| //===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the AsmPrinter class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/CodeGen/AsmPrinter.h" |
| #include "CodeViewDebug.h" |
| #include "DwarfDebug.h" |
| #include "DwarfException.h" |
| #include "WasmException.h" |
| #include "WinCFGuard.h" |
| #include "WinException.h" |
| #include "llvm/ADT/APFloat.h" |
| #include "llvm/ADT/APInt.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/EHPersonalities.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/BinaryFormat/COFF.h" |
| #include "llvm/BinaryFormat/Dwarf.h" |
| #include "llvm/BinaryFormat/ELF.h" |
| #include "llvm/CodeGen/GCMetadata.h" |
| #include "llvm/CodeGen/GCMetadataPrinter.h" |
| #include "llvm/CodeGen/GCStrategy.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineConstantPool.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBundle.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineModuleInfo.h" |
| #include "llvm/CodeGen/MachineModuleInfoImpls.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" |
| #include "llvm/CodeGen/StackMaps.h" |
| #include "llvm/CodeGen/TargetFrameLowering.h" |
| #include "llvm/CodeGen/TargetInstrInfo.h" |
| #include "llvm/CodeGen/TargetLowering.h" |
| #include "llvm/CodeGen/TargetOpcodes.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/Comdat.h" |
| #include "llvm/IR/Constant.h" |
| #include "llvm/IR/Constants.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DerivedTypes.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalAlias.h" |
| #include "llvm/IR/GlobalIFunc.h" |
| #include "llvm/IR/GlobalIndirectSymbol.h" |
| #include "llvm/IR/GlobalObject.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Mangler.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Operator.h" |
| #include "llvm/IR/RemarkStreamer.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/IR/Value.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/MC/MCCodePadder.h" |
| #include "llvm/MC/MCContext.h" |
| #include "llvm/MC/MCDirectives.h" |
| #include "llvm/MC/MCDwarf.h" |
| #include "llvm/MC/MCExpr.h" |
| #include "llvm/MC/MCInst.h" |
| #include "llvm/MC/MCSection.h" |
| #include "llvm/MC/MCSectionCOFF.h" |
| #include "llvm/MC/MCSectionELF.h" |
| #include "llvm/MC/MCSectionMachO.h" |
| #include "llvm/MC/MCSectionXCOFF.h" |
| #include "llvm/MC/MCStreamer.h" |
| #include "llvm/MC/MCSubtargetInfo.h" |
| #include "llvm/MC/MCSymbol.h" |
| #include "llvm/MC/MCSymbolELF.h" |
| #include "llvm/MC/MCSymbolXCOFF.h" |
| #include "llvm/MC/MCTargetOptions.h" |
| #include "llvm/MC/MCValue.h" |
| #include "llvm/MC/SectionKind.h" |
| #include "llvm/Pass.h" |
| #include "llvm/Remarks/Remark.h" |
| #include "llvm/Remarks/RemarkFormat.h" |
| #include "llvm/Remarks/RemarkStringTable.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/Format.h" |
| #include "llvm/Support/MathExtras.h" |
| #include "llvm/Support/Path.h" |
| #include "llvm/Support/TargetRegistry.h" |
| #include "llvm/Support/Timer.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetLoweringObjectFile.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cinttypes> |
| #include <cstdint> |
| #include <iterator> |
| #include <limits> |
| #include <memory> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "asm-printer" |
| |
| static const char *const DWARFGroupName = "dwarf"; |
| static const char *const DWARFGroupDescription = "DWARF Emission"; |
| static const char *const DbgTimerName = "emit"; |
| static const char *const DbgTimerDescription = "Debug Info Emission"; |
| static const char *const EHTimerName = "write_exception"; |
| static const char *const EHTimerDescription = "DWARF Exception Writer"; |
| static const char *const CFGuardName = "Control Flow Guard"; |
| static const char *const CFGuardDescription = "Control Flow Guard Tables"; |
| static const char *const CodeViewLineTablesGroupName = "linetables"; |
| static const char *const CodeViewLineTablesGroupDescription = |
| "CodeView Line Tables"; |
| |
| STATISTIC(EmittedInsts, "Number of machine instrs printed"); |
| |
| static cl::opt<bool> EnableRemarksSection( |
| "remarks-section", |
| cl::desc("Emit a section containing remark diagnostics metadata"), |
| cl::init(false)); |
| |
| char AsmPrinter::ID = 0; |
| |
| using gcp_map_type = DenseMap<GCStrategy *, std::unique_ptr<GCMetadataPrinter>>; |
| |
| static gcp_map_type &getGCMap(void *&P) { |
| if (!P) |
| P = new gcp_map_type(); |
| return *(gcp_map_type*)P; |
| } |
| |
| /// getGVAlignment - Return the alignment to use for the specified global |
