| //===- llvm/CodeGen/MachineBasicBlock.h -------------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Collect the sequence of machine instructions for a basic block. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H |
| #define LLVM_CODEGEN_MACHINEBASICBLOCK_H |
| |
| #include "llvm/ADT/GraphTraits.h" |
| #include "llvm/ADT/ilist.h" |
| #include "llvm/ADT/ilist_node.h" |
| #include "llvm/ADT/iterator_range.h" |
| #include "llvm/ADT/simple_ilist.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBundleIterator.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/MC/LaneBitmask.h" |
| #include "llvm/MC/MCRegisterInfo.h" |
| #include "llvm/Support/BranchProbability.h" |
| #include "llvm/Support/Printable.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <functional> |
| #include <iterator> |
| #include <string> |
| #include <vector> |
| |
| namespace llvm { |
| |
| class BasicBlock; |
| class MachineFunction; |
| class MCSymbol; |
| class ModuleSlotTracker; |
| class Pass; |
| class SlotIndexes; |
| class StringRef; |
| class raw_ostream; |
| class TargetRegisterClass; |
| class TargetRegisterInfo; |
| |
| template <> struct ilist_traits<MachineInstr> { |
| private: |
| friend class MachineBasicBlock; // Set by the owning MachineBasicBlock. |
| |
| MachineBasicBlock *Parent; |
| |
| using instr_iterator = |
| simple_ilist<MachineInstr, ilist_sentinel_tracking<true>>::iterator; |
| |
| public: |
| void addNodeToList(MachineInstr *N); |
| void removeNodeFromList(MachineInstr *N); |
| void transferNodesFromList(ilist_traits &FromList, instr_iterator First, |
| instr_iterator Last); |
| void deleteNode(MachineInstr *MI); |
| }; |
| |
| class MachineBasicBlock |
| : public ilist_node_with_parent<MachineBasicBlock, MachineFunction> { |
| public: |
| /// Pair of physical register and lane mask. |
| /// This is not simply a std::pair typedef because the members should be named |
| /// clearly as they both have an integer type. |
| struct RegisterMaskPair { |
| public: |
| MCPhysReg PhysReg; |
| LaneBitmask LaneMask; |
| |
| RegisterMaskPair(MCPhysReg PhysReg, LaneBitmask LaneMask) |
| : PhysReg(PhysReg), LaneMask(LaneMask) {} |
| }; |
| |
| private: |
| using Instructions = ilist<MachineInstr, ilist_sentinel_tracking<true>>; |
| |
| Instructions Insts; |
| const BasicBlock *BB; |
| int Number; |
| MachineFunction *xParent; |
| |
| /// Keep track of the predecessor / successor basic blocks. |
| std::vector<MachineBasicBlock *> Predecessors; |
| std::vector<MachineBasicBlock *> Successors; |
| |
| /// Keep track of the probabilities to the successors. This vector has the |
| /// same order as Successors, or it is empty if we don't use it (disable |
| /// optimization). |
| std::vector<BranchProbability> Probs; |
| using probability_iterator = std::vector<BranchProbability>::iterator; |
| using const_probability_iterator = |
| std::vector<BranchProbability>::const_iterator; |
| |
| Optional<uint64_t> IrrLoopHeaderWeight; |
| |
| /// Keep track of the physical registers that are livein of the basicblock. |
| using LiveInVector = std::vector<RegisterMaskPair>; |
| LiveInVector LiveIns; |
| |
| /// Alignment of the basic block. Zero if the basic block does not need to be |
| /// aligned. The alignment is specified as log2(bytes). |
| unsigned Alignment = 0; |
| |
| /// Indicate that this basic block is entered via an exception handler. |
| bool IsEHPad = false; |
| |
| /// Indicate that this basic block is potentially the target of an indirect |
| /// branch. |
| bool AddressTaken = false; |
| |
| /// Indicate that this basic block is the entry block of an EH scope, i.e., |
| /// the block that used to have a catchpad or cleanuppad instruction in the |
| /// LLVM IR. |
| bool IsEHScopeEntry = false; |
| |
| /// Indicate that this basic block is the entry block of an EH funclet. |
| bool IsEHFuncletEntry = false; |
| |
| /// Indicate that this basic block is the entry block of a cleanup funclet. |
| bool IsCleanupFuncletEntry = false; |
| |
| /// since getSymbol is a relatively heavy-weight operation, the symbol |
| /// is only computed once and is cached. |
| mutable MCSymbol *CachedMCSymbol = nullptr; |
| |
| // Intrusive list support |
| MachineBasicBlock() = default; |
| |
| explicit MachineBasicBlock(MachineFunction &MF, const BasicBlock *BB); |
| |
| ~MachineBasicBlock(); |
| |
| // MachineBasicBlocks are allocated and owned by MachineFunction. |
| friend class MachineFunction; |
| |
| public: |
| /// Return the LLVM basic block that this instance corresponded to originally. |
| /// Note that this may be NULL if this instance does not correspond directly |
| /// to an LLVM basic block. |
| const BasicBlock *getBasicBlock() const { return BB; } |
| |
| /// Return the name of the corresponding LLVM basic block, or an empty string. |
| StringRef getName() const; |
| |
| /// Return a formatted string to identify this block and its parent function. |
