| //===- llvm/CodeGen/GlobalISel/LegalizerInfo.h ------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// Interface for Targets to specify which operations they can successfully |
| /// select and how the others should be expanded most efficiently. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H |
| #define LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H |
| |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/Optional.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallBitVector.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Support/LowLevelTypeImpl.h" |
| #include <cassert> |
| #include <cstdint> |
| #include <tuple> |
| #include <unordered_map> |
| #include <utility> |
| |
| namespace llvm { |
| |
| extern cl::opt<bool> DisableGISelLegalityCheck; |
| |
| class MachineInstr; |
| class MachineIRBuilder; |
| class MachineRegisterInfo; |
| class MCInstrInfo; |
| class GISelChangeObserver; |
| |
| namespace LegalizeActions { |
| enum LegalizeAction : std::uint8_t { |
| /// The operation is expected to be selectable directly by the target, and |
| /// no transformation is necessary. |
| Legal, |
| |
| /// The operation should be synthesized from multiple instructions acting on |
| /// a narrower scalar base-type. For example a 64-bit add might be |
| /// implemented in terms of 32-bit add-with-carry. |
| NarrowScalar, |
| |
| /// The operation should be implemented in terms of a wider scalar |
| /// base-type. For example a <2 x s8> add could be implemented as a <2 |
| /// x s32> add (ignoring the high bits). |
| WidenScalar, |
| |
| /// The (vector) operation should be implemented by splitting it into |
| /// sub-vectors where the operation is legal. For example a <8 x s64> add |
| /// might be implemented as 4 separate <2 x s64> adds. |
| FewerElements, |
| |
| /// The (vector) operation should be implemented by widening the input |
| /// vector and ignoring the lanes added by doing so. For example <2 x i8> is |
| /// rarely legal, but you might perform an <8 x i8> and then only look at |
| /// the first two results. |
| MoreElements, |
| |
| /// The operation itself must be expressed in terms of simpler actions on |
| /// this target. E.g. a SREM replaced by an SDIV and subtraction. |
| Lower, |
| |
| /// The operation should be implemented as a call to some kind of runtime |
| /// support library. For example this usually happens on machines that don't |
| /// support floating-point operations natively. |
| Libcall, |
| |
| /// The target wants to do something special with this combination of |
| /// operand and type. A callback will be issued when it is needed. |
| Custom, |
| |
| /// This operation is completely unsupported on the target. A programming |
| /// error has occurred. |
| Unsupported, |
| |
| /// Sentinel value for when no action was found in the specified table. |
| NotFound, |
| |
| /// Fall back onto the old rules. |
| /// TODO: Remove this once we've migrated |
| UseLegacyRules, |
| }; |
| } // end namespace LegalizeActions |
| |
| using LegalizeActions::LegalizeAction; |
| |
| /// Legalization is decided based on an instruction's opcode, which type slot |
| /// we're considering, and what the existing type is. These aspects are gathered |
| /// together for convenience in the InstrAspect class. |
| struct InstrAspect { |
| unsigned Opcode; |
| unsigned Idx = 0; |
| LLT Type; |
| |
| InstrAspect(unsigned Opcode, LLT Type) : Opcode(Opcode), Type(Type) {} |
| InstrAspect(unsigned Opcode, unsigned Idx, LLT Type) |
| : Opcode(Opcode), Idx(Idx), Type(Type) {} |
| |
| bool operator==(const InstrAspect &RHS) const { |
| return Opcode == RHS.Opcode && Idx == RHS.Idx && Type == RHS.Type; |
| } |
| }; |
| |
| /// The LegalityQuery object bundles together all the information that's needed |
| /// to decide whether a given operation is legal or not. |
| /// For efficiency, it doesn't make a copy of Types so care must be taken not |
| /// to free it before using the query. |
| struct LegalityQuery { |
| unsigned Opcode; |
| ArrayRef<LLT> Types; |
| |
| struct MemDesc { |
| uint64_t SizeInBits; |
| AtomicOrdering Ordering; |
| }; |
| |
| /// Operations which require memory can use this to place requirements on the |
| /// memory type for each MMO. |
| ArrayRef<MemDesc> MMODescrs; |
| |
| constexpr LegalityQuery(unsigned Opcode, const ArrayRef<LLT> Types, |
| const ArrayRef<MemDesc> MMODescrs) |
| : Opcode(Opcode), Types(Types), MMODescrs(MMODescrs) {} |
| constexpr LegalityQuery(unsigned Opcode, const ArrayRef<LLT> Types) |
| : LegalityQuery(Opcode, Types, {}) {} |
| |
| raw_ostream &print(raw_ostream &OS) const; |
| }; |
| |
| /// The result of a query. It either indicates a final answer of Legal or |
| /// Unsupported or describes an action that must be taken to make an operation |
| /// more legal. |
| struct LegalizeActionStep { |
| /// The action to take or the final answer. |
| LegalizeAction Action; |
| /// If describing an action, the type index to change. Otherwise zero. |
| unsigned TypeIdx; |
| /// If describing an action, the new type for TypeIdx. Otherwise LLT{}. |
| LLT NewType; |
| |
| LegalizeActionStep(LegalizeAction Action, unsigned TypeIdx, |
| const LLT &NewType) |
| : Action(Action), TypeIdx(TypeIdx), NewType(NewType) {} |
| |
| bool operator==(const LegalizeActionStep &RHS) const { |
| return std::tie(Action, TypeIdx, NewType) == |
| std::tie(RHS.Action, RHS.TypeIdx, RHS.NewType); |
| } |
| }; |
| |
| using LegalityPredicate = std::function<bool (const LegalityQuery &)>; |
| using LegalizeMutation = |
| std::function<std::pair<unsigned, LLT>(const LegalityQuery &)>; |
| |
| namespace LegalityPredicates { |
| struct TypePairAndMemSize { |
| LLT Type0; |
| LLT Type1; |
| uint64_t MemSize; |
| |
| bool operator==(const TypePairAndMemSize &Other) const { |
| return Type0 == Other.Type0 && Type1 == Other.Type1 && |
| MemSize == Other.MemSize; |
| } |
| }; |
| |
| /// True iff P0 and P1 are true. |
| template<typename Predicate> |
| Predicate all(Predicate P0, Predicate P1) { |
| return [=](const LegalityQuery &Query) { |
| return P0(Query) && P1(Query); |
| }; |
| } |
| /// True iff all given predicates are true. |
| template<typename Predicate, typename... Args> |
| Predicate all(Predicate P0, Predicate P1, Args... args) { |
| return all(all(P0, P1), args...); |
| } |
| /// True iff the given type index is the specified types. |
| LegalityPredicate typeIs(unsigned TypeIdx, LLT TypesInit); |
| /// True iff the given type index is one of the specified types. |