| /// value. This rounds up to the preferred alignment if possible and legal. |
| Align AsmPrinter::getGVAlignment(const GlobalValue *GV, const DataLayout &DL, |
| Align InAlign) { |
| Align Alignment; |
| if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) |
| Alignment = Align(DL.getPreferredAlignment(GVar)); |
| |
| // If InAlign is specified, round it to it. |
| if (InAlign > Alignment) |
| Alignment = InAlign; |
| |
| // If the GV has a specified alignment, take it into account. |
| const MaybeAlign GVAlign(GV->getAlignment()); |
| if (!GVAlign) |
| return Alignment; |
| |
| assert(GVAlign && "GVAlign must be set"); |
| |
| // If the GVAlign is larger than NumBits, or if we are required to obey |
| // NumBits because the GV has an assigned section, obey it. |
| if (*GVAlign > Alignment || GV->hasSection()) |
| Alignment = *GVAlign; |
| return Alignment; |
| } |
| |
| AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer) |
| : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), |
| OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)) { |
| VerboseAsm = OutStreamer->isVerboseAsm(); |
| } |
| |
| AsmPrinter::~AsmPrinter() { |
| assert(!DD && Handlers.empty() && "Debug/EH info didn't get finalized"); |
| |
| if (GCMetadataPrinters) { |
| gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); |
| |
| delete &GCMap; |
| GCMetadataPrinters = nullptr; |
| } |
| } |
| |
| bool AsmPrinter::isPositionIndependent() const { |
| return TM.isPositionIndependent(); |
| } |
| |
| /// getFunctionNumber - Return a unique ID for the current function. |
| unsigned AsmPrinter::getFunctionNumber() const { |
| return MF->getFunctionNumber(); |
| } |
| |
| const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { |
| return *TM.getObjFileLowering(); |
| } |
| |
| const DataLayout &AsmPrinter::getDataLayout() const { |
| return MMI->getModule()->getDataLayout(); |
| } |
| |
| // Do not use the cached DataLayout because some client use it without a Module |
| // (dsymutil, llvm-dwarfdump). |
| unsigned AsmPrinter::getPointerSize() const { |
| return TM.getPointerSize(0); // FIXME: Default address space |
| } |
| |
| const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const { |
| assert(MF && "getSubtargetInfo requires a valid MachineFunction!"); |
| return MF->getSubtarget<MCSubtargetInfo>(); |
| } |
| |
| void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) { |
| S.EmitInstruction(Inst, getSubtargetInfo()); |
| } |
| |
| void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) { |
| assert(DD && "Dwarf debug file is not defined."); |
| assert(OutStreamer->hasRawTextSupport() && "Expected assembly output mode."); |
| (void)DD->emitInitialLocDirective(MF, /*CUID=*/0); |
| } |
| |
| /// getCurrentSection() - Return the current section we are emitting to. |
| const MCSection *AsmPrinter::getCurrentSection() const { |
| return OutStreamer->getCurrentSectionOnly(); |
| } |
| |
| void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.setPreservesAll(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| AU.addRequired<MachineModuleInfoWrapperPass>(); |
| AU.addRequired<MachineOptimizationRemarkEmitterPass>(); |
| AU.addRequired<GCModuleInfo>(); |
| } |
| |
| bool AsmPrinter::doInitialization(Module &M) { |
| auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>(); |
| MMI = MMIWP ? &MMIWP->getMMI() : nullptr; |
| |
| // Initialize TargetLoweringObjectFile. |
| const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) |
| .Initialize(OutContext, TM); |
| |
| const_cast<TargetLoweringObjectFile &>(getObjFileLowering()) |
| .getModuleMetadata(M); |
| |
| OutStreamer->InitSections(false); |
| |
| // Emit the version-min deployment target directive if needed. |
| // |
| // FIXME: If we end up with a collection of these sorts of Darwin-specific |
| // or ELF-specific things, it may make sense to have a platform helper class |
| // that will work with the target helper class. For now keep it here, as the |
| // alternative is duplicated code in each of the target asm printers that |
| // use the directive, where it would need the same conditionalization |
| // anyway. |
| const Triple &Target = TM.getTargetTriple(); |
| OutStreamer->EmitVersionForTarget(Target, M.getSDKVersion()); |
| |
| // Allow the target to emit any magic that it wants at the start of the file. |
| EmitStartOfAsmFile(M); |
| |
| // Very minimal debug info. It is ignored if we emit actual debug info. If we |
| // don't, this at least helps the user find where a global came from. |