| std::string getFullName() const; |
| |
| /// Test whether this block is potentially the target of an indirect branch. |
| bool hasAddressTaken() const { return AddressTaken; } |
| |
| /// Set this block to reflect that it potentially is the target of an indirect |
| /// branch. |
| void setHasAddressTaken() { AddressTaken = true; } |
| |
| /// Return the MachineFunction containing this basic block. |
| const MachineFunction *getParent() const { return xParent; } |
| MachineFunction *getParent() { return xParent; } |
| |
| using instr_iterator = Instructions::iterator; |
| using const_instr_iterator = Instructions::const_iterator; |
| using reverse_instr_iterator = Instructions::reverse_iterator; |
| using const_reverse_instr_iterator = Instructions::const_reverse_iterator; |
| |
| using iterator = MachineInstrBundleIterator<MachineInstr>; |
| using const_iterator = MachineInstrBundleIterator<const MachineInstr>; |
| using reverse_iterator = MachineInstrBundleIterator<MachineInstr, true>; |
| using const_reverse_iterator = |
| MachineInstrBundleIterator<const MachineInstr, true>; |
| |
| unsigned size() const { return (unsigned)Insts.size(); } |
| bool empty() const { return Insts.empty(); } |
| |
| MachineInstr &instr_front() { return Insts.front(); } |
| MachineInstr &instr_back() { return Insts.back(); } |
| const MachineInstr &instr_front() const { return Insts.front(); } |
| const MachineInstr &instr_back() const { return Insts.back(); } |
| |
| MachineInstr &front() { return Insts.front(); } |
| MachineInstr &back() { return *--end(); } |
| const MachineInstr &front() const { return Insts.front(); } |
| const MachineInstr &back() const { return *--end(); } |
| |
| instr_iterator instr_begin() { return Insts.begin(); } |
| const_instr_iterator instr_begin() const { return Insts.begin(); } |
| instr_iterator instr_end() { return Insts.end(); } |
| const_instr_iterator instr_end() const { return Insts.end(); } |
| reverse_instr_iterator instr_rbegin() { return Insts.rbegin(); } |
| const_reverse_instr_iterator instr_rbegin() const { return Insts.rbegin(); } |
| reverse_instr_iterator instr_rend () { return Insts.rend(); } |
| const_reverse_instr_iterator instr_rend () const { return Insts.rend(); } |
| |
| using instr_range = iterator_range<instr_iterator>; |
| using const_instr_range = iterator_range<const_instr_iterator>; |
| instr_range instrs() { return instr_range(instr_begin(), instr_end()); } |
| const_instr_range instrs() const { |
| return const_instr_range(instr_begin(), instr_end()); |
| } |
| |
| iterator begin() { return instr_begin(); } |
| const_iterator begin() const { return instr_begin(); } |
| iterator end () { return instr_end(); } |
| const_iterator end () const { return instr_end(); } |
| reverse_iterator rbegin() { |
| return reverse_iterator::getAtBundleBegin(instr_rbegin()); |
| } |
| const_reverse_iterator rbegin() const { |
| return const_reverse_iterator::getAtBundleBegin(instr_rbegin()); |
| } |
| reverse_iterator rend() { return reverse_iterator(instr_rend()); } |
| const_reverse_iterator rend() const { |
| return const_reverse_iterator(instr_rend()); |
| } |
| |
| /// Support for MachineInstr::getNextNode(). |
| static Instructions MachineBasicBlock::*getSublistAccess(MachineInstr *) { |
| return &MachineBasicBlock::Insts; |
| } |
| |
| inline iterator_range<iterator> terminators() { |
| return make_range(getFirstTerminator(), end()); |
| } |
| inline iterator_range<const_iterator> terminators() const { |
| return make_range(getFirstTerminator(), end()); |
| } |
| |
| /// Returns a range that iterates over the phis in the basic block. |
| inline iterator_range<iterator> phis() { |
| return make_range(begin(), getFirstNonPHI()); |
| } |
| inline iterator_range<const_iterator> phis() const { |
| return const_cast<MachineBasicBlock *>(this)->phis(); |
| } |
| |
| // Machine-CFG iterators |
| using pred_iterator = std::vector<MachineBasicBlock *>::iterator; |
| using const_pred_iterator = std::vector<MachineBasicBlock *>::const_iterator; |
| using succ_iterator = std::vector<MachineBasicBlock *>::iterator; |
| using const_succ_iterator = std::vector<MachineBasicBlock *>::const_iterator; |
| using pred_reverse_iterator = |
| std::vector<MachineBasicBlock *>::reverse_iterator; |
| using const_pred_reverse_iterator = |
| std::vector<MachineBasicBlock *>::const_reverse_iterator; |
| using succ_reverse_iterator = |
| std::vector<MachineBasicBlock *>::reverse_iterator; |
| using const_succ_reverse_iterator = |
| std::vector<MachineBasicBlock *>::const_reverse_iterator; |
| pred_iterator pred_begin() { return Predecessors.begin(); } |
| const_pred_iterator pred_begin() const { return Predecessors.begin(); } |
| pred_iterator pred_end() { return Predecessors.end(); } |
| const_pred_iterator pred_end() const { return Predecessors.end(); } |
| pred_reverse_iterator pred_rbegin() |
| { return Predecessors.rbegin();} |
