| //===- BasicTTIImpl.h -------------------------------------------*- C++ -*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// This file provides a helper that implements much of the TTI interface in |
| /// terms of the target-independent code generator and TargetLowering |
| /// interfaces. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef LLVM_CODEGEN_BASICTTIIMPL_H |
| #define LLVM_CODEGEN_BASICTTIIMPL_H |
| |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/Analysis/TargetTransformInfoImpl.h" |
| #include "llvm/CodeGen/ISDOpcodes.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetSubtargetInfo.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/Intrinsics.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/MC/MCSchedule.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/MachineValueType.h" |
| #include "llvm/Support/MathExtras.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <limits> |
| #include <utility> |
| |
| namespace llvm { |
| |
| class Function; |
| class GlobalValue; |
| class LLVMContext; |
| class ScalarEvolution; |
| class SCEV; |
| class TargetMachine; |
| |
| extern cl::opt<unsigned> PartialUnrollingThreshold; |
| |
| /// Base class which can be used to help build a TTI implementation. |
| /// |
| /// This class provides as much implementation of the TTI interface as is |
| /// possible using the target independent parts of the code generator. |
| /// |
| /// In order to subclass it, your class must implement a getST() method to |
| /// return the subtarget, and a getTLI() method to return the target lowering. |
| /// We need these methods implemented in the derived class so that this class |
| /// doesn't have to duplicate storage for them. |
| template <typename T> |
| class BasicTTIImplBase : public TargetTransformInfoImplCRTPBase<T> { |
| private: |
| using BaseT = TargetTransformInfoImplCRTPBase<T>; |
| using TTI = TargetTransformInfo; |
| |
| /// Estimate a cost of Broadcast as an extract and sequence of insert |
| /// operations. |
| unsigned getBroadcastShuffleOverhead(Type *Ty) { |
| assert(Ty->isVectorTy() && "Can only shuffle vectors"); |
| unsigned Cost = 0; |
| // Broadcast cost is equal to the cost of extracting the zero'th element |
| // plus the cost of inserting it into every element of the result vector. |
| Cost += static_cast<T *>(this)->getVectorInstrCost( |
| Instruction::ExtractElement, Ty, 0); |
| |
| for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { |
| Cost += static_cast<T *>(this)->getVectorInstrCost( |
| Instruction::InsertElement, Ty, i); |
| } |
| return Cost; |
| } |
| |
| /// Estimate a cost of shuffle as a sequence of extract and insert |
| /// operations. |
| unsigned getPermuteShuffleOverhead(Type *Ty) { |
| assert(Ty->isVectorTy() && "Can only shuffle vectors"); |
| unsigned Cost = 0; |
| // Shuffle cost is equal to the cost of extracting element from its argument |
| // plus the cost of inserting them onto the result vector. |
| |
| // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from |
| // index 0 of first vector, index 1 of second vector,index 2 of first |
| // vector and finally index 3 of second vector and insert them at index |
| // <0,1,2,3> of result vector. |
| for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { |
| Cost += static_cast<T *>(this) |
| ->getVectorInstrCost(Instruction::InsertElement, Ty, i); |
| Cost += static_cast<T *>(this) |
| ->getVectorInstrCost(Instruction::ExtractElement, Ty, i); |
| } |
| return Cost; |
| } |
| |
| /// Estimate a cost of subvector extraction as a sequence of extract and |
| /// insert operations. |
| unsigned getExtractSubvectorOverhead(Type *Ty, int Index, Type *SubTy) { |
| assert(Ty && Ty->isVectorTy() && SubTy && SubTy->isVectorTy() && |
| "Can only extract subvectors from vectors"); |
| int NumSubElts = SubTy->getVectorNumElements(); |
| assert((Index + NumSubElts) <= (int)Ty->getVectorNumElements() && |
| "SK_ExtractSubvector index out of range"); |
| |
| unsigned Cost = 0; |
| // Subvector extraction cost is equal to the cost of extracting element from |
| // the source type plus the cost of inserting them into the result vector |
| // type. |
| for (int i = 0; i != NumSubElts; ++i) { |
| Cost += static_cast<T *>(this)->getVectorInstrCost( |
| Instruction::ExtractElement, Ty, i + Index); |
| Cost += static_cast<T *>(this)->getVectorInstrCost( |
| Instruction::InsertElement, SubTy, i); |
| } |
| return Cost; |
| } |
| |
| /// Estimate a cost of subvector insertion as a sequence of extract and |
| /// insert operations. |
| unsigned getInsertSubvectorOverhead(Type *Ty, int Index, Type *SubTy) { |
| assert(Ty && Ty->isVectorTy() && SubTy && SubTy->isVectorTy() && |
| "Can only insert subvectors into vectors"); |
| int NumSubElts = SubTy->getVectorNumElements(); |
| assert((Index + NumSubElts) <= (int)Ty->getVectorNumElements() && |
| "SK_InsertSubvector index out of range"); |
| |
| unsigned Cost = 0; |
| // Subvector insertion cost is equal to the cost of extracting element from |
| // the source type plus the cost of inserting them into the result vector |
| // type. |
| for (int i = 0; i != NumSubElts; ++i) { |
| Cost += static_cast<T *>(this)->getVectorInstrCost( |
| Instruction::ExtractElement, SubTy, i); |
| Cost += static_cast<T *>(this)->getVectorInstrCost( |
| Instruction::InsertElement, Ty, i + Index); |
| } |
| return Cost; |
| } |
| |
| /// Local query method delegates up to T which *must* implement this! |
| const TargetSubtargetInfo *getST() const { |
| return static_cast<const T *>(this)->getST(); |
| } |
| |
| /// Local query method delegates up to T which *must* implement this! |
| const TargetLoweringBase *getTLI() const { |
| return static_cast<const T *>(this)->getTLI(); |
| } |
| |
| static ISD::MemIndexedMode getISDIndexedMode(TTI::MemIndexedMode M) { |
| switch (M) { |
| case TTI::MIM_Unindexed: |
| return ISD::UNINDEXED; |
| case TTI::MIM_PreInc: |
| return ISD::PRE_INC; |
| case TTI::MIM_PreDec: |
| return ISD::PRE_DEC; |
| case TTI::MIM_PostInc: |
| return ISD::POST_INC; |
| case TTI::MIM_PostDec: |
| return ISD::POST_DEC; |
| } |
| llvm_unreachable("Unexpected MemIndexedMode"); |
| } |
| |
| protected: |
| explicit BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL) |
| : BaseT(DL) {} |
| |
| using TargetTransformInfoImplBase::DL; |
| |
| public: |
| /// \name Scalar TTI Implementations |
| /// @{ |
| bool allowsMisalignedMemoryAccesses(LLVMContext &Context, |
| unsigned BitWidth, unsigned AddressSpace, |
| unsigned Alignment, bool *Fast) const { |
| EVT E = EVT::getIntegerVT(Context, BitWidth); |
| return getTLI()->allowsMisalignedMemoryAccesses(E, AddressSpace, Alignment, Fast); |
| } |
| |
| bool hasBranchDivergence() { return false; } |
| |
| bool isSourceOfDivergence(const Value *V) { return false; } |
| |
| bool isAlwaysUniform(const Value *V) { return false; } |
| |
| unsigned getFlatAddressSpace() { |
| // Return an invalid address space. |
| return -1; |
| } |
| |
| bool isLegalAddImmediate(int64_t imm) { |
| return getTLI()->isLegalAddImmediate(imm); |
| } |
| |
| bool isLegalICmpImmediate(int64_t imm) { |
| return getTLI()->isLegalICmpImmediate(imm); |
| } |
| |
| bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, |
| bool HasBaseReg, int64_t Scale, |
| unsigned AddrSpace, Instruction *I = nullptr) { |
| TargetLoweringBase::AddrMode AM; |
| AM.BaseGV = BaseGV; |
| AM.BaseOffs = BaseOffset; |
| AM.HasBaseReg = HasBaseReg; |
| AM.Scale = Scale; |
| return getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace, I); |
| } |
| |
| bool isIndexedLoadLegal(TTI::MemIndexedMode M, Type *Ty, |