| if (MAI->hasSingleParameterDotFile()) { |
| // .file "foo.c" |
| OutStreamer->EmitFileDirective( |
| llvm::sys::path::filename(M.getSourceFileName())); |
| } |
| |
| GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); |
| assert(MI && "AsmPrinter didn't require GCModuleInfo?"); |
| for (auto &I : *MI) |
| if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) |
| MP->beginAssembly(M, *MI, *this); |
| |
| // Emit module-level inline asm if it exists. |
| if (!M.getModuleInlineAsm().empty()) { |
| // We're at the module level. Construct MCSubtarget from the default CPU |
| // and target triple. |
| std::unique_ptr<MCSubtargetInfo> STI(TM.getTarget().createMCSubtargetInfo( |
| TM.getTargetTriple().str(), TM.getTargetCPU(), |
| TM.getTargetFeatureString())); |
| OutStreamer->AddComment("Start of file scope inline assembly"); |
| OutStreamer->AddBlankLine(); |
| EmitInlineAsm(M.getModuleInlineAsm()+"\n", |
| OutContext.getSubtargetCopy(*STI), TM.Options.MCOptions); |
| OutStreamer->AddComment("End of file scope inline assembly"); |
| OutStreamer->AddBlankLine(); |
| } |
| |
| if (MAI->doesSupportDebugInformation()) { |
| bool EmitCodeView = MMI->getModule()->getCodeViewFlag(); |
| if (EmitCodeView && TM.getTargetTriple().isOSWindows()) { |
| Handlers.emplace_back(std::make_unique<CodeViewDebug>(this), |
| DbgTimerName, DbgTimerDescription, |
| CodeViewLineTablesGroupName, |
| CodeViewLineTablesGroupDescription); |
| } |
| if (!EmitCodeView || MMI->getModule()->getDwarfVersion()) { |
| DD = new DwarfDebug(this, &M); |
| DD->beginModule(); |
| Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName, |
| DbgTimerDescription, DWARFGroupName, |
| DWARFGroupDescription); |
| } |
| } |
| |
| switch (MAI->getExceptionHandlingType()) { |
| case ExceptionHandling::SjLj: |
| case ExceptionHandling::DwarfCFI: |
| case ExceptionHandling::ARM: |
| isCFIMoveForDebugging = true; |
| if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) |
| break; |
| for (auto &F: M.getFunctionList()) { |
| // If the module contains any function with unwind data, |
| // .eh_frame has to be emitted. |
| // Ignore functions that won't get emitted. |
| if (!F.isDeclarationForLinker() && F.needsUnwindTableEntry()) { |
| isCFIMoveForDebugging = false; |
| break; |
| } |
| } |
| break; |
| default: |
| isCFIMoveForDebugging = false; |
| break; |
| } |
| |
| EHStreamer *ES = nullptr; |
| switch (MAI->getExceptionHandlingType()) { |
| case ExceptionHandling::None: |
| break; |
| case ExceptionHandling::SjLj: |
| case ExceptionHandling::DwarfCFI: |
| ES = new DwarfCFIException(this); |
| break; |
| case ExceptionHandling::ARM: |
| ES = new ARMException(this); |
| break; |
| case ExceptionHandling::WinEH: |
| switch (MAI->getWinEHEncodingType()) { |
| default: llvm_unreachable("unsupported unwinding information encoding"); |
| case WinEH::EncodingType::Invalid: |
| break; |
| case WinEH::EncodingType::X86: |
| case WinEH::EncodingType::Itanium: |
| ES = new WinException(this); |
| break; |
| } |
| break; |
| case ExceptionHandling::Wasm: |
| ES = new WasmException(this); |
| break; |
| } |
| if (ES) |
| Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName, |
| EHTimerDescription, DWARFGroupName, |
| DWARFGroupDescription); |
| |
| if (mdconst::extract_or_null<ConstantInt>( |
| MMI->getModule()->getModuleFlag("cfguardtable"))) |
| Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName, |
| CFGuardDescription, DWARFGroupName, |
| DWARFGroupDescription); |
| |
| return false; |
| } |
| |
| static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) { |
| if (!MAI.hasWeakDefCanBeHiddenDirective()) |
| return false; |
| |
| return GV->canBeOmittedFromSymbolTable(); |
| } |
| |
| void AsmPrinter::EmitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const { |
| GlobalValue::LinkageTypes Linkage = GV->getLinkage(); |
| switch (Linkage) { |
| case GlobalValue::CommonLinkage: |
| case GlobalValue::LinkOnceAnyLinkage: |
| case GlobalValue::LinkOnceODRLinkage: |
| case GlobalValue::WeakAnyLinkage: |
| case GlobalValue::WeakODRLinkage: |
| if (MAI->hasWeakDefDirective()) { |
| // .globl _foo |
| OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); |
| |
| if (!canBeHidden(GV, *MAI)) |
| // .weak_definition _foo |
| OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); |
| else |
| OutStreamer->EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); |
| } else if (MAI->hasLinkOnceDirective()) { |
| // .globl _foo |
| OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); |
