| //===- llvm/CodeGen/SelectionDAG.h - InstSelection DAG ----------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file declares the SelectionDAG class, and transitively defines the |
| // SDNode class and subclasses. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_CODEGEN_SELECTIONDAG_H |
| #define LLVM_CODEGEN_SELECTIONDAG_H |
| |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/FoldingSet.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/ilist.h" |
| #include "llvm/ADT/iterator.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/LegacyDivergenceAnalysis.h" |
| #include "llvm/CodeGen/DAGCombine.h" |
| #include "llvm/CodeGen/FunctionLoweringInfo.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/SelectionDAGNodes.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/Support/Allocator.h" |
| #include "llvm/Support/ArrayRecycler.h" |
| #include "llvm/Support/AtomicOrdering.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CodeGen.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/RecyclingAllocator.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <functional> |
| #include <map> |
| #include <string> |
| #include <tuple> |
| #include <utility> |
| #include <vector> |
| |
| namespace llvm { |
| |
| class BlockAddress; |
| class Constant; |
| class ConstantFP; |
| class ConstantInt; |
| class DataLayout; |
| struct fltSemantics; |
| class GlobalValue; |
| struct KnownBits; |
| class LLVMContext; |
| class MachineBasicBlock; |
| class MachineConstantPoolValue; |
| class MCSymbol; |
| class OptimizationRemarkEmitter; |
| class SDDbgValue; |
| class SDDbgLabel; |
| class SelectionDAG; |
| class SelectionDAGTargetInfo; |
| class TargetLibraryInfo; |
| class TargetLowering; |
| class TargetMachine; |
| class TargetSubtargetInfo; |
| class Value; |
| |
| class SDVTListNode : public FoldingSetNode { |
| friend struct FoldingSetTrait<SDVTListNode>; |
| |
| /// A reference to an Interned FoldingSetNodeID for this node. |
| /// The Allocator in SelectionDAG holds the data. |
| /// SDVTList contains all types which are frequently accessed in SelectionDAG. |
| /// The size of this list is not expected to be big so it won't introduce |
| /// a memory penalty. |
| FoldingSetNodeIDRef FastID; |
| const EVT *VTs; |
| unsigned int NumVTs; |
| /// The hash value for SDVTList is fixed, so cache it to avoid |
| /// hash calculation. |
| unsigned HashValue; |
| |
| public: |
| SDVTListNode(const FoldingSetNodeIDRef ID, const EVT *VT, unsigned int Num) : |
| FastID(ID), VTs(VT), NumVTs(Num) { |
| HashValue = ID.ComputeHash(); |
| } |
| |
| SDVTList getSDVTList() { |
| SDVTList result = {VTs, NumVTs}; |
| return result; |
| } |
| }; |
| |
| /// Specialize FoldingSetTrait for SDVTListNode |
| /// to avoid computing temp FoldingSetNodeID and hash value. |
| template<> struct FoldingSetTrait<SDVTListNode> : DefaultFoldingSetTrait<SDVTListNode> { |
| static void Profile(const SDVTListNode &X, FoldingSetNodeID& ID) { |
| ID = X.FastID; |
| } |
| |
| static bool Equals(const SDVTListNode &X, const FoldingSetNodeID &ID, |
| unsigned IDHash, FoldingSetNodeID &TempID) { |
| if (X.HashValue != IDHash) |
| return false; |
| return ID == X.FastID; |
| } |
| |
| static unsigned ComputeHash(const SDVTListNode &X, FoldingSetNodeID &TempID) { |
| return X.HashValue; |
| } |
| }; |
| |
| template <> struct ilist_alloc_traits<SDNode> { |
| static void deleteNode(SDNode *) { |
| llvm_unreachable("ilist_traits<SDNode> shouldn't see a deleteNode call!"); |
| } |
| }; |
| |
| /// Keeps track of dbg_value information through SDISel. We do |
| /// not build SDNodes for these so as not to perturb the generated code; |
| /// instead the info is kept off to the side in this structure. Each SDNode may |
| /// have one or more associated dbg_value entries. This information is kept in |
| /// DbgValMap. |
| /// Byval parameters are handled separately because they don't use alloca's, |
| /// which busts the normal mechanism. There is good reason for handling all |
| /// parameters separately: they may not have code generated for them, they |
| /// should always go at the beginning of the function regardless of other code |
| /// motion, and debug info for them is potentially useful even if the parameter |
| /// is unused. Right now only byval parameters are handled separately. |
| class SDDbgInfo { |
| BumpPtrAllocator Alloc; |
| SmallVector<SDDbgValue*, 32> DbgValues; |
| SmallVector<SDDbgValue*, 32> ByvalParmDbgValues; |
| SmallVector<SDDbgLabel*, 4> DbgLabels; |
| using DbgValMapType = DenseMap<const SDNode *, SmallVector<SDDbgValue *, 2>>; |
| DbgValMapType DbgValMap; |
| |
| public: |
| SDDbgInfo() = default; |
| SDDbgInfo(const SDDbgInfo &) = delete; |
| SDDbgInfo &operator=(const SDDbgInfo &) = delete; |
| |
| void add(SDDbgValue *V, const SDNode *Node, bool isParameter) { |
| if (isParameter) { |
| ByvalParmDbgValues.push_back(V); |
| } else DbgValues.push_back(V); |
| if (Node) |
| DbgValMap[Node].push_back(V); |
| } |
| |
| void add(SDDbgLabel *L) { |
| DbgLabels.push_back(L); |
| } |
| |
| /// Invalidate all DbgValues attached to the node and remove |
| /// it from the Node-to-DbgValues map. |
| void erase(const SDNode *Node); |
| |
| void clear() { |
| DbgValMap.clear(); |
| DbgValues.clear(); |
| ByvalParmDbgValues.clear(); |
| DbgLabels.clear(); |
| Alloc.Reset(); |
| } |
| |
| BumpPtrAllocator &getAlloc() { return Alloc; } |
| |
| bool empty() const { |
| return DbgValues.empty() && ByvalParmDbgValues.empty() && DbgLabels.empty(); |
| } |
| |
| ArrayRef<SDDbgValue*> getSDDbgValues(const SDNode *Node) const { |
| auto I = DbgValMap.find(Node); |
| if (I != DbgValMap.end()) |
| return I->second; |
| return ArrayRef<SDDbgValue*>(); |
| } |
| |
| using DbgIterator = SmallVectorImpl<SDDbgValue*>::iterator; |
| using DbgLabelIterator = SmallVectorImpl<SDDbgLabel*>::iterator; |
| |
| DbgIterator DbgBegin() { return DbgValues.begin(); } |
| DbgIterator DbgEnd() { return DbgValues.end(); } |
| DbgIterator ByvalParmDbgBegin() { return ByvalParmDbgValues.begin(); } |
| DbgIterator ByvalParmDbgEnd() { return ByvalParmDbgValues.end(); } |
| DbgLabelIterator DbgLabelBegin() { return DbgLabels.begin(); } |
| DbgLabelIterator DbgLabelEnd() { return DbgLabels.end(); } |
| }; |
| |
| void checkForCycles(const SelectionDAG *DAG, bool force = false); |
| |
| /// This is used to represent a portion of an LLVM function in a low-level |
| /// Data Dependence DAG representation suitable for instruction selection. |
| /// This DAG is constructed as the first step of instruction selection in order |
| /// to allow implementation of machine specific optimizations |
| /// and code simplifications. |
| /// |
| /// The representation used by the SelectionDAG is a target-independent |
| /// representation, which has some similarities to the GCC RTL representation, |
| /// but is significantly more simple, powerful, and is a graph form instead of a |
| /// linear form. |
| /// |
| class SelectionDAG { |
| const TargetMachine &TM; |
| const SelectionDAGTargetInfo *TSI = nullptr; |
| const TargetLowering *TLI = nullptr; |
| const TargetLibraryInfo *LibInfo = nullptr; |
| MachineFunction *MF; |
| Pass *SDAGISelPass = nullptr; |
| LLVMContext *Context; |
| CodeGenOpt::Level OptLevel; |
| |
| LegacyDivergenceAnalysis * DA = nullptr; |
| FunctionLoweringInfo * FLI = nullptr; |
| |
| /// The function-level optimization remark emitter. Used to emit remarks |
| /// whenever manipulating the DAG. |
| OptimizationRemarkEmitter *ORE; |
| |
| /// The starting token. |
| SDNode EntryNode; |
| |
| /// The root of the entire DAG. |
| SDValue Root; |
| |
| /// A linked list of nodes in the current DAG. |
| ilist<SDNode> AllNodes; |
| |
| /// The AllocatorType for allocating SDNodes. We use |
| /// pool allocation with recycling. |
| using NodeAllocatorType = RecyclingAllocator<BumpPtrAllocator, SDNode, |
| sizeof(LargestSDNode), |
| alignof(MostAlignedSDNode)>; |
| |
| /// Pool allocation for nodes. |
| NodeAllocatorType NodeAllocator; |
| |
| /// This structure is used to memoize nodes, automatically performing |
| /// CSE with existing nodes when a duplicate is requested. |
| FoldingSet<SDNode> CSEMap; |
| |
| /// Pool allocation for machine-opcode SDNode operands. |
| BumpPtrAllocator OperandAllocator; |
| ArrayRecycler<SDUse> OperandRecycler; |
| |
| /// Pool allocation for misc. objects that are created once per SelectionDAG. |
| BumpPtrAllocator Allocator; |
| |
| /// Tracks dbg_value and dbg_label information through SDISel. |
| SDDbgInfo *DbgInfo; |
| |
| uint16_t NextPersistentId = 0; |
| |
| public: |
| /// Clients of various APIs that cause global effects on |
| /// the DAG can optionally implement this interface. This allows the clients |
| /// to handle the various sorts of updates that happen. |
| /// |
| /// A DAGUpdateListener automatically registers itself with DAG when it is |
| /// constructed, and removes itself when destroyed in RAII fashion. |
