blob: e07fd0575b50824e481d119ac271c5131c8e4be3 [file] [log] [blame]
//===-- PPCTargetMachine.cpp - Define TargetMachine for PowerPC -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Top-level implementation for the PowerPC target.
//
//===----------------------------------------------------------------------===//
#include "PPCTargetMachine.h"
#include "PPC.h"
#include "PPCTargetObjectFile.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/PassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Scalar.h"
using namespace llvm;
static cl::
opt<bool> DisableCTRLoops("disable-ppc-ctrloops", cl::Hidden,
cl::desc("Disable CTR loops for PPC"));
static cl::opt<bool>
VSXFMAMutateEarly("schedule-ppc-vsx-fma-mutation-early",
cl::Hidden, cl::desc("Schedule VSX FMA instruction mutation early"));
static cl::opt<bool>
EnableGEPOpt("ppc-gep-opt", cl::Hidden,
cl::desc("Enable optimizations on complex GEPs"),
cl::init(true));
extern "C" void LLVMInitializePowerPCTarget() {
// Register the targets
RegisterTargetMachine<PPC32TargetMachine> A(ThePPC32Target);
RegisterTargetMachine<PPC64TargetMachine> B(ThePPC64Target);
RegisterTargetMachine<PPC64TargetMachine> C(ThePPC64LETarget);
}
static std::string computeFSAdditions(StringRef FS, CodeGenOpt::Level OL, StringRef TT) {
std::string FullFS = FS;
Triple TargetTriple(TT);
// Make sure 64-bit features are available when CPUname is generic
if (TargetTriple.getArch() == Triple::ppc64 ||
TargetTriple.getArch() == Triple::ppc64le) {
if (!FullFS.empty())
FullFS = "+64bit," + FullFS;
else
FullFS = "+64bit";
}
if (OL >= CodeGenOpt::Default) {
if (!FullFS.empty())
FullFS = "+crbits," + FullFS;
else
FullFS = "+crbits";
}
return FullFS;
}
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
// If it isn't a Mach-O file then it's going to be a linux ELF
// object file.
if (TT.isOSDarwin())
return make_unique<TargetLoweringObjectFileMachO>();
return make_unique<PPC64LinuxTargetObjectFile>();
}
// The FeatureString here is a little subtle. We are modifying the feature string
// with what are (currently) non-function specific overrides as it goes into the
// LLVMTargetMachine constructor and then using the stored value in the
// Subtarget constructor below it.
PPCTargetMachine::PPCTargetMachine(const Target &T, StringRef TT, StringRef CPU,
StringRef FS, const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
: LLVMTargetMachine(T, TT, CPU, computeFSAdditions(FS, OL, TT), Options, RM,
CM, OL),
TLOF(createTLOF(Triple(getTargetTriple()))),
Subtarget(TT, CPU, TargetFS, *this) {
initAsmInfo();
}
PPCTargetMachine::~PPCTargetMachine() {}
void PPC32TargetMachine::anchor() { }
PPC32TargetMachine::PPC32TargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
: PPCTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {
}
void PPC64TargetMachine::anchor() { }
PPC64TargetMachine::PPC64TargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
: PPCTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {
}
const PPCSubtarget *
PPCTargetMachine::getSubtargetImpl(const Function &F) const {
AttributeSet FnAttrs = F.getAttributes();
Attribute CPUAttr =
FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-cpu");
Attribute FSAttr =
FnAttrs.getAttribute(AttributeSet::FunctionIndex, "target-features");
std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
? CPUAttr.getValueAsString().str()
: TargetCPU;
std::string FS = !FSAttr.hasAttribute(Attribute::None)
? FSAttr.getValueAsString().str()
: TargetFS;
auto &I = SubtargetMap[CPU + FS];
if (!I) {
// This needs to be done before we create a new subtarget since any
// creation will depend on the TM and the code generation flags on the
// function that reside in TargetOptions.
resetTargetOptions(F);
I = llvm::make_unique<PPCSubtarget>(TargetTriple, CPU, FS, *this);
}
return I.get();
}
//===----------------------------------------------------------------------===//
// Pass Pipeline Configuration
//===----------------------------------------------------------------------===//
namespace {
/// PPC Code Generator Pass Configuration Options.
class PPCPassConfig : public TargetPassConfig {
public:
PPCPassConfig(PPCTargetMachine *TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {}
PPCTargetMachine &getPPCTargetMachine() const {
return getTM<PPCTargetMachine>();
}
const PPCSubtarget &getPPCSubtarget() const {
return *getPPCTargetMachine().getSubtargetImpl();
}
void addIRPasses() override;
bool addPreISel() override;
bool addILPOpts() override;
bool addInstSelector() override;
void addPreRegAlloc() override;
void addPreSched2() override;
void addPreEmitPass() override;
};
} // namespace
TargetPassConfig *PPCTargetMachine::createPassConfig(PassManagerBase &PM) {
return new PPCPassConfig(this, PM);
}
void PPCPassConfig::addIRPasses() {
addPass(createAtomicExpandPass(&getPPCTargetMachine()));
if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) {
// Call SeparateConstOffsetFromGEP pass to extract constants within indices
// and lower a GEP with multiple indices to either arithmetic operations or
// multiple GEPs with single index.
addPass(createSeparateConstOffsetFromGEPPass(TM, true));
// Call EarlyCSE pass to find and remove subexpressions in the lowered
// result.
addPass(createEarlyCSEPass());
// Do loop invariant code motion in case part of the lowered result is
// invariant.
addPass(createLICMPass());
}
TargetPassConfig::addIRPasses();
}
bool PPCPassConfig::addPreISel() {
if (!DisableCTRLoops && getOptLevel() != CodeGenOpt::None)
addPass(createPPCCTRLoops(getPPCTargetMachine()));
return false;
}
bool PPCPassConfig::addILPOpts() {
addPass(&EarlyIfConverterID);
return true;
}
bool PPCPassConfig::addInstSelector() {
// Install an instruction selector.
addPass(createPPCISelDag(getPPCTargetMachine()));
#ifndef NDEBUG
if (!DisableCTRLoops && getOptLevel() != CodeGenOpt::None)
addPass(createPPCCTRLoopsVerify());
#endif
addPass(createPPCVSXCopyPass());
return false;
}
void PPCPassConfig::addPreRegAlloc() {
initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry());
insertPass(VSXFMAMutateEarly ? &RegisterCoalescerID : &MachineSchedulerID,
&PPCVSXFMAMutateID);
}
void PPCPassConfig::addPreSched2() {
addPass(createPPCVSXCopyCleanupPass(), false);
if (getOptLevel() != CodeGenOpt::None)
addPass(&IfConverterID);
}
void PPCPassConfig::addPreEmitPass() {
if (getOptLevel() != CodeGenOpt::None)
addPass(createPPCEarlyReturnPass(), false);
// Must run branch selection immediately preceding the asm printer.
addPass(createPPCBranchSelectionPass(), false);
}
void PPCTargetMachine::addAnalysisPasses(PassManagerBase &PM) {
// Add first the target-independent BasicTTI pass, then our PPC pass. This
// allows the PPC pass to delegate to the target independent layer when
// appropriate.
PM.add(createBasicTargetTransformInfoPass(this));
PM.add(createPPCTargetTransformInfoPass(this));
}