| LegalityPredicate typeInSet(unsigned TypeIdx, |
| std::initializer_list<LLT> TypesInit); |
| /// True iff the given types for the given pair of type indexes is one of the |
| /// specified type pairs. |
| LegalityPredicate |
| typePairInSet(unsigned TypeIdx0, unsigned TypeIdx1, |
| std::initializer_list<std::pair<LLT, LLT>> TypesInit); |
| /// True iff the given types for the given pair of type indexes is one of the |
| /// specified type pairs. |
| LegalityPredicate typePairAndMemSizeInSet( |
| unsigned TypeIdx0, unsigned TypeIdx1, unsigned MMOIdx, |
| std::initializer_list<TypePairAndMemSize> TypesAndMemSizeInit); |
| /// True iff the specified type index is a scalar. |
| LegalityPredicate isScalar(unsigned TypeIdx); |
| /// True iff the specified type index is a vector. |
| LegalityPredicate isVector(unsigned TypeIdx); |
| /// True iff the specified type index is a pointer (with any address space). |
| LegalityPredicate isPointer(unsigned TypeIdx); |
| /// True iff the specified type index is a pointer with the specified address |
| /// space. |
| LegalityPredicate isPointer(unsigned TypeIdx, unsigned AddrSpace); |
| |
| /// True iff the specified type index is a scalar that's narrower than the given |
| /// size. |
| LegalityPredicate narrowerThan(unsigned TypeIdx, unsigned Size); |
| |
| /// True iff the specified type index is a scalar that's wider than the given |
| /// size. |
| LegalityPredicate widerThan(unsigned TypeIdx, unsigned Size); |
| |
| /// True iff the specified type index is a scalar or vector with an element type |
| /// that's narrower than the given size. |
| LegalityPredicate scalarOrEltNarrowerThan(unsigned TypeIdx, unsigned Size); |
| |
| /// True iff the specified type index is a scalar or a vector with an element |
| /// type that's wider than the given size. |
| LegalityPredicate scalarOrEltWiderThan(unsigned TypeIdx, unsigned Size); |
| |
| /// True iff the specified type index is a scalar whose size is not a power of |
| /// 2. |
| LegalityPredicate sizeNotPow2(unsigned TypeIdx); |
| |
| /// True iff the specified type index is a scalar or vector whose element size |
| /// is not a power of 2. |
| LegalityPredicate scalarOrEltSizeNotPow2(unsigned TypeIdx); |
| |
| /// True iff the specified type indices are both the same bit size. |
| LegalityPredicate sameSize(unsigned TypeIdx0, unsigned TypeIdx1); |
| /// True iff the specified MMO index has a size that is not a power of 2 |
| LegalityPredicate memSizeInBytesNotPow2(unsigned MMOIdx); |
| /// True iff the specified type index is a vector whose element count is not a |
| /// power of 2. |
| LegalityPredicate numElementsNotPow2(unsigned TypeIdx); |
| /// True iff the specified MMO index has at an atomic ordering of at Ordering or |
| /// stronger. |
| LegalityPredicate atomicOrderingAtLeastOrStrongerThan(unsigned MMOIdx, |
| AtomicOrdering Ordering); |
| } // end namespace LegalityPredicates |
| |
| namespace LegalizeMutations { |
| /// Select this specific type for the given type index. |
| LegalizeMutation changeTo(unsigned TypeIdx, LLT Ty); |
| |
| /// Keep the same type as the given type index. |
| LegalizeMutation changeTo(unsigned TypeIdx, unsigned FromTypeIdx); |
| |
| /// Keep the same scalar or element type as the given type index. |
| LegalizeMutation changeElementTo(unsigned TypeIdx, unsigned FromTypeIdx); |
| |
| /// Keep the same scalar or element type as the given type. |
| LegalizeMutation changeElementTo(unsigned TypeIdx, LLT Ty); |
| |
| /// Widen the scalar type or vector element type for the given type index to the |
| /// next power of 2. |
| LegalizeMutation widenScalarOrEltToNextPow2(unsigned TypeIdx, unsigned Min = 0); |
| |
| /// Add more elements to the type for the given type index to the next power of |
| /// 2. |
| LegalizeMutation moreElementsToNextPow2(unsigned TypeIdx, unsigned Min = 0); |
| /// Break up the vector type for the given type index into the element type. |
| LegalizeMutation scalarize(unsigned TypeIdx); |
| } // end namespace LegalizeMutations |
| |
| /// A single rule in a legalizer info ruleset. |
| /// The specified action is chosen when the predicate is true. Where appropriate |
| /// for the action (e.g. for WidenScalar) the new type is selected using the |
| /// given mutator. |
| class LegalizeRule { |
| LegalityPredicate Predicate; |
| LegalizeAction Action; |
| LegalizeMutation Mutation; |
| |
| public: |
| LegalizeRule(LegalityPredicate Predicate, LegalizeAction Action, |
| LegalizeMutation Mutation = nullptr) |
| : Predicate(Predicate), Action(Action), Mutation(Mutation) {} |
| |
| /// Test whether the LegalityQuery matches. |
| bool match(const LegalityQuery &Query) const { |
| return Predicate(Query); |
| } |
| |
| LegalizeAction getAction() const { return Action; } |
| |
| /// Determine the change to make. |
| std::pair<unsigned, LLT> determineMutation(const LegalityQuery &Query) const { |
| if (Mutation) |
| return Mutation(Query); |
| return std::make_pair(0, LLT{}); |
| } |
| }; |
| |
| class LegalizeRuleSet { |
| /// When non-zero, the opcode we are an alias of |
| unsigned AliasOf; |
| /// If true, there is another opcode that aliases this one |
| bool IsAliasedByAnother; |
| SmallVector<LegalizeRule, 2> Rules; |
| |
| #ifndef NDEBUG |
| /// If bit I is set, this rule set contains a rule that may handle (predicate |
| /// or perform an action upon (or both)) the type index I. The uncertainty |
| /// comes from free-form rules executing user-provided lambda functions. We |
| /// conservatively assume such rules do the right thing and cover all type |
| /// indices. The bitset is intentionally 1 bit wider than it absolutely needs |
| /// to be to distinguish such cases from the cases where all type indices are |
| /// individually handled. |
| SmallBitVector TypeIdxsCovered{MCOI::OPERAND_LAST_GENERIC - |
| MCOI::OPERAND_FIRST_GENERIC + 2}; |
| #endif |
| |
| unsigned typeIdx(unsigned TypeIdx) { |
| assert(TypeIdx <= |
| (MCOI::OPERAND_LAST_GENERIC - MCOI::OPERAND_FIRST_GENERIC) && |
| "Type Index is out of bounds"); |
| #ifndef NDEBUG |
| TypeIdxsCovered.set(TypeIdx); |
| #endif |
| return TypeIdx; |
| } |
| void markAllTypeIdxsAsCovered() { |
| #ifndef NDEBUG |
| TypeIdxsCovered.set(); |
| #endif |
| } |
| |
| void add(const LegalizeRule &Rule) { |
| assert(AliasOf == 0 && |
| "RuleSet is aliased, change the representative opcode instead"); |
| Rules.push_back(Rule); |
| } |
| |
| static bool always(const LegalityQuery &) { return true; } |
| |