| struct DAGUpdateListener { |
| DAGUpdateListener *const Next; |
| SelectionDAG &DAG; |
| |
| explicit DAGUpdateListener(SelectionDAG &D) |
| : Next(D.UpdateListeners), DAG(D) { |
| DAG.UpdateListeners = this; |
| } |
| |
| virtual ~DAGUpdateListener() { |
| assert(DAG.UpdateListeners == this && |
| "DAGUpdateListeners must be destroyed in LIFO order"); |
| DAG.UpdateListeners = Next; |
| } |
| |
| /// The node N that was deleted and, if E is not null, an |
| /// equivalent node E that replaced it. |
| virtual void NodeDeleted(SDNode *N, SDNode *E); |
| |
| /// The node N that was updated. |
| virtual void NodeUpdated(SDNode *N); |
| }; |
| |
| struct DAGNodeDeletedListener : public DAGUpdateListener { |
| std::function<void(SDNode *, SDNode *)> Callback; |
| |
| DAGNodeDeletedListener(SelectionDAG &DAG, |
| std::function<void(SDNode *, SDNode *)> Callback) |
| : DAGUpdateListener(DAG), Callback(std::move(Callback)) {} |
| |
| void NodeDeleted(SDNode *N, SDNode *E) override { Callback(N, E); } |
| |
| private: |
| virtual void anchor(); |
| }; |
| |
| /// When true, additional steps are taken to |
| /// ensure that getConstant() and similar functions return DAG nodes that |
| /// have legal types. This is important after type legalization since |
| /// any illegally typed nodes generated after this point will not experience |
| /// type legalization. |
| bool NewNodesMustHaveLegalTypes = false; |
| |
| private: |
| /// DAGUpdateListener is a friend so it can manipulate the listener stack. |
| friend struct DAGUpdateListener; |
| |
| /// Linked list of registered DAGUpdateListener instances. |
| /// This stack is maintained by DAGUpdateListener RAII. |
| DAGUpdateListener *UpdateListeners = nullptr; |
| |
| /// Implementation of setSubgraphColor. |
| /// Return whether we had to truncate the search. |
| bool setSubgraphColorHelper(SDNode *N, const char *Color, |
| DenseSet<SDNode *> &visited, |
| int level, bool &printed); |
| |
| template <typename SDNodeT, typename... ArgTypes> |
| SDNodeT *newSDNode(ArgTypes &&... Args) { |
| return new (NodeAllocator.template Allocate<SDNodeT>()) |
| SDNodeT(std::forward<ArgTypes>(Args)...); |
| } |
| |
| /// Build a synthetic SDNodeT with the given args and extract its subclass |
| /// data as an integer (e.g. for use in a folding set). |
| /// |
| /// The args to this function are the same as the args to SDNodeT's |
| /// constructor, except the second arg (assumed to be a const DebugLoc&) is |
| /// omitted. |
| template <typename SDNodeT, typename... ArgTypes> |
| static uint16_t getSyntheticNodeSubclassData(unsigned IROrder, |
| ArgTypes &&... Args) { |
| // The compiler can reduce this expression to a constant iff we pass an |
| // empty DebugLoc. Thankfully, the debug location doesn't have any bearing |
| // on the subclass data. |
| return SDNodeT(IROrder, DebugLoc(), std::forward<ArgTypes>(Args)...) |
| .getRawSubclassData(); |
| } |
| |
| template <typename SDNodeTy> |
| static uint16_t getSyntheticNodeSubclassData(unsigned Opc, unsigned Order, |
| SDVTList VTs, EVT MemoryVT, |
| MachineMemOperand *MMO) { |
| return SDNodeTy(Opc, Order, DebugLoc(), VTs, MemoryVT, MMO) |
| .getRawSubclassData(); |
| } |
| |
| void createOperands(SDNode *Node, ArrayRef<SDValue> Vals); |
| |
| void removeOperands(SDNode *Node) { |
| if (!Node->OperandList) |
| return; |
| OperandRecycler.deallocate( |
| ArrayRecycler<SDUse>::Capacity::get(Node->NumOperands), |
| Node->OperandList); |
| Node->NumOperands = 0; |
| Node->OperandList = nullptr; |
| } |
| void CreateTopologicalOrder(std::vector<SDNode*>& Order); |
| public: |
| explicit SelectionDAG(const TargetMachine &TM, CodeGenOpt::Level); |
| SelectionDAG(const SelectionDAG &) = delete; |
| SelectionDAG &operator=(const SelectionDAG &) = delete; |
| ~SelectionDAG(); |
| |
| /// Prepare this SelectionDAG to process code in the given MachineFunction. |
| void init(MachineFunction &NewMF, OptimizationRemarkEmitter &NewORE, |
| Pass *PassPtr, const TargetLibraryInfo *LibraryInfo, |
| LegacyDivergenceAnalysis * Divergence); |
| |
| void setFunctionLoweringInfo(FunctionLoweringInfo * FuncInfo) { |
| FLI = FuncInfo; |
| } |
| |
| /// Clear state and free memory necessary to make this |
| /// SelectionDAG ready to process a new block. |
| void clear(); |
| |
| MachineFunction &getMachineFunction() const { return *MF; } |
| const Pass *getPass() const { return SDAGISelPass; } |
| |
| const DataLayout &getDataLayout() const { return MF->getDataLayout(); } |
| const TargetMachine &getTarget() const { return TM; } |
| const TargetSubtargetInfo &getSubtarget() const { return MF->getSubtarget(); } |
| const TargetLowering &getTargetLoweringInfo() const { return *TLI; } |
| const TargetLibraryInfo &getLibInfo() const { return *LibInfo; } |
| const SelectionDAGTargetInfo &getSelectionDAGInfo() const { return *TSI; } |
| LLVMContext *getContext() const {return Context; } |
| OptimizationRemarkEmitter &getORE() const { return *ORE; } |
| |
| /// Pop up a GraphViz/gv window with the DAG rendered using 'dot'. |
| void viewGraph(const std::string &Title); |
| void viewGraph(); |
| |
| #ifndef NDEBUG |
| std::map<const SDNode *, std::string> NodeGraphAttrs; |
| #endif |
| |
| /// Clear all previously defined node graph attributes. |
| /// Intended to be used from a debugging tool (eg. gdb). |
| void clearGraphAttrs(); |
| |
| /// Set graph attributes for a node. (eg. "color=red".) |
| void setGraphAttrs(const SDNode *N, const char *Attrs); |
| |
| /// Get graph attributes for a node. (eg. "color=red".) |
| /// Used from getNodeAttributes. |
| const std::string getGraphAttrs(const SDNode *N) const; |
| |
| /// Convenience for setting node color attribute. |
| void setGraphColor(const SDNode *N, const char *Color); |
| |
| /// Convenience for setting subgraph color attribute. |
| void setSubgraphColor(SDNode *N, const char *Color); |
| |
| using allnodes_const_iterator = ilist<SDNode>::const_iterator; |
| |
| allnodes_const_iterator allnodes_begin() const { return AllNodes.begin(); } |
| allnodes_const_iterator allnodes_end() const { return AllNodes.end(); } |
| |
| using allnodes_iterator = ilist<SDNode>::iterator; |
| |
| allnodes_iterator allnodes_begin() { return AllNodes.begin(); } |
| allnodes_iterator allnodes_end() { return AllNodes.end(); } |
| |
| ilist<SDNode>::size_type allnodes_size() const { |
| return AllNodes.size(); |
| } |
| |
| iterator_range<allnodes_iterator> allnodes() { |
| return make_range(allnodes_begin(), allnodes_end()); |
| } |
| iterator_range<allnodes_const_iterator> allnodes() const { |
| return make_range(allnodes_begin(), allnodes_end()); |
| } |
| |
| /// Return the root tag of the SelectionDAG. |
| const SDValue &getRoot() const { return Root; } |
| |
| /// Return the token chain corresponding to the entry of the function. |
| SDValue getEntryNode() const { |
| return SDValue(const_cast<SDNode *>(&EntryNode), 0); |
| } |
| |
| /// Set the current root tag of the SelectionDAG. |
| /// |
| const SDValue &setRoot(SDValue N) { |
| assert((!N.getNode() || N.getValueType() == MVT::Other) && |
| "DAG root value is not a chain!"); |
| if (N.getNode()) |
| checkForCycles(N.getNode(), this); |
| Root = N; |
| if (N.getNode()) |
| checkForCycles(this); |
| return Root; |
| } |
| |
| #ifndef NDEBUG |
| void VerifyDAGDiverence(); |
| #endif |
| |
| /// This iterates over the nodes in the SelectionDAG, folding |
| /// certain types of nodes together, or eliminating superfluous nodes. The |
| /// Level argument controls whether Combine is allowed to produce nodes and |
| /// types that are illegal on the target. |
| void Combine(CombineLevel Level, AliasAnalysis *AA, |
| CodeGenOpt::Level OptLevel); |
| |
| /// This transforms the SelectionDAG into a SelectionDAG that |
| /// only uses types natively supported by the target. |
| /// Returns "true" if it made any changes. |
| /// |
| /// Note that this is an involved process that may invalidate pointers into |
| /// the graph. |
| bool LegalizeTypes(); |
| |
| /// This transforms the SelectionDAG into a SelectionDAG that is |
| /// compatible with the target instruction selector, as indicated by the |
| /// TargetLowering object. |
| /// |
| /// Note that this is an involved process that may invalidate pointers into |
| /// the graph. |
| void Legalize(); |
| |
| /// Transforms a SelectionDAG node and any operands to it into a node |
| /// that is compatible with the target instruction selector, as indicated by |
| /// the TargetLowering object. |
| /// |
| /// \returns true if \c N is a valid, legal node after calling this. |
| /// |
| /// This essentially runs a single recursive walk of the \c Legalize process |
| /// over the given node (and its operands). This can be used to incrementally |
| /// legalize the DAG. All of the nodes which are directly replaced, |
| /// potentially including N, are added to the output parameter \c |
