blob: 9f59a1c8e7e3c677517e06f19f2dc0acbe07160a [file] [log] [blame]
//==- SystemZInstrFormats.td - SystemZ Instruction Formats --*- tablegen -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Basic SystemZ instruction definition
//===----------------------------------------------------------------------===//
class InstSystemZ<int size, dag outs, dag ins, string asmstr,
list<dag> pattern> : Instruction {
let Namespace = "SystemZ";
dag OutOperandList = outs;
dag InOperandList = ins;
let Size = size;
let Pattern = pattern;
let AsmString = asmstr;
// Some instructions come in pairs, one having a 12-bit displacement
// and the other having a 20-bit displacement. Both instructions in
// the pair have the same DispKey and their DispSizes are "12" and "20"
// respectively.
string DispKey = "";
string DispSize = "none";
// Many register-based <INSN>R instructions have a memory-based <INSN>
// counterpart. OpKey uniquely identifies <INSN>, while OpType is
// "reg" for <INSN>R and "mem" for <INSN>.
string OpKey = "";
string OpType = "none";
// Many distinct-operands instructions have older 2-operand equivalents.
// NumOpsKey uniquely identifies one of these 2-operand and 3-operand pairs,
// with NumOpsValue being "2" or "3" as appropriate.
string NumOpsKey = "";
string NumOpsValue = "none";
// True if this instruction is a simple D(X,B) load of a register
// (with no sign or zero extension).
bit SimpleBDXLoad = 0;
// True if this instruction is a simple D(X,B) store of a register
// (with no truncation).
bit SimpleBDXStore = 0;
// True if this instruction has a 20-bit displacement field.
bit Has20BitOffset = 0;
// True if addresses in this instruction have an index register.
bit HasIndex = 0;
// True if this is a 128-bit pseudo instruction that combines two 64-bit
// operations.
bit Is128Bit = 0;
// The access size of all memory operands in bytes, or 0 if not known.
bits<5> AccessBytes = 0;
// If the instruction sets CC to a useful value, this gives the mask
// of all possible CC results. The mask has the same form as
// SystemZ::CCMASK_*.
bits<4> CCValues = 0;
// The subset of CCValues that have the same meaning as they would after
// a comparison of the first operand against zero.
bits<4> CompareZeroCCMask = 0;
// True if the instruction is conditional and if the CC mask operand
// comes first (as for BRC, etc.).
bit CCMaskFirst = 0;
// Similar, but true if the CC mask operand comes last (as for LOC, etc.).
bit CCMaskLast = 0;
// True if the instruction is the "logical" rather than "arithmetic" form,
// in cases where a distinction exists.
bit IsLogical = 0;
let TSFlags{0} = SimpleBDXLoad;
let TSFlags{1} = SimpleBDXStore;
let TSFlags{2} = Has20BitOffset;
let TSFlags{3} = HasIndex;
let TSFlags{4} = Is128Bit;
let TSFlags{9-5} = AccessBytes;
let TSFlags{13-10} = CCValues;
let TSFlags{17-14} = CompareZeroCCMask;
let TSFlags{18} = CCMaskFirst;
let TSFlags{19} = CCMaskLast;
let TSFlags{20} = IsLogical;
}
//===----------------------------------------------------------------------===//
// Mappings between instructions
//===----------------------------------------------------------------------===//
// Return the version of an instruction that has an unsigned 12-bit
// displacement.
def getDisp12Opcode : InstrMapping {
let FilterClass = "InstSystemZ";
let RowFields = ["DispKey"];
let ColFields = ["DispSize"];
let KeyCol = ["20"];
let ValueCols = [["12"]];
}
// Return the version of an instruction that has a signed 20-bit displacement.
def getDisp20Opcode : InstrMapping {
let FilterClass = "InstSystemZ";
let RowFields = ["DispKey"];
let ColFields = ["DispSize"];
let KeyCol = ["12"];
let ValueCols = [["20"]];
}
// Return the memory form of a register instruction.
def getMemOpcode : InstrMapping {
let FilterClass = "InstSystemZ";
let RowFields = ["OpKey"];
let ColFields = ["OpType"];
let KeyCol = ["reg"];
let ValueCols = [["mem"]];
}
// Return the 3-operand form of a 2-operand instruction.
def getThreeOperandOpcode : InstrMapping {
let FilterClass = "InstSystemZ";
let RowFields = ["NumOpsKey"];
let ColFields = ["NumOpsValue"];
let KeyCol = ["2"];
let ValueCols = [["3"]];
}
//===----------------------------------------------------------------------===//
// Instruction formats
//===----------------------------------------------------------------------===//
//
// Formats are specified using operand field declarations of the form:
//
// bits<4> Rn : register input or output for operand n
// bits<m> In : immediate value of width m for operand n
// bits<4> BDn : address operand n, which has a base and a displacement
// bits<m> XBDn : address operand n, which has an index, a base and a
// displacement
// bits<4> Xn : index register for address operand n
// bits<4> Mn : mode value for operand n
//
// The operand numbers ("n" in the list above) follow the architecture manual.
// Assembly operands sometimes have a different order; in particular, R3 often
// is often written between operands 1 and 2.