| /// Use the given action when the predicate is true. |
| /// Action should not be an action that requires mutation. |
| LegalizeRuleSet &actionIf(LegalizeAction Action, |
| LegalityPredicate Predicate) { |
| add({Predicate, Action}); |
| return *this; |
| } |
| /// Use the given action when the predicate is true. |
| /// Action should be an action that requires mutation. |
| LegalizeRuleSet &actionIf(LegalizeAction Action, LegalityPredicate Predicate, |
| LegalizeMutation Mutation) { |
| add({Predicate, Action, Mutation}); |
| return *this; |
| } |
| /// Use the given action when type index 0 is any type in the given list. |
| /// Action should not be an action that requires mutation. |
| LegalizeRuleSet &actionFor(LegalizeAction Action, |
| std::initializer_list<LLT> Types) { |
| using namespace LegalityPredicates; |
| return actionIf(Action, typeInSet(typeIdx(0), Types)); |
| } |
| /// Use the given action when type index 0 is any type in the given list. |
| /// Action should be an action that requires mutation. |
| LegalizeRuleSet &actionFor(LegalizeAction Action, |
| std::initializer_list<LLT> Types, |
| LegalizeMutation Mutation) { |
| using namespace LegalityPredicates; |
| return actionIf(Action, typeInSet(typeIdx(0), Types), Mutation); |
| } |
| /// Use the given action when type indexes 0 and 1 is any type pair in the |
| /// given list. |
| /// Action should not be an action that requires mutation. |
| LegalizeRuleSet &actionFor(LegalizeAction Action, |
| std::initializer_list<std::pair<LLT, LLT>> Types) { |
| using namespace LegalityPredicates; |
| return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types)); |
| } |
| /// Use the given action when type indexes 0 and 1 is any type pair in the |
| /// given list. |
| /// Action should be an action that requires mutation. |
| LegalizeRuleSet &actionFor(LegalizeAction Action, |
| std::initializer_list<std::pair<LLT, LLT>> Types, |
| LegalizeMutation Mutation) { |
| using namespace LegalityPredicates; |
| return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types), |
| Mutation); |
| } |
| /// Use the given action when type indexes 0 and 1 are both in the given list. |
| /// That is, the type pair is in the cartesian product of the list. |
| /// Action should not be an action that requires mutation. |
| LegalizeRuleSet &actionForCartesianProduct(LegalizeAction Action, |
| std::initializer_list<LLT> Types) { |
| using namespace LegalityPredicates; |
| return actionIf(Action, all(typeInSet(typeIdx(0), Types), |
| typeInSet(typeIdx(1), Types))); |
| } |
| /// Use the given action when type indexes 0 and 1 are both in their |
| /// respective lists. |
| /// That is, the type pair is in the cartesian product of the lists |
| /// Action should not be an action that requires mutation. |
| LegalizeRuleSet & |
| actionForCartesianProduct(LegalizeAction Action, |
| std::initializer_list<LLT> Types0, |
| std::initializer_list<LLT> Types1) { |
| using namespace LegalityPredicates; |
| return actionIf(Action, all(typeInSet(typeIdx(0), Types0), |
| typeInSet(typeIdx(1), Types1))); |
| } |
| /// Use the given action when type indexes 0, 1, and 2 are all in their |
| /// respective lists. |
| /// That is, the type triple is in the cartesian product of the lists |
| /// Action should not be an action that requires mutation. |
| LegalizeRuleSet &actionForCartesianProduct( |
| LegalizeAction Action, std::initializer_list<LLT> Types0, |
| std::initializer_list<LLT> Types1, std::initializer_list<LLT> Types2) { |
| using namespace LegalityPredicates; |
| return actionIf(Action, all(typeInSet(typeIdx(0), Types0), |
| all(typeInSet(typeIdx(1), Types1), |
| typeInSet(typeIdx(2), Types2)))); |
| } |
| |
| public: |
| LegalizeRuleSet() : AliasOf(0), IsAliasedByAnother(false), Rules() {} |
| |
| bool isAliasedByAnother() { return IsAliasedByAnother; } |
| void setIsAliasedByAnother() { IsAliasedByAnother = true; } |
| void aliasTo(unsigned Opcode) { |
| assert((AliasOf == 0 || AliasOf == Opcode) && |
| "Opcode is already aliased to another opcode"); |
| assert(Rules.empty() && "Aliasing will discard rules"); |
| AliasOf = Opcode; |
| } |
| unsigned getAlias() const { return AliasOf; } |
| |
| /// The instruction is legal if predicate is true. |
| LegalizeRuleSet &legalIf(LegalityPredicate Predicate) { |
| // We have no choice but conservatively assume that the free-form |
| // user-provided Predicate properly handles all type indices: |
| markAllTypeIdxsAsCovered(); |
| return actionIf(LegalizeAction::Legal, Predicate); |
| } |
| /// The instruction is legal when type index 0 is any type in the given list. |
| LegalizeRuleSet &legalFor(std::initializer_list<LLT> Types) { |
| return actionFor(LegalizeAction::Legal, Types); |
| } |
| /// The instruction is legal when type indexes 0 and 1 is any type pair in the |
| /// given list. |
| LegalizeRuleSet &legalFor(std::initializer_list<std::pair<LLT, LLT>> Types) { |
| return actionFor(LegalizeAction::Legal, Types); |
| } |
| /// The instruction is legal when type indexes 0 and 1 along with the memory |
| /// size is any type and size tuple in the given list. |
| LegalizeRuleSet &legalForTypesWithMemSize( |
| std::initializer_list<LegalityPredicates::TypePairAndMemSize> |
| TypesAndMemSize) { |
| return actionIf(LegalizeAction::Legal, |
| LegalityPredicates::typePairAndMemSizeInSet( |
| typeIdx(0), typeIdx(1), /*MMOIdx*/ 0, TypesAndMemSize)); |
| } |
| /// The instruction is legal when type indexes 0 and 1 are both in the given |
| /// list. That is, the type pair is in the cartesian product of the list. |
| LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types) { |
| return actionForCartesianProduct(LegalizeAction::Legal, Types); |
| } |
| /// The instruction is legal when type indexes 0 and 1 are both their |
| /// respective lists. |
| LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types0, |
| std::initializer_list<LLT> Types1) { |
| return actionForCartesianProduct(LegalizeAction::Legal, Types0, Types1); |
| } |
| |
| /// The instruction is lowered. |
| LegalizeRuleSet &lower() { |
| using namespace LegalizeMutations; |
| // We have no choice but conservatively assume that predicate-less lowering |
| // properly handles all type indices by design: |
| markAllTypeIdxsAsCovered(); |
| return actionIf(LegalizeAction::Lower, always); |
| } |
| /// The instruction is lowered if predicate is true. Keep type index 0 as the |
| /// same type. |
| LegalizeRuleSet &lowerIf(LegalityPredicate Predicate) { |