| /// UpdatedNodes so that the delta to the DAG can be understood by the |
| /// caller. |
| /// |
| /// When this returns false, N has been legalized in a way that make the |
| /// pointer passed in no longer valid. It may have even been deleted from the |
| /// DAG, and so it shouldn't be used further. When this returns true, the |
| /// N passed in is a legal node, and can be immediately processed as such. |
| /// This may still have done some work on the DAG, and will still populate |
| /// UpdatedNodes with any new nodes replacing those originally in the DAG. |
| bool LegalizeOp(SDNode *N, SmallSetVector<SDNode *, 16> &UpdatedNodes); |
| |
| /// This transforms the SelectionDAG into a SelectionDAG |
| /// that only uses vector math operations supported by the target. This is |
| /// necessary as a separate step from Legalize because unrolling a vector |
| /// operation can introduce illegal types, which requires running |
| /// LegalizeTypes again. |
| /// |
| /// This returns true if it made any changes; in that case, LegalizeTypes |
| /// is called again before Legalize. |
| /// |
| /// Note that this is an involved process that may invalidate pointers into |
| /// the graph. |
| bool LegalizeVectors(); |
| |
| /// This method deletes all unreachable nodes in the SelectionDAG. |
| void RemoveDeadNodes(); |
| |
| /// Remove the specified node from the system. This node must |
| /// have no referrers. |
| void DeleteNode(SDNode *N); |
| |
| /// Return an SDVTList that represents the list of values specified. |
| SDVTList getVTList(EVT VT); |
| SDVTList getVTList(EVT VT1, EVT VT2); |
| SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3); |
| SDVTList getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4); |
| SDVTList getVTList(ArrayRef<EVT> VTs); |
| |
| //===--------------------------------------------------------------------===// |
| // Node creation methods. |
| |
| /// Create a ConstantSDNode wrapping a constant value. |
| /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR. |
| /// |
| /// If only legal types can be produced, this does the necessary |
| /// transformations (e.g., if the vector element type is illegal). |
| /// @{ |
| SDValue getConstant(uint64_t Val, const SDLoc &DL, EVT VT, |
| bool isTarget = false, bool isOpaque = false); |
| SDValue getConstant(const APInt &Val, const SDLoc &DL, EVT VT, |
| bool isTarget = false, bool isOpaque = false); |
| |
| SDValue getAllOnesConstant(const SDLoc &DL, EVT VT, bool IsTarget = false, |
| bool IsOpaque = false) { |
| return getConstant(APInt::getAllOnesValue(VT.getScalarSizeInBits()), DL, |
| VT, IsTarget, IsOpaque); |
| } |
| |
| SDValue getConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT, |
| bool isTarget = false, bool isOpaque = false); |
| SDValue getIntPtrConstant(uint64_t Val, const SDLoc &DL, |
| bool isTarget = false); |
| SDValue getTargetConstant(uint64_t Val, const SDLoc &DL, EVT VT, |
| bool isOpaque = false) { |
| return getConstant(Val, DL, VT, true, isOpaque); |
| } |
| SDValue getTargetConstant(const APInt &Val, const SDLoc &DL, EVT VT, |
| bool isOpaque = false) { |
| return getConstant(Val, DL, VT, true, isOpaque); |
| } |
| SDValue getTargetConstant(const ConstantInt &Val, const SDLoc &DL, EVT VT, |
| bool isOpaque = false) { |
| return getConstant(Val, DL, VT, true, isOpaque); |
| } |
| |
| /// Create a true or false constant of type \p VT using the target's |
| /// BooleanContent for type \p OpVT. |
| SDValue getBoolConstant(bool V, const SDLoc &DL, EVT VT, EVT OpVT); |
| /// @} |
| |
| /// Create a ConstantFPSDNode wrapping a constant value. |
| /// If VT is a vector type, the constant is splatted into a BUILD_VECTOR. |
| /// |
| /// If only legal types can be produced, this does the necessary |
| /// transformations (e.g., if the vector element type is illegal). |
| /// The forms that take a double should only be used for simple constants |
| /// that can be exactly represented in VT. No checks are made. |
| /// @{ |
| SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, |
| bool isTarget = false); |
| SDValue getConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT, |
| bool isTarget = false); |
| SDValue getConstantFP(const ConstantFP &V, const SDLoc &DL, EVT VT, |
| bool isTarget = false); |
| SDValue getTargetConstantFP(double Val, const SDLoc &DL, EVT VT) { |
| return getConstantFP(Val, DL, VT, true); |
| } |
| SDValue getTargetConstantFP(const APFloat &Val, const SDLoc &DL, EVT VT) { |
| return getConstantFP(Val, DL, VT, true); |
| } |
| SDValue getTargetConstantFP(const ConstantFP &Val, const SDLoc &DL, EVT VT) { |
| return getConstantFP(Val, DL, VT, true); |
| } |
| /// @} |
| |
| SDValue getGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, |
| int64_t offset = 0, bool isTargetGA = false, |
| unsigned char TargetFlags = 0); |
| SDValue getTargetGlobalAddress(const GlobalValue *GV, const SDLoc &DL, EVT VT, |
| int64_t offset = 0, |
| unsigned char TargetFlags = 0) { |
| return getGlobalAddress(GV, DL, VT, offset, true, TargetFlags); |
| } |
| SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false); |
| SDValue getTargetFrameIndex(int FI, EVT VT) { |
| return getFrameIndex(FI, VT, true); |
| } |
| SDValue getJumpTable(int JTI, EVT VT, bool isTarget = false, |
| unsigned char TargetFlags = 0); |
| SDValue getTargetJumpTable(int JTI, EVT VT, unsigned char TargetFlags = 0) { |
| return getJumpTable(JTI, VT, true, TargetFlags); |
| } |
| SDValue getConstantPool(const Constant *C, EVT VT, |
| unsigned Align = 0, int Offs = 0, bool isT=false, |
| unsigned char TargetFlags = 0); |
| SDValue getTargetConstantPool(const Constant *C, EVT VT, |
| unsigned Align = 0, int Offset = 0, |
| unsigned char TargetFlags = 0) { |
| return getConstantPool(C, VT, Align, Offset, true, TargetFlags); |
| } |
| SDValue getConstantPool(MachineConstantPoolValue *C, EVT VT, |
| unsigned Align = 0, int Offs = 0, bool isT=false, |
| unsigned char TargetFlags = 0); |
| SDValue getTargetConstantPool(MachineConstantPoolValue *C, |
| EVT VT, unsigned Align = 0, |
| int Offset = 0, unsigned char TargetFlags=0) { |
| return getConstantPool(C, VT, Align, Offset, true, TargetFlags); |
| } |
| SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0, |
| unsigned char TargetFlags = 0); |
| // When generating a branch to a BB, we don't in general know enough |
| // to provide debug info for the BB at that time, so keep this one around. |
| SDValue getBasicBlock(MachineBasicBlock *MBB); |
| SDValue getBasicBlock(MachineBasicBlock *MBB, SDLoc dl); |
| SDValue getExternalSymbol(const char *Sym, EVT VT); |
| SDValue getExternalSymbol(const char *Sym, const SDLoc &dl, EVT VT); |
| SDValue getTargetExternalSymbol(const char *Sym, EVT VT, |
| unsigned char TargetFlags = 0); |
| SDValue getMCSymbol(MCSymbol *Sym, EVT VT); |
| |
| SDValue getValueType(EVT); |
| SDValue getRegister(unsigned Reg, EVT VT); |
| SDValue getRegisterMask(const uint32_t *RegMask); |
| SDValue getEHLabel(const SDLoc &dl, SDValue Root, MCSymbol *Label); |
| SDValue getLabelNode(unsigned Opcode, const SDLoc &dl, SDValue Root, |
| MCSymbol *Label); |
| SDValue getBlockAddress(const BlockAddress *BA, EVT VT, |
| int64_t Offset = 0, bool isTarget = false, |
| unsigned char TargetFlags = 0); |
| SDValue getTargetBlockAddress(const BlockAddress *BA, EVT VT, |
| int64_t Offset = 0, |
| unsigned char TargetFlags = 0) { |
| return getBlockAddress(BA, VT, Offset, true, TargetFlags); |
| } |
| |
| SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, |
| SDValue N) { |
| return getNode(ISD::CopyToReg, dl, MVT::Other, Chain, |
| getRegister(Reg, N.getValueType()), N); |
| } |
| |
| // This version of the getCopyToReg method takes an extra operand, which |
| // indicates that there is potentially an incoming glue value (if Glue is not |
| // null) and that there should be a glue result. |
| SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, unsigned Reg, SDValue N, |
| SDValue Glue) { |
| SDVTList VTs = getVTList(MVT::Other, MVT::Glue); |
| SDValue Ops[] = { Chain, getRegister(Reg, N.getValueType()), N, Glue }; |
| return getNode(ISD::CopyToReg, dl, VTs, |
| makeArrayRef(Ops, Glue.getNode() ? 4 : 3)); |
| } |
| |
| // Similar to last getCopyToReg() except parameter Reg is a SDValue |
| SDValue getCopyToReg(SDValue Chain, const SDLoc &dl, SDValue Reg, SDValue N, |
| SDValue Glue) { |
| SDVTList VTs = getVTList(MVT::Other, MVT::Glue); |
| SDValue Ops[] = { Chain, Reg, N, Glue }; |
| return getNode(ISD::CopyToReg, dl, VTs, |
| makeArrayRef(Ops, Glue.getNode() ? 4 : 3)); |
| } |
| |
| SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT) { |
| SDVTList VTs = getVTList(VT, MVT::Other); |
| SDValue Ops[] = { Chain, getRegister(Reg, VT) }; |
| return getNode(ISD::CopyFromReg, dl, VTs, Ops); |
| } |
| |
| // This version of the getCopyFromReg method takes an extra operand, which |
| // indicates that there is potentially an incoming glue value (if Glue is not |