| const_pred_reverse_iterator pred_rbegin() const |
| { return Predecessors.rbegin();} |
| pred_reverse_iterator pred_rend() |
| { return Predecessors.rend(); } |
| const_pred_reverse_iterator pred_rend() const |
| { return Predecessors.rend(); } |
| unsigned pred_size() const { |
| return (unsigned)Predecessors.size(); |
| } |
| bool pred_empty() const { return Predecessors.empty(); } |
| succ_iterator succ_begin() { return Successors.begin(); } |
| const_succ_iterator succ_begin() const { return Successors.begin(); } |
| succ_iterator succ_end() { return Successors.end(); } |
| const_succ_iterator succ_end() const { return Successors.end(); } |
| succ_reverse_iterator succ_rbegin() |
| { return Successors.rbegin(); } |
| const_succ_reverse_iterator succ_rbegin() const |
| { return Successors.rbegin(); } |
| succ_reverse_iterator succ_rend() |
| { return Successors.rend(); } |
| const_succ_reverse_iterator succ_rend() const |
| { return Successors.rend(); } |
| unsigned succ_size() const { |
| return (unsigned)Successors.size(); |
| } |
| bool succ_empty() const { return Successors.empty(); } |
| |
| inline iterator_range<pred_iterator> predecessors() { |
| return make_range(pred_begin(), pred_end()); |
| } |
| inline iterator_range<const_pred_iterator> predecessors() const { |
| return make_range(pred_begin(), pred_end()); |
| } |
| inline iterator_range<succ_iterator> successors() { |
| return make_range(succ_begin(), succ_end()); |
| } |
| inline iterator_range<const_succ_iterator> successors() const { |
| return make_range(succ_begin(), succ_end()); |
| } |
| |
| // LiveIn management methods. |
| |
| /// Adds the specified register as a live in. Note that it is an error to add |
| /// the same register to the same set more than once unless the intention is |
| /// to call sortUniqueLiveIns after all registers are added. |
| void addLiveIn(MCPhysReg PhysReg, |
| LaneBitmask LaneMask = LaneBitmask::getAll()) { |
| LiveIns.push_back(RegisterMaskPair(PhysReg, LaneMask)); |
| } |
| void addLiveIn(const RegisterMaskPair &RegMaskPair) { |
| LiveIns.push_back(RegMaskPair); |
| } |
| |
| /// Sorts and uniques the LiveIns vector. It can be significantly faster to do |
| /// this than repeatedly calling isLiveIn before calling addLiveIn for every |
| /// LiveIn insertion. |
| void sortUniqueLiveIns(); |
| |
| /// Clear live in list. |
| void clearLiveIns(); |
| |
| /// Add PhysReg as live in to this block, and ensure that there is a copy of |
| /// PhysReg to a virtual register of class RC. Return the virtual register |
| /// that is a copy of the live in PhysReg. |
| unsigned addLiveIn(MCPhysReg PhysReg, const TargetRegisterClass *RC); |
| |
| /// Remove the specified register from the live in set. |
| void removeLiveIn(MCPhysReg Reg, |
| LaneBitmask LaneMask = LaneBitmask::getAll()); |
| |
| /// Return true if the specified register is in the live in set. |
| bool isLiveIn(MCPhysReg Reg, |
| LaneBitmask LaneMask = LaneBitmask::getAll()) const; |
| |
| // Iteration support for live in sets. These sets are kept in sorted |
| // order by their register number. |
| using livein_iterator = LiveInVector::const_iterator; |
| #ifndef NDEBUG |
| /// Unlike livein_begin, this method does not check that the liveness |
| /// information is accurate. Still for debug purposes it may be useful |
| /// to have iterators that won't assert if the liveness information |
| /// is not current. |
| livein_iterator livein_begin_dbg() const { return LiveIns.begin(); } |
| iterator_range<livein_iterator> liveins_dbg() const { |
| return make_range(livein_begin_dbg(), livein_end()); |
| } |
| #endif |
| livein_iterator livein_begin() const; |
| livein_iterator livein_end() const { return LiveIns.end(); } |
| bool livein_empty() const { return LiveIns.empty(); } |
| iterator_range<livein_iterator> liveins() const { |
| return make_range(livein_begin(), livein_end()); |
| } |
| |
| /// Remove entry from the livein set and return iterator to the next. |
| livein_iterator removeLiveIn(livein_iterator I); |
| |
| /// Get the clobber mask for the start of this basic block. Funclets use this |
| /// to prevent register allocation across funclet transitions. |
| const uint32_t *getBeginClobberMask(const TargetRegisterInfo *TRI) const; |
| |
| /// Get the clobber mask for the end of the basic block. |
| /// \see getBeginClobberMask() |
| const uint32_t *getEndClobberMask(const TargetRegisterInfo *TRI) const; |
| |
| /// Return alignment of the basic block. The alignment is specified as |
| /// log2(bytes). |
| unsigned getAlignment() const { return Alignment; } |
| |
| /// Set alignment of the basic block. The alignment is specified as |
| /// log2(bytes). |
| void setAlignment(unsigned Align) { Alignment = Align; } |
| |
| /// Returns true if the block is a landing pad. That is this basic block is |
| /// entered via an exception handler. |
| bool isEHPad() const { return IsEHPad; } |
| |