| //NOTE: linkonce is handled by the section the symbol was assigned to. |
| } else { |
| // .weak _foo |
| OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Weak); |
| } |
| return; |
| case GlobalValue::ExternalLinkage: |
| // If external, declare as a global symbol: .globl _foo |
| OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Global); |
| return; |
| case GlobalValue::PrivateLinkage: |
| return; |
| case GlobalValue::InternalLinkage: |
| if (MAI->hasDotLGloblDirective()) |
| OutStreamer->EmitSymbolAttribute(GVSym, MCSA_LGlobal); |
| return; |
| case GlobalValue::AppendingLinkage: |
| case GlobalValue::AvailableExternallyLinkage: |
| case GlobalValue::ExternalWeakLinkage: |
| llvm_unreachable("Should never emit this"); |
| } |
| llvm_unreachable("Unknown linkage type!"); |
| } |
| |
| void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name, |
| const GlobalValue *GV) const { |
| TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler()); |
| } |
| |
| MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const { |
| return TM.getSymbol(GV); |
| } |
| |
| /// EmitGlobalVariable - Emit the specified global variable to the .s file. |
| void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { |
| bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal(); |
| assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) && |
| "No emulated TLS variables in the common section"); |
| |
| // Never emit TLS variable xyz in emulated TLS model. |
| // The initialization value is in __emutls_t.xyz instead of xyz. |
| if (IsEmuTLSVar) |
| return; |
| |
| if (GV->hasInitializer()) { |
| // Check to see if this is a special global used by LLVM, if so, emit it. |
| if (EmitSpecialLLVMGlobal(GV)) |
| return; |
| |
| // Skip the emission of global equivalents. The symbol can be emitted later |
| // on by emitGlobalGOTEquivs in case it turns out to be needed. |
| if (GlobalGOTEquivs.count(getSymbol(GV))) |
| return; |
| |
| if (isVerbose()) { |
| // When printing the control variable __emutls_v.*, |
| // we don't need to print the original TLS variable name. |
| GV->printAsOperand(OutStreamer->GetCommentOS(), |
| /*PrintType=*/false, GV->getParent()); |
| OutStreamer->GetCommentOS() << '\n'; |
| } |
| } |
| |
| MCSymbol *GVSym = getSymbol(GV); |
| MCSymbol *EmittedSym = GVSym; |
| |
| // getOrCreateEmuTLSControlSym only creates the symbol with name and default |
| // attributes. |
| // GV's or GVSym's attributes will be used for the EmittedSym. |
| EmitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration()); |
| |
| if (!GV->hasInitializer()) // External globals require no extra code. |
| return; |
| |
| GVSym->redefineIfPossible(); |
| if (GVSym->isDefined() || GVSym->isVariable()) |
| report_fatal_error("symbol '" + Twine(GVSym->getName()) + |
| "' is already defined"); |
| |
| if (MAI->hasDotTypeDotSizeDirective()) |
| OutStreamer->EmitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject); |
| |
| SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); |
| |
| const DataLayout &DL = GV->getParent()->getDataLayout(); |
| uint64_t Size = DL.getTypeAllocSize(GV->getValueType()); |
| |
| // If the alignment is specified, we *must* obey it. Overaligning a global |
| // with a specified alignment is a prompt way to break globals emitted to |
| // sections and expected to be contiguous (e.g. ObjC metadata). |
| const Align Alignment = getGVAlignment(GV, DL); |
| |
| for (const HandlerInfo &HI : Handlers) { |
| NamedRegionTimer T(HI.TimerName, HI.TimerDescription, |
| HI.TimerGroupName, HI.TimerGroupDescription, |
| TimePassesIsEnabled); |
| HI.Handler->setSymbolSize(GVSym, Size); |
| } |
| |
| // Handle common symbols |
| if (GVKind.isCommon()) { |
| if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. |
| // .comm _foo, 42, 4 |
| const bool SupportsAlignment = |
| getObjFileLowering().getCommDirectiveSupportsAlignment(); |
| OutStreamer->EmitCommonSymbol(GVSym, Size, |
| SupportsAlignment ? Alignment.value() : 0); |
| return; |
| } |
| |
| // Determine to which section this global should be emitted. |
| MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM); |
| |
| // If we have a bss global going to a section that supports the |
| // zerofill directive, do so here. |
| if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() && |
| TheSection->isVirtualSection()) { |
| if (Size == 0) |
| Size = 1; // zerofill of 0 bytes is undefined. |
| EmitLinkage(GV, GVSym); |
| // .zerofill __DATA, __bss, _foo, 400, 5 |