| const DataLayout &DL) const { |
| EVT VT = getTLI()->getValueType(DL, Ty); |
| return getTLI()->isIndexedLoadLegal(getISDIndexedMode(M), VT); |
| } |
| |
| bool isIndexedStoreLegal(TTI::MemIndexedMode M, Type *Ty, |
| const DataLayout &DL) const { |
| EVT VT = getTLI()->getValueType(DL, Ty); |
| return getTLI()->isIndexedStoreLegal(getISDIndexedMode(M), VT); |
| } |
| |
| bool isLSRCostLess(TTI::LSRCost C1, TTI::LSRCost C2) { |
| return TargetTransformInfoImplBase::isLSRCostLess(C1, C2); |
| } |
| |
| int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset, |
| bool HasBaseReg, int64_t Scale, unsigned AddrSpace) { |
| TargetLoweringBase::AddrMode AM; |
| AM.BaseGV = BaseGV; |
| AM.BaseOffs = BaseOffset; |
| AM.HasBaseReg = HasBaseReg; |
| AM.Scale = Scale; |
| return getTLI()->getScalingFactorCost(DL, AM, Ty, AddrSpace); |
| } |
| |
| bool isTruncateFree(Type *Ty1, Type *Ty2) { |
| return getTLI()->isTruncateFree(Ty1, Ty2); |
| } |
| |
| bool isProfitableToHoist(Instruction *I) { |
| return getTLI()->isProfitableToHoist(I); |
| } |
| |
| bool useAA() const { return getST()->useAA(); } |
| |
| bool isTypeLegal(Type *Ty) { |
| EVT VT = getTLI()->getValueType(DL, Ty); |
| return getTLI()->isTypeLegal(VT); |
| } |
| |
| int getGEPCost(Type *PointeeType, const Value *Ptr, |
| ArrayRef<const Value *> Operands) { |
| return BaseT::getGEPCost(PointeeType, Ptr, Operands); |
| } |
| |
| int getExtCost(const Instruction *I, const Value *Src) { |
| if (getTLI()->isExtFree(I)) |
| return TargetTransformInfo::TCC_Free; |
| |
| if (isa<ZExtInst>(I) || isa<SExtInst>(I)) |
| if (const LoadInst *LI = dyn_cast<LoadInst>(Src)) |
| if (getTLI()->isExtLoad(LI, I, DL)) |
| return TargetTransformInfo::TCC_Free; |
| |
| return TargetTransformInfo::TCC_Basic; |
| } |
| |
| unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, |
| ArrayRef<const Value *> Arguments) { |
| return BaseT::getIntrinsicCost(IID, RetTy, Arguments); |
| } |
| |
| unsigned getIntrinsicCost(Intrinsic::ID IID, Type *RetTy, |
| ArrayRef<Type *> ParamTys) { |
| if (IID == Intrinsic::cttz) { |
| if (getTLI()->isCheapToSpeculateCttz()) |
| return TargetTransformInfo::TCC_Basic; |
| return TargetTransformInfo::TCC_Expensive; |
| } |
| |
| if (IID == Intrinsic::ctlz) { |
| if (getTLI()->isCheapToSpeculateCtlz()) |
| return TargetTransformInfo::TCC_Basic; |
| return TargetTransformInfo::TCC_Expensive; |
| } |
| |
| return BaseT::getIntrinsicCost(IID, RetTy, ParamTys); |
| } |
| |
| unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI, |
| unsigned &JumpTableSize) { |
| /// Try to find the estimated number of clusters. Note that the number of |
| /// clusters identified in this function could be different from the actural |
| /// numbers found in lowering. This function ignore switches that are |
| /// lowered with a mix of jump table / bit test / BTree. This function was |
| /// initially intended to be used when estimating the cost of switch in |
| /// inline cost heuristic, but it's a generic cost model to be used in other |
| /// places (e.g., in loop unrolling). |
| unsigned N = SI.getNumCases(); |
| const TargetLoweringBase *TLI = getTLI(); |
| const DataLayout &DL = this->getDataLayout(); |
| |
| JumpTableSize = 0; |
| bool IsJTAllowed = TLI->areJTsAllowed(SI.getParent()->getParent()); |
| |
| // Early exit if both a jump table and bit test are not allowed. |
| if (N < 1 || (!IsJTAllowed && DL.getIndexSizeInBits(0u) < N)) |
| return N; |
| |
| APInt MaxCaseVal = SI.case_begin()->getCaseValue()->getValue(); |
| APInt MinCaseVal = MaxCaseVal; |
| for (auto CI : SI.cases()) { |
| const APInt &CaseVal = CI.getCaseValue()->getValue(); |
| if (CaseVal.sgt(MaxCaseVal)) |
| MaxCaseVal = CaseVal; |
| if (CaseVal.slt(MinCaseVal)) |
| MinCaseVal = CaseVal; |
| } |
| |
| // Check if suitable for a bit test |
| if (N <= DL.getIndexSizeInBits(0u)) { |
| SmallPtrSet<const BasicBlock *, 4> Dests; |
| for (auto I : SI.cases()) |
| Dests.insert(I.getCaseSuccessor()); |
| |
| if (TLI->isSuitableForBitTests(Dests.size(), N, MinCaseVal, MaxCaseVal, |
| DL)) |
| return 1; |
| } |
| |
| // Check if suitable for a jump table. |
| if (IsJTAllowed) { |
| if (N < 2 || N < TLI->getMinimumJumpTableEntries()) |
| return N; |
| uint64_t Range = |
| (MaxCaseVal - MinCaseVal) |
| .getLimitedValue(std::numeric_limits<uint64_t>::max() - 1) + 1; |
| // Check whether a range of clusters is dense enough for a jump table |
| if (TLI->isSuitableForJumpTable(&SI, N, Range)) { |
| JumpTableSize = Range; |
| return 1; |
| } |
| } |
| return N; |
| } |
| |
| unsigned getJumpBufAlignment() { return getTLI()->getJumpBufAlignment(); } |
| |
| unsigned getJumpBufSize() { return getTLI()->getJumpBufSize(); } |
| |
| bool shouldBuildLookupTables() { |
| const TargetLoweringBase *TLI = getTLI(); |
| return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || |
| TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other); |
| } |
| |
| bool haveFastSqrt(Type *Ty) { |
| const TargetLoweringBase *TLI = getTLI(); |
| EVT VT = TLI->getValueType(DL, Ty); |
| return TLI->isTypeLegal(VT) && |
| TLI->isOperationLegalOrCustom(ISD::FSQRT, VT); |
| } |
| |
| bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) { |
| return true; |
| } |
| |
| unsigned getFPOpCost(Type *Ty) { |
| // Check whether FADD is available, as a proxy for floating-point in |
| // general. |
| const TargetLoweringBase *TLI = getTLI(); |
| EVT VT = TLI->getValueType(DL, Ty); |
| if (TLI->isOperationLegalOrCustomOrPromote(ISD::FADD, VT)) |
| return TargetTransformInfo::TCC_Basic; |
| return TargetTransformInfo::TCC_Expensive; |
| } |
| |
| unsigned getOperationCost(unsigned Opcode, Type *Ty, Type *OpTy) { |
| const TargetLoweringBase *TLI = getTLI(); |
| switch (Opcode) { |
| default: break; |
| case Instruction::Trunc: |
| if (TLI->isTruncateFree(OpTy, Ty)) |
| return TargetTransformInfo::TCC_Free; |
| return TargetTransformInfo::TCC_Basic; |
| case Instruction::ZExt: |
| if (TLI->isZExtFree(OpTy, Ty)) |
| return TargetTransformInfo::TCC_Free; |
| return TargetTransformInfo::TCC_Basic; |
| } |
| |
| return BaseT::getOperationCost(Opcode, Ty, OpTy); |
| } |
| |
| unsigned getInliningThresholdMultiplier() { return 1; } |
| |
| void getUnrollingPreferences(Loop *L, ScalarEvolution &SE, |
| TTI::UnrollingPreferences &UP) { |
| // This unrolling functionality is target independent, but to provide some |
| // motivation for its intended use, for x86: |
| |
| // According to the Intel 64 and IA-32 Architectures Optimization Reference |
| // Manual, Intel Core models and later have a loop stream detector (and |
| // associated uop queue) that can benefit from partial unrolling. |
| // The relevant requirements are: |
| // - The loop must have no more than 4 (8 for Nehalem and later) branches |
| // taken, and none of them may be calls. |
| // - The loop can have no more than 18 (28 for Nehalem and later) uops. |
| |
| // According to the Software Optimization Guide for AMD Family 15h |
| // Processors, models 30h-4fh (Steamroller and later) have a loop predictor |
| // and loop buffer which can benefit from partial unrolling. |
| // The relevant requirements are: |
| // - The loop must have fewer than 16 branches |
| // - The loop must have less than 40 uops in all executed loop branches |
| |
| // The number of taken branches in a loop is hard to estimate here, and |
| // benchmarking has revealed that it is better not to be conservative when |
| // estimating the branch count. As a result, we'll ignore the branch limits |
| // until someone finds a case where it matters in practice. |
| |
| unsigned MaxOps; |