//
//===----------------------------------------------------------------------===//
class InstRI<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> R1;
bits<16> I2;
let Inst{31-24} = op{11-4};
let Inst{23-20} = R1;
let Inst{19-16} = op{3-0};
let Inst{15-0} = I2;
}
class InstRIEb<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<4> R2;
bits<4> M3;
bits<16> RI4;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = R2;
let Inst{31-16} = RI4;
let Inst{15-12} = M3;
let Inst{11-8} = 0;
let Inst{7-0} = op{7-0};
}
class InstRIEc<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<8> I2;
bits<4> M3;
bits<16> RI4;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = M3;
let Inst{31-16} = RI4;
let Inst{15-8} = I2;
let Inst{7-0} = op{7-0};
}
class InstRIEd<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<4> R3;
bits<16> I2;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = R3;
let Inst{31-16} = I2;
let Inst{15-8} = 0;
let Inst{7-0} = op{7-0};
}
class InstRIEf<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<4> R2;
bits<8> I3;
bits<8> I4;
bits<8> I5;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = R2;
let Inst{31-24} = I3;
let Inst{23-16} = I4;
let Inst{15-8} = I5;
let Inst{7-0} = op{7-0};
}
class InstRIL<bits<12> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<32> I2;
let Inst{47-40} = op{11-4};
let Inst{39-36} = R1;
let Inst{35-32} = op{3-0};
let Inst{31-0} = I2;
}
class InstRR<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<2, outs, ins, asmstr, pattern> {
field bits<16> Inst;
field bits<16> SoftFail = 0;
bits<4> R1;
bits<4> R2;
let Inst{15-8} = op;
let Inst{7-4} = R1;
let Inst{3-0} = R2;
}
class InstRRD<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> R1;
bits<4> R3;
bits<4> R2;
let Inst{31-16} = op;
let Inst{15-12} = R1;
let Inst{11-8} = 0;
let Inst{7-4} = R3;
let Inst{3-0} = R2;
}
class InstRRE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> R1;
bits<4> R2;
let Inst{31-16} = op;
let Inst{15-8} = 0;
let Inst{7-4} = R1;
let Inst{3-0} = R2;
}
class InstRRF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> R1;
bits<4> R2;
bits<4> R3;
bits<4> R4;
let Inst{31-16} = op;
let Inst{15-12} = R3;
let Inst{11-8} = R4;
let Inst{7-4} = R1;
let Inst{3-0} = R2;
}
class InstRX<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> R1;
bits<20> XBD2;
let Inst{31-24} = op;
let Inst{23-20} = R1;
let Inst{19-0} = XBD2;
let HasIndex = 1;
}
class InstRXE<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<20> XBD2;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-16} = XBD2;
let Inst{15-8} = 0;
let Inst{7-0} = op{7-0};
let HasIndex = 1;
}
class InstRXF<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<4> R3;
bits<20> XBD2;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R3;
let Inst{35-16} = XBD2;
let Inst{15-12} = R1;
let Inst{11-8} = 0;
let Inst{7-0} = op{7-0};
let HasIndex = 1;
}
class InstRXY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<28> XBD2;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-8} = XBD2;
let Inst{7-0} = op{7-0};
let Has20BitOffset = 1;
let HasIndex = 1;
}
class InstRS<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<4> R1;
bits<4> R3;
bits<16> BD2;
let Inst{31-24} = op;
let Inst{23-20} = R1;
let Inst{19-16} = R3;
let Inst{15-0} = BD2;
}
class InstRSY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<4> R1;
bits<4> R3;
bits<24> BD2;
let Inst{47-40} = op{15-8};
let Inst{39-36} = R1;
let Inst{35-32} = R3;
let Inst{31-8} = BD2;
let Inst{7-0} = op{7-0};
let Has20BitOffset = 1;
}
class InstSI<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<4, outs, ins, asmstr, pattern> {
field bits<32> Inst;
field bits<32> SoftFail = 0;
bits<16> BD1;
bits<8> I2;
let Inst{31-24} = op;
let Inst{23-16} = I2;
let Inst{15-0} = BD1;
}
class InstSIL<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<16> BD1;
bits<16> I2;
let Inst{47-32} = op;
let Inst{31-16} = BD1;
let Inst{15-0} = I2;
}
class InstSIY<bits<16> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<24> BD1;
bits<8> I2;
let Inst{47-40} = op{15-8};
let Inst{39-32} = I2;
let Inst{31-8} = BD1;
let Inst{7-0} = op{7-0};
let Has20BitOffset = 1;
}
class InstSS<bits<8> op, dag outs, dag ins, string asmstr, list<dag> pattern>
: InstSystemZ<6, outs, ins, asmstr, pattern> {
field bits<48> Inst;
field bits<48> SoftFail = 0;
bits<24> BDL1;
bits<16> BD2;
let Inst{47-40} = op;
let Inst{39-16} = BDL1;
let Inst{15-0} = BD2;
}
//===----------------------------------------------------------------------===//
// Instruction definitions with semantics
//===----------------------------------------------------------------------===//
//
// These classes have the form [Cond]<Category><Format>, where <Format> is one
// of the formats defined above and where <Category> describes the inputs
// and outputs. "Cond" is used if the instruction is conditional,
// in which case the 4-bit condition-code mask is added as a final operand.
// <Category> can be one of:
//
// Inherent:
// One register output operand and no input operands.
//
// BranchUnary:
// One register output operand, one register input operand and
// one branch displacement. The instructions stores a modified
// form of the source register in the destination register and
// branches on the result.
//
// Store:
// One register or immediate input operand and one address input operand.
// The instruction stores the first operand to the address.
//
// This category is used for both pure and truncating stores.
//
// LoadMultiple:
// One address input operand and two explicit output operands.
// The instruction loads a range of registers from the address,
// with the explicit operands giving the first and last register
// to load. Other loaded registers are added as implicit definitions.
//
// StoreMultiple:
// Two explicit input register operands and an address operand.
// The instruction stores a range of registers to the address,
// with the explicit operands giving the first and last register
// to store. Other stored registers are added as implicit uses.
//
// Unary:
// One register output operand and one input operand.
//
// Binary:
// One register output operand and two input operands.
//
// Compare:
// Two input operands and an implicit CC output operand.
//
// Ternary:
// One register output operand and three input operands.
//
// LoadAndOp:
// One output operand and two input operands, one of which is an address.
// The instruction both reads from and writes to the address.
//
// CmpSwap:
// One output operand and three input operands, one of which is an address.
// The instruction both reads from and writes to the address.
//
// RotateSelect:
// One output operand and five input operands. The first two operands
// are registers and the other three are immediates.
//
// Prefetch:
// One 4-bit immediate operand and one address operand. The immediate
// operand is 1 for a load prefetch and 2 for a store prefetch.
//
// The format determines which input operands are tied to output operands,
// and also determines the shape of any address operand.
//
// Multiclasses of the form <Category><Format>Pair define two instructions,
// one with <Category><Format> and one with <Category><Format>Y. The name
// of the first instruction has no suffix, the name of the second has
// an extra "y".
//
//===----------------------------------------------------------------------===//
class InherentRRE<string mnemonic, bits<16> opcode, RegisterOperand cls,
dag src>
: InstRRE<opcode, (outs cls:$R1), (ins),
mnemonic#"\t$R1",
[(set cls:$R1, src)]> {
let R2 = 0;
}
class BranchUnaryRI<string mnemonic, bits<12> opcode, RegisterOperand cls>
: InstRI<opcode, (outs cls:$R1), (ins cls:$R1src, brtarget16:$I2),
mnemonic##"\t$R1, $I2", []> {
let isBranch = 1;
let isTerminator = 1;
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class LoadMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls>
: InstRSY<opcode, (outs cls:$R1, cls:$R3), (ins bdaddr20only:$BD2),
mnemonic#"\t$R1, $R3, $BD2", []> {
let mayLoad = 1;
}
class StoreRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls>
: InstRIL<opcode, (outs), (ins cls:$R1, pcrel32:$I2),
mnemonic#"\t$R1, $I2",
[(operator cls:$R1, pcrel32:$I2)]> {
let mayStore = 1;
// We want PC-relative addresses to be tried ahead of BD and BDX addresses.