| /// Indicates the block is a landing pad. That is this basic block is entered |
| /// via an exception handler. |
| void setIsEHPad(bool V = true) { IsEHPad = V; } |
| |
| bool hasEHPadSuccessor() const; |
| |
| /// Returns true if this is the entry block of an EH scope, i.e., the block |
| /// that used to have a catchpad or cleanuppad instruction in the LLVM IR. |
| bool isEHScopeEntry() const { return IsEHScopeEntry; } |
| |
| /// Indicates if this is the entry block of an EH scope, i.e., the block that |
| /// that used to have a catchpad or cleanuppad instruction in the LLVM IR. |
| void setIsEHScopeEntry(bool V = true) { IsEHScopeEntry = V; } |
| |
| /// Returns true if this is the entry block of an EH funclet. |
| bool isEHFuncletEntry() const { return IsEHFuncletEntry; } |
| |
| /// Indicates if this is the entry block of an EH funclet. |
| void setIsEHFuncletEntry(bool V = true) { IsEHFuncletEntry = V; } |
| |
| /// Returns true if this is the entry block of a cleanup funclet. |
| bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry; } |
| |
| /// Indicates if this is the entry block of a cleanup funclet. |
| void setIsCleanupFuncletEntry(bool V = true) { IsCleanupFuncletEntry = V; } |
| |
| /// Returns true if it is legal to hoist instructions into this block. |
| bool isLegalToHoistInto() const; |
| |
| // Code Layout methods. |
| |
| /// Move 'this' block before or after the specified block. This only moves |
| /// the block, it does not modify the CFG or adjust potential fall-throughs at |
| /// the end of the block. |
| void moveBefore(MachineBasicBlock *NewAfter); |
| void moveAfter(MachineBasicBlock *NewBefore); |
| |
| /// Update the terminator instructions in block to account for changes to the |
| /// layout. If the block previously used a fallthrough, it may now need a |
| /// branch, and if it previously used branching it may now be able to use a |
| /// fallthrough. |
| void updateTerminator(); |
| |
| // Machine-CFG mutators |
| |
| /// Add Succ as a successor of this MachineBasicBlock. The Predecessors list |
| /// of Succ is automatically updated. PROB parameter is stored in |
| /// Probabilities list. The default probability is set as unknown. Mixing |
| /// known and unknown probabilities in successor list is not allowed. When all |
| /// successors have unknown probabilities, 1 / N is returned as the |
| /// probability for each successor, where N is the number of successors. |
| /// |
| /// Note that duplicate Machine CFG edges are not allowed. |
| void addSuccessor(MachineBasicBlock *Succ, |
| BranchProbability Prob = BranchProbability::getUnknown()); |
| |
| /// Add Succ as a successor of this MachineBasicBlock. The Predecessors list |
| /// of Succ is automatically updated. The probability is not provided because |
| /// BPI is not available (e.g. -O0 is used), in which case edge probabilities |
| /// won't be used. Using this interface can save some space. |
| void addSuccessorWithoutProb(MachineBasicBlock *Succ); |
| |
| /// Set successor probability of a given iterator. |
| void setSuccProbability(succ_iterator I, BranchProbability Prob); |
| |
| /// Normalize probabilities of all successors so that the sum of them becomes |
| /// one. This is usually done when the current update on this MBB is done, and |
| /// the sum of its successors' probabilities is not guaranteed to be one. The |
| /// user is responsible for the correct use of this function. |
| /// MBB::removeSuccessor() has an option to do this automatically. |
| void normalizeSuccProbs() { |
| BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); |
| } |
| |
| /// Validate successors' probabilities and check if the sum of them is |
| /// approximate one. This only works in DEBUG mode. |
| void validateSuccProbs() const; |
| |
| /// Remove successor from the successors list of this MachineBasicBlock. The |
| /// Predecessors list of Succ is automatically updated. |
| /// If NormalizeSuccProbs is true, then normalize successors' probabilities |
| /// after the successor is removed. |
| void removeSuccessor(MachineBasicBlock *Succ, |
| bool NormalizeSuccProbs = false); |
| |
| /// Remove specified successor from the successors list of this |
| /// MachineBasicBlock. The Predecessors list of Succ is automatically updated. |
| /// If NormalizeSuccProbs is true, then normalize successors' probabilities |
| /// after the successor is removed. |
| /// Return the iterator to the element after the one removed. |
| succ_iterator removeSuccessor(succ_iterator I, |
| bool NormalizeSuccProbs = false); |
| |
| /// Replace successor OLD with NEW and update probability info. |
| void replaceSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New); |
| |
| /// Copy a successor (and any probability info) from original block to this |
| /// block's. Uses an iterator into the original blocks successors. |
| /// |
| /// This is useful when doing a partial clone of successors. Afterward, the |