| const TargetSubtargetInfo *ST = getST(); |
| if (PartialUnrollingThreshold.getNumOccurrences() > 0) |
| MaxOps = PartialUnrollingThreshold; |
| else if (ST->getSchedModel().LoopMicroOpBufferSize > 0) |
| MaxOps = ST->getSchedModel().LoopMicroOpBufferSize; |
| else |
| return; |
| |
| // Scan the loop: don't unroll loops with calls. |
| for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E; |
| ++I) { |
| BasicBlock *BB = *I; |
| |
| for (BasicBlock::iterator J = BB->begin(), JE = BB->end(); J != JE; ++J) |
| if (isa<CallInst>(J) || isa<InvokeInst>(J)) { |
| ImmutableCallSite CS(&*J); |
| if (const Function *F = CS.getCalledFunction()) { |
| if (!static_cast<T *>(this)->isLoweredToCall(F)) |
| continue; |
| } |
| |
| return; |
| } |
| } |
| |
| // Enable runtime and partial unrolling up to the specified size. |
| // Enable using trip count upper bound to unroll loops. |
| UP.Partial = UP.Runtime = UP.UpperBound = true; |
| UP.PartialThreshold = MaxOps; |
| |
| // Avoid unrolling when optimizing for size. |
| UP.OptSizeThreshold = 0; |
| UP.PartialOptSizeThreshold = 0; |
| |
| // Set number of instructions optimized when "back edge" |
| // becomes "fall through" to default value of 2. |
| UP.BEInsns = 2; |
| } |
| |
| int getInstructionLatency(const Instruction *I) { |
| if (isa<LoadInst>(I)) |
| return getST()->getSchedModel().DefaultLoadLatency; |
| |
| return BaseT::getInstructionLatency(I); |
| } |
| |
| /// @} |
| |
| /// \name Vector TTI Implementations |
| /// @{ |
| |
| unsigned getNumberOfRegisters(bool Vector) { return Vector ? 0 : 1; } |
| |
| unsigned getRegisterBitWidth(bool Vector) const { return 32; } |
| |
| /// Estimate the overhead of scalarizing an instruction. Insert and Extract |
| /// are set if the result needs to be inserted and/or extracted from vectors. |
| unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) { |
| assert(Ty->isVectorTy() && "Can only scalarize vectors"); |
| unsigned Cost = 0; |
| |
| for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) { |
| if (Insert) |
| Cost += static_cast<T *>(this) |
| ->getVectorInstrCost(Instruction::InsertElement, Ty, i); |
| if (Extract) |
| Cost += static_cast<T *>(this) |
| ->getVectorInstrCost(Instruction::ExtractElement, Ty, i); |
| } |
| |
| return Cost; |
| } |
| |
| /// Estimate the overhead of scalarizing an instructions unique |
| /// non-constant operands. The types of the arguments are ordinarily |
| /// scalar, in which case the costs are multiplied with VF. |
| unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args, |
| unsigned VF) { |
| unsigned Cost = 0; |
| SmallPtrSet<const Value*, 4> UniqueOperands; |
| for (const Value *A : Args) { |
| if (!isa<Constant>(A) && UniqueOperands.insert(A).second) { |
| Type *VecTy = nullptr; |
| if (A->getType()->isVectorTy()) { |
| VecTy = A->getType(); |
| // If A is a vector operand, VF should be 1 or correspond to A. |
| assert((VF == 1 || VF == VecTy->getVectorNumElements()) && |
| "Vector argument does not match VF"); |
| } |
| else |
| VecTy = VectorType::get(A->getType(), VF); |
| |
| Cost += getScalarizationOverhead(VecTy, false, true); |
| } |
| } |
| |
| return Cost; |
| } |
| |
| unsigned getScalarizationOverhead(Type *VecTy, ArrayRef<const Value *> Args) { |
| assert(VecTy->isVectorTy()); |
| |
| unsigned Cost = 0; |
| |
| Cost += getScalarizationOverhead(VecTy, true, false); |
| if (!Args.empty()) |
| Cost += getOperandsScalarizationOverhead(Args, |
| VecTy->getVectorNumElements()); |
| else |
| // When no information on arguments is provided, we add the cost |
| // associated with one argument as a heuristic. |
| Cost += getScalarizationOverhead(VecTy, false, true); |
| |
| return Cost; |
| } |
| |
| unsigned getMaxInterleaveFactor(unsigned VF) { return 1; } |
| |
| unsigned getArithmeticInstrCost( |
| unsigned Opcode, Type *Ty, |
| TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue, |
| TTI::OperandValueKind Opd2Info = TTI::OK_AnyValue, |
| TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None, |
| TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None, |
| ArrayRef<const Value *> Args = ArrayRef<const Value *>()) { |
| // Check if any of the operands are vector operands. |
| const TargetLoweringBase *TLI = getTLI(); |
| int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| assert(ISD && "Invalid opcode"); |
| |
| std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty); |
| |
| bool IsFloat = Ty->isFPOrFPVectorTy(); |
| // Assume that floating point arithmetic operations cost twice as much as |
| // integer operations. |
| unsigned OpCost = (IsFloat ? 2 : 1); |
| |
| if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { |
| // The operation is legal. Assume it costs 1. |
| // TODO: Once we have extract/insert subvector cost we need to use them. |
| return LT.first * OpCost; |
| } |
| |
| if (!TLI->isOperationExpand(ISD, LT.second)) { |
| // If the operation is custom lowered, then assume that the code is twice |
| // as expensive. |
| return LT.first * 2 * OpCost; |
| } |
| |
| // Else, assume that we need to scalarize this op. |
| // TODO: If one of the types get legalized by splitting, handle this |
| // similarly to what getCastInstrCost() does. |
| if (Ty->isVectorTy()) { |
| unsigned Num = Ty->getVectorNumElements(); |
| unsigned Cost = static_cast<T *>(this) |
| ->getArithmeticInstrCost(Opcode, Ty->getScalarType()); |
| // Return the cost of multiple scalar invocation plus the cost of |
| // inserting and extracting the values. |
| return getScalarizationOverhead(Ty, Args) + Num * Cost; |
| } |
| |
| // We don't know anything about this scalar instruction. |
| return OpCost; |
| } |
| |
| unsigned getShuffleCost(TTI::ShuffleKind Kind, Type *Tp, int Index, |
| Type *SubTp) { |
| switch (Kind) { |
| case TTI::SK_Broadcast: |
| return getBroadcastShuffleOverhead(Tp); |
| case TTI::SK_Select: |
| case TTI::SK_Reverse: |
| case TTI::SK_Transpose: |
| case TTI::SK_PermuteSingleSrc: |
| case TTI::SK_PermuteTwoSrc: |
| return getPermuteShuffleOverhead(Tp); |
| case TTI::SK_ExtractSubvector: |
| return getExtractSubvectorOverhead(Tp, Index, SubTp); |
| case TTI::SK_InsertSubvector: |
| return getInsertSubvectorOverhead(Tp, Index, SubTp); |
| } |
| llvm_unreachable("Unknown TTI::ShuffleKind"); |
| } |
| |
| unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src, |
| const Instruction *I = nullptr) { |
| const TargetLoweringBase *TLI = getTLI(); |
| int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| assert(ISD && "Invalid opcode"); |
| std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, Src); |
| std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(DL, Dst); |
| |
| // Check for NOOP conversions. |
| if (SrcLT.first == DstLT.first && |
| SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { |
| |
| // Bitcast between types that are legalized to the same type are free. |
| if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc) |
| return 0; |
| } |
| |
| if (Opcode == Instruction::Trunc && |
| TLI->isTruncateFree(SrcLT.second, DstLT.second)) |
| return 0; |
| |
| if (Opcode == Instruction::ZExt && |
| TLI->isZExtFree(SrcLT.second, DstLT.second)) |
| return 0; |
| |
| if (Opcode == Instruction::AddrSpaceCast && |
| TLI->isNoopAddrSpaceCast(Src->getPointerAddressSpace(), |
| Dst->getPointerAddressSpace())) |
| return 0; |
| |
| // If this is a zext/sext of a load, return 0 if the corresponding |
| // extending load exists on target. |
| if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) && |
| I && isa<LoadInst>(I->getOperand(0))) { |
| EVT ExtVT = EVT::getEVT(Dst); |
| EVT LoadVT = EVT::getEVT(Src); |