| using namespace LegalizeMutations; |
| // We have no choice but conservatively assume that lowering with a |
| // free-form user provided Predicate properly handles all type indices: |
| markAllTypeIdxsAsCovered(); |
| return actionIf(LegalizeAction::Lower, Predicate); |
| } |
| /// The instruction is lowered if predicate is true. |
| LegalizeRuleSet &lowerIf(LegalityPredicate Predicate, |
| LegalizeMutation Mutation) { |
| // We have no choice but conservatively assume that lowering with a |
| // free-form user provided Predicate properly handles all type indices: |
| markAllTypeIdxsAsCovered(); |
| return actionIf(LegalizeAction::Lower, Predicate, Mutation); |
| } |
| /// The instruction is lowered when type index 0 is any type in the given |
| /// list. Keep type index 0 as the same type. |
| LegalizeRuleSet &lowerFor(std::initializer_list<LLT> Types) { |
| return actionFor(LegalizeAction::Lower, Types, |
| LegalizeMutations::changeTo(0, 0)); |
| } |
| /// The instruction is lowered when type index 0 is any type in the given |
| /// list. |
| LegalizeRuleSet &lowerFor(std::initializer_list<LLT> Types, |
| LegalizeMutation Mutation) { |
| return actionFor(LegalizeAction::Lower, Types, Mutation); |
| } |
| /// The instruction is lowered when type indexes 0 and 1 is any type pair in |
| /// the given list. Keep type index 0 as the same type. |
| LegalizeRuleSet &lowerFor(std::initializer_list<std::pair<LLT, LLT>> Types) { |
| return actionFor(LegalizeAction::Lower, Types, |
| LegalizeMutations::changeTo(0, 0)); |
| } |
| /// The instruction is lowered when type indexes 0 and 1 is any type pair in |
| /// the given list. |
| LegalizeRuleSet &lowerFor(std::initializer_list<std::pair<LLT, LLT>> Types, |
| LegalizeMutation Mutation) { |
| return actionFor(LegalizeAction::Lower, Types, Mutation); |
| } |
| /// The instruction is lowered when type indexes 0 and 1 are both in their |
| /// respective lists. |
| LegalizeRuleSet &lowerForCartesianProduct(std::initializer_list<LLT> Types0, |
| std::initializer_list<LLT> Types1) { |
| using namespace LegalityPredicates; |
| return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1); |
| } |
| /// The instruction is lowered when when type indexes 0, 1, and 2 are all in |
| /// their respective lists. |
| LegalizeRuleSet &lowerForCartesianProduct(std::initializer_list<LLT> Types0, |
| std::initializer_list<LLT> Types1, |
| std::initializer_list<LLT> Types2) { |
| using namespace LegalityPredicates; |
| return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1, |
| Types2); |
| } |
| |
| /// Like legalIf, but for the Libcall action. |
| LegalizeRuleSet &libcallIf(LegalityPredicate Predicate) { |
| // We have no choice but conservatively assume that a libcall with a |
| // free-form user provided Predicate properly handles all type indices: |
| markAllTypeIdxsAsCovered(); |
| return actionIf(LegalizeAction::Libcall, Predicate); |
| } |
| LegalizeRuleSet &libcallFor(std::initializer_list<LLT> Types) { |
| return actionFor(LegalizeAction::Libcall, Types); |
| } |
| LegalizeRuleSet & |
| libcallFor(std::initializer_list<std::pair<LLT, LLT>> Types) { |
| return actionFor(LegalizeAction::Libcall, Types); |
| } |
| LegalizeRuleSet & |
| libcallForCartesianProduct(std::initializer_list<LLT> Types) { |
| return actionForCartesianProduct(LegalizeAction::Libcall, Types); |
| } |
| LegalizeRuleSet & |
| libcallForCartesianProduct(std::initializer_list<LLT> Types0, |
| std::initializer_list<LLT> Types1) { |
| return actionForCartesianProduct(LegalizeAction::Libcall, Types0, Types1); |
| } |
| |
| /// Widen the scalar to the one selected by the mutation if the predicate is |
| /// true. |
| LegalizeRuleSet &widenScalarIf(LegalityPredicate Predicate, |
| LegalizeMutation Mutation) { |
| // We have no choice but conservatively assume that an action with a |
| // free-form user provided Predicate properly handles all type indices: |
| markAllTypeIdxsAsCovered(); |
| return actionIf(LegalizeAction::WidenScalar, Predicate, Mutation); |
| } |
| /// Narrow the scalar to the one selected by the mutation if the predicate is |
| /// true. |
| LegalizeRuleSet &narrowScalarIf(LegalityPredicate Predicate, |
| LegalizeMutation Mutation) { |
| // We have no choice but conservatively assume that an action with a |
| // free-form user provided Predicate properly handles all type indices: |
| markAllTypeIdxsAsCovered(); |
| return actionIf(LegalizeAction::NarrowScalar, Predicate, Mutation); |
| } |
| |
| /// Add more elements to reach the type selected by the mutation if the |
| /// predicate is true. |
| LegalizeRuleSet &moreElementsIf(LegalityPredicate Predicate, |
| LegalizeMutation Mutation) { |
| // We have no choice but conservatively assume that an action with a |
| // free-form user provided Predicate properly handles all type indices: |
| markAllTypeIdxsAsCovered(); |
| return actionIf(LegalizeAction::MoreElements, Predicate, Mutation); |
| } |
| /// Remove elements to reach the type selected by the mutation if the |
| /// predicate is true. |
| LegalizeRuleSet &fewerElementsIf(LegalityPredicate Predicate, |
| LegalizeMutation Mutation) { |
| // We have no choice but conservatively assume that an action with a |
| // free-form user provided Predicate properly handles all type indices: |
| markAllTypeIdxsAsCovered(); |
| return actionIf(LegalizeAction::FewerElements, Predicate, Mutation); |
| } |
| |
| /// The instruction is unsupported. |
| LegalizeRuleSet &unsupported() { |
| return actionIf(LegalizeAction::Unsupported, always); |
| } |
| LegalizeRuleSet &unsupportedIf(LegalityPredicate Predicate) { |
| return actionIf(LegalizeAction::Unsupported, Predicate); |
| } |
| LegalizeRuleSet &unsupportedIfMemSizeNotPow2() { |
| return actionIf(LegalizeAction::Unsupported, |
| LegalityPredicates::memSizeInBytesNotPow2(0)); |
| } |
| |
| LegalizeRuleSet &customIf(LegalityPredicate Predicate) { |
| // We have no choice but conservatively assume that a custom action with a |
| // free-form user provided Predicate properly handles all type indices: |
| markAllTypeIdxsAsCovered(); |
| return actionIf(LegalizeAction::Custom, Predicate); |
| } |
| LegalizeRuleSet &customFor(std::initializer_list<LLT> Types) { |
| return actionFor(LegalizeAction::Custom, Types); |
| } |
| LegalizeRuleSet &customForCartesianProduct(std::initializer_list<LLT> Types) { |
| return actionForCartesianProduct(LegalizeAction::Custom, Types); |
| } |
| LegalizeRuleSet & |
| customForCartesianProduct(std::initializer_list<LLT> Types0, |