| /// probabilities may need to be normalized. |
| void copySuccessor(MachineBasicBlock *Orig, succ_iterator I); |
| |
| /// Split the old successor into old plus new and updates the probability |
| /// info. |
| void splitSuccessor(MachineBasicBlock *Old, MachineBasicBlock *New, |
| bool NormalizeSuccProbs = false); |
| |
| /// Transfers all the successors from MBB to this machine basic block (i.e., |
| /// copies all the successors FromMBB and remove all the successors from |
| /// FromMBB). |
| void transferSuccessors(MachineBasicBlock *FromMBB); |
| |
| /// Transfers all the successors, as in transferSuccessors, and update PHI |
| /// operands in the successor blocks which refer to FromMBB to refer to this. |
| void transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB); |
| |
| /// Return true if any of the successors have probabilities attached to them. |
| bool hasSuccessorProbabilities() const { return !Probs.empty(); } |
| |
| /// Return true if the specified MBB is a predecessor of this block. |
| bool isPredecessor(const MachineBasicBlock *MBB) const; |
| |
| /// Return true if the specified MBB is a successor of this block. |
| bool isSuccessor(const MachineBasicBlock *MBB) const; |
| |
| /// Return true if the specified MBB will be emitted immediately after this |
| /// block, such that if this block exits by falling through, control will |
| /// transfer to the specified MBB. Note that MBB need not be a successor at |
| /// all, for example if this block ends with an unconditional branch to some |
| /// other block. |
| bool isLayoutSuccessor(const MachineBasicBlock *MBB) const; |
| |
| /// Return the fallthrough block if the block can implicitly |
| /// transfer control to the block after it by falling off the end of |
| /// it. This should return null if it can reach the block after |
| /// it, but it uses an explicit branch to do so (e.g., a table |
| /// jump). Non-null return is a conservative answer. |
| MachineBasicBlock *getFallThrough(); |
| |
| /// Return true if the block can implicitly transfer control to the |
| /// block after it by falling off the end of it. This should return |
| /// false if it can reach the block after it, but it uses an |
| /// explicit branch to do so (e.g., a table jump). True is a |
| /// conservative answer. |
| bool canFallThrough(); |
| |
| /// Returns a pointer to the first instruction in this block that is not a |
| /// PHINode instruction. When adding instructions to the beginning of the |
| /// basic block, they should be added before the returned value, not before |
| /// the first instruction, which might be PHI. |
| /// Returns end() is there's no non-PHI instruction. |
| iterator getFirstNonPHI(); |
| |
| /// Return the first instruction in MBB after I that is not a PHI or a label. |
| /// This is the correct point to insert lowered copies at the beginning of a |
| /// basic block that must be before any debugging information. |
| iterator SkipPHIsAndLabels(iterator I); |
| |
| /// Return the first instruction in MBB after I that is not a PHI, label or |
| /// debug. This is the correct point to insert copies at the beginning of a |
| /// basic block. |
| iterator SkipPHIsLabelsAndDebug(iterator I); |
| |
| /// Returns an iterator to the first terminator instruction of this basic |
| /// block. If a terminator does not exist, it returns end(). |
| iterator getFirstTerminator(); |
| const_iterator getFirstTerminator() const { |
| return const_cast<MachineBasicBlock *>(this)->getFirstTerminator(); |
| } |
| |
| /// Same getFirstTerminator but it ignores bundles and return an |
| /// instr_iterator instead. |
| instr_iterator getFirstInstrTerminator(); |
| |
| /// Returns an iterator to the first non-debug instruction in the basic block, |
| /// or end(). |
| iterator getFirstNonDebugInstr(); |
| const_iterator getFirstNonDebugInstr() const { |
| return const_cast<MachineBasicBlock *>(this)->getFirstNonDebugInstr(); |
| } |
| |
| /// Returns an iterator to the last non-debug instruction in the basic block, |
| /// or end(). |
| iterator getLastNonDebugInstr(); |
| const_iterator getLastNonDebugInstr() const { |
| return const_cast<MachineBasicBlock *>(this)->getLastNonDebugInstr(); |
| } |
| |
| /// Convenience function that returns true if the block ends in a return |
| /// instruction. |
| bool isReturnBlock() const { |
| return !empty() && back().isReturn(); |
| } |
| |
| /// Convenience function that returns true if the bock ends in a EH scope |
| /// return instruction. |
| bool isEHScopeReturnBlock() const { |
| return !empty() && back().isEHScopeReturn(); |
| } |
| |
| /// Split the critical edge from this block to the given successor block, and |
| /// return the newly created block, or null if splitting is not possible. |
| /// |
| /// This function updates LiveVariables, MachineDominatorTree, and |
| /// MachineLoopInfo, as applicable. |