| unsigned LType = |
| ((Opcode == Instruction::ZExt) ? ISD::ZEXTLOAD : ISD::SEXTLOAD); |
| if (TLI->isLoadExtLegal(LType, ExtVT, LoadVT)) |
| return 0; |
| } |
| |
| // If the cast is marked as legal (or promote) then assume low cost. |
| if (SrcLT.first == DstLT.first && |
| TLI->isOperationLegalOrPromote(ISD, DstLT.second)) |
| return 1; |
| |
| // Handle scalar conversions. |
| if (!Src->isVectorTy() && !Dst->isVectorTy()) { |
| // Scalar bitcasts are usually free. |
| if (Opcode == Instruction::BitCast) |
| return 0; |
| |
| // Just check the op cost. If the operation is legal then assume it costs |
| // 1. |
| if (!TLI->isOperationExpand(ISD, DstLT.second)) |
| return 1; |
| |
| // Assume that illegal scalar instruction are expensive. |
| return 4; |
| } |
| |
| // Check vector-to-vector casts. |
| if (Dst->isVectorTy() && Src->isVectorTy()) { |
| // If the cast is between same-sized registers, then the check is simple. |
| if (SrcLT.first == DstLT.first && |
| SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) { |
| |
| // Assume that Zext is done using AND. |
| if (Opcode == Instruction::ZExt) |
| return 1; |
| |
| // Assume that sext is done using SHL and SRA. |
| if (Opcode == Instruction::SExt) |
| return 2; |
| |
| // Just check the op cost. If the operation is legal then assume it |
| // costs |
| // 1 and multiply by the type-legalization overhead. |
| if (!TLI->isOperationExpand(ISD, DstLT.second)) |
| return SrcLT.first * 1; |
| } |
| |
| // If we are legalizing by splitting, query the concrete TTI for the cost |
| // of casting the original vector twice. We also need to factor in the |
| // cost of the split itself. Count that as 1, to be consistent with |
| // TLI->getTypeLegalizationCost(). |
| if ((TLI->getTypeAction(Src->getContext(), TLI->getValueType(DL, Src)) == |
| TargetLowering::TypeSplitVector) || |
| (TLI->getTypeAction(Dst->getContext(), TLI->getValueType(DL, Dst)) == |
| TargetLowering::TypeSplitVector)) { |
| Type *SplitDst = VectorType::get(Dst->getVectorElementType(), |
| Dst->getVectorNumElements() / 2); |
| Type *SplitSrc = VectorType::get(Src->getVectorElementType(), |
| Src->getVectorNumElements() / 2); |
| T *TTI = static_cast<T *>(this); |
| return TTI->getVectorSplitCost() + |
| (2 * TTI->getCastInstrCost(Opcode, SplitDst, SplitSrc, I)); |
| } |
| |
| // In other cases where the source or destination are illegal, assume |
| // the operation will get scalarized. |
| unsigned Num = Dst->getVectorNumElements(); |
| unsigned Cost = static_cast<T *>(this)->getCastInstrCost( |
| Opcode, Dst->getScalarType(), Src->getScalarType(), I); |
| |
| // Return the cost of multiple scalar invocation plus the cost of |
| // inserting and extracting the values. |
| return getScalarizationOverhead(Dst, true, true) + Num * Cost; |
| } |
| |
| // We already handled vector-to-vector and scalar-to-scalar conversions. |
| // This |
| // is where we handle bitcast between vectors and scalars. We need to assume |
| // that the conversion is scalarized in one way or another. |
| if (Opcode == Instruction::BitCast) |
| // Illegal bitcasts are done by storing and loading from a stack slot. |
| return (Src->isVectorTy() ? getScalarizationOverhead(Src, false, true) |
| : 0) + |
| (Dst->isVectorTy() ? getScalarizationOverhead(Dst, true, false) |
| : 0); |
| |
| llvm_unreachable("Unhandled cast"); |
| } |
| |
| unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst, |
| VectorType *VecTy, unsigned Index) { |
| return static_cast<T *>(this)->getVectorInstrCost( |
| Instruction::ExtractElement, VecTy, Index) + |
| static_cast<T *>(this)->getCastInstrCost(Opcode, Dst, |
| VecTy->getElementType()); |
| } |
| |
| unsigned getCFInstrCost(unsigned Opcode) { |
| // Branches are assumed to be predicted. |
| return 0; |
| } |
| |
| unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy, |
| const Instruction *I) { |
| const TargetLoweringBase *TLI = getTLI(); |
| int ISD = TLI->InstructionOpcodeToISD(Opcode); |
| assert(ISD && "Invalid opcode"); |
| |
| // Selects on vectors are actually vector selects. |
| if (ISD == ISD::SELECT) { |
| assert(CondTy && "CondTy must exist"); |
| if (CondTy->isVectorTy()) |
| ISD = ISD::VSELECT; |
| } |
| std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy); |
| |
| if (!(ValTy->isVectorTy() && !LT.second.isVector()) && |
| !TLI->isOperationExpand(ISD, LT.second)) { |
| // The operation is legal. Assume it costs 1. Multiply |
| // by the type-legalization overhead. |
| return LT.first * 1; |
| } |
| |
| // Otherwise, assume that the cast is scalarized. |
| // TODO: If one of the types get legalized by splitting, handle this |
| // similarly to what getCastInstrCost() does. |
| if (ValTy->isVectorTy()) { |
| unsigned Num = ValTy->getVectorNumElements(); |
| if (CondTy) |
| CondTy = CondTy->getScalarType(); |
| unsigned Cost = static_cast<T *>(this)->getCmpSelInstrCost( |
| Opcode, ValTy->getScalarType(), CondTy, I); |
| |
| // Return the cost of multiple scalar invocation plus the cost of |
| // inserting and extracting the values. |
| return getScalarizationOverhead(ValTy, true, false) + Num * Cost; |
| } |
| |
| // Unknown scalar opcode. |
| return 1; |
| } |
| |
| unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) { |
| std::pair<unsigned, MVT> LT = |
| getTLI()->getTypeLegalizationCost(DL, Val->getScalarType()); |
| |
| return LT.first; |
| } |
| |
| unsigned getMemoryOpCost(unsigned Opcode, Type *Src, unsigned Alignment, |
| unsigned AddressSpace, const Instruction *I = nullptr) { |
| assert(!Src->isVoidTy() && "Invalid type"); |
| std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Src); |
| |
| // Assuming that all loads of legal types cost 1. |
| unsigned Cost = LT.first; |
| |
| if (Src->isVectorTy() && |
| Src->getPrimitiveSizeInBits() < LT.second.getSizeInBits()) { |
| // This is a vector load that legalizes to a larger type than the vector |
| // itself. Unless the corresponding extending load or truncating store is |
| // legal, then this will scalarize. |
| TargetLowering::LegalizeAction LA = TargetLowering::Expand; |
| EVT MemVT = getTLI()->getValueType(DL, Src); |
| if (Opcode == Instruction::Store) |
| LA = getTLI()->getTruncStoreAction(LT.second, MemVT); |
| else |
| LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT); |
| |
| if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) { |
| // This is a vector load/store for some illegal type that is scalarized. |
| // We must account for the cost of building or decomposing the vector. |
| Cost += getScalarizationOverhead(Src, Opcode != Instruction::Store, |
| Opcode == Instruction::Store); |
| } |
| } |
| |
| return Cost; |
| } |
| |
| unsigned getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy, |
| unsigned Factor, |
| ArrayRef<unsigned> Indices, |
| unsigned Alignment, unsigned AddressSpace, |
| bool UseMaskForCond = false, |
| bool UseMaskForGaps = false) { |
| VectorType *VT = dyn_cast<VectorType>(VecTy); |
| assert(VT && "Expect a vector type for interleaved memory op"); |
| |
| unsigned NumElts = VT->getNumElements(); |
| assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor"); |
| |
| unsigned NumSubElts = NumElts / Factor; |
| VectorType *SubVT = VectorType::get(VT->getElementType(), NumSubElts); |
| |
| // Firstly, the cost of load/store operation. |
| unsigned Cost; |
| if (UseMaskForCond || UseMaskForGaps) |
| Cost = static_cast<T *>(this)->getMaskedMemoryOpCost( |
| Opcode, VecTy, Alignment, AddressSpace); |
| else |
| Cost = static_cast<T *>(this)->getMemoryOpCost(Opcode, VecTy, Alignment, |
| AddressSpace); |
| |