| // null) and that there should be a glue result. |
| SDValue getCopyFromReg(SDValue Chain, const SDLoc &dl, unsigned Reg, EVT VT, |
| SDValue Glue) { |
| SDVTList VTs = getVTList(VT, MVT::Other, MVT::Glue); |
| SDValue Ops[] = { Chain, getRegister(Reg, VT), Glue }; |
| return getNode(ISD::CopyFromReg, dl, VTs, |
| makeArrayRef(Ops, Glue.getNode() ? 3 : 2)); |
| } |
| |
| SDValue getCondCode(ISD::CondCode Cond); |
| |
| /// Return an ISD::VECTOR_SHUFFLE node. The number of elements in VT, |
| /// which must be a vector type, must match the number of mask elements |
| /// NumElts. An integer mask element equal to -1 is treated as undefined. |
| SDValue getVectorShuffle(EVT VT, const SDLoc &dl, SDValue N1, SDValue N2, |
| ArrayRef<int> Mask); |
| |
| /// Return an ISD::BUILD_VECTOR node. The number of elements in VT, |
| /// which must be a vector type, must match the number of operands in Ops. |
| /// The operands must have the same type as (or, for integers, a type wider |
| /// than) VT's element type. |
| SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDValue> Ops) { |
| // VerifySDNode (via InsertNode) checks BUILD_VECTOR later. |
| return getNode(ISD::BUILD_VECTOR, DL, VT, Ops); |
| } |
| |
| /// Return an ISD::BUILD_VECTOR node. The number of elements in VT, |
| /// which must be a vector type, must match the number of operands in Ops. |
| /// The operands must have the same type as (or, for integers, a type wider |
| /// than) VT's element type. |
| SDValue getBuildVector(EVT VT, const SDLoc &DL, ArrayRef<SDUse> Ops) { |
| // VerifySDNode (via InsertNode) checks BUILD_VECTOR later. |
| return getNode(ISD::BUILD_VECTOR, DL, VT, Ops); |
| } |
| |
| /// Return a splat ISD::BUILD_VECTOR node, consisting of Op splatted to all |
| /// elements. VT must be a vector type. Op's type must be the same as (or, |
| /// for integers, a type wider than) VT's element type. |
| SDValue getSplatBuildVector(EVT VT, const SDLoc &DL, SDValue Op) { |
| // VerifySDNode (via InsertNode) checks BUILD_VECTOR later. |
| if (Op.getOpcode() == ISD::UNDEF) { |
| assert((VT.getVectorElementType() == Op.getValueType() || |
| (VT.isInteger() && |
| VT.getVectorElementType().bitsLE(Op.getValueType()))) && |
| "A splatted value must have a width equal or (for integers) " |
| "greater than the vector element type!"); |
| return getNode(ISD::UNDEF, SDLoc(), VT); |
| } |
| |
| SmallVector<SDValue, 16> Ops(VT.getVectorNumElements(), Op); |
| return getNode(ISD::BUILD_VECTOR, DL, VT, Ops); |
| } |
| |
| /// Returns an ISD::VECTOR_SHUFFLE node semantically equivalent to |
| /// the shuffle node in input but with swapped operands. |
| /// |
| /// Example: shuffle A, B, <0,5,2,7> -> shuffle B, A, <4,1,6,3> |
| SDValue getCommutedVectorShuffle(const ShuffleVectorSDNode &SV); |
| |
| /// Convert Op, which must be of float type, to the |
| /// float type VT, by either extending or rounding (by truncation). |
| SDValue getFPExtendOrRound(SDValue Op, const SDLoc &DL, EVT VT); |
| |
| /// Convert Op, which must be of integer type, to the |
| /// integer type VT, by either any-extending or truncating it. |
| SDValue getAnyExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT); |
| |
| /// Convert Op, which must be of integer type, to the |
| /// integer type VT, by either sign-extending or truncating it. |
| SDValue getSExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT); |
| |
| /// Convert Op, which must be of integer type, to the |
| /// integer type VT, by either zero-extending or truncating it. |
| SDValue getZExtOrTrunc(SDValue Op, const SDLoc &DL, EVT VT); |
| |
| /// Return the expression required to zero extend the Op |
| /// value assuming it was the smaller SrcTy value. |
| SDValue getZeroExtendInReg(SDValue Op, const SDLoc &DL, EVT VT); |
| |
| /// Convert Op, which must be of integer type, to the integer type VT, |
| /// by using an extension appropriate for the target's |
| /// BooleanContent for type OpVT or truncating it. |
| SDValue getBoolExtOrTrunc(SDValue Op, const SDLoc &SL, EVT VT, EVT OpVT); |
| |
| /// Create a bitwise NOT operation as (XOR Val, -1). |
| SDValue getNOT(const SDLoc &DL, SDValue Val, EVT VT); |
| |
| /// Create a logical NOT operation as (XOR Val, BooleanOne). |
| SDValue getLogicalNOT(const SDLoc &DL, SDValue Val, EVT VT); |
| |
| /// Create an add instruction with appropriate flags when used for |
| /// addressing some offset of an object. i.e. if a load is split into multiple |
| /// components, create an add nuw from the base pointer to the offset. |
| SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, int64_t Offset) { |
| EVT VT = Op.getValueType(); |
| return getObjectPtrOffset(SL, Op, getConstant(Offset, SL, VT)); |
| } |
| |
| SDValue getObjectPtrOffset(const SDLoc &SL, SDValue Op, SDValue Offset) { |
| EVT VT = Op.getValueType(); |
| |
| // The object itself can't wrap around the address space, so it shouldn't be |
| // possible for the adds of the offsets to the split parts to overflow. |
| SDNodeFlags Flags; |
| Flags.setNoUnsignedWrap(true); |
| return getNode(ISD::ADD, SL, VT, Op, Offset, Flags); |
| } |
| |
| /// Return a new CALLSEQ_START node, that starts new call frame, in which |
| /// InSize bytes are set up inside CALLSEQ_START..CALLSEQ_END sequence and |
| /// OutSize specifies part of the frame set up prior to the sequence. |
| SDValue getCALLSEQ_START(SDValue Chain, uint64_t InSize, uint64_t OutSize, |
| const SDLoc &DL) { |
| SDVTList VTs = getVTList(MVT::Other, MVT::Glue); |
| SDValue Ops[] = { Chain, |
| getIntPtrConstant(InSize, DL, true), |
| getIntPtrConstant(OutSize, DL, true) }; |
| return getNode(ISD::CALLSEQ_START, DL, VTs, Ops); |
| } |
| |
| /// Return a new CALLSEQ_END node, which always must have a |
| /// glue result (to ensure it's not CSE'd). |
| /// CALLSEQ_END does not have a useful SDLoc. |
| SDValue getCALLSEQ_END(SDValue Chain, SDValue Op1, SDValue Op2, |
| SDValue InGlue, const SDLoc &DL) { |
| SDVTList NodeTys = getVTList(MVT::Other, MVT::Glue); |
| SmallVector<SDValue, 4> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Op1); |
| Ops.push_back(Op2); |
| if (InGlue.getNode()) |
| Ops.push_back(InGlue); |
| return getNode(ISD::CALLSEQ_END, DL, NodeTys, Ops); |
| } |
| |
| /// Return true if the result of this operation is always undefined. |
| bool isUndef(unsigned Opcode, ArrayRef<SDValue> Ops); |
| |
| /// Return an UNDEF node. UNDEF does not have a useful SDLoc. |
| SDValue getUNDEF(EVT VT) { |
| return getNode(ISD::UNDEF, SDLoc(), VT); |
| } |
| |
| /// Return a GLOBAL_OFFSET_TABLE node. This does not have a useful SDLoc. |
| SDValue getGLOBAL_OFFSET_TABLE(EVT VT) { |
| return getNode(ISD::GLOBAL_OFFSET_TABLE, SDLoc(), VT); |
| } |
| |
| /// Gets or creates the specified node. |
| /// |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, |
| ArrayRef<SDUse> Ops); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, |
| ArrayRef<SDValue> Ops, const SDNodeFlags Flags = SDNodeFlags()); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, ArrayRef<EVT> ResultTys, |
| ArrayRef<SDValue> Ops); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, |
| ArrayRef<SDValue> Ops); |
| |
| // Specialize based on number of operands. |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue Operand, |
| const SDNodeFlags Flags = SDNodeFlags()); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, |
| SDValue N2, const SDNodeFlags Flags = SDNodeFlags()); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, |
| SDValue N2, SDValue N3, |
| const SDNodeFlags Flags = SDNodeFlags()); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, |
| SDValue N2, SDValue N3, SDValue N4); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, SDValue N1, |
| SDValue N2, SDValue N3, SDValue N4, SDValue N5); |
| |
| // Specialize again based on number of operands for nodes with a VTList |
| // rather than a single VT. |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1, |
| SDValue N2); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1, |
| SDValue N2, SDValue N3); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1, |
| SDValue N2, SDValue N3, SDValue N4); |
| SDValue getNode(unsigned Opcode, const SDLoc &DL, SDVTList VTList, SDValue N1, |
| SDValue N2, SDValue N3, SDValue N4, SDValue N5); |
| |
| /// Compute a TokenFactor to force all the incoming stack arguments to be |
| /// loaded from the stack. This is used in tail call lowering to protect |
| /// stack arguments from being clobbered. |
| SDValue getStackArgumentTokenFactor(SDValue Chain); |
| |
| SDValue getMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, |
| SDValue Size, unsigned Align, bool isVol, bool AlwaysInline, |
| bool isTailCall, MachinePointerInfo DstPtrInfo, |
| MachinePointerInfo SrcPtrInfo); |
| |
| SDValue getMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, |
| SDValue Size, unsigned Align, bool isVol, bool isTailCall, |
| MachinePointerInfo DstPtrInfo, |