| MachineBasicBlock *SplitCriticalEdge(MachineBasicBlock *Succ, Pass &P); |
| |
| /// Check if the edge between this block and the given successor \p |
| /// Succ, can be split. If this returns true a subsequent call to |
| /// SplitCriticalEdge is guaranteed to return a valid basic block if |
| /// no changes occurred in the meantime. |
| bool canSplitCriticalEdge(const MachineBasicBlock *Succ) const; |
| |
| void pop_front() { Insts.pop_front(); } |
| void pop_back() { Insts.pop_back(); } |
| void push_back(MachineInstr *MI) { Insts.push_back(MI); } |
| |
| /// Insert MI into the instruction list before I, possibly inside a bundle. |
| /// |
| /// If the insertion point is inside a bundle, MI will be added to the bundle, |
| /// otherwise MI will not be added to any bundle. That means this function |
| /// alone can't be used to prepend or append instructions to bundles. See |
| /// MIBundleBuilder::insert() for a more reliable way of doing that. |
| instr_iterator insert(instr_iterator I, MachineInstr *M); |
| |
| /// Insert a range of instructions into the instruction list before I. |
| template<typename IT> |
| void insert(iterator I, IT S, IT E) { |
| assert((I == end() || I->getParent() == this) && |
| "iterator points outside of basic block"); |
| Insts.insert(I.getInstrIterator(), S, E); |
| } |
| |
| /// Insert MI into the instruction list before I. |
| iterator insert(iterator I, MachineInstr *MI) { |
| assert((I == end() || I->getParent() == this) && |
| "iterator points outside of basic block"); |
| assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && |
| "Cannot insert instruction with bundle flags"); |
| return Insts.insert(I.getInstrIterator(), MI); |
| } |
| |
| /// Insert MI into the instruction list after I. |
| iterator insertAfter(iterator I, MachineInstr *MI) { |
| assert((I == end() || I->getParent() == this) && |
| "iterator points outside of basic block"); |
| assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc() && |
| "Cannot insert instruction with bundle flags"); |
| return Insts.insertAfter(I.getInstrIterator(), MI); |
| } |
| |
| /// Remove an instruction from the instruction list and delete it. |
| /// |
| /// If the instruction is part of a bundle, the other instructions in the |
| /// bundle will still be bundled after removing the single instruction. |
| instr_iterator erase(instr_iterator I); |
| |
| /// Remove an instruction from the instruction list and delete it. |
| /// |
| /// If the instruction is part of a bundle, the other instructions in the |
| /// bundle will still be bundled after removing the single instruction. |
| instr_iterator erase_instr(MachineInstr *I) { |
| return erase(instr_iterator(I)); |
| } |
| |
| /// Remove a range of instructions from the instruction list and delete them. |
| iterator erase(iterator I, iterator E) { |
| return Insts.erase(I.getInstrIterator(), E.getInstrIterator()); |
| } |
| |
| /// Remove an instruction or bundle from the instruction list and delete it. |
| /// |
| /// If I points to a bundle of instructions, they are all erased. |
| iterator erase(iterator I) { |
| return erase(I, std::next(I)); |
| } |
| |
| /// Remove an instruction from the instruction list and delete it. |
| /// |
| /// If I is the head of a bundle of instructions, the whole bundle will be |
| /// erased. |
| iterator erase(MachineInstr *I) { |
| return erase(iterator(I)); |
| } |
| |
| /// Remove the unbundled instruction from the instruction list without |
| /// deleting it. |
| /// |
| /// This function can not be used to remove bundled instructions, use |
| /// remove_instr to remove individual instructions from a bundle. |
| MachineInstr *remove(MachineInstr *I) { |
| assert(!I->isBundled() && "Cannot remove bundled instructions"); |
| return Insts.remove(instr_iterator(I)); |
| } |
| |
| /// Remove the possibly bundled instruction from the instruction list |
| /// without deleting it. |
| /// |
| /// If the instruction is part of a bundle, the other instructions in the |
| /// bundle will still be bundled after removing the single instruction. |
| MachineInstr *remove_instr(MachineInstr *I); |
| |
| void clear() { |
| Insts.clear(); |
| } |
| |
| /// Take an instruction from MBB 'Other' at the position From, and insert it |
| /// into this MBB right before 'Where'. |
| /// |
| /// If From points to a bundle of instructions, the whole bundle is moved. |
| void splice(iterator Where, MachineBasicBlock *Other, iterator From) { |
| // The range splice() doesn't allow noop moves, but this one does. |
| if (Where != From) |
| splice(Where, Other, From, std::next(From)); |
| } |
| |
| /// Take a block of instructions from MBB 'Other' in the range [From, To), |
| /// and insert them into this MBB right before 'Where'. |
| /// |
| /// The instruction at 'Where' must not be included in the range of |
| /// instructions to move. |
| void splice(iterator Where, MachineBasicBlock *Other, |
| iterator From, iterator To) { |