| // Legalize the vector type, and get the legalized and unlegalized type |
| // sizes. |
| MVT VecTyLT = getTLI()->getTypeLegalizationCost(DL, VecTy).second; |
| unsigned VecTySize = |
| static_cast<T *>(this)->getDataLayout().getTypeStoreSize(VecTy); |
| unsigned VecTyLTSize = VecTyLT.getStoreSize(); |
| |
| // Return the ceiling of dividing A by B. |
| auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; }; |
| |
| // Scale the cost of the memory operation by the fraction of legalized |
| // instructions that will actually be used. We shouldn't account for the |
| // cost of dead instructions since they will be removed. |
| // |
| // E.g., An interleaved load of factor 8: |
| // %vec = load <16 x i64>, <16 x i64>* %ptr |
| // %v0 = shufflevector %vec, undef, <0, 8> |
| // |
| // If <16 x i64> is legalized to 8 v2i64 loads, only 2 of the loads will be |
| // used (those corresponding to elements [0:1] and [8:9] of the unlegalized |
| // type). The other loads are unused. |
| // |
| // We only scale the cost of loads since interleaved store groups aren't |
| // allowed to have gaps. |
| if (Opcode == Instruction::Load && VecTySize > VecTyLTSize) { |
| // The number of loads of a legal type it will take to represent a load |
| // of the unlegalized vector type. |
| unsigned NumLegalInsts = ceil(VecTySize, VecTyLTSize); |
| |
| // The number of elements of the unlegalized type that correspond to a |
| // single legal instruction. |
| unsigned NumEltsPerLegalInst = ceil(NumElts, NumLegalInsts); |
| |
| // Determine which legal instructions will be used. |
| BitVector UsedInsts(NumLegalInsts, false); |
| for (unsigned Index : Indices) |
| for (unsigned Elt = 0; Elt < NumSubElts; ++Elt) |
| UsedInsts.set((Index + Elt * Factor) / NumEltsPerLegalInst); |
| |
| // Scale the cost of the load by the fraction of legal instructions that |
| // will be used. |
| Cost *= UsedInsts.count() / NumLegalInsts; |
| } |
| |
| // Then plus the cost of interleave operation. |
| if (Opcode == Instruction::Load) { |
| // The interleave cost is similar to extract sub vectors' elements |
| // from the wide vector, and insert them into sub vectors. |
| // |
| // E.g. An interleaved load of factor 2 (with one member of index 0): |
| // %vec = load <8 x i32>, <8 x i32>* %ptr |
| // %v0 = shuffle %vec, undef, <0, 2, 4, 6> ; Index 0 |
| // The cost is estimated as extract elements at 0, 2, 4, 6 from the |
| // <8 x i32> vector and insert them into a <4 x i32> vector. |
| |
| assert(Indices.size() <= Factor && |
| "Interleaved memory op has too many members"); |
| |
| for (unsigned Index : Indices) { |
| assert(Index < Factor && "Invalid index for interleaved memory op"); |
| |
| // Extract elements from loaded vector for each sub vector. |
| for (unsigned i = 0; i < NumSubElts; i++) |
| Cost += static_cast<T *>(this)->getVectorInstrCost( |
| Instruction::ExtractElement, VT, Index + i * Factor); |
| } |
| |
| unsigned InsSubCost = 0; |
| for (unsigned i = 0; i < NumSubElts; i++) |
| InsSubCost += static_cast<T *>(this)->getVectorInstrCost( |
| Instruction::InsertElement, SubVT, i); |
| |
| Cost += Indices.size() * InsSubCost; |
| } else { |
| // The interleave cost is extract all elements from sub vectors, and |
| // insert them into the wide vector. |
| // |
| // E.g. An interleaved store of factor 2: |
| // %v0_v1 = shuffle %v0, %v1, <0, 4, 1, 5, 2, 6, 3, 7> |
| // store <8 x i32> %interleaved.vec, <8 x i32>* %ptr |
| // The cost is estimated as extract all elements from both <4 x i32> |
| // vectors and insert into the <8 x i32> vector. |
| |
| unsigned ExtSubCost = 0; |
| for (unsigned i = 0; i < NumSubElts; i++) |
| ExtSubCost += static_cast<T *>(this)->getVectorInstrCost( |
| Instruction::ExtractElement, SubVT, i); |
| Cost += ExtSubCost * Factor; |
| |
| for (unsigned i = 0; i < NumElts; i++) |
| Cost += static_cast<T *>(this) |
| ->getVectorInstrCost(Instruction::InsertElement, VT, i); |
| } |
| |
| if (!UseMaskForCond) |
| return Cost; |
| |
| Type *I8Type = Type::getInt8Ty(VT->getContext()); |
| VectorType *MaskVT = VectorType::get(I8Type, NumElts); |
| SubVT = VectorType::get(I8Type, NumSubElts); |
| |
| // The Mask shuffling cost is extract all the elements of the Mask |
| // and insert each of them Factor times into the wide vector: |
| // |
| // E.g. an interleaved group with factor 3: |
| // %mask = icmp ult <8 x i32> %vec1, %vec2 |
| // %interleaved.mask = shufflevector <8 x i1> %mask, <8 x i1> undef, |
| // <24 x i32> <0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7> |
| // The cost is estimated as extract all mask elements from the <8xi1> mask |
| // vector and insert them factor times into the <24xi1> shuffled mask |
| // vector. |
| for (unsigned i = 0; i < NumSubElts; i++) |
| Cost += static_cast<T *>(this)->getVectorInstrCost( |
| Instruction::ExtractElement, SubVT, i); |
| |
| for (unsigned i = 0; i < NumElts; i++) |
| Cost += static_cast<T *>(this)->getVectorInstrCost( |
| Instruction::InsertElement, MaskVT, i); |
| |
| // The Gaps mask is invariant and created outside the loop, therefore the |
| // cost of creating it is not accounted for here. However if we have both |
| // a MaskForGaps and some other mask that guards the execution of the |
| // memory access, we need to account for the cost of And-ing the two masks |
| // inside the loop. |
| if (UseMaskForGaps) |
| Cost += static_cast<T *>(this)->getArithmeticInstrCost( |
| BinaryOperator::And, MaskVT); |
| |
| return Cost; |
| } |
| |
| /// Get intrinsic cost based on arguments. |
| unsigned getIntrinsicInstrCost(Intrinsic::ID IID, Type *RetTy, |
| ArrayRef<Value *> Args, FastMathFlags FMF, |
| unsigned VF = 1) { |
| unsigned RetVF = (RetTy->isVectorTy() ? RetTy->getVectorNumElements() : 1); |
| assert((RetVF == 1 || VF == 1) && "VF > 1 and RetVF is a vector type"); |
| auto *ConcreteTTI = static_cast<T *>(this); |
| |
| switch (IID) { |
| default: { |
| // Assume that we need to scalarize this intrinsic. |
| SmallVector<Type *, 4> Types; |
| for (Value *Op : Args) { |
| Type *OpTy = Op->getType(); |
| assert(VF == 1 || !OpTy->isVectorTy()); |
| Types.push_back(VF == 1 ? OpTy : VectorType::get(OpTy, VF)); |
| } |
| |
| if (VF > 1 && !RetTy->isVoidTy()) |
| RetTy = VectorType::get(RetTy, VF); |
| |
| // Compute the scalarization overhead based on Args for a vector |
| // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while |
| // CostModel will pass a vector RetTy and VF is 1. |
| unsigned ScalarizationCost = std::numeric_limits<unsigned>::max(); |
| if (RetVF > 1 || VF > 1) { |
| ScalarizationCost = 0; |
| if (!RetTy->isVoidTy()) |
| ScalarizationCost += getScalarizationOverhead(RetTy, true, false); |
| ScalarizationCost += getOperandsScalarizationOverhead(Args, VF); |
| } |
| |
| return ConcreteTTI->getIntrinsicInstrCost(IID, RetTy, Types, FMF, |
| ScalarizationCost); |
| } |
| case Intrinsic::masked_scatter: { |
| assert(VF == 1 && "Can't vectorize types here."); |
| Value *Mask = Args[3]; |
| bool VarMask = !isa<Constant>(Mask); |
| unsigned Alignment = cast<ConstantInt>(Args[2])->getZExtValue(); |
| return ConcreteTTI->getGatherScatterOpCost( |
| Instruction::Store, Args[0]->getType(), Args[1], VarMask, Alignment); |
| } |
| case Intrinsic::masked_gather: { |
| assert(VF == 1 && "Can't vectorize types here."); |
| Value *Mask = Args[2]; |
| bool VarMask = !isa<Constant>(Mask); |
| unsigned Alignment = cast<ConstantInt>(Args[1])->getZExtValue(); |
| return ConcreteTTI->getGatherScatterOpCost(Instruction::Load, RetTy, |
| Args[0], VarMask, Alignment); |
| } |
| case Intrinsic::experimental_vector_reduce_add: |