| MachinePointerInfo SrcPtrInfo); |
| |
| SDValue getMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, SDValue Src, |
| SDValue Size, unsigned Align, bool isVol, bool isTailCall, |
| MachinePointerInfo DstPtrInfo); |
| |
| SDValue getAtomicMemcpy(SDValue Chain, const SDLoc &dl, SDValue Dst, |
| unsigned DstAlign, SDValue Src, unsigned SrcAlign, |
| SDValue Size, Type *SizeTy, unsigned ElemSz, |
| bool isTailCall, MachinePointerInfo DstPtrInfo, |
| MachinePointerInfo SrcPtrInfo); |
| |
| SDValue getAtomicMemmove(SDValue Chain, const SDLoc &dl, SDValue Dst, |
| unsigned DstAlign, SDValue Src, unsigned SrcAlign, |
| SDValue Size, Type *SizeTy, unsigned ElemSz, |
| bool isTailCall, MachinePointerInfo DstPtrInfo, |
| MachinePointerInfo SrcPtrInfo); |
| |
| SDValue getAtomicMemset(SDValue Chain, const SDLoc &dl, SDValue Dst, |
| unsigned DstAlign, SDValue Value, SDValue Size, |
| Type *SizeTy, unsigned ElemSz, bool isTailCall, |
| MachinePointerInfo DstPtrInfo); |
| |
| /// Helper function to make it easier to build SetCC's if you just have an |
| /// ISD::CondCode instead of an SDValue. |
| SDValue getSetCC(const SDLoc &DL, EVT VT, SDValue LHS, SDValue RHS, |
| ISD::CondCode Cond) { |
| assert(LHS.getValueType().isVector() == RHS.getValueType().isVector() && |
| "Cannot compare scalars to vectors"); |
| assert(LHS.getValueType().isVector() == VT.isVector() && |
| "Cannot compare scalars to vectors"); |
| assert(Cond != ISD::SETCC_INVALID && |
| "Cannot create a setCC of an invalid node."); |
| return getNode(ISD::SETCC, DL, VT, LHS, RHS, getCondCode(Cond)); |
| } |
| |
| /// Helper function to make it easier to build Select's if you just have |
| /// operands and don't want to check for vector. |
| SDValue getSelect(const SDLoc &DL, EVT VT, SDValue Cond, SDValue LHS, |
| SDValue RHS) { |
| assert(LHS.getValueType() == RHS.getValueType() && |
| "Cannot use select on differing types"); |
| assert(VT.isVector() == LHS.getValueType().isVector() && |
| "Cannot mix vectors and scalars"); |
| auto Opcode = Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; |
| return getNode(Opcode, DL, VT, Cond, LHS, RHS); |
| } |
| |
| /// Helper function to make it easier to build SelectCC's if you just have an |
| /// ISD::CondCode instead of an SDValue. |
| SDValue getSelectCC(const SDLoc &DL, SDValue LHS, SDValue RHS, SDValue True, |
| SDValue False, ISD::CondCode Cond) { |
| return getNode(ISD::SELECT_CC, DL, True.getValueType(), LHS, RHS, True, |
| False, getCondCode(Cond)); |
| } |
| |
| /// Try to simplify a select/vselect into 1 of its operands or a constant. |
| SDValue simplifySelect(SDValue Cond, SDValue TVal, SDValue FVal); |
| |
| /// Try to simplify a shift into 1 of its operands or a constant. |
| SDValue simplifyShift(SDValue X, SDValue Y); |
| |
| /// VAArg produces a result and token chain, and takes a pointer |
| /// and a source value as input. |
| SDValue getVAArg(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, |
| SDValue SV, unsigned Align); |
| |
| /// Gets a node for an atomic cmpxchg op. There are two |
| /// valid Opcodes. ISD::ATOMIC_CMO_SWAP produces the value loaded and a |
| /// chain result. ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS produces the value loaded, |
| /// a success flag (initially i1), and a chain. |
| SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, |
| SDVTList VTs, SDValue Chain, SDValue Ptr, |
| SDValue Cmp, SDValue Swp, MachinePointerInfo PtrInfo, |
| unsigned Alignment, AtomicOrdering SuccessOrdering, |
| AtomicOrdering FailureOrdering, |
| SyncScope::ID SSID); |
| SDValue getAtomicCmpSwap(unsigned Opcode, const SDLoc &dl, EVT MemVT, |
| SDVTList VTs, SDValue Chain, SDValue Ptr, |
| SDValue Cmp, SDValue Swp, MachineMemOperand *MMO); |
| |
| /// Gets a node for an atomic op, produces result (if relevant) |
| /// and chain and takes 2 operands. |
| SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, |
| SDValue Ptr, SDValue Val, const Value *PtrVal, |
| unsigned Alignment, AtomicOrdering Ordering, |
| SyncScope::ID SSID); |
| SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, SDValue Chain, |
| SDValue Ptr, SDValue Val, MachineMemOperand *MMO); |
| |
| /// Gets a node for an atomic op, produces result and chain and |
| /// takes 1 operand. |
| SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, EVT VT, |
| SDValue Chain, SDValue Ptr, MachineMemOperand *MMO); |
| |
| /// Gets a node for an atomic op, produces result and chain and takes N |
| /// operands. |
| SDValue getAtomic(unsigned Opcode, const SDLoc &dl, EVT MemVT, |
| SDVTList VTList, ArrayRef<SDValue> Ops, |
| MachineMemOperand *MMO); |
| |
| /// Creates a MemIntrinsicNode that may produce a |
| /// result and takes a list of operands. Opcode may be INTRINSIC_VOID, |
| /// INTRINSIC_W_CHAIN, or a target-specific opcode with a value not |
| /// less than FIRST_TARGET_MEMORY_OPCODE. |
| SDValue getMemIntrinsicNode( |
| unsigned Opcode, const SDLoc &dl, SDVTList VTList, |
| ArrayRef<SDValue> Ops, EVT MemVT, |
| MachinePointerInfo PtrInfo, |
| unsigned Align = 0, |
| MachineMemOperand::Flags Flags |
| = MachineMemOperand::MOLoad | MachineMemOperand::MOStore, |
| unsigned Size = 0); |
| |
| SDValue getMemIntrinsicNode(unsigned Opcode, const SDLoc &dl, SDVTList VTList, |
| ArrayRef<SDValue> Ops, EVT MemVT, |
| MachineMemOperand *MMO); |
| |
| /// Create a MERGE_VALUES node from the given operands. |
| SDValue getMergeValues(ArrayRef<SDValue> Ops, const SDLoc &dl); |
| |
| /// Loads are not normal binary operators: their result type is not |
| /// determined by their operands, and they produce a value AND a token chain. |
| /// |
| /// This function will set the MOLoad flag on MMOFlags, but you can set it if |
| /// you want. The MOStore flag must not be set. |
| SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, |
| MachinePointerInfo PtrInfo, unsigned Alignment = 0, |
| MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
| const AAMDNodes &AAInfo = AAMDNodes(), |
| const MDNode *Ranges = nullptr); |
| SDValue getLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, |
| MachineMemOperand *MMO); |
| SDValue |
| getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, SDValue Chain, |
| SDValue Ptr, MachinePointerInfo PtrInfo, EVT MemVT, |
| unsigned Alignment = 0, |
| MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
| const AAMDNodes &AAInfo = AAMDNodes()); |
| SDValue getExtLoad(ISD::LoadExtType ExtType, const SDLoc &dl, EVT VT, |
| SDValue Chain, SDValue Ptr, EVT MemVT, |
| MachineMemOperand *MMO); |
| SDValue getIndexedLoad(SDValue OrigLoad, const SDLoc &dl, SDValue Base, |
| SDValue Offset, ISD::MemIndexedMode AM); |
| SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, |
| const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, |
| MachinePointerInfo PtrInfo, EVT MemVT, unsigned Alignment = 0, |
| MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
| const AAMDNodes &AAInfo = AAMDNodes(), |
| const MDNode *Ranges = nullptr); |
| SDValue getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType, EVT VT, |
| const SDLoc &dl, SDValue Chain, SDValue Ptr, SDValue Offset, |
| EVT MemVT, MachineMemOperand *MMO); |
| |
| /// Helper function to build ISD::STORE nodes. |
| /// |
| /// This function will set the MOStore flag on MMOFlags, but you can set it if |
| /// you want. The MOLoad and MOInvariant flags must not be set. |
| SDValue |
| getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, |
| MachinePointerInfo PtrInfo, unsigned Alignment = 0, |
| MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
| const AAMDNodes &AAInfo = AAMDNodes()); |
| SDValue getStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, |
| MachineMemOperand *MMO); |
| SDValue |
| getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, SDValue Ptr, |
| MachinePointerInfo PtrInfo, EVT SVT, unsigned Alignment = 0, |
| MachineMemOperand::Flags MMOFlags = MachineMemOperand::MONone, |
| const AAMDNodes &AAInfo = AAMDNodes()); |
| SDValue getTruncStore(SDValue Chain, const SDLoc &dl, SDValue Val, |
| SDValue Ptr, EVT SVT, MachineMemOperand *MMO); |
| SDValue getIndexedStore(SDValue OrigStore, const SDLoc &dl, SDValue Base, |
| SDValue Offset, ISD::MemIndexedMode AM); |
| |
| /// Returns sum of the base pointer and offset. |
| SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset, const SDLoc &DL); |
| |
| SDValue getMaskedLoad(EVT VT, const SDLoc &dl, SDValue Chain, SDValue Ptr, |
| SDValue Mask, SDValue Src0, EVT MemVT, |
| MachineMemOperand *MMO, ISD::LoadExtType, |
| bool IsExpanding = false); |
| SDValue getMaskedStore(SDValue Chain, const SDLoc &dl, SDValue Val, |
| SDValue Ptr, SDValue Mask, EVT MemVT, |
| MachineMemOperand *MMO, bool IsTruncating = false, |
| bool IsCompressing = false); |
| SDValue getMaskedGather(SDVTList VTs, EVT VT, const SDLoc &dl, |
| ArrayRef<SDValue> Ops, MachineMemOperand *MMO); |
| SDValue getMaskedScatter(SDVTList VTs, EVT VT, const SDLoc &dl, |