| OutStreamer->EmitZerofill(TheSection, GVSym, Size, Alignment.value()); |
| return; |
| } |
| |
| // If this is a BSS local symbol and we are emitting in the BSS |
| // section use .lcomm/.comm directive. |
| if (GVKind.isBSSLocal() && |
| getObjFileLowering().getBSSSection() == TheSection) { |
| if (Size == 0) |
| Size = 1; // .comm Foo, 0 is undefined, avoid it. |
| |
| // Use .lcomm only if it supports user-specified alignment. |
| // Otherwise, while it would still be correct to use .lcomm in some |
| // cases (e.g. when Align == 1), the external assembler might enfore |
| // some -unknown- default alignment behavior, which could cause |
| // spurious differences between external and integrated assembler. |
| // Prefer to simply fall back to .local / .comm in this case. |
| if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { |
| // .lcomm _foo, 42 |
| OutStreamer->EmitLocalCommonSymbol(GVSym, Size, Alignment.value()); |
| return; |
| } |
| |
| // .local _foo |
| OutStreamer->EmitSymbolAttribute(GVSym, MCSA_Local); |
| // .comm _foo, 42, 4 |
| const bool SupportsAlignment = |
| getObjFileLowering().getCommDirectiveSupportsAlignment(); |
| OutStreamer->EmitCommonSymbol(GVSym, Size, |
| SupportsAlignment ? Alignment.value() : 0); |
| return; |
| } |
| |
| // Handle thread local data for mach-o which requires us to output an |
| // additional structure of data and mangle the original symbol so that we |
| // can reference it later. |
| // |
| // TODO: This should become an "emit thread local global" method on TLOF. |
| // All of this macho specific stuff should be sunk down into TLOFMachO and |
| // stuff like "TLSExtraDataSection" should no longer be part of the parent |
| // TLOF class. This will also make it more obvious that stuff like |
| // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho |
| // specific code. |
| if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { |
| // Emit the .tbss symbol |
| MCSymbol *MangSym = |
| OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); |
| |
| if (GVKind.isThreadBSS()) { |
| TheSection = getObjFileLowering().getTLSBSSSection(); |
| OutStreamer->EmitTBSSSymbol(TheSection, MangSym, Size, Alignment.value()); |
| } else if (GVKind.isThreadData()) { |
| OutStreamer->SwitchSection(TheSection); |
| |
| EmitAlignment(Alignment, GV); |
| OutStreamer->EmitLabel(MangSym); |
| |
| EmitGlobalConstant(GV->getParent()->getDataLayout(), |
| GV->getInitializer()); |
| } |
| |
| OutStreamer->AddBlankLine(); |
| |
| // Emit the variable struct for the runtime. |
| MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); |
| |
| OutStreamer->SwitchSection(TLVSect); |
| // Emit the linkage here. |
| EmitLinkage(GV, GVSym); |
| OutStreamer->EmitLabel(GVSym); |
| |
| // Three pointers in size: |
| // - __tlv_bootstrap - used to make sure support exists |
| // - spare pointer, used when mapped by the runtime |
| // - pointer to mangled symbol above with initializer |
| unsigned PtrSize = DL.getPointerTypeSize(GV->getType()); |
| OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), |
| PtrSize); |
| OutStreamer->EmitIntValue(0, PtrSize); |
| OutStreamer->EmitSymbolValue(MangSym, PtrSize); |
| |
| OutStreamer->AddBlankLine(); |
| return; |
| } |
| |
| MCSymbol *EmittedInitSym = GVSym; |
| |
| OutStreamer->SwitchSection(TheSection); |
| |
| EmitLinkage(GV, EmittedInitSym); |
| EmitAlignment(Alignment, GV); |
| |
| OutStreamer->EmitLabel(EmittedInitSym); |
| |
| EmitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer()); |
| |
| if (MAI->hasDotTypeDotSizeDirective()) |
| // .size foo, 42 |
| OutStreamer->emitELFSize(EmittedInitSym, |
| MCConstantExpr::create(Size, OutContext)); |
| |
| OutStreamer->AddBlankLine(); |
| } |
| |
| /// Emit the directive and value for debug thread local expression |
| /// |
| /// \p Value - The value to emit. |
| /// \p Size - The size of the integer (in bytes) to emit. |
| void AsmPrinter::EmitDebugValue(const MCExpr *Value, unsigned Size) const { |
| OutStreamer->EmitValue(Value, Size); |
| } |
| |
| /// EmitFunctionHeader - This method emits the header for the current |
| /// function. |
| void AsmPrinter::EmitFunctionHeader() { |
| const Function &F = MF->getFunction(); |
| |
| if (isVerbose()) |
| OutStreamer->GetCommentOS() |
| << "-- Begin function " |
| << GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n'; |
| |
| // Print out constants referenced by the function |
| EmitConstantPool(); |
| |
| // Print the 'header' of function. |