| std::initializer_list<LLT> Types1) { |
| return actionForCartesianProduct(LegalizeAction::Custom, Types0, Types1); |
| } |
| |
| /// Unconditionally custom lower. |
| LegalizeRuleSet &custom() { |
| return customIf(always); |
| } |
| |
| /// Widen the scalar to the next power of two that is at least MinSize. |
| /// No effect if the type is not a scalar or is a power of two. |
| LegalizeRuleSet &widenScalarToNextPow2(unsigned TypeIdx, |
| unsigned MinSize = 0) { |
| using namespace LegalityPredicates; |
| return actionIf( |
| LegalizeAction::WidenScalar, sizeNotPow2(typeIdx(TypeIdx)), |
| LegalizeMutations::widenScalarOrEltToNextPow2(TypeIdx, MinSize)); |
| } |
| |
| /// Widen the scalar or vector element type to the next power of two that is |
| /// at least MinSize. No effect if the scalar size is a power of two. |
| LegalizeRuleSet &widenScalarOrEltToNextPow2(unsigned TypeIdx, |
| unsigned MinSize = 0) { |
| using namespace LegalityPredicates; |
| return actionIf( |
| LegalizeAction::WidenScalar, scalarOrEltSizeNotPow2(typeIdx(TypeIdx)), |
| LegalizeMutations::widenScalarOrEltToNextPow2(TypeIdx, MinSize)); |
| } |
| |
| LegalizeRuleSet &narrowScalar(unsigned TypeIdx, LegalizeMutation Mutation) { |
| using namespace LegalityPredicates; |
| return actionIf(LegalizeAction::NarrowScalar, isScalar(typeIdx(TypeIdx)), |
| Mutation); |
| } |
| |
| LegalizeRuleSet &scalarize(unsigned TypeIdx) { |
| using namespace LegalityPredicates; |
| return actionIf(LegalizeAction::FewerElements, isVector(typeIdx(TypeIdx)), |
| LegalizeMutations::scalarize(TypeIdx)); |
| } |
| |
| /// Ensure the scalar is at least as wide as Ty. |
| LegalizeRuleSet &minScalarOrElt(unsigned TypeIdx, const LLT &Ty) { |
| using namespace LegalityPredicates; |
| using namespace LegalizeMutations; |
| return actionIf(LegalizeAction::WidenScalar, |
| scalarOrEltNarrowerThan(TypeIdx, Ty.getScalarSizeInBits()), |
| changeElementTo(typeIdx(TypeIdx), Ty)); |
| } |
| |
| /// Ensure the scalar is at least as wide as Ty. |
| LegalizeRuleSet &minScalar(unsigned TypeIdx, const LLT &Ty) { |
| using namespace LegalityPredicates; |
| using namespace LegalizeMutations; |
| return actionIf(LegalizeAction::WidenScalar, |
| narrowerThan(TypeIdx, Ty.getSizeInBits()), |
| changeTo(typeIdx(TypeIdx), Ty)); |
| } |
| |
| /// Ensure the scalar is at most as wide as Ty. |
| LegalizeRuleSet &maxScalarOrElt(unsigned TypeIdx, const LLT &Ty) { |
| using namespace LegalityPredicates; |
| using namespace LegalizeMutations; |
| return actionIf(LegalizeAction::NarrowScalar, |
| scalarOrEltWiderThan(TypeIdx, Ty.getScalarSizeInBits()), |
| changeElementTo(typeIdx(TypeIdx), Ty)); |
| } |
| |
| /// Ensure the scalar is at most as wide as Ty. |
| LegalizeRuleSet &maxScalar(unsigned TypeIdx, const LLT &Ty) { |
| using namespace LegalityPredicates; |
| using namespace LegalizeMutations; |
| return actionIf(LegalizeAction::NarrowScalar, |
| widerThan(TypeIdx, Ty.getSizeInBits()), |
| changeTo(typeIdx(TypeIdx), Ty)); |
| } |
| |
| /// Conditionally limit the maximum size of the scalar. |
| /// For example, when the maximum size of one type depends on the size of |
| /// another such as extracting N bits from an M bit container. |
| LegalizeRuleSet &maxScalarIf(LegalityPredicate Predicate, unsigned TypeIdx, |
| const LLT &Ty) { |
| using namespace LegalityPredicates; |
| using namespace LegalizeMutations; |
| return actionIf( |
| LegalizeAction::NarrowScalar, |
| [=](const LegalityQuery &Query) { |
| return widerThan(TypeIdx, Ty.getSizeInBits()) && Predicate(Query); |
| }, |
| changeElementTo(typeIdx(TypeIdx), Ty)); |
| } |
| |
| /// Limit the range of scalar sizes to MinTy and MaxTy. |
| LegalizeRuleSet &clampScalar(unsigned TypeIdx, const LLT &MinTy, |
| const LLT &MaxTy) { |
| assert(MinTy.isScalar() && MaxTy.isScalar() && "Expected scalar types"); |
| return minScalar(TypeIdx, MinTy).maxScalar(TypeIdx, MaxTy); |
| } |
| |
| /// Limit the range of scalar sizes to MinTy and MaxTy. |
| LegalizeRuleSet &clampScalarOrElt(unsigned TypeIdx, const LLT &MinTy, |
| const LLT &MaxTy) { |
| return minScalarOrElt(TypeIdx, MinTy).maxScalarOrElt(TypeIdx, MaxTy); |
| } |
| |
| /// Widen the scalar to match the size of another. |
| LegalizeRuleSet &minScalarSameAs(unsigned TypeIdx, unsigned LargeTypeIdx) { |
| typeIdx(TypeIdx); |
| return widenScalarIf( |
| [=](const LegalityQuery &Query) { |
| return Query.Types[LargeTypeIdx].getScalarSizeInBits() > |
| Query.Types[TypeIdx].getSizeInBits(); |
| }, |
| [=](const LegalityQuery &Query) { |
| LLT T = Query.Types[LargeTypeIdx]; |
| return std::make_pair(TypeIdx, |
| T.isVector() ? T.getElementType() : T); |
| }); |
| } |
| |
| /// Add more elements to the vector to reach the next power of two. |
| /// No effect if the type is not a vector or the element count is a power of |
| /// two. |
| LegalizeRuleSet &moreElementsToNextPow2(unsigned TypeIdx) { |
| using namespace LegalityPredicates; |
| return actionIf(LegalizeAction::MoreElements, |
| numElementsNotPow2(typeIdx(TypeIdx)), |
| LegalizeMutations::moreElementsToNextPow2(TypeIdx)); |
| } |
| |
| /// Limit the number of elements in EltTy vectors to at least MinElements. |
| LegalizeRuleSet &clampMinNumElements(unsigned TypeIdx, const LLT &EltTy, |
| unsigned MinElements) { |
| // Mark the type index as covered: |
| typeIdx(TypeIdx); |
| return actionIf( |
| LegalizeAction::MoreElements, |
| [=](const LegalityQuery &Query) { |
| LLT VecTy = Query.Types[TypeIdx]; |
| return VecTy.isVector() && VecTy.getElementType() == EltTy && |
| VecTy.getNumElements() < MinElements; |
| }, |
| [=](const LegalityQuery &Query) { |
| LLT VecTy = Query.Types[TypeIdx]; |
| return std::make_pair( |
| TypeIdx, LLT::vector(MinElements, VecTy.getElementType())); |
| }); |
| } |
| /// Limit the number of elements in EltTy vectors to at most MaxElements. |
| LegalizeRuleSet &clampMaxNumElements(unsigned TypeIdx, const LLT &EltTy, |
| unsigned MaxElements) { |
| // Mark the type index as covered: |
| typeIdx(TypeIdx); |
| return actionIf( |
| LegalizeAction::FewerElements, |
| [=](const LegalityQuery &Query) { |
| LLT VecTy = Query.Types[TypeIdx]; |
| return VecTy.isVector() && VecTy.getElementType() == EltTy && |
| VecTy.getNumElements() > MaxElements; |
| }, |
| [=](const LegalityQuery &Query) { |
| LLT VecTy = Query.Types[TypeIdx]; |
| LLT NewTy = LLT::scalarOrVector(MaxElements, VecTy.getElementType()); |
| return std::make_pair(TypeIdx, NewTy); |
| }); |
| } |
| /// Limit the number of elements for the given vectors to at least MinTy's |