// However, BDXs have two extra operands and are therefore 6 units more
// complex.
let AddedComplexity = 7;
}
class StoreRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls, bits<5> bytes,
AddressingMode mode = bdxaddr12only>
: InstRX<opcode, (outs), (ins cls:$R1, mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(operator cls:$R1, mode:$XBD2)]> {
let OpKey = mnemonic ## cls;
let OpType = "mem";
let mayStore = 1;
let AccessBytes = bytes;
}
class StoreRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, bits<5> bytes,
AddressingMode mode = bdxaddr20only>
: InstRXY<opcode, (outs), (ins cls:$R1, mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(operator cls:$R1, mode:$XBD2)]> {
let OpKey = mnemonic ## cls;
let OpType = "mem";
let mayStore = 1;
let AccessBytes = bytes;
}
multiclass StoreRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
SDPatternOperator operator, RegisterOperand cls,
bits<5> bytes> {
let DispKey = mnemonic ## #cls in {
let DispSize = "12" in
def "" : StoreRX<mnemonic, rxOpcode, operator, cls, bytes, bdxaddr12pair>;
let DispSize = "20" in
def Y : StoreRXY<mnemonic#"y", rxyOpcode, operator, cls, bytes,
bdxaddr20pair>;
}
}
class StoreMultipleRSY<string mnemonic, bits<16> opcode, RegisterOperand cls>
: InstRSY<opcode, (outs), (ins cls:$R1, cls:$R3, bdaddr20only:$BD2),
mnemonic#"\t$R1, $R3, $BD2", []> {
let mayStore = 1;
}
// StoreSI* instructions are used to store an integer to memory, but the
// addresses are more restricted than for normal stores. If we are in the
// situation of having to force either the address into a register or the
// constant into a register, it's usually better to do the latter.
// We therefore match the address in the same way as a normal store and
// only use the StoreSI* instruction if the matched address is suitable.
class StoreSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
Immediate imm>
: InstSI<opcode, (outs), (ins mviaddr12pair:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2",
[(operator imm:$I2, mviaddr12pair:$BD1)]> {
let mayStore = 1;
}
class StoreSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
Immediate imm>
: InstSIY<opcode, (outs), (ins mviaddr20pair:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2",
[(operator imm:$I2, mviaddr20pair:$BD1)]> {
let mayStore = 1;
}
class StoreSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
Immediate imm>
: InstSIL<opcode, (outs), (ins mviaddr12pair:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2",
[(operator imm:$I2, mviaddr12pair:$BD1)]> {
let mayStore = 1;
}
multiclass StoreSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
SDPatternOperator operator, Immediate imm> {
let DispKey = mnemonic in {
let DispSize = "12" in
def "" : StoreSI<mnemonic, siOpcode, operator, imm>;
let DispSize = "20" in
def Y : StoreSIY<mnemonic#"y", siyOpcode, operator, imm>;
}
}
class CondStoreRSY<string mnemonic, bits<16> opcode,
RegisterOperand cls, bits<5> bytes,
AddressingMode mode = bdaddr20only>
: InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2, cond4:$valid, cond4:$R3),
mnemonic#"$R3\t$R1, $BD2", []>,
Requires<[FeatureLoadStoreOnCond]> {
let mayStore = 1;
let AccessBytes = bytes;
let CCMaskLast = 1;
}
// Like CondStoreRSY, but used for the raw assembly form. The condition-code
// mask is the third operand rather than being part of the mnemonic.
class AsmCondStoreRSY<string mnemonic, bits<16> opcode,
RegisterOperand cls, bits<5> bytes,
AddressingMode mode = bdaddr20only>
: InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2, imm32zx4:$R3),
mnemonic#"\t$R1, $BD2, $R3", []>,
Requires<[FeatureLoadStoreOnCond]> {
let mayStore = 1;
let AccessBytes = bytes;
}
// Like CondStoreRSY, but with a fixed CC mask.
class FixedCondStoreRSY<string mnemonic, bits<16> opcode,
RegisterOperand cls, bits<4> ccmask, bits<5> bytes,
AddressingMode mode = bdaddr20only>
: InstRSY<opcode, (outs), (ins cls:$R1, mode:$BD2),
mnemonic#"\t$R1, $BD2", []>,
Requires<[FeatureLoadStoreOnCond]> {
let mayStore = 1;
let AccessBytes = bytes;
let R3 = ccmask;
}
class UnaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRR<opcode, (outs cls1:$R1), (ins cls2:$R2),
mnemonic#"r\t$R1, $R2",
[(set cls1:$R1, (operator cls2:$R2))]> {
let OpKey = mnemonic ## cls1;
let OpType = "reg";
}
class UnaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRE<opcode, (outs cls1:$R1), (ins cls2:$R2),
mnemonic#"r\t$R1, $R2",
[(set cls1:$R1, (operator cls2:$R2))]> {
let OpKey = mnemonic ## cls1;
let OpType = "reg";
}
class UnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
RegisterOperand cls2>
: InstRRF<opcode, (outs cls1:$R1), (ins imm32zx4:$R3, cls2:$R2),
mnemonic#"r\t$R1, $R3, $R2", []> {
let OpKey = mnemonic ## cls1;
let OpType = "reg";
let R4 = 0;
}
class UnaryRRF4<string mnemonic, bits<16> opcode, RegisterOperand cls1,
RegisterOperand cls2>
: InstRRF<opcode, (outs cls1:$R1), (ins imm32zx4:$R3, cls2:$R2, imm32zx4:$R4),
mnemonic#"\t$R1, $R3, $R2, $R4", []>;
// These instructions are generated by if conversion. The old value of R1
// is added as an implicit use.
class CondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
RegisterOperand cls2>
: InstRRF<opcode, (outs cls1:$R1), (ins cls2:$R2, cond4:$valid, cond4:$R3),
mnemonic#"r$R3\t$R1, $R2", []>,
Requires<[FeatureLoadStoreOnCond]> {
let CCMaskLast = 1;
let R4 = 0;
}
// Like CondUnaryRRF, but used for the raw assembly form. The condition-code
// mask is the third operand rather than being part of the mnemonic.
class AsmCondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
RegisterOperand cls2>
: InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2, imm32zx4:$R3),
mnemonic#"r\t$R1, $R2, $R3", []>,
Requires<[FeatureLoadStoreOnCond]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let R4 = 0;
}
// Like CondUnaryRRF, but with a fixed CC mask.
class FixedCondUnaryRRF<string mnemonic, bits<16> opcode, RegisterOperand cls1,
RegisterOperand cls2, bits<4> ccmask>
: InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
mnemonic#"\t$R1, $R2", []>,
Requires<[FeatureLoadStoreOnCond]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let R3 = ccmask;
let R4 = 0;
}
class UnaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRI<opcode, (outs cls:$R1), (ins imm:$I2),
mnemonic#"\t$R1, $I2",
[(set cls:$R1, (operator imm:$I2))]>;
class UnaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRIL<opcode, (outs cls:$R1), (ins imm:$I2),
mnemonic#"\t$R1, $I2",
[(set cls:$R1, (operator imm:$I2))]>;
class UnaryRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls>
: InstRIL<opcode, (outs cls:$R1), (ins pcrel32:$I2),
mnemonic#"\t$R1, $I2",
[(set cls:$R1, (operator pcrel32:$I2))]> {
let mayLoad = 1;
// We want PC-relative addresses to be tried ahead of BD and BDX addresses.
// However, BDXs have two extra operands and are therefore 6 units more
// complex.
let AddedComplexity = 7;
}
class CondUnaryRSY<string mnemonic, bits<16> opcode,
SDPatternOperator operator, RegisterOperand cls,
bits<5> bytes, AddressingMode mode = bdaddr20only>
: InstRSY<opcode, (outs cls:$R1),
(ins cls:$R1src, mode:$BD2, cond4:$valid, cond4:$R3),
mnemonic#"$R3\t$R1, $BD2",
[(set cls:$R1,
(z_select_ccmask (load bdaddr20only:$BD2), cls:$R1src,
cond4:$valid, cond4:$R3))]>,
Requires<[FeatureLoadStoreOnCond]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let mayLoad = 1;
let AccessBytes = bytes;
let CCMaskLast = 1;
}
// Like CondUnaryRSY, but used for the raw assembly form. The condition-code
// mask is the third operand rather than being part of the mnemonic.
class AsmCondUnaryRSY<string mnemonic, bits<16> opcode,
RegisterOperand cls, bits<5> bytes,
AddressingMode mode = bdaddr20only>
: InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$BD2, imm32zx4:$R3),
mnemonic#"\t$R1, $BD2, $R3", []>,
Requires<[FeatureLoadStoreOnCond]> {
let mayLoad = 1;
let AccessBytes = bytes;
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
// Like CondUnaryRSY, but with a fixed CC mask.
class FixedCondUnaryRSY<string mnemonic, bits<16> opcode,
RegisterOperand cls, bits<4> ccmask, bits<5> bytes,
AddressingMode mode = bdaddr20only>
: InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$BD2),
mnemonic#"\t$R1, $BD2", []>,
Requires<[FeatureLoadStoreOnCond]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let R3 = ccmask;
let mayLoad = 1;
let AccessBytes = bytes;
}
class UnaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls, bits<5> bytes,
AddressingMode mode = bdxaddr12only>
: InstRX<opcode, (outs cls:$R1), (ins mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(set cls:$R1, (operator mode:$XBD2))]> {
let OpKey = mnemonic ## cls;
let OpType = "mem";
let mayLoad = 1;
let AccessBytes = bytes;
}
class UnaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, bits<5> bytes>
: InstRXE<opcode, (outs cls:$R1), (ins bdxaddr12only:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(set cls:$R1, (operator bdxaddr12only:$XBD2))]> {
let OpKey = mnemonic ## cls;
let OpType = "mem";
let mayLoad = 1;
let AccessBytes = bytes;
}
class UnaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, bits<5> bytes,
AddressingMode mode = bdxaddr20only>
: InstRXY<opcode, (outs cls:$R1), (ins mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(set cls:$R1, (operator mode:$XBD2))]> {
let OpKey = mnemonic ## cls;
let OpType = "mem";
let mayLoad = 1;
let AccessBytes = bytes;
}
multiclass UnaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
SDPatternOperator operator, RegisterOperand cls,
bits<5> bytes> {
let DispKey = mnemonic ## #cls in {
let DispSize = "12" in
def "" : UnaryRX<mnemonic, rxOpcode, operator, cls, bytes, bdxaddr12pair>;
let DispSize = "20" in
def Y : UnaryRXY<mnemonic#"y", rxyOpcode, operator, cls, bytes,
bdxaddr20pair>;
}
}
class BinaryRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRR<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
mnemonic#"r\t$R1, $R2",
[(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> {
let OpKey = mnemonic ## cls1;
let OpType = "reg";
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class BinaryRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRE<opcode, (outs cls1:$R1), (ins cls1:$R1src, cls2:$R2),
mnemonic#"r\t$R1, $R2",
[(set cls1:$R1, (operator cls1:$R1src, cls2:$R2))]> {
let OpKey = mnemonic ## cls1;
let OpType = "reg";
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class BinaryRRF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R3, cls2:$R2),
mnemonic#"r\t$R1, $R3, $R2",
[(set cls1:$R1, (operator cls1:$R3, cls2:$R2))]> {
let OpKey = mnemonic ## cls1;
let OpType = "reg";
let R4 = 0;
}
class BinaryRRFK<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRF<opcode, (outs cls1:$R1), (ins cls1:$R2, cls2:$R3),
mnemonic#"rk\t$R1, $R2, $R3",
[(set cls1:$R1, (operator cls1:$R2, cls2:$R3))]> {
let R4 = 0;
}
multiclass BinaryRRAndK<string mnemonic, bits<8> opcode1, bits<16> opcode2,
SDPatternOperator operator, RegisterOperand cls1,
RegisterOperand cls2> {
let NumOpsKey = mnemonic in {
let NumOpsValue = "3" in
def K : BinaryRRFK<mnemonic, opcode2, null_frag, cls1, cls2>,
Requires<[FeatureDistinctOps]>;
let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
def "" : BinaryRR<mnemonic, opcode1, operator, cls1, cls2>;
}
}
multiclass BinaryRREAndK<string mnemonic, bits<16> opcode1, bits<16> opcode2,
SDPatternOperator operator, RegisterOperand cls1,
RegisterOperand cls2> {