| OutStreamer->SwitchSection(getObjFileLowering().SectionForGlobal(&F, TM)); |
| EmitVisibility(CurrentFnSym, F.getVisibility()); |
| |
| if (MAI->needsFunctionDescriptors() && |
| F.getLinkage() != GlobalValue::InternalLinkage) |
| EmitLinkage(&F, CurrentFnDescSym); |
| |
| EmitLinkage(&F, CurrentFnSym); |
| if (MAI->hasFunctionAlignment()) |
| EmitAlignment(MF->getAlignment(), &F); |
| |
| if (MAI->hasDotTypeDotSizeDirective()) |
| OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); |
| |
| if (F.hasFnAttribute(Attribute::Cold)) |
| OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_Cold); |
| |
| if (isVerbose()) { |
| F.printAsOperand(OutStreamer->GetCommentOS(), |
| /*PrintType=*/false, F.getParent()); |
| OutStreamer->GetCommentOS() << '\n'; |
| } |
| |
| // Emit the prefix data. |
| if (F.hasPrefixData()) { |
| if (MAI->hasSubsectionsViaSymbols()) { |
| // Preserving prefix data on platforms which use subsections-via-symbols |
| // is a bit tricky. Here we introduce a symbol for the prefix data |
| // and use the .alt_entry attribute to mark the function's real entry point |
| // as an alternative entry point to the prefix-data symbol. |
| MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol(); |
| OutStreamer->EmitLabel(PrefixSym); |
| |
| EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); |
| |
| // Emit an .alt_entry directive for the actual function symbol. |
| OutStreamer->EmitSymbolAttribute(CurrentFnSym, MCSA_AltEntry); |
| } else { |
| EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData()); |
| } |
| } |
| |
| // Emit the function descriptor. This is a virtual function to allow targets |
| // to emit their specific function descriptor. |
| if (MAI->needsFunctionDescriptors()) |
| EmitFunctionDescriptor(); |
| |
| // Emit the CurrentFnSym. This is a virtual function to allow targets to do |
| // their wild and crazy things as required. |
| EmitFunctionEntryLabel(); |
| |
| // If the function had address-taken blocks that got deleted, then we have |
| // references to the dangling symbols. Emit them at the start of the function |
| // so that we don't get references to undefined symbols. |
| std::vector<MCSymbol*> DeadBlockSyms; |
| MMI->takeDeletedSymbolsForFunction(&F, DeadBlockSyms); |
| for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { |
| OutStreamer->AddComment("Address taken block that was later removed"); |
| OutStreamer->EmitLabel(DeadBlockSyms[i]); |
| } |
| |
| if (CurrentFnBegin) { |
| if (MAI->useAssignmentForEHBegin()) { |
| MCSymbol *CurPos = OutContext.createTempSymbol(); |
| OutStreamer->EmitLabel(CurPos); |
| OutStreamer->EmitAssignment(CurrentFnBegin, |
| MCSymbolRefExpr::create(CurPos, OutContext)); |
| } else { |
| OutStreamer->EmitLabel(CurrentFnBegin); |
| } |
| } |
| |
| // Emit pre-function debug and/or EH information. |
| for (const HandlerInfo &HI : Handlers) { |
| NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, |
| HI.TimerGroupDescription, TimePassesIsEnabled); |
| HI.Handler->beginFunction(MF); |
| } |
| |
| // Emit the prologue data. |
| if (F.hasPrologueData()) |
| EmitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData()); |
| } |
| |
| /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the |
| /// function. This can be overridden by targets as required to do custom stuff. |
| void AsmPrinter::EmitFunctionEntryLabel() { |
| CurrentFnSym->redefineIfPossible(); |
| |
| // The function label could have already been emitted if two symbols end up |
| // conflicting due to asm renaming. Detect this and emit an error. |
| if (CurrentFnSym->isVariable()) |
| report_fatal_error("'" + Twine(CurrentFnSym->getName()) + |
| "' is a protected alias"); |
| if (CurrentFnSym->isDefined()) |
| report_fatal_error("'" + Twine(CurrentFnSym->getName()) + |
| "' label emitted multiple times to assembly file"); |
| |
| return OutStreamer->EmitLabel(CurrentFnSym); |
| } |
| |
| /// emitComments - Pretty-print comments for instructions. |
| static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { |
| const MachineFunction *MF = MI.getMF(); |
| const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo(); |
| |
| // Check for spills and reloads |
| |
| // We assume a single instruction only has a spill or reload, not |
| // both. |
| Optional<unsigned> Size; |
| if ((Size = MI.getRestoreSize(TII))) { |
| CommentOS << *Size << "-byte Reload\n"; |
| } else if ((Size = MI.getFoldedRestoreSize(TII))) { |
| if (*Size) |
| CommentOS << *Size << "-byte Folded Reload\n"; |
| } else if ((Size = MI.getSpillSize(TII))) { |