| /// number of elements and at most MaxTy's number of elements. |
| /// |
| /// No effect if the type is not a vector or does not have the same element |
| /// type as the constraints. |
| /// The element type of MinTy and MaxTy must match. |
| LegalizeRuleSet &clampNumElements(unsigned TypeIdx, const LLT &MinTy, |
| const LLT &MaxTy) { |
| assert(MinTy.getElementType() == MaxTy.getElementType() && |
| "Expected element types to agree"); |
| |
| const LLT &EltTy = MinTy.getElementType(); |
| return clampMinNumElements(TypeIdx, EltTy, MinTy.getNumElements()) |
| .clampMaxNumElements(TypeIdx, EltTy, MaxTy.getNumElements()); |
| } |
| |
| /// Fallback on the previous implementation. This should only be used while |
| /// porting a rule. |
| LegalizeRuleSet &fallback() { |
| add({always, LegalizeAction::UseLegacyRules}); |
| return *this; |
| } |
| |
| /// Check if there is no type index which is obviously not handled by the |
| /// LegalizeRuleSet in any way at all. |
| /// \pre Type indices of the opcode form a dense [0, \p NumTypeIdxs) set. |
| bool verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const; |
| |
| /// Apply the ruleset to the given LegalityQuery. |
| LegalizeActionStep apply(const LegalityQuery &Query) const; |
| }; |
| |
| class LegalizerInfo { |
| public: |
| LegalizerInfo(); |
| virtual ~LegalizerInfo() = default; |
| |
| unsigned getOpcodeIdxForOpcode(unsigned Opcode) const; |
| unsigned getActionDefinitionsIdx(unsigned Opcode) const; |
| |
| /// Compute any ancillary tables needed to quickly decide how an operation |
| /// should be handled. This must be called after all "set*Action"methods but |
| /// before any query is made or incorrect results may be returned. |
| void computeTables(); |
| |
| /// Perform simple self-diagnostic and assert if there is anything obviously |
| /// wrong with the actions set up. |
| void verify(const MCInstrInfo &MII) const; |
| |
| static bool needsLegalizingToDifferentSize(const LegalizeAction Action) { |
| using namespace LegalizeActions; |
| switch (Action) { |
| case NarrowScalar: |
| case WidenScalar: |
| case FewerElements: |
| case MoreElements: |
| case Unsupported: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| using SizeAndAction = std::pair<uint16_t, LegalizeAction>; |
| using SizeAndActionsVec = std::vector<SizeAndAction>; |
| using SizeChangeStrategy = |
| std::function<SizeAndActionsVec(const SizeAndActionsVec &v)>; |
| |
| /// More friendly way to set an action for common types that have an LLT |
| /// representation. |
| /// The LegalizeAction must be one for which NeedsLegalizingToDifferentSize |
| /// returns false. |
| void setAction(const InstrAspect &Aspect, LegalizeAction Action) { |
| assert(!needsLegalizingToDifferentSize(Action)); |
| TablesInitialized = false; |
| const unsigned OpcodeIdx = Aspect.Opcode - FirstOp; |
| if (SpecifiedActions[OpcodeIdx].size() <= Aspect.Idx) |
| SpecifiedActions[OpcodeIdx].resize(Aspect.Idx + 1); |
| SpecifiedActions[OpcodeIdx][Aspect.Idx][Aspect.Type] = Action; |
| } |
| |
| /// The setAction calls record the non-size-changing legalization actions |
| /// to take on specificly-sized types. The SizeChangeStrategy defines what |
| /// to do when the size of the type needs to be changed to reach a legally |
| /// sized type (i.e., one that was defined through a setAction call). |
| /// e.g. |
| /// setAction ({G_ADD, 0, LLT::scalar(32)}, Legal); |
| /// setLegalizeScalarToDifferentSizeStrategy( |
| /// G_ADD, 0, widenToLargerTypesAndNarrowToLargest); |
| /// will end up defining getAction({G_ADD, 0, T}) to return the following |
| /// actions for different scalar types T: |
| /// LLT::scalar(1)..LLT::scalar(31): {WidenScalar, 0, LLT::scalar(32)} |
| /// LLT::scalar(32): {Legal, 0, LLT::scalar(32)} |
| /// LLT::scalar(33)..: {NarrowScalar, 0, LLT::scalar(32)} |
| /// |
| /// If no SizeChangeAction gets defined, through this function, |
| /// the default is unsupportedForDifferentSizes. |
| void setLegalizeScalarToDifferentSizeStrategy(const unsigned Opcode, |
| const unsigned TypeIdx, |
| SizeChangeStrategy S) { |
| const unsigned OpcodeIdx = Opcode - FirstOp; |
| if (ScalarSizeChangeStrategies[OpcodeIdx].size() <= TypeIdx) |
| ScalarSizeChangeStrategies[OpcodeIdx].resize(TypeIdx + 1); |
| ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] = S; |
| } |
| |
| /// See also setLegalizeScalarToDifferentSizeStrategy. |
| /// This function allows to set the SizeChangeStrategy for vector elements. |
| void setLegalizeVectorElementToDifferentSizeStrategy(const unsigned Opcode, |
| const unsigned TypeIdx, |
| SizeChangeStrategy S) { |
| const unsigned OpcodeIdx = Opcode - FirstOp; |
| if (VectorElementSizeChangeStrategies[OpcodeIdx].size() <= TypeIdx) |
| VectorElementSizeChangeStrategies[OpcodeIdx].resize(TypeIdx + 1); |
| VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] = S; |
| } |
| |
| /// A SizeChangeStrategy for the common case where legalization for a |
| /// particular operation consists of only supporting a specific set of type |
| /// sizes. E.g. |
| /// setAction ({G_DIV, 0, LLT::scalar(32)}, Legal); |
| /// setAction ({G_DIV, 0, LLT::scalar(64)}, Legal); |
| /// setLegalizeScalarToDifferentSizeStrategy( |
| /// G_DIV, 0, unsupportedForDifferentSizes); |
| /// will result in getAction({G_DIV, 0, T}) to return Legal for s32 and s64, |
| /// and Unsupported for all other scalar types T. |
| static SizeAndActionsVec |
| unsupportedForDifferentSizes(const SizeAndActionsVec &v) { |
| using namespace LegalizeActions; |
| return increaseToLargerTypesAndDecreaseToLargest(v, Unsupported, |
| Unsupported); |
| } |
| |
| /// A SizeChangeStrategy for the common case where legalization for a |
| /// particular operation consists of widening the type to a large legal type, |
| /// unless there is no such type and then instead it should be narrowed to the |
| /// largest legal type. |
| static SizeAndActionsVec |
| widenToLargerTypesAndNarrowToLargest(const SizeAndActionsVec &v) { |
| using namespace LegalizeActions; |
| assert(v.size() > 0 && |
| "At least one size that can be legalized towards is needed" |
| " for this SizeChangeStrategy"); |
| return increaseToLargerTypesAndDecreaseToLargest(v, WidenScalar, |
| NarrowScalar); |
| } |
| |
| static SizeAndActionsVec |
| widenToLargerTypesUnsupportedOtherwise(const SizeAndActionsVec &v) { |
| using namespace LegalizeActions; |
| return increaseToLargerTypesAndDecreaseToLargest(v, WidenScalar, |
| Unsupported); |
| } |
| |
