl);
SDValue getExternalSymbol(const char *Sym, EVT VT);
SDValue getExternalSymbol(const char *Sym, const SDLoc &dl, EVT VT);
SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
unsigned char TargetFlags = 0);
SDValue getMCSymbol(MCSymbol *Sym, EVT VT);
SDValue getValueType(EVT);
SDValue getRegister(unsigned Reg, EVT VT);
SDValue getRegisterMask(const uint32_t *RegMask);
SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label);
SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root,
MCSymbol *Label);
SDValue getBlockAddress(const BlockAddress *BA, EVT VT,
int64_t Offset = 0, bool isTarget = false,
unsigned char TargetFlags = 0);
SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT,
int64_t Offset = 0,
unsigned char TargetFlags = 0) {
return getBlockAddress(BA, VT, Offset, true, TargetFlags);
}
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg,
SDValue N) {
return getNode(ISD::CopyToReg, dl, MVT::Other, Chain,
getRegister(Reg, N.getValueType()), N);
}
// This version of the getCopyToReg method takes an extra operand, which
// indicates that there is potentially an incoming glue value (if Glue is not
// null) and that there should be a glue result.
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N,
SDValue Glue) {
SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue };
return getNode(ISD::CopyToReg, dl, VTs,
makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
}
// Similar to last getCopyToReg() except parameter Reg is a SDValue
SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N,
SDValue Glue) {
SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, Reg, N, Glue };
return getNode(ISD::CopyToReg, dl, VTs,
makeArrayRef(Ops, Glue.getNode() ? 4 : 3));
}
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) {
SDVTList VTs = getVTList(VT, MVT::Other);
SDValue Ops[] = { Chain, getRegister(Reg, VT) };
return getNode(ISD::CopyFromReg, dl, VTs, Ops);
}
// This version of the getCopyFromReg method takes an extra operand, which
// indicates that there is potentially an incoming glue value (if Glue is not
// null) and that there should be a glue result.
SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT,
SDValue Glue) {
SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue };
return getNode(ISD::CopyFromReg, dl, VTs,
makeArrayRef(Ops, Glue.getNode() ? 3 : 2));
}
SDValue getCondCode(ISD::CondCode Cond);
/// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT,
/// which must be a vector type, must match the number of mask elements
/// NumElts. An integer mask element equal to -1 is treated as undefined.
SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2,
ArrayRef<int> Mask);
/// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
/// which must be a vector type, must match the number of operands in Ops.
/// The operands must have the same type as (or, for integers, a type wider
/// than) VT's element type.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDValue> Ops) {
// VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
}
/// Return an ISD::BUILD_VECTOR node. The number of elements in VT,
/// which must be a vector type, must match the number of operands in Ops.
/// The operands must have the same type as (or, for integers, a type wider
/// than) VT's element type.
SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDUse> Ops) {
// VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
}
/// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all
/// elements. VT must be a vector type. Op's type must be the same as (or,
/// for integers, a type wider than) VT's element type.
SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op) {
// VerifySDNode (via InsertNode) checks BUILD_VECTOR later.
if (Op.getOpcode() == ISD::UNDEF) {
assert((VT.getVectorElementType() == Op.getValueType() ||
(VT.isInteger() &&
VT.getVectorElementType().bitsLE(Op.getValueType()))) &&
"A splatted value must have a width equal or (for integers) "
"greater than the vector element type!");
return getNode(ISD::UNDEF, SDLoc(), VT);
}
SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Op);
return getNode(ISD::BUILD_VECTOR, DL, VT, Ops);
}
/// Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to
/// the shuffle node in input but with swapped operands.
///
/// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3>
SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV);
/// Convert Op, which must be of float type, to the
/// float type VT, by either extending or rounding (by truncation).
SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT);
/// Convert Op, which must be of integer type, to the
/// integer type VT, by either any-extending or truncating it.
SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
/// Convert Op, which must be of integer type, to the
/// integer type VT, by either sign-extending or truncating it.
SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
/// Convert Op, which must be of integer type, to the
/// integer type VT, by either zero-extending or truncating it.
SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT);
/// Return the expression required to zero extend the Op
/// value assuming it was the smaller SrcTy value.
SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT);
/// Convert Op, which must be of integer type, to the integer type VT,
/// by using an extension appropriate for the target's
/// BooleanContent for type OpVT or truncating it.
SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT);
/// Create a bitwise NOT operation as (XOR Val, -1).
SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT);
/// Create a logical NOT operation as (XOR Val, BooleanOne).
SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT);
/// Create an add instruction with appropriate flags when used for
/// addressing some offset of an object. i.e. if a load is split into multiple
/// components, create an add nuw from the base pointer to the offset.
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, int64_t Offset) {
EVT VT = Op.getValueType();
return getObjectPtrOffset(SL, Op, getConstant(Offset, SL, VT));
}
SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, SDValue Offset) {
EVT VT = Op.getValueType();
// The object itself can't wrap around the address space, so it shouldn't be
// possible for the adds of the offsets to the split parts to overflow.
SDNodeFlags Flags;
Flags.setNoUnsignedWrap(true);
return getNode(ISD::ADD, SL, VT, Op, Offset, Flags);
}
/// Return a new CALLSEQ_START node, that starts new call frame, in which
/// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and
/// OutSize specifies part of the frame set up prior to the sequence.
SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize,
const SDLoc &DL) {
SDVTList VTs = getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain,
getIntPtrConstant(InSize, DL, true),
getIntPtrConstant(OutSize, DL, true) };
return getNode(ISD::CALLSEQ_START, DL, VTs, Ops);
}
/// Return a new CALLSEQ_END node, which always must have a
/// glue result (to ensure it's not CSE'd).
/// CALLSEQ_END does not have a useful SDLoc.
SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2,
SDValue InGlue, const SDLoc &DL) {
SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue);
SmallVector<SDValue, 4> Ops;
Ops.push_back(Chain);
Ops.push_back(Op1);
Ops.push_back(Op2);
if (InGlue.getNode())
Ops.push_back(InGlue);
return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops);
}
/// Return true if the result of this operation is always undefined.
bool isUndef(unsigned Opcode, ArrayRef<SDValue> Ops);
/// Return an UNDEF node. UNDEF does not have a useful SDLoc.
SDValue getUNDEF(EVT VT) {
return getNode(ISD::UNDEF, SDLoc(), VT);
}
/// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc.
SDValue getGLOBAL_OFFSET_TABLE(EVT VT) {
return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT);
}
/// Gets or creates the specified node.
///
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
ArrayRef<SDUse> Ops);
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT,
ArrayRef<SDValue> Ops, const SDNodeFlags Flags = SDNodeFlags());
SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys,
ArrayRef<SDValue> Ops);
SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList,
ArrayRef<SDValue> Ops);
// Specialize based on number of operands.
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT);
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue Operand,
const SDNodeFlags Flags = SDNodeFlags());
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
SDValue N2, const SDNodeFlags Flags = SDNodeFlags());
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
SDValue N2, SDValue N3,
const SDNodeFlags Flags = SDNodeFlags());
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
SDValue N2, SDValue N3, SDValue N4);
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1,
SDValue N2, SDValue N3, SDValue N4, SDValue N5);
// Specialize again based on number of operands for nodes with a VTList
// rather than a single VT.
SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList);
SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N);
SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
SDValue N2);
SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
SDValue N2, SDValue N3);
SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
SDValue N2, SDValue N3, SDValue N4);
SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1,
SDValue N2, SDValue N3, SDValue N4, SDValue N5);
/// Compute a TokenFactor to force all the incoming stack arguments to be
/// loaded from the stack. This is used in tail call lowering to protect
/// stack arguments from being clobbered.
SDValue getStackArgumentTokenFactor(SDValue Chain);
SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align, bool isVol, bool AlwaysInline,
bool isTailCall, MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo);
SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align, bool isVol, bool isTailCall,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo);
SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align, bool isVol, bool isTailCall,
MachinePointerInfo DstPtrInfo);
SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst,
unsigned DstAlign, SDValue Src, unsigned SrcAlign,
SDValue Size, Type *SizeTy, unsigned ElemSz,
bool isTailCall, MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo);
SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst,
unsigned DstAlign, SDValue Src, unsigned SrcAlign,
SDValue Size, Type *SizeTy, unsigned ElemSz,
bool isTailCall, MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo);
SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst,
unsigned DstAlign, SDValue Value, SDValue Size,
Type *SizeTy, unsigned ElemSz, bool isTailCall,
MachinePointerInfo DstPtrInfo);
/// Helper function to make it easier to build SetCC's if you just have an
/// ISD::CondCode instead of an SDValue.
SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS,
ISD::CondCode Cond) {
assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() &&
"Cannot compare scalars to vectors");
assert(LHS.getValueType().isVector() == VT.isVector() &&
"Cannot compare scalars to vectors");
assert(Cond != ISD::SETCC_INVALID &&
"Cannot create a setCC of an invalid node.");
return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond));
}
/// Helper function to make it easier to build Select's if you just have
/// operands and don't want to check for vector.
SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS,
SDValue RHS) {
assert(LHS.getValueType() == RHS.getValueType() &&
"Cannot use select on differing types");
assert(VT.isVector() == LHS.getValueType().isVector() &&
"Cannot mix vectors and scalars");
auto Opcode = Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
return getNode(Opcode, DL, VT, Cond, LHS, RHS);
}
/// Helper function to make it easier to build SelectCC's if you just have an
/// ISD::CondCode instead of an SDValue.
SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True,
SDValue False, ISD::CondCode Cond) {
return getNode(ISD::SELECT_CC, DL, True.getValueType(), LHS, RHS, True,
False, getCondCode(Cond));
}
/// Try to simplify a select/vselect into 1 of its operands or a constant.
SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal);
/// Try to simplify a shift into 1 of its operands or a constant.
SDValue simplifyShift(SDValue X, SDValue Y);
/// VAArg produces a result and token chain, and takes a pointer
/// and a source value as input.
SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
SDValue SV, unsigned Align);
/// Gets a node for an atomic cmpxchg op. There are two
/// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a
/// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded,
/// a success flag (initially i1), and a chain.
SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
SDVTList VTs, SDValue Chain, SDValue Ptr,
SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo,
unsigned Alignment, AtomicOrdering SuccessOrdering,
AtomicOrdering FailureOrdering,
SyncScope::ID SSID);
SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT,
SDVTList VTs, SDValue Chain, SDValue Ptr,
SDValue Cmp, SDValue Swp, MachineMemOperand *MMO);
/// Gets a node for an atomic op, produces result (if relevant)
/// and chain and takes 2 operands.
SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
SDValue Ptr, SDValue Val, const Value *PtrVal,
unsigned Alignment, AtomicOrdering Ordering,
SyncScope::ID SSID);
SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain,
SDValue Ptr, SDValue Val, MachineMemOperand *MMO);
/// Gets a node for an atomic op, produces result and chain and
/// takes 1 operand.
SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT,
SDValue Chain, SDValue Ptr, MachineMemOperand *MMO);
/// Gets a node for an atomic op, produces result and chain and takes N
/// operands.
SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT,
SDVTList VTList, ArrayRef<SDValue> Ops,
MachineMemOperand *MMO);
/// Creates a MemIntrinsicNode that may produce a
/// result and takes a list of operands. Opcode may be INTRINSIC_VOID,
/// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not
/// less than FIRST_TARGET_MEMORY_OPCODE.
SDValue getMemIntrinsicNode(
unsigned Opcode, const SDLoc &dl, SDVTList VTList,
ArrayRef<SDValue> Ops, EVT MemVT,
MachinePointerInfo PtrInfo,
unsigned Align = 0,
MachineMemOperand::Flags Flags
= MachineMemOperand::MOLoad | MachineMemOperand::MOStore,
unsigned Size = 0);
SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList,
ArrayRef<SDValue> Ops, EVT MemVT,
MachineMemOperand *MMO);
/// Create a MERGE_VALUES node from the given operands.
SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl);
/// Loads are not normal binary operators: their result type is not
/// determined by their operands, and they produce a value AND a token chain.
///
/// This function will set the MOLoad flag on MMOFlags, but you can set it if
/// you want. The MOStore flag must not be set.
SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
MachinePointerInfo PtrInfo, unsigned Alignment = 0,
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes(),
const MDNode *Ranges = nullptr);
SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
MachineMemOperand *MMO);
SDValue
getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain,
SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT,
unsigned Alignment = 0,
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes());
SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT,
SDValue Chain, SDValue Ptr, EVT MemVT,
MachineMemOperand *MMO);
SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base,
SDValue Offset, ISD::MemIndexedMode AM);
SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
MachinePointerInfo PtrInfo, EVT MemVT, unsigned Alignment = 0,
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes(),
const MDNode *Ranges = nullptr);
SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT,
const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset,
EVT MemVT, MachineMemOperand *MMO);
/// Helper function to build ISD::STORE nodes.
///
/// This function will set the MOStore flag on MMOFlags, but you can set it if
/// you want. The MOLoad and MOInvariant flags must not be set.