| ArrayRef<SDValue> Ops, MachineMemOperand *MMO); |
| |
| /// Return (create a new or find existing) a target-specific node. |
| /// TargetMemSDNode should be derived class from MemSDNode. |
| template <class TargetMemSDNode> |
| SDValue getTargetMemSDNode(SDVTList VTs, ArrayRef<SDValue> Ops, |
| const SDLoc &dl, EVT MemVT, |
| MachineMemOperand *MMO); |
| |
| /// Construct a node to track a Value* through the backend. |
| SDValue getSrcValue(const Value *v); |
| |
| /// Return an MDNodeSDNode which holds an MDNode. |
| SDValue getMDNode(const MDNode *MD); |
| |
| /// Return a bitcast using the SDLoc of the value operand, and casting to the |
| /// provided type. Use getNode to set a custom SDLoc. |
| SDValue getBitcast(EVT VT, SDValue V); |
| |
| /// Return an AddrSpaceCastSDNode. |
| SDValue getAddrSpaceCast(const SDLoc &dl, EVT VT, SDValue Ptr, unsigned SrcAS, |
| unsigned DestAS); |
| |
| /// Return the specified value casted to |
| /// the target's desired shift amount type. |
| SDValue getShiftAmountOperand(EVT LHSTy, SDValue Op); |
| |
| /// Expand the specified \c ISD::VAARG node as the Legalize pass would. |
| SDValue expandVAArg(SDNode *Node); |
| |
| /// Expand the specified \c ISD::VACOPY node as the Legalize pass would. |
| SDValue expandVACopy(SDNode *Node); |
| |
| /// Returs an GlobalAddress of the function from the current module with |
| /// name matching the given ExternalSymbol. Additionally can provide the |
| /// matched function. |
| /// Panics the function doesn't exists. |
| SDValue getSymbolFunctionGlobalAddress(SDValue Op, |
| Function **TargetFunction = nullptr); |
| |
| /// *Mutate* the specified node in-place to have the |
| /// specified operands. If the resultant node already exists in the DAG, |
| /// this does not modify the specified node, instead it returns the node that |
| /// already exists. If the resultant node does not exist in the DAG, the |
| /// input node is returned. As a degenerate case, if you specify the same |
| /// input operands as the node already has, the input node is returned. |
| SDNode *UpdateNodeOperands(SDNode *N, SDValue Op); |
| SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2); |
| SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, |
| SDValue Op3); |
| SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, |
| SDValue Op3, SDValue Op4); |
| SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, |
| SDValue Op3, SDValue Op4, SDValue Op5); |
| SDNode *UpdateNodeOperands(SDNode *N, ArrayRef<SDValue> Ops); |
| |
| /// Creates a new TokenFactor containing \p Vals. If \p Vals contains 64k |
| /// values or more, move values into new TokenFactors in 64k-1 blocks, until |
| /// the final TokenFactor has less than 64k operands. |
| SDValue getTokenFactor(const SDLoc &DL, SmallVectorImpl<SDValue> &Vals); |
| |
| /// *Mutate* the specified machine node's memory references to the provided |
| /// list. |
| void setNodeMemRefs(MachineSDNode *N, |
| ArrayRef<MachineMemOperand *> NewMemRefs); |
| |
| // Propagates the change in divergence to users |
| void updateDivergence(SDNode * N); |
| |
| /// These are used for target selectors to *mutate* the |
| /// specified node to have the specified return type, Target opcode, and |
| /// operands. Note that target opcodes are stored as |
| /// ~TargetOpcode in the node opcode field. The resultant node is returned. |
| SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT); |
| SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, SDValue Op1); |
| SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, |
| SDValue Op1, SDValue Op2); |
| SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, |
| SDValue Op1, SDValue Op2, SDValue Op3); |
| SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT, |
| ArrayRef<SDValue> Ops); |
| SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, EVT VT2); |
| SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, |
| EVT VT2, ArrayRef<SDValue> Ops); |
| SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, |
| EVT VT2, EVT VT3, ArrayRef<SDValue> Ops); |
| SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT1, |
| EVT VT2, SDValue Op1); |
| SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, EVT VT1, |
| EVT VT2, SDValue Op1, SDValue Op2); |
| SDNode *SelectNodeTo(SDNode *N, unsigned MachineOpc, SDVTList VTs, |
| ArrayRef<SDValue> Ops); |
| |
| /// This *mutates* the specified node to have the specified |
| /// return type, opcode, and operands. |
| SDNode *MorphNodeTo(SDNode *N, unsigned Opc, SDVTList VTs, |
| ArrayRef<SDValue> Ops); |
| |
| /// Mutate the specified strict FP node to its non-strict equivalent, |
| /// unlinking the node from its chain and dropping the metadata arguments. |
| /// The node must be a strict FP node. |
| SDNode *mutateStrictFPToFP(SDNode *Node); |
| |
| /// These are used for target selectors to create a new node |
| /// with specified return type(s), MachineInstr opcode, and operands. |
| /// |
| /// Note that getMachineNode returns the resultant node. If there is already |
| /// a node of the specified opcode and operands, it returns that node instead |
| /// of the current one. |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT); |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT, |
| SDValue Op1); |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT, |
| SDValue Op1, SDValue Op2); |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT, |
| SDValue Op1, SDValue Op2, SDValue Op3); |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT, |
| ArrayRef<SDValue> Ops); |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, |
| EVT VT2, SDValue Op1, SDValue Op2); |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, |
| EVT VT2, SDValue Op1, SDValue Op2, SDValue Op3); |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, |
| EVT VT2, ArrayRef<SDValue> Ops); |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, |
| EVT VT2, EVT VT3, SDValue Op1, SDValue Op2); |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, |
| EVT VT2, EVT VT3, SDValue Op1, SDValue Op2, |
| SDValue Op3); |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, EVT VT1, |
| EVT VT2, EVT VT3, ArrayRef<SDValue> Ops); |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, |
| ArrayRef<EVT> ResultTys, ArrayRef<SDValue> Ops); |
| MachineSDNode *getMachineNode(unsigned Opcode, const SDLoc &dl, SDVTList VTs, |
| ArrayRef<SDValue> Ops); |
| |
| /// A convenience function for creating TargetInstrInfo::EXTRACT_SUBREG nodes. |
| SDValue getTargetExtractSubreg(int SRIdx, const SDLoc &DL, EVT VT, |
| SDValue Operand); |
| |
| /// A convenience function for creating TargetInstrInfo::INSERT_SUBREG nodes. |
| SDValue getTargetInsertSubreg(int SRIdx, const SDLoc &DL, EVT VT, |
| SDValue Operand, SDValue Subreg); |
| |
| /// Get the specified node if it's already available, or else return NULL. |
| SDNode *getNodeIfExists(unsigned Opcode, SDVTList VTList, ArrayRef<SDValue> Ops, |
| const SDNodeFlags Flags = SDNodeFlags()); |
| |
| /// Creates a SDDbgValue node. |
| SDDbgValue *getDbgValue(DIVariable *Var, DIExpression *Expr, SDNode *N, |
| unsigned R, bool IsIndirect, const DebugLoc &DL, |
| unsigned O); |
| |
| /// Creates a constant SDDbgValue node. |
| SDDbgValue *getConstantDbgValue(DIVariable *Var, DIExpression *Expr, |
| const Value *C, const DebugLoc &DL, |
| unsigned O); |
| |
| /// Creates a FrameIndex SDDbgValue node. |
| SDDbgValue *getFrameIndexDbgValue(DIVariable *Var, DIExpression *Expr, |
| unsigned FI, bool IsIndirect, |
| const DebugLoc &DL, unsigned O); |
| |
| /// Creates a VReg SDDbgValue node. |
| SDDbgValue *getVRegDbgValue(DIVariable *Var, DIExpression *Expr, |
| unsigned VReg, bool IsIndirect, |
| const DebugLoc &DL, unsigned O); |
| |
| /// Creates a SDDbgLabel node. |
| SDDbgLabel *getDbgLabel(DILabel *Label, const DebugLoc &DL, unsigned O); |
| |
| /// Transfer debug values from one node to another, while optionally |
| /// generating fragment expressions for split-up values. If \p InvalidateDbg |
| /// is set, debug values are invalidated after they are transferred. |
| void transferDbgValues(SDValue From, SDValue To, unsigned OffsetInBits = 0, |
| unsigned SizeInBits = 0, bool InvalidateDbg = true); |
| |
| /// Remove the specified node from the system. If any of its |
| /// operands then becomes dead, remove them as well. Inform UpdateListener |
| /// for each node deleted. |
| void RemoveDeadNode(SDNode *N); |
| |
| /// This method deletes the unreachable nodes in the |
| /// given list, and any nodes that become unreachable as a result. |
| void RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes); |
| |
| /// Modify anything using 'From' to use 'To' instead. |
| /// This can cause recursive merging of nodes in the DAG. Use the first |
| /// version if 'From' is known to have a single result, use the second |
| /// if you have two nodes with identical results (or if 'To' has a superset |