| static SizeAndActionsVec |
| narrowToSmallerAndUnsupportedIfTooSmall(const SizeAndActionsVec &v) { |
| using namespace LegalizeActions; |
| return decreaseToSmallerTypesAndIncreaseToSmallest(v, NarrowScalar, |
| Unsupported); |
| } |
| |
| static SizeAndActionsVec |
| narrowToSmallerAndWidenToSmallest(const SizeAndActionsVec &v) { |
| using namespace LegalizeActions; |
| assert(v.size() > 0 && |
| "At least one size that can be legalized towards is needed" |
| " for this SizeChangeStrategy"); |
| return decreaseToSmallerTypesAndIncreaseToSmallest(v, NarrowScalar, |
| WidenScalar); |
| } |
| |
| /// A SizeChangeStrategy for the common case where legalization for a |
| /// particular vector operation consists of having more elements in the |
| /// vector, to a type that is legal. Unless there is no such type and then |
| /// instead it should be legalized towards the widest vector that's still |
| /// legal. E.g. |
| /// setAction({G_ADD, LLT::vector(8, 8)}, Legal); |
| /// setAction({G_ADD, LLT::vector(16, 8)}, Legal); |
| /// setAction({G_ADD, LLT::vector(2, 32)}, Legal); |
| /// setAction({G_ADD, LLT::vector(4, 32)}, Legal); |
| /// setLegalizeVectorElementToDifferentSizeStrategy( |
| /// G_ADD, 0, moreToWiderTypesAndLessToWidest); |
| /// will result in the following getAction results: |
| /// * getAction({G_ADD, LLT::vector(8,8)}) returns |
| /// (Legal, vector(8,8)). |
| /// * getAction({G_ADD, LLT::vector(9,8)}) returns |
| /// (MoreElements, vector(16,8)). |
| /// * getAction({G_ADD, LLT::vector(8,32)}) returns |
| /// (FewerElements, vector(4,32)). |
| static SizeAndActionsVec |
| moreToWiderTypesAndLessToWidest(const SizeAndActionsVec &v) { |
| using namespace LegalizeActions; |
| return increaseToLargerTypesAndDecreaseToLargest(v, MoreElements, |
| FewerElements); |
| } |
| |
| /// Helper function to implement many typical SizeChangeStrategy functions. |
| static SizeAndActionsVec |
| increaseToLargerTypesAndDecreaseToLargest(const SizeAndActionsVec &v, |
| LegalizeAction IncreaseAction, |
| LegalizeAction DecreaseAction); |
| /// Helper function to implement many typical SizeChangeStrategy functions. |
| static SizeAndActionsVec |
| decreaseToSmallerTypesAndIncreaseToSmallest(const SizeAndActionsVec &v, |
| LegalizeAction DecreaseAction, |
| LegalizeAction IncreaseAction); |
| |
| /// Get the action definitions for the given opcode. Use this to run a |
| /// LegalityQuery through the definitions. |
| const LegalizeRuleSet &getActionDefinitions(unsigned Opcode) const; |
| |
| /// Get the action definition builder for the given opcode. Use this to define |
| /// the action definitions. |
| /// |
| /// It is an error to request an opcode that has already been requested by the |
| /// multiple-opcode variant. |
| LegalizeRuleSet &getActionDefinitionsBuilder(unsigned Opcode); |
| |
| /// Get the action definition builder for the given set of opcodes. Use this |
| /// to define the action definitions for multiple opcodes at once. The first |
| /// opcode given will be considered the representative opcode and will hold |
| /// the definitions whereas the other opcodes will be configured to refer to |
| /// the representative opcode. This lowers memory requirements and very |
| /// slightly improves performance. |
| /// |
| /// It would be very easy to introduce unexpected side-effects as a result of |
| /// this aliasing if it were permitted to request different but intersecting |
| /// sets of opcodes but that is difficult to keep track of. It is therefore an |
| /// error to request the same opcode twice using this API, to request an |
| /// opcode that already has definitions, or to use the single-opcode API on an |
| /// opcode that has already been requested by this API. |
| LegalizeRuleSet & |
| getActionDefinitionsBuilder(std::initializer_list<unsigned> Opcodes); |
| void aliasActionDefinitions(unsigned OpcodeTo, unsigned OpcodeFrom); |
| |
| /// Determine what action should be taken to legalize the described |
| /// instruction. Requires computeTables to have been called. |
| /// |
| /// \returns a description of the next legalization step to perform. |
| LegalizeActionStep getAction(const LegalityQuery &Query) const; |
| |
| /// Determine what action should be taken to legalize the given generic |
| /// instruction. |
| /// |
| /// \returns a description of the next legalization step to perform. |
| LegalizeActionStep getAction(const MachineInstr &MI, |
| const MachineRegisterInfo &MRI) const; |
| |
| bool isLegal(const MachineInstr &MI, const MachineRegisterInfo &MRI) const; |
| |
| virtual bool legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI, |
| MachineIRBuilder &MIRBuilder, |
| GISelChangeObserver &Observer) const; |
| |
| private: |
| /// Determine what action should be taken to legalize the given generic |
| /// instruction opcode, type-index and type. Requires computeTables to have |
| /// been called. |
| /// |
| /// \returns a pair consisting of the kind of legalization that should be |
| /// performed and the destination type. |
| std::pair<LegalizeAction, LLT> |
| getAspectAction(const InstrAspect &Aspect) const; |
| |
| /// The SizeAndActionsVec is a representation mapping between all natural |
| /// numbers and an Action. The natural number represents the bit size of |
| /// the InstrAspect. For example, for a target with native support for 32-bit |
| /// and 64-bit additions, you'd express that as: |
| /// setScalarAction(G_ADD, 0, |
| /// {{1, WidenScalar}, // bit sizes [ 1, 31[ |
| /// {32, Legal}, // bit sizes [32, 33[ |
| /// {33, WidenScalar}, // bit sizes [33, 64[ |
| /// {64, Legal}, // bit sizes [64, 65[ |
| /// {65, NarrowScalar} // bit sizes [65, +inf[ |
| /// }); |
| /// It may be that only 64-bit pointers are supported on your target: |
| /// setPointerAction(G_GEP, 0, LLT:pointer(1), |
| /// {{1, Unsupported}, // bit sizes [ 1, 63[ |
| /// {64, Legal}, // bit sizes [64, 65[ |
| /// {65, Unsupported}, // bit sizes [65, +inf[ |
| /// }); |
| void setScalarAction(const unsigned Opcode, const unsigned TypeIndex, |
| const SizeAndActionsVec &SizeAndActions) { |
| const unsigned OpcodeIdx = Opcode - FirstOp; |
| SmallVector<SizeAndActionsVec, 1> &Actions = ScalarActions[OpcodeIdx]; |
| setActions(TypeIndex, Actions, SizeAndActions); |
| } |
| void setPointerAction(const unsigned Opcode, const unsigned TypeIndex, |
| const unsigned AddressSpace, |
| const SizeAndActionsVec &SizeAndActions) { |
| const unsigned OpcodeIdx = Opcode - FirstOp; |