SDValue
getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
MachinePointerInfo PtrInfo, unsigned Alignment = 0,
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes());
SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
MachineMemOperand *MMO);
SDValue
getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr,
MachinePointerInfo PtrInfo, EVT SVT, unsigned Alignment = 0,
MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone,
const AAMDNodes &AAInfo = AAMDNodes());
SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val,
SDValue Ptr, EVT SVT, MachineMemOperand *MMO);
SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base,
SDValue Offset, ISD::MemIndexedMode AM);
/// Returns sum of the base pointer and offset.
SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, const SDLoc &DL);
SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr,
SDValue Mask, SDValue Src0, EVT MemVT,
MachineMemOperand *MMO, ISD::LoadExtType,
bool IsExpanding = false);
SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val,
SDValue Ptr, SDValue Mask, EVT MemVT,
MachineMemOperand *MMO, bool IsTruncating = false,
bool IsCompressing = false);
SDValue getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl,
ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
SDValue getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl,
ArrayRef<SDValue> Ops, MachineMemOperand *MMO);
/// Return (create a new or find existing) a target-specific node.
/// TargetMemSDNode should be derived class from MemSDNode.
template <class TargetMemSDNode>
SDValue getTargetMemSDNode(SDVTList VTs, ArrayRef<SDValue> Ops,
const SDLoc &dl, EVT MemVT,
MachineMemOperand *MMO);
/// Construct a node to track a Value* through the backend.
SDValue getSrcValue(const Value *v);
/// Return an MDNodeSDNode which holds an MDNode.
SDValue getMDNode(const MDNode *MD);
/// Return a bitcast using the SDLoc of the value operand, and casting to the
/// provided type. Use getNode to set a custom SDLoc.
SDValue getBitcast(EVT VT, SDValue V);
/// Return an AddrSpaceCastSDNode.
SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS,
unsigned DestAS);
/// Return the specified value casted to
/// the target's desired shift amount type.
SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op);
/// Expand the specified \c ISD::VAARG node as the Legalize pass would.
SDValue expandVAArg(SDNode *Node);
/// Expand the specified \c ISD::VACOPY node as the Legalize pass would.
SDValue expandVACopy(SDNode *Node);
/// Returs an GlobalAddress of the function from the current module with
/// name matching the given ExternalSymbol. Additionally can provide the
/// matched function.
/// Panics the function doesn't exists.
SDValue getSymbolFunctionGlobalAddress(SDValue Op,
Function **TargetFunction = nullptr);
/// *Mutate* the specified node in-place to have the
/// specified operands. If the resultant node already exists in the DAG,
/// this does not modify the specified node, instead it returns the node that
/// already exists. If the resultant node does not exist in the DAG, the
/// input node is returned. As a degenerate case, if you specify the same
/// input operands as the node already has, the input node is returned.
SDNode *UpdateNodeOperands(SDNode *N, SDValue Op);
SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2);
SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
SDValue Op3);
SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
SDValue Op3, SDValue Op4);
SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
SDValue Op3, SDValue Op4, SDValue Op5);
SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops);
/// Creates a new TokenFactor containing \p Vals. If \p Vals contains 64k
/// values or more, move values into new TokenFactors in 64k-1 blocks, until
/// the final TokenFactor has less than 64k operands.
SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl<SDValue> &Vals);
/// *Mutate* the specified machine node's memory references to the provided
/// list.
void setNodeMemRefs(MachineSDNode *N,
ArrayRef<MachineMemOperand *> NewMemRefs);
// Propagates the change in divergence to users
void updateDivergence(SDNode * N);
/// These are used for target selectors to *mutate* the
/// specified node to have the specified return type, Target opcode, and
/// operands. Note that target opcodes are stored as
/// ~TargetOpcode in the node opcode field. The resultant node is returned.
SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT);
SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, SDValue Op1);
SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
SDValue Op1, SDValue Op2);
SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
SDValue Op1, SDValue Op2, SDValue Op3);
SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT,
ArrayRef<SDValue> Ops);
SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2);
SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
EVT VT2, ArrayRef<SDValue> Ops);
SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1,
EVT VT2, SDValue Op1);
SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1,
EVT VT2, SDValue Op1, SDValue Op2);
SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, SDVTList VTs,
ArrayRef<SDValue> Ops);
/// This *mutates* the specified node to have the specified
/// return type, opcode, and operands.
SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs,
ArrayRef<SDValue> Ops);
/// Mutate the specified strict FP node to its non-strict equivalent,
/// unlinking the node from its chain and dropping the metadata arguments.
/// The node must be a strict FP node.