let NumOpsKey = mnemonic in {
let NumOpsValue = "3" in
def K : BinaryRRFK<mnemonic, opcode2, null_frag, cls1, cls2>,
Requires<[FeatureDistinctOps]>;
let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
def "" : BinaryRRE<mnemonic, opcode1, operator, cls1, cls2>;
}
}
class BinaryRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRI<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
mnemonic#"\t$R1, $I2",
[(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class BinaryRIE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRIEd<opcode, (outs cls:$R1), (ins cls:$R3, imm:$I2),
mnemonic#"\t$R1, $R3, $I2",
[(set cls:$R1, (operator cls:$R3, imm:$I2))]>;
multiclass BinaryRIAndK<string mnemonic, bits<12> opcode1, bits<16> opcode2,
SDPatternOperator operator, RegisterOperand cls,
Immediate imm> {
let NumOpsKey = mnemonic in {
let NumOpsValue = "3" in
def K : BinaryRIE<mnemonic##"k", opcode2, null_frag, cls, imm>,
Requires<[FeatureDistinctOps]>;
let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
def "" : BinaryRI<mnemonic, opcode1, operator, cls, imm>;
}
}
class BinaryRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRIL<opcode, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
mnemonic#"\t$R1, $I2",
[(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class BinaryRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls>
: InstRS<opcode, (outs cls:$R1), (ins cls:$R1src, shift12only:$BD2),
mnemonic#"\t$R1, $BD2",
[(set cls:$R1, (operator cls:$R1src, shift12only:$BD2))]> {
let R3 = 0;
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class BinaryRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls>
: InstRSY<opcode, (outs cls:$R1), (ins cls:$R3, shift20only:$BD2),
mnemonic#"\t$R1, $R3, $BD2",
[(set cls:$R1, (operator cls:$R3, shift20only:$BD2))]>;
multiclass BinaryRSAndK<string mnemonic, bits<8> opcode1, bits<16> opcode2,
SDPatternOperator operator, RegisterOperand cls> {
let NumOpsKey = mnemonic in {
let NumOpsValue = "3" in
def K : BinaryRSY<mnemonic##"k", opcode2, null_frag, cls>,
Requires<[FeatureDistinctOps]>;
let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
def "" : BinaryRS<mnemonic, opcode1, operator, cls>;
}
}
class BinaryRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
AddressingMode mode = bdxaddr12only>
: InstRX<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> {
let OpKey = mnemonic ## cls;
let OpType = "mem";
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let mayLoad = 1;
let AccessBytes = bytes;
}
class BinaryRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
: InstRXE<opcode, (outs cls:$R1), (ins cls:$R1src, bdxaddr12only:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(set cls:$R1, (operator cls:$R1src,
(load bdxaddr12only:$XBD2)))]> {
let OpKey = mnemonic ## cls;
let OpType = "mem";
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let mayLoad = 1;
let AccessBytes = bytes;
}
class BinaryRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
AddressingMode mode = bdxaddr20only>
: InstRXY<opcode, (outs cls:$R1), (ins cls:$R1src, mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(set cls:$R1, (operator cls:$R1src, (load mode:$XBD2)))]> {
let OpKey = mnemonic ## cls;
let OpType = "mem";
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let mayLoad = 1;
let AccessBytes = bytes;
}
multiclass BinaryRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
SDPatternOperator operator, RegisterOperand cls,
SDPatternOperator load, bits<5> bytes> {
let DispKey = mnemonic ## #cls in {
let DispSize = "12" in
def "" : BinaryRX<mnemonic, rxOpcode, operator, cls, load, bytes,
bdxaddr12pair>;
let DispSize = "20" in
def Y : BinaryRXY<mnemonic#"y", rxyOpcode, operator, cls, load, bytes,
bdxaddr20pair>;
}
}
class BinarySI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
Operand imm, AddressingMode mode = bdaddr12only>
: InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2",
[(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> {
let mayLoad = 1;
let mayStore = 1;
}
class BinarySIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
Operand imm, AddressingMode mode = bdaddr20only>
: InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2",
[(store (operator (load mode:$BD1), imm:$I2), mode:$BD1)]> {
let mayLoad = 1;
let mayStore = 1;
}
multiclass BinarySIPair<string mnemonic, bits<8> siOpcode,
bits<16> siyOpcode, SDPatternOperator operator,
Operand imm> {
let DispKey = mnemonic ## #cls in {
let DispSize = "12" in
def "" : BinarySI<mnemonic, siOpcode, operator, imm, bdaddr12pair>;
let DispSize = "20" in
def Y : BinarySIY<mnemonic#"y", siyOpcode, operator, imm, bdaddr20pair>;
}
}
class CompareRR<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRR<opcode, (outs), (ins cls1:$R1, cls2:$R2),
mnemonic#"r\t$R1, $R2",
[(operator cls1:$R1, cls2:$R2)]> {
let OpKey = mnemonic ## cls1;
let OpType = "reg";
let isCompare = 1;
}
class CompareRRE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: InstRRE<opcode, (outs), (ins cls1:$R1, cls2:$R2),
mnemonic#"r\t$R1, $R2",
[(operator cls1:$R1, cls2:$R2)]> {
let OpKey = mnemonic ## cls1;
let OpType = "reg";
let isCompare = 1;
}
class CompareRI<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRI<opcode, (outs), (ins cls:$R1, imm:$I2),
mnemonic#"\t$R1, $I2",
[(operator cls:$R1, imm:$I2)]> {
let isCompare = 1;
}
class CompareRIL<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, Immediate imm>
: InstRIL<opcode, (outs), (ins cls:$R1, imm:$I2),
mnemonic#"\t$R1, $I2",
[(operator cls:$R1, imm:$I2)]> {
let isCompare = 1;
}
class CompareRILPC<string mnemonic, bits<12> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load>
: InstRIL<opcode, (outs), (ins cls:$R1, pcrel32:$I2),
mnemonic#"\t$R1, $I2",
[(operator cls:$R1, (load pcrel32:$I2))]> {
let isCompare = 1;
let mayLoad = 1;
// We want PC-relative addresses to be tried ahead of BD and BDX addresses.