| Insts.splice(Where.getInstrIterator(), Other->Insts, |
| From.getInstrIterator(), To.getInstrIterator()); |
| } |
| |
| /// This method unlinks 'this' from the containing function, and returns it, |
| /// but does not delete it. |
| MachineBasicBlock *removeFromParent(); |
| |
| /// This method unlinks 'this' from the containing function and deletes it. |
| void eraseFromParent(); |
| |
| /// Given a machine basic block that branched to 'Old', change the code and |
| /// CFG so that it branches to 'New' instead. |
| void ReplaceUsesOfBlockWith(MachineBasicBlock *Old, MachineBasicBlock *New); |
| |
| /// Various pieces of code can cause excess edges in the CFG to be inserted. |
| /// If we have proven that MBB can only branch to DestA and DestB, remove any |
| /// other MBB successors from the CFG. DestA and DestB can be null. Besides |
| /// DestA and DestB, retain other edges leading to LandingPads (currently |
| /// there can be only one; we don't check or require that here). Note it is |
| /// possible that DestA and/or DestB are LandingPads. |
| bool CorrectExtraCFGEdges(MachineBasicBlock *DestA, |
| MachineBasicBlock *DestB, |
| bool IsCond); |
| |
| /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE |
| /// and DBG_LABEL instructions. Return UnknownLoc if there is none. |
| DebugLoc findDebugLoc(instr_iterator MBBI); |
| DebugLoc findDebugLoc(iterator MBBI) { |
| return findDebugLoc(MBBI.getInstrIterator()); |
| } |
| |
| /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE |
| /// instructions. Return UnknownLoc if there is none. |
| DebugLoc findPrevDebugLoc(instr_iterator MBBI); |
| DebugLoc findPrevDebugLoc(iterator MBBI) { |
| return findPrevDebugLoc(MBBI.getInstrIterator()); |
| } |
| |
| /// Find and return the merged DebugLoc of the branch instructions of the |
| /// block. Return UnknownLoc if there is none. |
| DebugLoc findBranchDebugLoc(); |
| |
| /// Possible outcome of a register liveness query to computeRegisterLiveness() |
| enum LivenessQueryResult { |
| LQR_Live, ///< Register is known to be (at least partially) live. |
| LQR_Dead, ///< Register is known to be fully dead. |
| LQR_Unknown ///< Register liveness not decidable from local neighborhood. |
| }; |
| |
| /// Return whether (physical) register \p Reg has been defined and not |
| /// killed as of just before \p Before. |
| /// |
| /// Search is localised to a neighborhood of \p Neighborhood instructions |
| /// before (searching for defs or kills) and \p Neighborhood instructions |
| /// after (searching just for defs) \p Before. |
| /// |
| /// \p Reg must be a physical register. |
| LivenessQueryResult computeRegisterLiveness(const TargetRegisterInfo *TRI, |
| unsigned Reg, |
| const_iterator Before, |
| unsigned Neighborhood = 10) const; |
| |
| // Debugging methods. |
| void dump() const; |
| void print(raw_ostream &OS, const SlotIndexes * = nullptr, |
| bool IsStandalone = true) const; |
| void print(raw_ostream &OS, ModuleSlotTracker &MST, |
| const SlotIndexes * = nullptr, bool IsStandalone = true) const; |
| |
| // Printing method used by LoopInfo. |
| void printAsOperand(raw_ostream &OS, bool PrintType = true) const; |
| |
| /// MachineBasicBlocks are uniquely numbered at the function level, unless |
| /// they're not in a MachineFunction yet, in which case this will return -1. |
| int getNumber() const { return Number; } |
| void setNumber(int N) { Number = N; } |
| |
| /// Return the MCSymbol for this basic block. |
| MCSymbol *getSymbol() const; |
| |
| Optional<uint64_t> getIrrLoopHeaderWeight() const { |
| return IrrLoopHeaderWeight; |
| } |
| |
| void setIrrLoopHeaderWeight(uint64_t Weight) { |
| IrrLoopHeaderWeight = Weight; |
| } |
| |
| private: |
| /// Return probability iterator corresponding to the I successor iterator. |
| probability_iterator getProbabilityIterator(succ_iterator I); |
| const_probability_iterator |
| getProbabilityIterator(const_succ_iterator I) const; |
| |
| friend class MachineBranchProbabilityInfo; |
| friend class MIPrinter; |
| |
| /// Return probability of the edge from this block to MBB. This method should |
| /// NOT be called directly, but by using getEdgeProbability method from |
| /// MachineBranchProbabilityInfo class. |
| BranchProbability getSuccProbability(const_succ_iterator Succ) const; |
| |
| // Methods used to maintain doubly linked list of blocks... |
| friend struct ilist_callback_traits<MachineBasicBlock>; |
| |
| // Machine-CFG mutators |
| |
| /// Add Pred as a predecessor of this MachineBasicBlock. Don't do this |
| /// unless you know what you're doing, because it doesn't update Pred's |
| /// successors list. Use Pred->addSuccessor instead. |
| void addPredecessor(MachineBasicBlock *Pred); |
| |
| /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this |
| /// unless you know what you're doing, because it doesn't update Pred's |
| /// successors list. Use Pred->removeSuccessor instead. |