SDNode *mutateStrictFPToFP(SDNode *Node);
/// These are used for target selectors to create a new node
/// with specified return type(s), MachineInstr opcode, and operands.
///
/// Note that getMachineNode returns the resultant node. If there is already
/// a node of the specified opcode and operands, it returns that node instead
/// of the current one.
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
SDValue Op1);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
SDValue Op1, SDValue Op2);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
SDValue Op1, SDValue Op2, SDValue Op3);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT,
ArrayRef<SDValue> Ops);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
EVT VT2, SDValue Op1, SDValue Op2);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
EVT VT2, ArrayRef<SDValue> Ops);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
EVT VT2, EVT VT3, SDValue Op1, SDValue Op2);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
EVT VT2, EVT VT3, SDValue Op1, SDValue Op2,
SDValue Op3);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1,
EVT VT2, EVT VT3, ArrayRef<SDValue> Ops);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl,
ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops);
MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs,
ArrayRef<SDValue> Ops);
/// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes.
SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT,
SDValue Operand);
/// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes.
SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT,
SDValue Operand, SDValue Subreg);
/// Get the specified node if it's already available, or else return NULL.
SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef<SDValue> Ops,
const SDNodeFlags Flags = SDNodeFlags());
/// Creates a SDDbgValue node.
SDDbgValue *getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N,
unsigned R, bool IsIndirect, const DebugLoc &DL,
unsigned O);
/// Creates a constant SDDbgValue node.
SDDbgValue *getConstantDbgValue(DIVariable *Var, DIExpression *Expr,
const Value *C, const DebugLoc &DL,
unsigned O);
/// Creates a FrameIndex SDDbgValue node.
SDDbgValue *getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr,
unsigned FI, bool IsIndirect,
const DebugLoc &DL, unsigned O);
/// Creates a VReg SDDbgValue node.
SDDbgValue *getVRegDbgValue(DIVariable *Var, DIExpression *Expr,
unsigned VReg, bool IsIndirect,
const DebugLoc &DL, unsigned O);
/// Creates a SDDbgLabel node.
SDDbgLabel *getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O);
/// Transfer debug values from one node to another, while optionally
/// generating fragment expressions for split-up values. If \p InvalidateDbg
/// is set, debug values are invalidated after they are transferred.
void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits = 0,
unsigned SizeInBits = 0, bool InvalidateDbg = true);
/// Remove the specified node from the system. If any of its
/// operands then becomes dead, remove them as well. Inform UpdateListener
/// for each node deleted.
void RemoveDeadNode(SDNode *N);
/// This method deletes the unreachable nodes in the
/// given list, and any nodes that become unreachable as a result.
void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes);
/// Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG. Use the first
/// version if 'From' is known to have a single result, use the second
/// if you have two nodes with identical results (or if 'To' has a superset
/// of the results of 'From'), use the third otherwise.
///
/// These methods all take an optional UpdateListener, which (if not null) is
/// informed about nodes that are deleted and modified due to recursive
/// changes in the dag.
///
/// These functions only replace all existing uses. It's possible that as
/// these replacements are being performed, CSE may cause the From node
/// to be given new uses. These new uses of From are left in place, and
/// not automatically transferred to To.
///
void ReplaceAllUsesWith(SDValue From, SDValue To);
void ReplaceAllUsesWith(SDNode *From, SDNode *To);
void ReplaceAllUsesWith(SDNode *From, const SDValue *To);
/// Replace any uses of From with To, leaving
/// uses of other values produced by From.getNode() alone.
void ReplaceAllUsesOfValueWith(SDValue From, SDValue To);
/// Like ReplaceAllUsesOfValueWith, but for multiple values at once.
/// This correctly handles the case where
/// there is an overlap between the From values and the To values.
void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To,
unsigned Num);
/// If an existing load has uses of its chain, create a token factor node with
/// that chain and the new memory node's chain and update users of the old
/// chain to the token factor. This ensures that the new memory node will have
/// the same relative memory dependency position as the old load. Returns the
/// new merged load chain.