// However, BDXs have two extra operands and are therefore 6 units more
// complex.
let AddedComplexity = 7;
}
class CompareRX<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
AddressingMode mode = bdxaddr12only>
: InstRX<opcode, (outs), (ins cls:$R1, mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(operator cls:$R1, (load mode:$XBD2))]> {
let OpKey = mnemonic ## cls;
let OpType = "mem";
let isCompare = 1;
let mayLoad = 1;
let AccessBytes = bytes;
}
class CompareRXE<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
: InstRXE<opcode, (outs), (ins cls:$R1, bdxaddr12only:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(operator cls:$R1, (load bdxaddr12only:$XBD2))]> {
let OpKey = mnemonic ## cls;
let OpType = "mem";
let isCompare = 1;
let mayLoad = 1;
let AccessBytes = bytes;
}
class CompareRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load, bits<5> bytes,
AddressingMode mode = bdxaddr20only>
: InstRXY<opcode, (outs), (ins cls:$R1, mode:$XBD2),
mnemonic#"\t$R1, $XBD2",
[(operator cls:$R1, (load mode:$XBD2))]> {
let OpKey = mnemonic ## cls;
let OpType = "mem";
let isCompare = 1;
let mayLoad = 1;
let AccessBytes = bytes;
}
multiclass CompareRXPair<string mnemonic, bits<8> rxOpcode, bits<16> rxyOpcode,
SDPatternOperator operator, RegisterOperand cls,
SDPatternOperator load, bits<5> bytes> {
let DispKey = mnemonic ## #cls in {
let DispSize = "12" in
def "" : CompareRX<mnemonic, rxOpcode, operator, cls,
load, bytes, bdxaddr12pair>;
let DispSize = "20" in
def Y : CompareRXY<mnemonic#"y", rxyOpcode, operator, cls,
load, bytes, bdxaddr20pair>;
}
}
class CompareSI<string mnemonic, bits<8> opcode, SDPatternOperator operator,
SDPatternOperator load, Immediate imm,
AddressingMode mode = bdaddr12only>
: InstSI<opcode, (outs), (ins mode:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2",
[(operator (load mode:$BD1), imm:$I2)]> {
let isCompare = 1;
let mayLoad = 1;
}
class CompareSIL<string mnemonic, bits<16> opcode, SDPatternOperator operator,
SDPatternOperator load, Immediate imm>
: InstSIL<opcode, (outs), (ins bdaddr12only:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2",
[(operator (load bdaddr12only:$BD1), imm:$I2)]> {
let isCompare = 1;
let mayLoad = 1;
}
class CompareSIY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
SDPatternOperator load, Immediate imm,
AddressingMode mode = bdaddr20only>
: InstSIY<opcode, (outs), (ins mode:$BD1, imm:$I2),
mnemonic#"\t$BD1, $I2",
[(operator (load mode:$BD1), imm:$I2)]> {
let isCompare = 1;
let mayLoad = 1;
}
multiclass CompareSIPair<string mnemonic, bits<8> siOpcode, bits<16> siyOpcode,
SDPatternOperator operator, SDPatternOperator load,
Immediate imm> {
let DispKey = mnemonic in {
let DispSize = "12" in
def "" : CompareSI<mnemonic, siOpcode, operator, load, imm, bdaddr12pair>;
let DispSize = "20" in
def Y : CompareSIY<mnemonic#"y", siyOpcode, operator, load, imm,
bdaddr20pair>;
}
}
class TernaryRRD<string mnemonic, bits<16> opcode,
SDPatternOperator operator, RegisterOperand cls>
: InstRRD<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, cls:$R2),
mnemonic#"r\t$R1, $R3, $R2",
[(set cls:$R1, (operator cls:$R1src, cls:$R3, cls:$R2))]> {
let OpKey = mnemonic ## cls;
let OpType = "reg";
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class TernaryRXF<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, SDPatternOperator load, bits<5> bytes>
: InstRXF<opcode, (outs cls:$R1),
(ins cls:$R1src, cls:$R3, bdxaddr12only:$XBD2),
mnemonic#"\t$R1, $R3, $XBD2",
[(set cls:$R1, (operator cls:$R1src, cls:$R3,
(load bdxaddr12only:$XBD2)))]> {
let OpKey = mnemonic ## cls;
let OpType = "mem";
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let mayLoad = 1;
let AccessBytes = bytes;
}
class LoadAndOpRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, AddressingMode mode = bdaddr20only>
: InstRSY<opcode, (outs cls:$R1), (ins cls:$R3, mode:$BD2),
mnemonic#"\t$R1, $R3, $BD2",
[(set cls:$R1, (operator mode:$BD2, cls:$R3))]> {
let mayLoad = 1;
let mayStore = 1;
}
class CmpSwapRS<string mnemonic, bits<8> opcode, SDPatternOperator operator,
RegisterOperand cls, AddressingMode mode = bdaddr12only>
: InstRS<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2),
mnemonic#"\t$R1, $R3, $BD2",
[(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let mayLoad = 1;
let mayStore = 1;
}
class CmpSwapRSY<string mnemonic, bits<16> opcode, SDPatternOperator operator,
RegisterOperand cls, AddressingMode mode = bdaddr20only>
: InstRSY<opcode, (outs cls:$R1), (ins cls:$R1src, cls:$R3, mode:$BD2),
mnemonic#"\t$R1, $R3, $BD2",
[(set cls:$R1, (operator mode:$BD2, cls:$R1src, cls:$R3))]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
let mayLoad = 1;
let mayStore = 1;
}
multiclass CmpSwapRSPair<string mnemonic, bits<8> rsOpcode, bits<16> rsyOpcode,
SDPatternOperator operator, RegisterOperand cls> {
let DispKey = mnemonic ## #cls in {
let DispSize = "12" in
def "" : CmpSwapRS<mnemonic, rsOpcode, operator, cls, bdaddr12pair>;
let DispSize = "20" in
def Y : CmpSwapRSY<mnemonic#"y", rsyOpcode, operator, cls, bdaddr20pair>;
}
}
class RotateSelectRIEf<string mnemonic, bits<16> opcode, RegisterOperand cls1,
RegisterOperand cls2>
: InstRIEf<opcode, (outs cls1:$R1),
(ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
imm32zx6:$I5),
mnemonic#"\t$R1, $R2, $I3, $I4, $I5", []> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
class PrefetchRXY<string mnemonic, bits<16> opcode, SDPatternOperator operator>
: InstRXY<opcode, (outs), (ins imm32zx4:$R1, bdxaddr20only:$XBD2),
mnemonic##"\t$R1, $XBD2",
[(operator imm32zx4:$R1, bdxaddr20only:$XBD2)]>;
class PrefetchRILPC<string mnemonic, bits<12> opcode,
SDPatternOperator operator>
: InstRIL<opcode, (outs), (ins imm32zx4:$R1, pcrel32:$I2),
mnemonic##"\t$R1, $I2",
[(operator imm32zx4:$R1, pcrel32:$I2)]> {
// We want PC-relative addresses to be tried ahead of BD and BDX addresses.