| void removePredecessor(MachineBasicBlock *Pred); |
| }; |
| |
| raw_ostream& operator<<(raw_ostream &OS, const MachineBasicBlock &MBB); |
| |
| /// Prints a machine basic block reference. |
| /// |
| /// The format is: |
| /// %bb.5 - a machine basic block with MBB.getNumber() == 5. |
| /// |
| /// Usage: OS << printMBBReference(MBB) << '\n'; |
| Printable printMBBReference(const MachineBasicBlock &MBB); |
| |
| // This is useful when building IndexedMaps keyed on basic block pointers. |
| struct MBB2NumberFunctor { |
| using argument_type = const MachineBasicBlock *; |
| unsigned operator()(const MachineBasicBlock *MBB) const { |
| return MBB->getNumber(); |
| } |
| }; |
| |
| //===--------------------------------------------------------------------===// |
| // GraphTraits specializations for machine basic block graphs (machine-CFGs) |
| //===--------------------------------------------------------------------===// |
| |
| // Provide specializations of GraphTraits to be able to treat a |
| // MachineFunction as a graph of MachineBasicBlocks. |
| // |
| |
| template <> struct GraphTraits<MachineBasicBlock *> { |
| using NodeRef = MachineBasicBlock *; |
| using ChildIteratorType = MachineBasicBlock::succ_iterator; |
| |
| static NodeRef getEntryNode(MachineBasicBlock *BB) { return BB; } |
| static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } |
| static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } |
| }; |
| |
| template <> struct GraphTraits<const MachineBasicBlock *> { |
| using NodeRef = const MachineBasicBlock *; |
| using ChildIteratorType = MachineBasicBlock::const_succ_iterator; |
| |
| static NodeRef getEntryNode(const MachineBasicBlock *BB) { return BB; } |
| static ChildIteratorType child_begin(NodeRef N) { return N->succ_begin(); } |
| static ChildIteratorType child_end(NodeRef N) { return N->succ_end(); } |
| }; |
| |
| // Provide specializations of GraphTraits to be able to treat a |
| // MachineFunction as a graph of MachineBasicBlocks and to walk it |
| // in inverse order. Inverse order for a function is considered |
| // to be when traversing the predecessor edges of a MBB |
| // instead of the successor edges. |
| // |
| template <> struct GraphTraits<Inverse<MachineBasicBlock*>> { |
| using NodeRef = MachineBasicBlock *; |
| using ChildIteratorType = MachineBasicBlock::pred_iterator; |
| |
| static NodeRef getEntryNode(Inverse<MachineBasicBlock *> G) { |
| return G.Graph; |
| } |
| |
| static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); } |
| static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); } |
| }; |
| |
| template <> struct GraphTraits<Inverse<const MachineBasicBlock*>> { |
| using NodeRef = const MachineBasicBlock *; |
| using ChildIteratorType = MachineBasicBlock::const_pred_iterator; |
| |
| static NodeRef getEntryNode(Inverse<const MachineBasicBlock *> G) { |
| return G.Graph; |
| } |
| |
| static ChildIteratorType child_begin(NodeRef N) { return N->pred_begin(); } |
| static ChildIteratorType child_end(NodeRef N) { return N->pred_end(); } |
| }; |
| |
| /// MachineInstrSpan provides an interface to get an iteration range |
| /// containing the instruction it was initialized with, along with all |
| /// those instructions inserted prior to or following that instruction |
| /// at some point after the MachineInstrSpan is constructed. |
| class MachineInstrSpan { |
| MachineBasicBlock &MBB; |
| MachineBasicBlock::iterator I, B, E; |
| |
| public: |
| MachineInstrSpan(MachineBasicBlock::iterator I) |
| : MBB(*I->getParent()), |
| I(I), |
| B(I == MBB.begin() ? MBB.end() : std::prev(I)), |
| E(std::next(I)) {} |
| |
| MachineBasicBlock::iterator begin() { |
| return B == MBB.end() ? MBB.begin() : std::next(B); |
| } |
| MachineBasicBlock::iterator end() { return E; } |
| bool empty() { return begin() == end(); } |
| |
| MachineBasicBlock::iterator getInitial() { return I; } |
| }; |
| |
| /// Increment \p It until it points to a non-debug instruction or to \p End |
| /// and return the resulting iterator. This function should only be used |
| /// MachineBasicBlock::{iterator, const_iterator, instr_iterator, |
| /// const_instr_iterator} and the respective reverse iterators. |
| template<typename IterT> |
| inline IterT skipDebugInstructionsForward(IterT It, IterT End) { |
| while (It != End && It->isDebugInstr()) |
| It++; |
| return It; |
| } |
| |
| /// Decrement \p It until it points to a non-debug instruction or to \p Begin |
| /// and return the resulting iterator. This function should only be used |
| /// MachineBasicBlock::{iterator, const_iterator, instr_iterator, |
| /// const_instr_iterator} and the respective reverse iterators. |
| template<class IterT> |
| inline IterT skipDebugInstructionsBackward(IterT It, IterT Begin) { |
| while (It != Begin && It->isDebugInstr()) |
| It--; |
| return It; |
| } |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_CODEGEN_MACHINEBASICBLOCK_H |