| case Intrinsic::experimental_vector_reduce_mul: |
| case Intrinsic::experimental_vector_reduce_and: |
| case Intrinsic::experimental_vector_reduce_or: |
| case Intrinsic::experimental_vector_reduce_xor: |
| case Intrinsic::experimental_vector_reduce_fadd: |
| case Intrinsic::experimental_vector_reduce_fmul: |
| case Intrinsic::experimental_vector_reduce_smax: |
| case Intrinsic::experimental_vector_reduce_smin: |
| case Intrinsic::experimental_vector_reduce_fmax: |
| case Intrinsic::experimental_vector_reduce_fmin: |
| case Intrinsic::experimental_vector_reduce_umax: |
| case Intrinsic::experimental_vector_reduce_umin: |
| return getIntrinsicInstrCost(IID, RetTy, Args[0]->getType(), FMF); |
| case Intrinsic::fshl: |
| case Intrinsic::fshr: { |
| Value *X = Args[0]; |
| Value *Y = Args[1]; |
| Value *Z = Args[2]; |
| TTI::OperandValueProperties OpPropsX, OpPropsY, OpPropsZ, OpPropsBW; |
| TTI::OperandValueKind OpKindX = TTI::getOperandInfo(X, OpPropsX); |
| TTI::OperandValueKind OpKindY = TTI::getOperandInfo(Y, OpPropsY); |
| TTI::OperandValueKind OpKindZ = TTI::getOperandInfo(Z, OpPropsZ); |
| TTI::OperandValueKind OpKindBW = TTI::OK_UniformConstantValue; |
| OpPropsBW = isPowerOf2_32(RetTy->getScalarSizeInBits()) ? TTI::OP_PowerOf2 |
| : TTI::OP_None; |
| // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) |
| // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) |
| unsigned Cost = 0; |
| Cost += ConcreteTTI->getArithmeticInstrCost(BinaryOperator::Or, RetTy); |
| Cost += ConcreteTTI->getArithmeticInstrCost(BinaryOperator::Sub, RetTy); |
| Cost += ConcreteTTI->getArithmeticInstrCost(BinaryOperator::Shl, RetTy, |
| OpKindX, OpKindZ, OpPropsX); |
| Cost += ConcreteTTI->getArithmeticInstrCost(BinaryOperator::LShr, RetTy, |
| OpKindY, OpKindZ, OpPropsY); |
| // Non-constant shift amounts requires a modulo. |
| if (OpKindZ != TTI::OK_UniformConstantValue && |
| OpKindZ != TTI::OK_NonUniformConstantValue) |
| Cost += ConcreteTTI->getArithmeticInstrCost(BinaryOperator::URem, RetTy, |
| OpKindZ, OpKindBW, OpPropsZ, |
| OpPropsBW); |
| // For non-rotates (X != Y) we must add shift-by-zero handling costs. |
| if (X != Y) { |
| Type *CondTy = Type::getInt1Ty(RetTy->getContext()); |
| if (RetVF > 1) |
| CondTy = VectorType::get(CondTy, RetVF); |
| Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, |
| CondTy, nullptr); |
| Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::Select, RetTy, |
| CondTy, nullptr); |
| } |
| return Cost; |
| } |
| } |
| } |
| |
| /// Get intrinsic cost based on argument types. |
| /// If ScalarizationCostPassed is std::numeric_limits<unsigned>::max(), the |
| /// cost of scalarizing the arguments and the return value will be computed |
| /// based on types. |
| unsigned getIntrinsicInstrCost( |
| Intrinsic::ID IID, Type *RetTy, ArrayRef<Type *> Tys, FastMathFlags FMF, |
| unsigned ScalarizationCostPassed = std::numeric_limits<unsigned>::max()) { |
| unsigned RetVF = (RetTy->isVectorTy() ? RetTy->getVectorNumElements() : 1); |
| auto *ConcreteTTI = static_cast<T *>(this); |
| |
| SmallVector<unsigned, 2> ISDs; |
| unsigned SingleCallCost = 10; // Library call cost. Make it expensive. |
| switch (IID) { |
| default: { |
| // Assume that we need to scalarize this intrinsic. |
| unsigned ScalarizationCost = ScalarizationCostPassed; |
| unsigned ScalarCalls = 1; |
| Type *ScalarRetTy = RetTy; |
| if (RetTy->isVectorTy()) { |
| if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max()) |
| ScalarizationCost = getScalarizationOverhead(RetTy, true, false); |
| ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements()); |
| ScalarRetTy = RetTy->getScalarType(); |
| } |
| SmallVector<Type *, 4> ScalarTys; |
| for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) { |
| Type *Ty = Tys[i]; |
| if (Ty->isVectorTy()) { |
| if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max()) |
| ScalarizationCost += getScalarizationOverhead(Ty, false, true); |
| ScalarCalls = std::max(ScalarCalls, Ty->getVectorNumElements()); |
| Ty = Ty->getScalarType(); |
| } |
| ScalarTys.push_back(Ty); |
| } |
| if (ScalarCalls == 1) |
| return 1; // Return cost of a scalar intrinsic. Assume it to be cheap. |
| |
| unsigned ScalarCost = |
| ConcreteTTI->getIntrinsicInstrCost(IID, ScalarRetTy, ScalarTys, FMF); |
| |
| return ScalarCalls * ScalarCost + ScalarizationCost; |
| } |
| // Look for intrinsics that can be lowered directly or turned into a scalar |
| // intrinsic call. |
| case Intrinsic::sqrt: |
| ISDs.push_back(ISD::FSQRT); |
| break; |
| case Intrinsic::sin: |
| ISDs.push_back(ISD::FSIN); |
| break; |
| case Intrinsic::cos: |
| ISDs.push_back(ISD::FCOS); |
| break; |
| case Intrinsic::exp: |
| ISDs.push_back(ISD::FEXP); |
| break; |
| case Intrinsic::exp2: |
| ISDs.push_back(ISD::FEXP2); |
| break; |
| case Intrinsic::log: |
| ISDs.push_back(ISD::FLOG); |
| break; |
| case Intrinsic::log10: |
| ISDs.push_back(ISD::FLOG10); |
| break; |
| case Intrinsic::log2: |
| ISDs.push_back(ISD::FLOG2); |
| break; |
| case Intrinsic::fabs: |
| ISDs.push_back(ISD::FABS); |
| break; |
| case Intrinsic::canonicalize: |
| ISDs.push_back(ISD::FCANONICALIZE); |
| break; |
| case Intrinsic::minnum: |
| ISDs.push_back(ISD::FMINNUM); |
| if (FMF.noNaNs()) |
| ISDs.push_back(ISD::FMINIMUM); |
| break; |
| case Intrinsic::maxnum: |
| ISDs.push_back(ISD::FMAXNUM); |
| if (FMF.noNaNs()) |
| ISDs.push_back(ISD::FMAXIMUM); |
| break; |
| case Intrinsic::copysign: |
| ISDs.push_back(ISD::FCOPYSIGN); |
| break; |
| case Intrinsic::floor: |
| ISDs.push_back(ISD::FFLOOR); |
| break; |
| case Intrinsic::ceil: |
| ISDs.push_back(ISD::FCEIL); |
| break; |
| case Intrinsic::trunc: |
| ISDs.push_back(ISD::FTRUNC); |
| break; |
| case Intrinsic::nearbyint: |
| ISDs.push_back(ISD::FNEARBYINT); |
| break; |
| case Intrinsic::rint: |
| ISDs.push_back(ISD::FRINT); |
| break; |
| case Intrinsic::round: |
| ISDs.push_back(ISD::FROUND); |
| break; |
| case Intrinsic::pow: |
| ISDs.push_back(ISD::FPOW); |
| break; |
| case Intrinsic::fma: |
| ISDs.push_back(ISD::FMA); |
| break; |
| case Intrinsic::fmuladd: |
| ISDs.push_back(ISD::FMA); |
| break; |
| // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free. |
| case Intrinsic::lifetime_start: |
| case Intrinsic::lifetime_end: |
| case Intrinsic::sideeffect: |
| return 0; |
| case Intrinsic::masked_store: |
| return ConcreteTTI->getMaskedMemoryOpCost(Instruction::Store, Tys[0], 0, |
| 0); |
| case Intrinsic::masked_load: |
| return ConcreteTTI->getMaskedMemoryOpCost(Instruction::Load, RetTy, 0, 0); |
| case Intrinsic::experimental_vector_reduce_add: |
| return ConcreteTTI->getArithmeticReductionCost(Instruction::Add, Tys[0], |
| /*IsPairwiseForm=*/false); |
| case Intrinsic::experimental_vector_reduce_mul: |
| return ConcreteTTI->getArithmeticReductionCost(Instruction::Mul, Tys[0], |
| /*IsPairwiseForm=*/false); |
| case Intrinsic::experimental_vector_reduce_and: |
| return ConcreteTTI->getArithmeticReductionCost(Instruction::And, Tys[0], |
| /*IsPairwiseForm=*/false); |
| case Intrinsic::experimental_vector_reduce_or: |
| return ConcreteTTI->getArithmeticReductionCost(Instruction::Or, Tys[0], |
| /*IsPairwiseForm=*/false); |
| case Intrinsic::experimental_vector_reduce_xor: |
| return ConcreteTTI->getArithmeticReductionCost(Instruction::Xor, Tys[0], |
| /*IsPairwiseForm=*/false); |
| case Intrinsic::experimental_vector_reduce_fadd: |
| return ConcreteTTI->getArithmeticReductionCost(Instruction::FAdd, Tys[0], |
| /*IsPairwiseForm=*/false); |
| case Intrinsic::experimental_vector_reduce_fmul: |
| return ConcreteTTI->getArithmeticReductionCost(Instruction::FMul, Tys[0], |