// However, BDXs have two extra operands and are therefore 6 units more
// complex.
let AddedComplexity = 7;
}
// A floating-point load-and test operation. Create both a normal unary
// operation and one that acts as a comparison against zero.
multiclass LoadAndTestRRE<string mnemonic, bits<16> opcode,
RegisterOperand cls> {
def "" : UnaryRRE<mnemonic, opcode, null_frag, cls, cls>;
let isCodeGenOnly = 1 in
def Compare : CompareRRE<mnemonic, opcode, null_frag, cls, cls>;
}
//===----------------------------------------------------------------------===//
// Pseudo instructions
//===----------------------------------------------------------------------===//
//
// Convenience instructions that get lowered to real instructions
// by either SystemZTargetLowering::EmitInstrWithCustomInserter()
// or SystemZInstrInfo::expandPostRAPseudo().
//
//===----------------------------------------------------------------------===//
class Pseudo<dag outs, dag ins, list<dag> pattern>
: InstSystemZ<0, outs, ins, "", pattern> {
let isPseudo = 1;
let isCodeGenOnly = 1;
}
// Like UnaryRI, but expanded after RA depending on the choice of register.
class UnaryRIPseudo<SDPatternOperator operator, RegisterOperand cls,
Immediate imm>
: Pseudo<(outs cls:$R1), (ins imm:$I2),
[(set cls:$R1, (operator imm:$I2))]>;
// Like UnaryRXY, but expanded after RA depending on the choice of register.
class UnaryRXYPseudo<string key, SDPatternOperator operator,
RegisterOperand cls, bits<5> bytes,
AddressingMode mode = bdxaddr20only>
: Pseudo<(outs cls:$R1), (ins mode:$XBD2),
[(set cls:$R1, (operator mode:$XBD2))]> {
let OpKey = key ## cls;
let OpType = "mem";
let mayLoad = 1;
let Has20BitOffset = 1;
let HasIndex = 1;
let AccessBytes = bytes;
}
// Like UnaryRR, but expanded after RA depending on the choice of registers.
class UnaryRRPseudo<string key, SDPatternOperator operator,
RegisterOperand cls1, RegisterOperand cls2>
: Pseudo<(outs cls1:$R1), (ins cls2:$R2),
[(set cls1:$R1, (operator cls2:$R2))]> {
let OpKey = key ## cls1;
let OpType = "reg";
}
// Like BinaryRI, but expanded after RA depending on the choice of register.
class BinaryRIPseudo<SDPatternOperator operator, RegisterOperand cls,
Immediate imm>
: Pseudo<(outs cls:$R1), (ins cls:$R1src, imm:$I2),
[(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
let Constraints = "$R1 = $R1src";
}
// Like BinaryRIE, but expanded after RA depending on the choice of register.
class BinaryRIEPseudo<SDPatternOperator operator, RegisterOperand cls,
Immediate imm>
: Pseudo<(outs cls:$R1), (ins cls:$R3, imm:$I2),
[(set cls:$R1, (operator cls:$R3, imm:$I2))]>;
// Like BinaryRIAndK, but expanded after RA depending on the choice of register.
multiclass BinaryRIAndKPseudo<string key, SDPatternOperator operator,
RegisterOperand cls, Immediate imm> {
let NumOpsKey = key in {
let NumOpsValue = "3" in
def K : BinaryRIEPseudo<null_frag, cls, imm>,
Requires<[FeatureHighWord, FeatureDistinctOps]>;
let NumOpsValue = "2", isConvertibleToThreeAddress = 1 in
def "" : BinaryRIPseudo<operator, cls, imm>,
Requires<[FeatureHighWord]>;
}
}
// Like CompareRI, but expanded after RA depending on the choice of register.
class CompareRIPseudo<SDPatternOperator operator, RegisterOperand cls,
Immediate imm>
: Pseudo<(outs), (ins cls:$R1, imm:$I2), [(operator cls:$R1, imm:$I2)]>;
// Like CompareRXY, but expanded after RA depending on the choice of register.
class CompareRXYPseudo<SDPatternOperator operator, RegisterOperand cls,
SDPatternOperator load, bits<5> bytes,
AddressingMode mode = bdxaddr20only>
: Pseudo<(outs), (ins cls:$R1, mode:$XBD2),
[(operator cls:$R1, (load mode:$XBD2))]> {
let mayLoad = 1;
let Has20BitOffset = 1;
let HasIndex = 1;
let AccessBytes = bytes;
}
// Like StoreRXY, but expanded after RA depending on the choice of register.
class StoreRXYPseudo<SDPatternOperator operator, RegisterOperand cls,
bits<5> bytes, AddressingMode mode = bdxaddr20only>
: Pseudo<(outs), (ins cls:$R1, mode:$XBD2),
[(operator cls:$R1, mode:$XBD2)]> {
let mayStore = 1;
let Has20BitOffset = 1;
let HasIndex = 1;
let AccessBytes = bytes;
}
// Like RotateSelectRIEf, but expanded after RA depending on the choice
// of registers.
class RotateSelectRIEfPseudo<RegisterOperand cls1, RegisterOperand cls2>
: Pseudo<(outs cls1:$R1),
(ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
imm32zx6:$I5),
[]> {
let Constraints = "$R1 = $R1src";
let DisableEncoding = "$R1src";
}
// Implements "$dst = $cc & (8 >> CC) ? $src1 : $src2", where CC is
// the value of the PSW's 2-bit condition code field.
class SelectWrapper<RegisterOperand cls>
: Pseudo<(outs cls:$dst),
(ins cls:$src1, cls:$src2, imm32zx4:$valid, imm32zx4:$cc),
[(set cls:$dst, (z_select_ccmask cls:$src1, cls:$src2,
imm32zx4:$valid, imm32zx4:$cc))]> {
let usesCustomInserter = 1;
// Although the instructions used by these nodes do not in themselves
// change CC, the insertion requires new blocks, and CC cannot be live
// across them.
let Defs = [CC];
let Uses = [CC];
}
// Stores $new to $addr if $cc is true ("" case) or false (Inv case).
multiclass CondStores<RegisterOperand cls, SDPatternOperator store,
SDPatternOperator load, AddressingMode mode> {
let Defs = [CC], Uses = [CC], usesCustomInserter = 1 in {
def "" : Pseudo<(outs),
(ins cls:$new, mode:$addr, imm32zx4:$valid, imm32zx4:$cc),
[(store (z_select_ccmask cls:$new, (load mode:$addr),
imm32zx4:$valid, imm32zx4:$cc),
mode:$addr)]>;
def Inv : Pseudo<(outs),
(ins cls:$new, mode:$addr, imm32zx4:$valid, imm32zx4:$cc),
[(store (z_select_ccmask (load mode:$addr), cls:$new,
imm32zx4:$valid, imm32zx4:$cc),
mode:$addr)]>;
}
}
// OPERATOR is ATOMIC_SWAP or an ATOMIC_LOAD_* operation. PAT and OPERAND
// describe the second (non-memory) operand.