SDValue makeEquivalentMemoryOrdering(LoadSDNode *Old, SDValue New);
/// Topological-sort the AllNodes list and a
/// assign a unique node id for each node in the DAG based on their
/// topological order. Returns the number of nodes.
unsigned AssignTopologicalOrder();
/// Move node N in the AllNodes list to be immediately
/// before the given iterator Position. This may be used to update the
/// topological ordering when the list of nodes is modified.
void RepositionNode(allnodes_iterator Position, SDNode *N) {
AllNodes.insert(Position, AllNodes.remove(N));
}
/// Returns an APFloat semantics tag appropriate for the given type. If VT is
/// a vector type, the element semantics are returned.
static const fltSemantics &EVTToAPFloatSemantics(EVT VT) {
switch (VT.getScalarType().getSimpleVT().SimpleTy) {
default: llvm_unreachable("Unknown FP format");
case MVT::f16: return APFloat::IEEEhalf();
case MVT::f32: return APFloat::IEEEsingle();
case MVT::f64: return APFloat::IEEEdouble();
case MVT::f80: return APFloat::x87DoubleExtended();
case MVT::f128: return APFloat::IEEEquad();
case MVT::ppcf128: return APFloat::PPCDoubleDouble();
}
}
/// Add a dbg_value SDNode. If SD is non-null that means the
/// value is produced by SD.
void AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter);
/// Add a dbg_label SDNode.
void AddDbgLabel(SDDbgLabel *DB);
/// Get the debug values which reference the given SDNode.
ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) const {
return DbgInfo->getSDDbgValues(SD);
}
public:
/// Return true if there are any SDDbgValue nodes associated
/// with this SelectionDAG.
bool hasDebugValues() const { return !DbgInfo->empty(); }
SDDbgInfo::DbgIterator DbgBegin() const { return DbgInfo->DbgBegin(); }
SDDbgInfo::DbgIterator DbgEnd() const { return DbgInfo->DbgEnd(); }
SDDbgInfo::DbgIterator ByvalParmDbgBegin() const {
return DbgInfo->ByvalParmDbgBegin();
}
SDDbgInfo::DbgIterator ByvalParmDbgEnd() const {
return DbgInfo->ByvalParmDbgEnd();
}
SDDbgInfo::DbgLabelIterator DbgLabelBegin() const {
return DbgInfo->DbgLabelBegin();
}
SDDbgInfo::DbgLabelIterator DbgLabelEnd() const {
return DbgInfo->DbgLabelEnd();
}
/// To be invoked on an SDNode that is slated to be erased. This
/// function mirrors \c llvm::salvageDebugInfo.
void salvageDebugInfo(SDNode &N);
void dump() const;
/// Create a stack temporary, suitable for holding the specified value type.
/// If minAlign is specified, the slot size will have at least that alignment.
SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1);
/// Create a stack temporary suitable for holding either of the specified
/// value types.
SDValue CreateStackTemporary(EVT VT1, EVT VT2);
SDValue FoldSymbolOffset(unsigned Opcode, EVT VT,
const GlobalAddressSDNode *GA,
const SDNode *N2);
SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
SDNode *N1, SDNode *N2);
SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
const ConstantSDNode *C1,
const ConstantSDNode *C2);
SDValue FoldConstantVectorArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT,
ArrayRef<SDValue> Ops,
const SDNodeFlags Flags = SDNodeFlags());
/// Constant fold a setcc to true or false.
SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond,
const SDLoc &dl);
/// See if the specified operand can be simplified with the knowledge that only
/// the bits specified by Mask are used. If so, return the simpler operand,
/// otherwise return a null SDValue.
///
/// (This exists alongside SimplifyDemandedBits because GetDemandedBits can
/// simplify nodes with multiple uses more aggressively.)
SDValue GetDemandedBits(SDValue V, const APInt &Mask);
/// Return true if the sign bit of Op is known to be zero.
/// We use this predicate to simplify operations downstream.
bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const;
/// Return true if 'Op & Mask' is known to be zero. We
/// use this predicate to simplify operations downstream. Op and Mask are
/// known to be the same type.
bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth = 0)
const;
/// Determine which bits of Op are known to be either zero or one and return
/// them in Known. For vectors, the known bits are those that are shared by
/// every vector element.
/// Targets can implement the computeKnownBitsForTargetNode method in the
/// TargetLowering class to allow target nodes to be understood.
KnownBits computeKnownBits(SDValue Op, unsigned Depth = 0) const;
/// Determine which bits of Op are known to be either zero or one and return
/// them in Known. The DemandedElts argument allows us to only collect the
/// known bits that are shared by the requested vector elements.
/// Targets can implement the computeKnownBitsForTargetNode method in the
/// TargetLowering class to allow target nodes to be understood.
KnownBits computeKnownBits(SDValue Op, const APInt &DemandedElts,
unsigned Depth = 0) const;
/// Used to represent the possible overflow behavior of an operation.
/// Never: the operation cannot overflow.