| /*IsPairwiseForm=*/false); |
| case Intrinsic::experimental_vector_reduce_smax: |
| case Intrinsic::experimental_vector_reduce_smin: |
| case Intrinsic::experimental_vector_reduce_fmax: |
| case Intrinsic::experimental_vector_reduce_fmin: |
| return ConcreteTTI->getMinMaxReductionCost( |
| Tys[0], CmpInst::makeCmpResultType(Tys[0]), /*IsPairwiseForm=*/false, |
| /*IsSigned=*/true); |
| case Intrinsic::experimental_vector_reduce_umax: |
| case Intrinsic::experimental_vector_reduce_umin: |
| return ConcreteTTI->getMinMaxReductionCost( |
| Tys[0], CmpInst::makeCmpResultType(Tys[0]), /*IsPairwiseForm=*/false, |
| /*IsSigned=*/false); |
| case Intrinsic::sadd_sat: |
| case Intrinsic::ssub_sat: { |
| Type *CondTy = Type::getInt1Ty(RetTy->getContext()); |
| if (RetVF > 1) |
| CondTy = VectorType::get(CondTy, RetVF); |
| |
| Type *OpTy = StructType::create({RetTy, CondTy}); |
| Intrinsic::ID OverflowOp = IID == Intrinsic::sadd_sat |
| ? Intrinsic::sadd_with_overflow |
| : Intrinsic::ssub_with_overflow; |
| |
| // SatMax -> Overflow && SumDiff < 0 |
| // SatMin -> Overflow && SumDiff >= 0 |
| unsigned Cost = 0; |
| Cost += ConcreteTTI->getIntrinsicInstrCost( |
| OverflowOp, OpTy, {RetTy, RetTy}, FMF, ScalarizationCostPassed); |
| Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, |
| CondTy, nullptr); |
| Cost += 2 * ConcreteTTI->getCmpSelInstrCost(BinaryOperator::Select, RetTy, |
| CondTy, nullptr); |
| return Cost; |
| } |
| case Intrinsic::uadd_sat: |
| case Intrinsic::usub_sat: { |
| Type *CondTy = Type::getInt1Ty(RetTy->getContext()); |
| if (RetVF > 1) |
| CondTy = VectorType::get(CondTy, RetVF); |
| |
| Type *OpTy = StructType::create({RetTy, CondTy}); |
| Intrinsic::ID OverflowOp = IID == Intrinsic::uadd_sat |
| ? Intrinsic::uadd_with_overflow |
| : Intrinsic::usub_with_overflow; |
| |
| unsigned Cost = 0; |
| Cost += ConcreteTTI->getIntrinsicInstrCost( |
| OverflowOp, OpTy, {RetTy, RetTy}, FMF, ScalarizationCostPassed); |
| Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::Select, RetTy, |
| CondTy, nullptr); |
| return Cost; |
| } |
| case Intrinsic::sadd_with_overflow: |
| case Intrinsic::ssub_with_overflow: { |
| Type *SumTy = RetTy->getContainedType(0); |
| Type *OverflowTy = RetTy->getContainedType(1); |
| unsigned Opcode = IID == Intrinsic::sadd_with_overflow |
| ? BinaryOperator::Add |
| : BinaryOperator::Sub; |
| |
| // LHSSign -> LHS >= 0 |
| // RHSSign -> RHS >= 0 |
| // SumSign -> Sum >= 0 |
| // |
| // Add: |
| // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) |
| // Sub: |
| // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) |
| unsigned Cost = 0; |
| Cost += ConcreteTTI->getArithmeticInstrCost(Opcode, SumTy); |
| Cost += 3 * ConcreteTTI->getCmpSelInstrCost(BinaryOperator::ICmp, SumTy, |
| OverflowTy, nullptr); |
| Cost += 2 * ConcreteTTI->getCmpSelInstrCost( |
| BinaryOperator::ICmp, OverflowTy, OverflowTy, nullptr); |
| Cost += |
| ConcreteTTI->getArithmeticInstrCost(BinaryOperator::And, OverflowTy); |
| return Cost; |
| } |
| case Intrinsic::uadd_with_overflow: |
| case Intrinsic::usub_with_overflow: { |
| Type *SumTy = RetTy->getContainedType(0); |
| Type *OverflowTy = RetTy->getContainedType(1); |
| unsigned Opcode = IID == Intrinsic::uadd_with_overflow |
| ? BinaryOperator::Add |
| : BinaryOperator::Sub; |
| |
| unsigned Cost = 0; |
| Cost += ConcreteTTI->getArithmeticInstrCost(Opcode, SumTy); |
| Cost += ConcreteTTI->getCmpSelInstrCost(BinaryOperator::ICmp, SumTy, |
| OverflowTy, nullptr); |
| return Cost; |
| } |
| case Intrinsic::ctpop: |
| ISDs.push_back(ISD::CTPOP); |
| // In case of legalization use TCC_Expensive. This is cheaper than a |
| // library call but still not a cheap instruction. |
| SingleCallCost = TargetTransformInfo::TCC_Expensive; |
| break; |
| // FIXME: ctlz, cttz, ... |
| } |
| |
| const TargetLoweringBase *TLI = getTLI(); |
| std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy); |
| |
| SmallVector<unsigned, 2> LegalCost; |
| SmallVector<unsigned, 2> CustomCost; |
| for (unsigned ISD : ISDs) { |
| if (TLI->isOperationLegalOrPromote(ISD, LT.second)) { |
| if (IID == Intrinsic::fabs && LT.second.isFloatingPoint() && |
| TLI->isFAbsFree(LT.second)) { |
| return 0; |
| } |
| |
| // The operation is legal. Assume it costs 1. |
| // If the type is split to multiple registers, assume that there is some |
| // overhead to this. |
| // TODO: Once we have extract/insert subvector cost we need to use them. |
| if (LT.first > 1) |
| LegalCost.push_back(LT.first * 2); |
| else |
| LegalCost.push_back(LT.first * 1); |
| } else if (!TLI->isOperationExpand(ISD, LT.second)) { |
| // If the operation is custom lowered then assume |
| // that the code is twice as expensive. |
| CustomCost.push_back(LT.first * 2); |
| } |
| } |
| |
| auto MinLegalCostI = std::min_element(LegalCost.begin(), LegalCost.end()); |
| if (MinLegalCostI != LegalCost.end()) |
| return *MinLegalCostI; |
| |
| auto MinCustomCostI = |
| std::min_element(CustomCost.begin(), CustomCost.end()); |
| if (MinCustomCostI != CustomCost.end()) |
| return *MinCustomCostI; |
| |
| // If we can't lower fmuladd into an FMA estimate the cost as a floating |
| // point mul followed by an add. |
| if (IID == Intrinsic::fmuladd) |
| return ConcreteTTI->getArithmeticInstrCost(BinaryOperator::FMul, RetTy) + |
| ConcreteTTI->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy); |
| |
| // Else, assume that we need to scalarize this intrinsic. For math builtins |
| // this will emit a costly libcall, adding call overhead and spills. Make it |
| // very expensive. |
| if (RetTy->isVectorTy()) { |
| unsigned ScalarizationCost = |
| ((ScalarizationCostPassed != std::numeric_limits<unsigned>::max()) |
| ? ScalarizationCostPassed |
| : getScalarizationOverhead(RetTy, true, false)); |
| unsigned ScalarCalls = RetTy->getVectorNumElements(); |
| SmallVector<Type *, 4> ScalarTys; |
| for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) { |
| Type *Ty = Tys[i]; |
| if (Ty->isVectorTy()) |
| Ty = Ty->getScalarType(); |
| ScalarTys.push_back(Ty); |
| } |
| unsigned ScalarCost = ConcreteTTI->getIntrinsicInstrCost( |
| IID, RetTy->getScalarType(), ScalarTys, FMF); |
| for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) { |
| if (Tys[i]->isVectorTy()) { |
| if (ScalarizationCostPassed == std::numeric_limits<unsigned>::max()) |
| ScalarizationCost += getScalarizationOverhead(Tys[i], false, true); |
| ScalarCalls = std::max(ScalarCalls, Tys[i]->getVectorNumElements()); |
| } |
| } |
| |
| return ScalarCalls * ScalarCost + ScalarizationCost; |
| } |
| |
| // This is going to be turned into a library call, make it expensive. |
| return SingleCallCost; |
| } |
| |
| /// Compute a cost of the given call instruction. |
| /// |
| /// Compute the cost of calling function F with return type RetTy and |
| /// argument types Tys. F might be nullptr, in this case the cost of an |
| /// arbitrary call with the specified signature will be returned. |
| /// This is used, for instance, when we estimate call of a vector |
| /// counterpart of the given function. |
| /// \param F Called function, might be nullptr. |
| /// \param RetTy Return value types. |
| /// \param Tys Argument types. |
| /// \returns The cost of Call instruction. |
| unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys) { |
| return 10; |
| } |
| |
| unsigned getNumberOfParts(Type *Tp) { |
| std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Tp); |
| return LT.first; |
| } |
| |
| unsigned getAddressComputationCost(Type *Ty, ScalarEvolution *, |
| const SCEV *) { |
| return 0; |
| } |
| |
| /// Try to calculate arithmetic and shuffle op costs for reduction operations. |