class AtomicLoadBinary<SDPatternOperator operator, RegisterOperand cls,
dag pat, DAGOperand operand>
: Pseudo<(outs cls:$dst), (ins bdaddr20only:$ptr, operand:$src2),
[(set cls:$dst, (operator bdaddr20only:$ptr, pat))]> {
let Defs = [CC];
let Has20BitOffset = 1;
let mayLoad = 1;
let mayStore = 1;
let usesCustomInserter = 1;
}
// Specializations of AtomicLoadWBinary.
class AtomicLoadBinaryReg32<SDPatternOperator operator>
: AtomicLoadBinary<operator, GR32, (i32 GR32:$src2), GR32>;
class AtomicLoadBinaryImm32<SDPatternOperator operator, Immediate imm>
: AtomicLoadBinary<operator, GR32, (i32 imm:$src2), imm>;
class AtomicLoadBinaryReg64<SDPatternOperator operator>
: AtomicLoadBinary<operator, GR64, (i64 GR64:$src2), GR64>;
class AtomicLoadBinaryImm64<SDPatternOperator operator, Immediate imm>
: AtomicLoadBinary<operator, GR64, (i64 imm:$src2), imm>;
// OPERATOR is ATOMIC_SWAPW or an ATOMIC_LOADW_* operation. PAT and OPERAND
// describe the second (non-memory) operand.
class AtomicLoadWBinary<SDPatternOperator operator, dag pat,
DAGOperand operand>
: Pseudo<(outs GR32:$dst),
(ins bdaddr20only:$ptr, operand:$src2, ADDR32:$bitshift,
ADDR32:$negbitshift, uimm32:$bitsize),
[(set GR32:$dst, (operator bdaddr20only:$ptr, pat, ADDR32:$bitshift,
ADDR32:$negbitshift, uimm32:$bitsize))]> {
let Defs = [CC];
let Has20BitOffset = 1;
let mayLoad = 1;
let mayStore = 1;
let usesCustomInserter = 1;
}
// Specializations of AtomicLoadWBinary.
class AtomicLoadWBinaryReg<SDPatternOperator operator>
: AtomicLoadWBinary<operator, (i32 GR32:$src2), GR32>;
class AtomicLoadWBinaryImm<SDPatternOperator operator, Immediate imm>
: AtomicLoadWBinary<operator, (i32 imm:$src2), imm>;
// Define an instruction that operates on two fixed-length blocks of memory,
// and associated pseudo instructions for operating on blocks of any size.
// The Sequence form uses a straight-line sequence of instructions and
// the Loop form uses a loop of length-256 instructions followed by
// another instruction to handle the excess.
multiclass MemorySS<string mnemonic, bits<8> opcode,
SDPatternOperator sequence, SDPatternOperator loop> {
def "" : InstSS<opcode, (outs), (ins bdladdr12onlylen8:$BDL1,
bdaddr12only:$BD2),
mnemonic##"\t$BDL1, $BD2", []>;
let usesCustomInserter = 1 in {
def Sequence : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
imm64:$length),
[(sequence bdaddr12only:$dest, bdaddr12only:$src,
imm64:$length)]>;
def Loop : Pseudo<(outs), (ins bdaddr12only:$dest, bdaddr12only:$src,
imm64:$length, GR64:$count256),
[(loop bdaddr12only:$dest, bdaddr12only:$src,
imm64:$length, GR64:$count256)]>;
}
}
// Define an instruction that operates on two strings, both terminated
// by the character in R0. The instruction processes a CPU-determinated
// number of bytes at a time and sets CC to 3 if the instruction needs
// to be repeated. Also define a pseudo instruction that represents
// the full loop (the main instruction plus the branch on CC==3).
multiclass StringRRE<string mnemonic, bits<16> opcode,
SDPatternOperator operator> {
def "" : InstRRE<opcode, (outs GR64:$R1, GR64:$R2),
(ins GR64:$R1src, GR64:$R2src),
mnemonic#"\t$R1, $R2", []> {
let Constraints = "$R1 = $R1src, $R2 = $R2src";
let DisableEncoding = "$R1src, $R2src";
}
let usesCustomInserter = 1 in
def Loop : Pseudo<(outs GR64:$end),
(ins GR64:$start1, GR64:$start2, GR32:$char),
[(set GR64:$end, (operator GR64:$start1, GR64:$start2,
GR32:$char))]>;
}
// A pseudo instruction that is a direct alias of a real instruction.
// These aliases are used in cases where a particular register operand is
// fixed or where the same instruction is used with different register sizes.
// The size parameter is the size in bytes of the associated real instruction.
class Alias<int size, dag outs, dag ins, list<dag> pattern>
: InstSystemZ<size, outs, ins, "", pattern> {
let isPseudo = 1;
let isCodeGenOnly = 1;
}
// An alias of a BinaryRI, but with different register sizes.
class BinaryAliasRI<SDPatternOperator operator, RegisterOperand cls,
Immediate imm>
: Alias<4, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
[(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
let Constraints = "$R1 = $R1src";
}
// An alias of a BinaryRIL, but with different register sizes.
class BinaryAliasRIL<SDPatternOperator operator, RegisterOperand cls,
Immediate imm>
: Alias<6, (outs cls:$R1), (ins cls:$R1src, imm:$I2),
[(set cls:$R1, (operator cls:$R1src, imm:$I2))]> {
let Constraints = "$R1 = $R1src";
}
// An alias of a CompareRI, but with different register sizes.
class CompareAliasRI<SDPatternOperator operator, RegisterOperand cls,
Immediate imm>
: Alias<4, (outs), (ins cls:$R1, imm:$I2), [(operator cls:$R1, imm:$I2)]> {
let isCompare = 1;
}
// An alias of a RotateSelectRIEf, but with different register sizes.
class RotateSelectAliasRIEf<RegisterOperand cls1, RegisterOperand cls2>
: Alias<6, (outs cls1:$R1),
(ins cls1:$R1src, cls2:$R2, imm32zx8:$I3, imm32zx8:$I4,
imm32zx6:$I5), []> {
let Constraints = "$R1 = $R1src";
}