| CommentOS << *Size << "-byte Spill\n"; |
| } else if ((Size = MI.getFoldedSpillSize(TII))) { |
| if (*Size) |
| CommentOS << *Size << "-byte Folded Spill\n"; |
| } |
| |
| // Check for spill-induced copies |
| if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) |
| CommentOS << " Reload Reuse\n"; |
| } |
| |
| /// emitImplicitDef - This method emits the specified machine instruction |
| /// that is an implicit def. |
| void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const { |
| Register RegNo = MI->getOperand(0).getReg(); |
| |
| SmallString<128> Str; |
| raw_svector_ostream OS(Str); |
| OS << "implicit-def: " |
| << printReg(RegNo, MF->getSubtarget().getRegisterInfo()); |
| |
| OutStreamer->AddComment(OS.str()); |
| OutStreamer->AddBlankLine(); |
| } |
| |
| static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { |
| std::string Str; |
| raw_string_ostream OS(Str); |
| OS << "kill:"; |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &Op = MI->getOperand(i); |
| assert(Op.isReg() && "KILL instruction must have only register operands"); |
| OS << ' ' << (Op.isDef() ? "def " : "killed ") |
| << printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo()); |
| } |
| AP.OutStreamer->AddComment(OS.str()); |
| AP.OutStreamer->AddBlankLine(); |
| } |
| |
| /// emitDebugValueComment - This method handles the target-independent form |
| /// of DBG_VALUE, returning true if it was able to do so. A false return |
| /// means the target will need to handle MI in EmitInstruction. |
| static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { |
| // This code handles only the 4-operand target-independent form. |
| if (MI->getNumOperands() != 4) |
| return false; |
| |
| SmallString<128> Str; |
| raw_svector_ostream OS(Str); |
| OS << "DEBUG_VALUE: "; |
| |
| const DILocalVariable *V = MI->getDebugVariable(); |
| if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) { |
| StringRef Name = SP->getName(); |
| if (!Name.empty()) |
| OS << Name << ":"; |
| } |
| OS << V->getName(); |
| OS << " <- "; |
| |
| // The second operand is only an offset if it's an immediate. |
| bool MemLoc = MI->getOperand(0).isReg() && MI->getOperand(1).isImm(); |
| int64_t Offset = MemLoc ? MI->getOperand(1).getImm() : 0; |
| const DIExpression *Expr = MI->getDebugExpression(); |
| if (Expr->getNumElements()) { |
| OS << '['; |
| bool NeedSep = false; |
| for (auto Op : Expr->expr_ops()) { |
| if (NeedSep) |
| OS << ", "; |
| else |
| NeedSep = true; |
| OS << dwarf::OperationEncodingString(Op.getOp()); |
| for (unsigned I = 0; I < Op.getNumArgs(); ++I) |
| OS << ' ' << Op.getArg(I); |
| } |
| OS << "] "; |
| } |
| |
| // Register or immediate value. Register 0 means undef. |
| if (MI->getOperand(0).isFPImm()) { |
| APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); |
| if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { |
| OS << (double)APF.convertToFloat(); |
| } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { |
| OS << APF.convertToDouble(); |
| } else { |
| // There is no good way to print long double. Convert a copy to |
| // double. Ah well, it's only a comment. |
| bool ignored; |
| APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, |
| &ignored); |
| OS << "(long double) " << APF.convertToDouble(); |
| } |
| } else if (MI->getOperand(0).isImm()) { |
| OS << MI->getOperand(0).getImm(); |
| } else if (MI->getOperand(0).isCImm()) { |
| MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); |
| } else { |
| unsigned Reg; |
| if (MI->getOperand(0).isReg()) { |
| Reg = MI->getOperand(0).getReg(); |
| } else { |
| assert(MI->getOperand(0).isFI() && "Unknown operand type"); |
| const TargetFrameLowering *TFI = AP.MF->getSubtarget().getFrameLowering(); |
| Offset += TFI->getFrameIndexReference(*AP.MF, |
| MI->getOperand(0).getIndex(), Reg); |
| MemLoc = true; |
| } |
| if (Reg == 0) { |
| // Suppress offset, it is not meaningful here. |
| OS << "undef"; |
| // NOTE: Want this comment at start of line, don't emit with AddComment. |
| AP.OutStreamer->emitRawComment(OS.str()); |
| return true; |
| } |
| if (MemLoc) |
| OS << '['; |
| OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo()); |
| } |
| |
| if (MemLoc) |
| OS << '+' << Offset << ']'; |
| |
| // NOTE: Want this comment at start of line, don't emit with AddComment. |
| AP.OutStreamer->emitRawComment(OS.str()); |
| return true; |
| } |
| |
| /// This method handles the target-independent form of DBG_LABEL, returning |
| /// true if it was able to do so. A false return means the target will need |