| /// of the results of 'From'), use the third otherwise. |
| /// |
| /// These methods all take an optional UpdateListener, which (if not null) is |
| /// informed about nodes that are deleted and modified due to recursive |
| /// changes in the dag. |
| /// |
| /// These functions only replace all existing uses. It's possible that as |
| /// these replacements are being performed, CSE may cause the From node |
| /// to be given new uses. These new uses of From are left in place, and |
| /// not automatically transferred to To. |
| /// |
| void ReplaceAllUsesWith(SDValue From, SDValue To); |
| void ReplaceAllUsesWith(SDNode *From, SDNode *To); |
| void ReplaceAllUsesWith(SDNode *From, const SDValue *To); |
| |
| /// Replace any uses of From with To, leaving |
| /// uses of other values produced by From.getNode() alone. |
| void ReplaceAllUsesOfValueWith(SDValue From, SDValue To); |
| |
| /// Like ReplaceAllUsesOfValueWith, but for multiple values at once. |
| /// This correctly handles the case where |
| /// there is an overlap between the From values and the To values. |
| void ReplaceAllUsesOfValuesWith(const SDValue *From, const SDValue *To, |
| unsigned Num); |
| |
| /// If an existing load has uses of its chain, create a token factor node with |
| /// that chain and the new memory node's chain and update users of the old |
| /// chain to the token factor. This ensures that the new memory node will have |
| /// the same relative memory dependency position as the old load. Returns the |
| /// new merged load chain. |
| SDValue makeEquivalentMemoryOrdering(LoadSDNode *Old, SDValue New); |
| |
| /// Topological-sort the AllNodes list and a |
| /// assign a unique node id for each node in the DAG based on their |
| /// topological order. Returns the number of nodes. |
| unsigned AssignTopologicalOrder(); |
| |
| /// Move node N in the AllNodes list to be immediately |
| /// before the given iterator Position. This may be used to update the |
| /// topological ordering when the list of nodes is modified. |
| void RepositionNode(allnodes_iterator Position, SDNode *N) { |
| AllNodes.insert(Position, AllNodes.remove(N)); |
| } |
| |
| /// Returns an APFloat semantics tag appropriate for the given type. If VT is |
| /// a vector type, the element semantics are returned. |
| static const fltSemantics &EVTToAPFloatSemantics(EVT VT) { |
| switch (VT.getScalarType().getSimpleVT().SimpleTy) { |
| default: llvm_unreachable("Unknown FP format"); |
| case MVT::f16: return APFloat::IEEEhalf(); |
| case MVT::f32: return APFloat::IEEEsingle(); |
| case MVT::f64: return APFloat::IEEEdouble(); |
| case MVT::f80: return APFloat::x87DoubleExtended(); |
| case MVT::f128: return APFloat::IEEEquad(); |
| case MVT::ppcf128: return APFloat::PPCDoubleDouble(); |
| } |
| } |
| |
| /// Add a dbg_value SDNode. If SD is non-null that means the |
| /// value is produced by SD. |
| void AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter); |
| |
| /// Add a dbg_label SDNode. |
| void AddDbgLabel(SDDbgLabel *DB); |
| |
| /// Get the debug values which reference the given SDNode. |
| ArrayRef<SDDbgValue*> GetDbgValues(const SDNode* SD) const { |
| return DbgInfo->getSDDbgValues(SD); |
| } |
| |
| public: |
| /// Return true if there are any SDDbgValue nodes associated |
| /// with this SelectionDAG. |
| bool hasDebugValues() const { return !DbgInfo->empty(); } |
| |
| SDDbgInfo::DbgIterator DbgBegin() const { return DbgInfo->DbgBegin(); } |
| SDDbgInfo::DbgIterator DbgEnd() const { return DbgInfo->DbgEnd(); } |
| |
| SDDbgInfo::DbgIterator ByvalParmDbgBegin() const { |
| return DbgInfo->ByvalParmDbgBegin(); |
| } |
| SDDbgInfo::DbgIterator ByvalParmDbgEnd() const { |
| return DbgInfo->ByvalParmDbgEnd(); |
| } |
| |
| SDDbgInfo::DbgLabelIterator DbgLabelBegin() const { |
| return DbgInfo->DbgLabelBegin(); |
| } |
| SDDbgInfo::DbgLabelIterator DbgLabelEnd() const { |
| return DbgInfo->DbgLabelEnd(); |
| } |
| |
| /// To be invoked on an SDNode that is slated to be erased. This |
| /// function mirrors \c llvm::salvageDebugInfo. |
| void salvageDebugInfo(SDNode &N); |
| |
| void dump() const; |
| |
| /// Create a stack temporary, suitable for holding the specified value type. |
| /// If minAlign is specified, the slot size will have at least that alignment. |
| SDValue CreateStackTemporary(EVT VT, unsigned minAlign = 1); |
| |
| /// Create a stack temporary suitable for holding either of the specified |
| /// value types. |
| SDValue CreateStackTemporary(EVT VT1, EVT VT2); |
| |
| SDValue FoldSymbolOffset(unsigned Opcode, EVT VT, |
| const GlobalAddressSDNode *GA, |
| const SDNode *N2); |
| |
| SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, |
| SDNode *N1, SDNode *N2); |
| |
| SDValue FoldConstantArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, |
| const ConstantSDNode *C1, |
| const ConstantSDNode *C2); |
| |
| SDValue FoldConstantVectorArithmetic(unsigned Opcode, const SDLoc &DL, EVT VT, |
| ArrayRef<SDValue> Ops, |
| const SDNodeFlags Flags = SDNodeFlags()); |
| |
| /// Constant fold a setcc to true or false. |
| SDValue FoldSetCC(EVT VT, SDValue N1, SDValue N2, ISD::CondCode Cond, |
| const SDLoc &dl); |
| |
| /// See if the specified operand can be simplified with the knowledge that only |
| /// the bits specified by Mask are used. If so, return the simpler operand, |
| /// otherwise return a null SDValue. |
| /// |
| /// (This exists alongside SimplifyDemandedBits because GetDemandedBits can |
| /// simplify nodes with multiple uses more aggressively.) |
| SDValue GetDemandedBits(SDValue V, const APInt &Mask); |
| |
| /// Return true if the sign bit of Op is known to be zero. |
| /// We use this predicate to simplify operations downstream. |
| bool SignBitIsZero(SDValue Op, unsigned Depth = 0) const; |
| |
| /// Return true if 'Op & Mask' is known to be zero. We |
| /// use this predicate to simplify operations downstream. Op and Mask are |
| /// known to be the same type. |
| bool MaskedValueIsZero(SDValue Op, const APInt &Mask, unsigned Depth = 0) |
| const; |
| |
| /// Determine which bits of Op are known to be either zero or one and return |
| /// them in Known. For vectors, the known bits are those that are shared by |
| /// every vector element. |
| /// Targets can implement the computeKnownBitsForTargetNode method in the |
| /// TargetLowering class to allow target nodes to be understood. |
| KnownBits computeKnownBits(SDValue Op, unsigned Depth = 0) const; |
| |
| /// Determine which bits of Op are known to be either zero or one and return |
| /// them in Known. The DemandedElts argument allows us to only collect the |
| /// known bits that are shared by the requested vector elements. |
| /// Targets can implement the computeKnownBitsForTargetNode method in the |
| /// TargetLowering class to allow target nodes to be understood. |
| KnownBits computeKnownBits(SDValue Op, const APInt &DemandedElts, |
| unsigned Depth = 0) const; |
| |
| /// Used to represent the possible overflow behavior of an operation. |
| /// Never: the operation cannot overflow. |
| /// Always: the operation will always overflow. |
| /// Sometime: the operation may or may not overflow. |
| enum OverflowKind { |
| OFK_Never, |
| OFK_Sometime, |
| OFK_Always, |
| }; |
| |
| /// Determine if the result of the addition of 2 node can overflow. |
| OverflowKind computeOverflowKind(SDValue N0, SDValue N1) const; |
| |
| /// Test if the given value is known to have exactly one bit set. This differs |
| /// from computeKnownBits in that it doesn't necessarily determine which bit |
| /// is set. |
| bool isKnownToBeAPowerOfTwo(SDValue Val) const; |
| |
| /// Return the number of times the sign bit of the register is replicated into |
| /// the other bits. We know that at least 1 bit is always equal to the sign |
| /// bit (itself), but other cases can give us information. For example, |
| /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal |
| /// to each other, so we return 3. Targets can implement the |
| /// ComputeNumSignBitsForTarget method in the TargetLowering class to allow |
| /// target nodes to be understood. |
| unsigned ComputeNumSignBits(SDValue Op, unsigned Depth = 0) const; |
| |
| /// Return the number of times the sign bit of the register is replicated into |
| /// the other bits. We know that at least 1 bit is always equal to the sign |
| /// bit (itself), but other cases can give us information. For example, |
| /// immediately after an "SRA X, 2", we know that the top 3 bits are all equal |
| /// to each other, so we return 3. The DemandedElts argument allows |
| /// us to only collect the minimum sign bits of the requested vector elements. |
| /// Targets can implement the ComputeNumSignBitsForTarget method in the |
| /// TargetLowering class to allow target nodes to be understood. |
| unsigned ComputeNumSignBits(SDValue Op, const APInt &DemandedElts, |
| unsigned Depth = 0) const; |