| if (AddrSpace2PointerActions[OpcodeIdx].find(AddressSpace) == |
| AddrSpace2PointerActions[OpcodeIdx].end()) |
| AddrSpace2PointerActions[OpcodeIdx][AddressSpace] = {{}}; |
| SmallVector<SizeAndActionsVec, 1> &Actions = |
| AddrSpace2PointerActions[OpcodeIdx].find(AddressSpace)->second; |
| setActions(TypeIndex, Actions, SizeAndActions); |
| } |
| |
| /// If an operation on a given vector type (say <M x iN>) isn't explicitly |
| /// specified, we proceed in 2 stages. First we legalize the underlying scalar |
| /// (so that there's at least one legal vector with that scalar), then we |
| /// adjust the number of elements in the vector so that it is legal. The |
| /// desired action in the first step is controlled by this function. |
| void setScalarInVectorAction(const unsigned Opcode, const unsigned TypeIndex, |
| const SizeAndActionsVec &SizeAndActions) { |
| unsigned OpcodeIdx = Opcode - FirstOp; |
| SmallVector<SizeAndActionsVec, 1> &Actions = |
| ScalarInVectorActions[OpcodeIdx]; |
| setActions(TypeIndex, Actions, SizeAndActions); |
| } |
| |
| /// See also setScalarInVectorAction. |
| /// This function let's you specify the number of elements in a vector that |
| /// are legal for a legal element size. |
| void setVectorNumElementAction(const unsigned Opcode, |
| const unsigned TypeIndex, |
| const unsigned ElementSize, |
| const SizeAndActionsVec &SizeAndActions) { |
| const unsigned OpcodeIdx = Opcode - FirstOp; |
| if (NumElements2Actions[OpcodeIdx].find(ElementSize) == |
| NumElements2Actions[OpcodeIdx].end()) |
| NumElements2Actions[OpcodeIdx][ElementSize] = {{}}; |
| SmallVector<SizeAndActionsVec, 1> &Actions = |
| NumElements2Actions[OpcodeIdx].find(ElementSize)->second; |
| setActions(TypeIndex, Actions, SizeAndActions); |
| } |
| |
| /// A partial SizeAndActionsVec potentially doesn't cover all bit sizes, |
| /// i.e. it's OK if it doesn't start from size 1. |
| static void checkPartialSizeAndActionsVector(const SizeAndActionsVec& v) { |
| using namespace LegalizeActions; |
| #ifndef NDEBUG |
| // The sizes should be in increasing order |
| int prev_size = -1; |
| for(auto SizeAndAction: v) { |
| assert(SizeAndAction.first > prev_size); |
| prev_size = SizeAndAction.first; |
| } |
| // - for every Widen action, there should be a larger bitsize that |
| // can be legalized towards (e.g. Legal, Lower, Libcall or Custom |
| // action). |
| // - for every Narrow action, there should be a smaller bitsize that |
| // can be legalized towards. |
| int SmallestNarrowIdx = -1; |
| int LargestWidenIdx = -1; |
| int SmallestLegalizableToSameSizeIdx = -1; |
| int LargestLegalizableToSameSizeIdx = -1; |
| for(size_t i=0; i<v.size(); ++i) { |
| switch (v[i].second) { |
| case FewerElements: |
| case NarrowScalar: |
| if (SmallestNarrowIdx == -1) |
| SmallestNarrowIdx = i; |
| break; |
| case WidenScalar: |
| case MoreElements: |
| LargestWidenIdx = i; |
| break; |
| case Unsupported: |
| break; |
| default: |
| if (SmallestLegalizableToSameSizeIdx == -1) |
| SmallestLegalizableToSameSizeIdx = i; |
| LargestLegalizableToSameSizeIdx = i; |
| } |
| } |
| if (SmallestNarrowIdx != -1) { |
| assert(SmallestLegalizableToSameSizeIdx != -1); |
| assert(SmallestNarrowIdx > SmallestLegalizableToSameSizeIdx); |
| } |
| if (LargestWidenIdx != -1) |
| assert(LargestWidenIdx < LargestLegalizableToSameSizeIdx); |
| #endif |
| } |
| |
| /// A full SizeAndActionsVec must cover all bit sizes, i.e. must start with |
| /// from size 1. |
| static void checkFullSizeAndActionsVector(const SizeAndActionsVec& v) { |
| #ifndef NDEBUG |
| // Data structure invariant: The first bit size must be size 1. |
| assert(v.size() >= 1); |
| assert(v[0].first == 1); |
| checkPartialSizeAndActionsVector(v); |
| #endif |
| } |
| |
| /// Sets actions for all bit sizes on a particular generic opcode, type |
| /// index and scalar or pointer type. |
| void setActions(unsigned TypeIndex, |
| SmallVector<SizeAndActionsVec, 1> &Actions, |
| const SizeAndActionsVec &SizeAndActions) { |
| checkFullSizeAndActionsVector(SizeAndActions); |
| if (Actions.size() <= TypeIndex) |
| Actions.resize(TypeIndex + 1); |
| Actions[TypeIndex] = SizeAndActions; |
| } |
| |
| static SizeAndAction findAction(const SizeAndActionsVec &Vec, |
| const uint32_t Size); |
| |
| /// Returns the next action needed to get the scalar or pointer type closer |
| /// to being legal |
| /// E.g. findLegalAction({G_REM, 13}) should return |
| /// (WidenScalar, 32). After that, findLegalAction({G_REM, 32}) will |
| /// probably be called, which should return (Lower, 32). |
| /// This is assuming the setScalarAction on G_REM was something like: |
| /// setScalarAction(G_REM, 0, |
| /// {{1, WidenScalar}, // bit sizes [ 1, 31[ |
| /// {32, Lower}, // bit sizes [32, 33[ |
| /// {33, NarrowScalar} // bit sizes [65, +inf[ |
| /// }); |
| std::pair<LegalizeAction, LLT> |
| findScalarLegalAction(const InstrAspect &Aspect) const; |
| |
| /// Returns the next action needed towards legalizing the vector type. |
| std::pair<LegalizeAction, LLT> |
| findVectorLegalAction(const InstrAspect &Aspect) const; |
| |
| static const int FirstOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_START; |
| static const int LastOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_END; |
| |
| // Data structures used temporarily during construction of legality data: |
| using TypeMap = DenseMap<LLT, LegalizeAction>; |
| SmallVector<TypeMap, 1> SpecifiedActions[LastOp - FirstOp + 1]; |
| SmallVector<SizeChangeStrategy, 1> |
| ScalarSizeChangeStrategies[LastOp - FirstOp + 1]; |
| SmallVector<SizeChangeStrategy, 1> |
| VectorElementSizeChangeStrategies[LastOp - FirstOp + 1]; |
| bool TablesInitialized; |
| |
| // Data structures used by getAction: |
| SmallVector<SizeAndActionsVec, 1> ScalarActions[LastOp - FirstOp + 1]; |
| SmallVector<SizeAndActionsVec, 1> ScalarInVectorActions[LastOp - FirstOp + 1]; |
| std::unordered_map<uint16_t, SmallVector<SizeAndActionsVec, 1>> |
| AddrSpace2PointerActions[LastOp - FirstOp + 1]; |
| std::unordered_map<uint16_t, SmallVector<SizeAndActionsVec, 1>> |
| NumElements2Actions[LastOp - FirstOp + 1]; |
| |
| LegalizeRuleSet RulesForOpcode[LastOp - FirstOp + 1]; |
| }; |
| |
| #ifndef NDEBUG |
| /// Checks that MIR is fully legal, returns an illegal instruction if it's not, |
| /// nullptr otherwise |
| const MachineInstr *machineFunctionIsIllegal(const MachineFunction &MF); |
| #endif |
| |
| } // end namespace llvm. |
| |
| #endif // LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H |