| /// We're assuming that reduction operation are performing the following way: |
| /// 1. Non-pairwise reduction |
| /// %val1 = shufflevector<n x t> %val, <n x t> %undef, |
| /// <n x i32> <i32 n/2, i32 n/2 + 1, ..., i32 n, i32 undef, ..., i32 undef> |
| /// \----------------v-------------/ \----------v------------/ |
| /// n/2 elements n/2 elements |
| /// %red1 = op <n x t> %val, <n x t> val1 |
| /// After this operation we have a vector %red1 where only the first n/2 |
| /// elements are meaningful, the second n/2 elements are undefined and can be |
| /// dropped. All other operations are actually working with the vector of |
| /// length n/2, not n, though the real vector length is still n. |
| /// %val2 = shufflevector<n x t> %red1, <n x t> %undef, |
| /// <n x i32> <i32 n/4, i32 n/4 + 1, ..., i32 n/2, i32 undef, ..., i32 undef> |
| /// \----------------v-------------/ \----------v------------/ |
| /// n/4 elements 3*n/4 elements |
| /// %red2 = op <n x t> %red1, <n x t> val2 - working with the vector of |
| /// length n/2, the resulting vector has length n/4 etc. |
| /// 2. Pairwise reduction: |
| /// Everything is the same except for an additional shuffle operation which |
| /// is used to produce operands for pairwise kind of reductions. |
| /// %val1 = shufflevector<n x t> %val, <n x t> %undef, |
| /// <n x i32> <i32 0, i32 2, ..., i32 n-2, i32 undef, ..., i32 undef> |
| /// \-------------v----------/ \----------v------------/ |
| /// n/2 elements n/2 elements |
| /// %val2 = shufflevector<n x t> %val, <n x t> %undef, |
| /// <n x i32> <i32 1, i32 3, ..., i32 n-1, i32 undef, ..., i32 undef> |
| /// \-------------v----------/ \----------v------------/ |
| /// n/2 elements n/2 elements |
| /// %red1 = op <n x t> %val1, <n x t> val2 |
| /// Again, the operation is performed on <n x t> vector, but the resulting |
| /// vector %red1 is <n/2 x t> vector. |
| /// |
| /// The cost model should take into account that the actual length of the |
| /// vector is reduced on each iteration. |
| unsigned getArithmeticReductionCost(unsigned Opcode, Type *Ty, |
| bool IsPairwise) { |
| assert(Ty->isVectorTy() && "Expect a vector type"); |
| Type *ScalarTy = Ty->getVectorElementType(); |
| unsigned NumVecElts = Ty->getVectorNumElements(); |
| unsigned NumReduxLevels = Log2_32(NumVecElts); |
| unsigned ArithCost = 0; |
| unsigned ShuffleCost = 0; |
| auto *ConcreteTTI = static_cast<T *>(this); |
| std::pair<unsigned, MVT> LT = |
| ConcreteTTI->getTLI()->getTypeLegalizationCost(DL, Ty); |
| unsigned LongVectorCount = 0; |
| unsigned MVTLen = |
| LT.second.isVector() ? LT.second.getVectorNumElements() : 1; |
| while (NumVecElts > MVTLen) { |
| NumVecElts /= 2; |
| Type *SubTy = VectorType::get(ScalarTy, NumVecElts); |
| // Assume the pairwise shuffles add a cost. |
| ShuffleCost += (IsPairwise + 1) * |
| ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty, |
| NumVecElts, SubTy); |
| ArithCost += ConcreteTTI->getArithmeticInstrCost(Opcode, SubTy); |
| Ty = SubTy; |
| ++LongVectorCount; |
| } |
| |
| NumReduxLevels -= LongVectorCount; |
| |
| // The minimal length of the vector is limited by the real length of vector |
| // operations performed on the current platform. That's why several final |
| // reduction operations are performed on the vectors with the same |
| // architecture-dependent length. |
| |
| // Non pairwise reductions need one shuffle per reduction level. Pairwise |
| // reductions need two shuffles on every level, but the last one. On that |
| // level one of the shuffles is <0, u, u, ...> which is identity. |
| unsigned NumShuffles = NumReduxLevels; |
| if (IsPairwise && NumReduxLevels >= 1) |
| NumShuffles += NumReduxLevels - 1; |
| ShuffleCost += NumShuffles * |
| ConcreteTTI->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, |
| 0, Ty); |
| ArithCost += NumReduxLevels * |
| ConcreteTTI->getArithmeticInstrCost(Opcode, Ty); |
| return ShuffleCost + ArithCost + |
| ConcreteTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, 0); |
| } |
| |
| /// Try to calculate op costs for min/max reduction operations. |
| /// \param CondTy Conditional type for the Select instruction. |
| unsigned getMinMaxReductionCost(Type *Ty, Type *CondTy, bool IsPairwise, |
| bool) { |
| assert(Ty->isVectorTy() && "Expect a vector type"); |
| Type *ScalarTy = Ty->getVectorElementType(); |
| Type *ScalarCondTy = CondTy->getVectorElementType(); |
| unsigned NumVecElts = Ty->getVectorNumElements(); |
| unsigned NumReduxLevels = Log2_32(NumVecElts); |
| unsigned CmpOpcode; |
| if (Ty->isFPOrFPVectorTy()) { |
| CmpOpcode = Instruction::FCmp; |
| } else { |
| assert(Ty->isIntOrIntVectorTy() && |
| "expecting floating point or integer type for min/max reduction"); |
| CmpOpcode = Instruction::ICmp; |
| } |
| unsigned MinMaxCost = 0; |
| unsigned ShuffleCost = 0; |
| auto *ConcreteTTI = static_cast<T *>(this); |
| std::pair<unsigned, MVT> LT = |
| ConcreteTTI->getTLI()->getTypeLegalizationCost(DL, Ty); |
| unsigned LongVectorCount = 0; |
| unsigned MVTLen = |
| LT.second.isVector() ? LT.second.getVectorNumElements() : 1; |
| while (NumVecElts > MVTLen) { |
| NumVecElts /= 2; |
| Type *SubTy = VectorType::get(ScalarTy, NumVecElts); |
| CondTy = VectorType::get(ScalarCondTy, NumVecElts); |
| |
| // Assume the pairwise shuffles add a cost. |
| ShuffleCost += (IsPairwise + 1) * |
| ConcreteTTI->getShuffleCost(TTI::SK_ExtractSubvector, Ty, |
| NumVecElts, SubTy); |
| MinMaxCost += |
| ConcreteTTI->getCmpSelInstrCost(CmpOpcode, SubTy, CondTy, nullptr) + |
| ConcreteTTI->getCmpSelInstrCost(Instruction::Select, SubTy, CondTy, |
| nullptr); |
| Ty = SubTy; |
| ++LongVectorCount; |
| } |
| |
| NumReduxLevels -= LongVectorCount; |
| |
| // The minimal length of the vector is limited by the real length of vector |
| // operations performed on the current platform. That's why several final |
| // reduction opertions are perfomed on the vectors with the same |
| // architecture-dependent length. |
| |
| // Non pairwise reductions need one shuffle per reduction level. Pairwise |
| // reductions need two shuffles on every level, but the last one. On that |
| // level one of the shuffles is <0, u, u, ...> which is identity. |
| unsigned NumShuffles = NumReduxLevels; |
| if (IsPairwise && NumReduxLevels >= 1) |
| NumShuffles += NumReduxLevels - 1; |
| ShuffleCost += NumShuffles * |
| ConcreteTTI->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, |
| 0, Ty); |
| MinMaxCost += |
| NumReduxLevels * |
| (ConcreteTTI->getCmpSelInstrCost(CmpOpcode, Ty, CondTy, nullptr) + |
| ConcreteTTI->getCmpSelInstrCost(Instruction::Select, Ty, CondTy, |
| nullptr)); |
| // The last min/max should be in vector registers and we counted it above. |
| // So just need a single extractelement. |
| return ShuffleCost + MinMaxCost + |
| ConcreteTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, 0); |
| } |
| |
| unsigned getVectorSplitCost() { return 1; } |
| |
| /// @} |
| }; |
| |
| /// Concrete BasicTTIImpl that can be used if no further customization |
| /// is needed. |
| class BasicTTIImpl : public BasicTTIImplBase<BasicTTIImpl> { |
| using BaseT = BasicTTIImplBase<BasicTTIImpl>; |
| |
| friend class BasicTTIImplBase<BasicTTIImpl>; |
| |
| const TargetSubtargetInfo *ST; |
| const TargetLoweringBase *TLI; |
| |
| const TargetSubtargetInfo *getST() const { return ST; } |
| const TargetLoweringBase *getTLI() const { return TLI; } |
| |
| public: |
| explicit BasicTTIImpl(const TargetMachine *TM, const Function &F); |
| }; |
| |
| } // end namespace llvm |
| |
| #endif // LLVM_CODEGEN_BASICTTIIMPL_H |