/// Always: the operation will always overflow.
/// Sometime: the operation may or may not overflow.
enum OverflowKind {
OFK_Never,
OFK_Sometime,
OFK_Always,
};
/// Determine if the result of the addition of 2 node can overflow.
OverflowKind computeOverflowKind(SDValue N0, SDValue N1) const;
/// Test if the given value is known to have exactly one bit set. This differs
/// from computeKnownBits in that it doesn't necessarily determine which bit
/// is set.
bool isKnownToBeAPowerOfTwo(SDValue Val) const;
/// Return the number of times the sign bit of the register is replicated into
/// the other bits. We know that at least 1 bit is always equal to the sign
/// bit (itself), but other cases can give us information. For example,
/// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
/// to each other, so we return 3. Targets can implement the
/// ComputeNumSignBitsForTarget method in the TargetLowering class to allow
/// target nodes to be understood.
unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const;
/// Return the number of times the sign bit of the register is replicated into
/// the other bits. We know that at least 1 bit is always equal to the sign
/// bit (itself), but other cases can give us information. For example,
/// immediately after an "SRA X, 2", we know that the top 3 bits are all equal
/// to each other, so we return 3. The DemandedElts argument allows
/// us to only collect the minimum sign bits of the requested vector elements.
/// Targets can implement the ComputeNumSignBitsForTarget method in the
/// TargetLowering class to allow target nodes to be understood.
unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts,
unsigned Depth = 0) const;
/// Return true if the specified operand is an ISD::ADD with a ConstantSDNode
/// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that
/// is guaranteed to have the same semantics as an ADD. This handles the
/// equivalence:
/// X|Cst == X+Cst iff X&Cst = 0.
bool isBaseWithConstantOffset(SDValue Op) const;
/// Test whether the given SDValue is known to never be NaN. If \p SNaN is
/// true, returns if \p Op is known to never be a signaling NaN (it may still
/// be a qNaN).
bool isKnownNeverNaN(SDValue Op, bool SNaN = false, unsigned Depth = 0) const;
/// \returns true if \p Op is known to never be a signaling NaN.
bool isKnownNeverSNaN(SDValue Op, unsigned Depth = 0) const {
return isKnownNeverNaN(Op, true, Depth);
}
/// Test whether the given floating point SDValue is known to never be
/// positive or negative zero.
bool isKnownNeverZeroFloat(SDValue Op) const;
/// Test whether the given SDValue is known to contain non-zero value(s).
bool isKnownNeverZero(SDValue Op) const;
/// Test whether two SDValues are known to compare equal. This
/// is true if they are the same value, or if one is negative zero and the
/// other positive zero.
bool isEqualTo(SDValue A, SDValue B) const;
/// Return true if A and B have no common bits set. As an example, this can
/// allow an 'add' to be transformed into an 'or'.
bool haveNoCommonBitsSet(SDValue A, SDValue B) const;
/// Test whether \p V has a splatted value for all the demanded elements.
///
/// On success \p UndefElts will indicate the elements that have UNDEF
/// values instead of the splat value, this is only guaranteed to be correct
/// for \p DemandedElts.
///
/// NOTE: The function will return true for a demanded splat of UNDEF values.
bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts);
/// Test whether \p V has a splatted value.
bool isSplatValue(SDValue V, bool AllowUndefs = false);
/// Match a binop + shuffle pyramid that represents a horizontal reduction
/// over the elements of a vector starting from the EXTRACT_VECTOR_ELT node /p
/// Extract. The reduction must use one of the opcodes listed in /p
/// CandidateBinOps and on success /p BinOp will contain the matching opcode.
/// Returns the vector that is being reduced on, or SDValue() if a reduction
/// was not matched.
SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp,
ArrayRef<ISD::NodeType> CandidateBinOps);
/// Utility function used by legalize and lowering to
/// "unroll" a vector operation by splitting out the scalars and operating
/// on each element individually. If the ResNE is 0, fully unroll the vector
/// op. If ResNE is less than the width of the vector op, unroll up to ResNE.
/// If the ResNE is greater than the width of the vector op, unroll the
/// vector op and fill the end of the resulting vector with UNDEFS.
SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);
/// Return true if loads are next to each other and can be
/// merged. Check that both are nonvolatile and if LD is loading
/// 'Bytes' bytes from a location that is 'Dist' units away from the
/// location that the 'Base' load is loading from.
bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base,
unsigned Bytes, int Dist) const;
/// Infer alignment of a load / store address. Return 0 if
/// it cannot be inferred.
unsigned InferPtrAlignment(SDValue Ptr) const;
/// Compute the VTs needed for the low/hi parts of a type
/// which is split (or expanded) into two not necessarily identical pieces.
std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const;
/// Split the vector with EXTRACT_SUBVECTOR using the provides
/// VTs and return the low/high part.
std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL,
const EVT &LoVT, const EVT &HiVT);
/// Split the vector with EXTRACT_SUBVECTOR and return the low/high part.
std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) {
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType());
return SplitVector(N, DL, LoVT, HiVT);
}
/// Split the node's operand with EXTRACT_SUBVECTOR and
/// return the low/high part.
std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo)
{
return SplitVector(N->getOperand(OpNo), SDLoc(N));
}
/// Append the extracted elements from Start to Count out of the vector Op
/// in Args. If Count is 0, all of the elements will be extracted.
void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args,
unsigned Start = 0, unsigned Count = 0);
/// Compute the default alignment value for the given type.
unsigned getEVTAlignment(EVT MemoryVT) const;
/// Test whether the given value is a constant int or similar node.
SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N);
/// Test whether the given value is a constant FP or similar node.
SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N);
/// \returns true if \p N is any kind of constant or build_vector of
/// constants, int or float. If a vector, it may not necessarily be a splat.
inline bool isConstantValueOfAnyType(SDValue N) {
return isConstantIntBuildVectorOrConstantInt(N) ||
isConstantFPBuildVectorOrConstantFP(N);
}
private:
void InsertNode(SDNode *N);
bool RemoveNodeFromCSEMaps(SDNode *N);
void AddModifiedNodeToCSEMaps(SDNode *N);
SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos);
SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
void *&InsertPos);
SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops,
void *&InsertPos);
SDNode *UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &loc);
void DeleteNodeNotInCSEMaps(SDNode *N);
void DeallocateNode(SDNode *N);
void allnodes_clear();
/// Look up the node specified by ID in CSEMap. If it exists, return it. If
/// not, return the insertion token that will make insertion faster. This
/// overload is for nodes other than Constant or ConstantFP, use the other one
/// for those.
SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos);
/// Look up the node specified by ID in CSEMap. If it exists, return it. If
/// not, return the insertion token that will make insertion faster. Performs
/// additional processing for constant nodes.
SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL,
void *&InsertPos);
/// List of non-single value types.
FoldingSet<SDVTListNode> VTListMap;
/// Maps to auto-CSE operations.
std::vector<CondCodeSDNode*> CondCodeNodes;
std::vector<SDNode*> ValueTypeNodes;
std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes;
StringMap<SDNode*> ExternalSymbols;
std::map<std::pair<std::string, unsigned char>,SDNode*> TargetExternalSymbols;
DenseMap<MCSymbol *, SDNode *> MCSymbols;
};
template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> {
using nodes_iterator = pointer_iterator<SelectionDAG::allnodes_iterator>;
static nodes_iterator nodes_begin(SelectionDAG *G) {
return nodes_iterator(G->allnodes_begin());
}
static nodes_iterator nodes_end(SelectionDAG *G) {
return nodes_iterator(G->allnodes_end());
}
};
template <class TargetMemSDNode>
SDValue SelectionDAG::getTargetMemSDNode(SDVTList VTs,
ArrayRef<SDValue> Ops,
const SDLoc &dl, EVT MemVT,
MachineMemOperand *MMO) {
/// Compose node ID and try to find an existing node.
FoldingSetNodeID ID;
unsigned Opcode =
TargetMemSDNode(dl.getIROrder(), DebugLoc(), VTs, MemVT, MMO).getOpcode();
ID.AddInteger(Opcode);
ID.AddPointer(VTs.VTs);
for (auto& Op : Ops) {
ID.AddPointer(Op.getNode());
ID.AddInteger(Op.getResNo());
}
ID.AddInteger(MemVT.getRawBits());
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
ID.AddInteger(getSyntheticNodeSubclassData<TargetMemSDNode>(
dl.getIROrder(), VTs, MemVT, MMO));
void *IP = nullptr;
if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) {
cast<TargetMemSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
/// Existing node was not found. Create a new one.
auto *N = newSDNode<TargetMemSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs,
MemVT, MMO);
createOperands(N, Ops);
CSEMap.InsertNode(N, IP);
InsertNode(N);
return SDValue(N, 0);
}
} // end namespace llvm
#endif // LLVM_CODEGEN_SELECTIONDAG_H