| |
| /// Return true if the specified operand is an ISD::ADD with a ConstantSDNode |
| /// on the right-hand side, or if it is an ISD::OR with a ConstantSDNode that |
| /// is guaranteed to have the same semantics as an ADD. This handles the |
| /// equivalence: |
| /// X|Cst == X+Cst iff X&Cst = 0. |
| bool isBaseWithConstantOffset(SDValue Op) const; |
| |
| /// Test whether the given SDValue is known to never be NaN. If \p SNaN is |
| /// true, returns if \p Op is known to never be a signaling NaN (it may still |
| /// be a qNaN). |
| bool isKnownNeverNaN(SDValue Op, bool SNaN = false, unsigned Depth = 0) const; |
| |
| /// \returns true if \p Op is known to never be a signaling NaN. |
| bool isKnownNeverSNaN(SDValue Op, unsigned Depth = 0) const { |
| return isKnownNeverNaN(Op, true, Depth); |
| } |
| |
| /// Test whether the given floating point SDValue is known to never be |
| /// positive or negative zero. |
| bool isKnownNeverZeroFloat(SDValue Op) const; |
| |
| /// Test whether the given SDValue is known to contain non-zero value(s). |
| bool isKnownNeverZero(SDValue Op) const; |
| |
| /// Test whether two SDValues are known to compare equal. This |
| /// is true if they are the same value, or if one is negative zero and the |
| /// other positive zero. |
| bool isEqualTo(SDValue A, SDValue B) const; |
| |
| /// Return true if A and B have no common bits set. As an example, this can |
| /// allow an 'add' to be transformed into an 'or'. |
| bool haveNoCommonBitsSet(SDValue A, SDValue B) const; |
| |
| /// Test whether \p V has a splatted value for all the demanded elements. |
| /// |
| /// On success \p UndefElts will indicate the elements that have UNDEF |
| /// values instead of the splat value, this is only guaranteed to be correct |
| /// for \p DemandedElts. |
| /// |
| /// NOTE: The function will return true for a demanded splat of UNDEF values. |
| bool isSplatValue(SDValue V, const APInt &DemandedElts, APInt &UndefElts); |
| |
| /// Test whether \p V has a splatted value. |
| bool isSplatValue(SDValue V, bool AllowUndefs = false); |
| |
| /// Match a binop + shuffle pyramid that represents a horizontal reduction |
| /// over the elements of a vector starting from the EXTRACT_VECTOR_ELT node /p |
| /// Extract. The reduction must use one of the opcodes listed in /p |
| /// CandidateBinOps and on success /p BinOp will contain the matching opcode. |
| /// Returns the vector that is being reduced on, or SDValue() if a reduction |
| /// was not matched. |
| SDValue matchBinOpReduction(SDNode *Extract, ISD::NodeType &BinOp, |
| ArrayRef<ISD::NodeType> CandidateBinOps); |
| |
| /// Utility function used by legalize and lowering to |
| /// "unroll" a vector operation by splitting out the scalars and operating |
| /// on each element individually. If the ResNE is 0, fully unroll the vector |
| /// op. If ResNE is less than the width of the vector op, unroll up to ResNE. |
| /// If the ResNE is greater than the width of the vector op, unroll the |
| /// vector op and fill the end of the resulting vector with UNDEFS. |
| SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0); |
| |
| /// Return true if loads are next to each other and can be |
| /// merged. Check that both are nonvolatile and if LD is loading |
| /// 'Bytes' bytes from a location that is 'Dist' units away from the |
| /// location that the 'Base' load is loading from. |
| bool areNonVolatileConsecutiveLoads(LoadSDNode *LD, LoadSDNode *Base, |
| unsigned Bytes, int Dist) const; |
| |
| /// Infer alignment of a load / store address. Return 0 if |
| /// it cannot be inferred. |
| unsigned InferPtrAlignment(SDValue Ptr) const; |
| |
| /// Compute the VTs needed for the low/hi parts of a type |
| /// which is split (or expanded) into two not necessarily identical pieces. |
| std::pair<EVT, EVT> GetSplitDestVTs(const EVT &VT) const; |
| |
| /// Split the vector with EXTRACT_SUBVECTOR using the provides |
| /// VTs and return the low/high part. |
| std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL, |
| const EVT &LoVT, const EVT &HiVT); |
| |
| /// Split the vector with EXTRACT_SUBVECTOR and return the low/high part. |
| std::pair<SDValue, SDValue> SplitVector(const SDValue &N, const SDLoc &DL) { |
| EVT LoVT, HiVT; |
| std::tie(LoVT, HiVT) = GetSplitDestVTs(N.getValueType()); |
| return SplitVector(N, DL, LoVT, HiVT); |
| } |
| |
| /// Split the node's operand with EXTRACT_SUBVECTOR and |
| /// return the low/high part. |
| std::pair<SDValue, SDValue> SplitVectorOperand(const SDNode *N, unsigned OpNo) |
| { |
| return SplitVector(N->getOperand(OpNo), SDLoc(N)); |
| } |
| |
| /// Append the extracted elements from Start to Count out of the vector Op |
| /// in Args. If Count is 0, all of the elements will be extracted. |
| void ExtractVectorElements(SDValue Op, SmallVectorImpl<SDValue> &Args, |
| unsigned Start = 0, unsigned Count = 0); |
| |
| /// Compute the default alignment value for the given type. |
| unsigned getEVTAlignment(EVT MemoryVT) const; |
| |
| /// Test whether the given value is a constant int or similar node. |
| SDNode *isConstantIntBuildVectorOrConstantInt(SDValue N); |
| |
| /// Test whether the given value is a constant FP or similar node. |
| SDNode *isConstantFPBuildVectorOrConstantFP(SDValue N); |
| |
| /// \returns true if \p N is any kind of constant or build_vector of |
| /// constants, int or float. If a vector, it may not necessarily be a splat. |
| inline bool isConstantValueOfAnyType(SDValue N) { |
| return isConstantIntBuildVectorOrConstantInt(N) || |
| isConstantFPBuildVectorOrConstantFP(N); |
| } |
| |
| private: |
| void InsertNode(SDNode *N); |
| bool RemoveNodeFromCSEMaps(SDNode *N); |
| void AddModifiedNodeToCSEMaps(SDNode *N); |
| SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void *&InsertPos); |
| SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2, |
| void *&InsertPos); |
| SDNode *FindModifiedNodeSlot(SDNode *N, ArrayRef<SDValue> Ops, |
| void *&InsertPos); |
| SDNode *UpdateSDLocOnMergeSDNode(SDNode *N, const SDLoc &loc); |
| |
| void DeleteNodeNotInCSEMaps(SDNode *N); |
| void DeallocateNode(SDNode *N); |
| |
| void allnodes_clear(); |
| |
| /// Look up the node specified by ID in CSEMap. If it exists, return it. If |
| /// not, return the insertion token that will make insertion faster. This |
| /// overload is for nodes other than Constant or ConstantFP, use the other one |
| /// for those. |
| SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, void *&InsertPos); |
| |
| /// Look up the node specified by ID in CSEMap. If it exists, return it. If |
| /// not, return the insertion token that will make insertion faster. Performs |
| /// additional processing for constant nodes. |
| SDNode *FindNodeOrInsertPos(const FoldingSetNodeID &ID, const SDLoc &DL, |
| void *&InsertPos); |
| |
| /// List of non-single value types. |
| FoldingSet<SDVTListNode> VTListMap; |
| |
| /// Maps to auto-CSE operations. |
| std::vector<CondCodeSDNode*> CondCodeNodes; |
| |
| std::vector<SDNode*> ValueTypeNodes; |
| std::map<EVT, SDNode*, EVT::compareRawBits> ExtendedValueTypeNodes; |
| StringMap<SDNode*> ExternalSymbols; |
| |
| std::map<std::pair<std::string, unsigned char>,SDNode*> TargetExternalSymbols; |
| DenseMap<MCSymbol *, SDNode *> MCSymbols; |
| }; |
| |
| template <> struct GraphTraits<SelectionDAG*> : public GraphTraits<SDNode*> { |
| using nodes_iterator = pointer_iterator<SelectionDAG::allnodes_iterator>; |
| |
| static nodes_iterator nodes_begin(SelectionDAG *G) { |
| return nodes_iterator(G->allnodes_begin()); |
| } |
| |
| static nodes_iterator nodes_end(SelectionDAG *G) { |
| return nodes_iterator(G->allnodes_end()); |
| } |
| }; |
| |
| template <class TargetMemSDNode> |
| SDValue SelectionDAG::getTargetMemSDNode(SDVTList VTs, |
| ArrayRef<SDValue> Ops, |
| const SDLoc &dl, EVT MemVT, |
| MachineMemOperand *MMO) { |
| /// Compose node ID and try to find an existing node. |
| FoldingSetNodeID ID; |
| unsigned Opcode = |
| TargetMemSDNode(dl.getIROrder(), DebugLoc(), VTs, MemVT, MMO).getOpcode(); |
| ID.AddInteger(Opcode); |
| ID.AddPointer(VTs.VTs); |
| for (auto& Op : Ops) { |
| ID.AddPointer(Op.getNode()); |
| ID.AddInteger(Op.getResNo()); |
| } |
| ID.AddInteger(MemVT.getRawBits()); |
| ID.AddInteger(MMO->getPointerInfo().getAddrSpace()); |
| ID.AddInteger(getSyntheticNodeSubclassData<TargetMemSDNode>( |
| dl.getIROrder(), VTs, MemVT, MMO)); |
| |
| void *IP = nullptr; |
| if (SDNode *E = FindNodeOrInsertPos(ID, dl, IP)) { |
| cast<TargetMemSDNode>(E)->refineAlignment(MMO); |
| return SDValue(E, 0); |
| } |
| |
| /// Existing node was not found. Create a new one. |
| auto *N = newSDNode<TargetMemSDNode>(dl.getIROrder(), dl.getDebugLoc(), VTs, |
| MemVT, MMO); |
| createOperands(N, Ops); |
| CSEMap.InsertNode(N, IP); |
| InsertNode(N); |
| return SDValue(N, 0); |
| } |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_CODEGEN_SELECTIONDAG_H |