| /// to handle MI in EmitInstruction. |
| static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) { |
| if (MI->getNumOperands() != 1) |
| return false; |
| |
| SmallString<128> Str; |
| raw_svector_ostream OS(Str); |
| OS << "DEBUG_LABEL: "; |
| |
| const DILabel *V = MI->getDebugLabel(); |
| if (auto *SP = dyn_cast<DISubprogram>( |
| V->getScope()->getNonLexicalBlockFileScope())) { |
| StringRef Name = SP->getName(); |
| if (!Name.empty()) |
| OS << Name << ":"; |
| } |
| OS << V->getName(); |
| |
| // NOTE: Want this comment at start of line, don't emit with AddComment. |
| AP.OutStreamer->emitRawComment(OS.str()); |
| return true; |
| } |
| |
| AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() const { |
| if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && |
| MF->getFunction().needsUnwindTableEntry()) |
| return CFI_M_EH; |
| |
| if (MMI->hasDebugInfo()) |
| return CFI_M_Debug; |
| |
| return CFI_M_None; |
| } |
| |
| bool AsmPrinter::needsSEHMoves() { |
| return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry(); |
| } |
| |
| void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) { |
| ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType(); |
| if (ExceptionHandlingType != ExceptionHandling::DwarfCFI && |
| ExceptionHandlingType != ExceptionHandling::ARM) |
| return; |
| |
| if (needsCFIMoves() == CFI_M_None) |
| return; |
| |
| // If there is no "real" instruction following this CFI instruction, skip |
| // emitting it; it would be beyond the end of the function's FDE range. |
| auto *MBB = MI.getParent(); |
| auto I = std::next(MI.getIterator()); |
| while (I != MBB->end() && I->isTransient()) |
| ++I; |
| if (I == MBB->instr_end() && |
| MBB->getReverseIterator() == MBB->getParent()->rbegin()) |
| return; |
| |
| const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions(); |
| unsigned CFIIndex = MI.getOperand(0).getCFIIndex(); |
| const MCCFIInstruction &CFI = Instrs[CFIIndex]; |
| emitCFIInstruction(CFI); |
| } |
| |
| void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) { |
| // The operands are the MCSymbol and the frame offset of the allocation. |
| MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol(); |
| int FrameOffset = MI.getOperand(1).getImm(); |
| |
| // Emit a symbol assignment. |
| OutStreamer->EmitAssignment(FrameAllocSym, |
| MCConstantExpr::create(FrameOffset, OutContext)); |
| } |
| |
| void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) { |
| if (!MF.getTarget().Options.EmitStackSizeSection) |
| return; |
| |
| MCSection *StackSizeSection = |
| getObjFileLowering().getStackSizesSection(*getCurrentSection()); |
| if (!StackSizeSection) |
| return; |
| |
| const MachineFrameInfo &FrameInfo = MF.getFrameInfo(); |
| // Don't emit functions with dynamic stack allocations. |
| if (FrameInfo.hasVarSizedObjects()) |
| return; |
| |
| OutStreamer->PushSection(); |
| OutStreamer->SwitchSection(StackSizeSection); |
| |
| const MCSymbol *FunctionSymbol = getFunctionBegin(); |
| uint64_t StackSize = FrameInfo.getStackSize(); |
| OutStreamer->EmitSymbolValue(FunctionSymbol, TM.getProgramPointerSize()); |
| OutStreamer->EmitULEB128IntValue(StackSize); |
| |
| OutStreamer->PopSection(); |
| } |
| |
| static bool needFuncLabelsForEHOrDebugInfo(const MachineFunction &MF, |
| MachineModuleInfo *MMI) { |
| if (!MF.getLandingPads().empty() || MF.hasEHFunclets() || MMI->hasDebugInfo()) |
| return true; |
| |
| // We might emit an EH table that uses function begin and end labels even if |
| // we don't have any landingpads. |
| if (!MF.getFunction().hasPersonalityFn()) |
| return false; |
| return !isNoOpWithoutInvoke( |
| classifyEHPersonality(MF.getFunction().getPersonalityFn())); |
| } |
| |
| /// EmitFunctionBody - This method emits the body and trailer for a |
| /// function. |
| void AsmPrinter::EmitFunctionBody() { |
| EmitFunctionHeader(); |
| |
| // Emit target-specific gunk before the function body. |
| EmitFunctionBodyStart(); |
| |
| bool ShouldPrintDebugScopes = MMI->hasDebugInfo(); |
| |
| if (isVerbose()) { |
| // Get MachineDominatorTree or compute it on the fly if it's unavailable |
| MDT = getAnalysisIfAvailable<MachineDominatorTree>(); |
| if (!MDT) { |
| OwnedMDT = std::make_unique<MachineDominatorTree>(); |
| OwnedMDT->getBase().recalculate(*MF); |
| MDT = OwnedMDT.get(); |
| } |
| |
| // Get MachineLoopInfo or compute it on the fly if it's unavailable |
| MLI = getAnalysisIfAvailable<MachineLoopInfo>(); |
| if (!MLI) { |
| OwnedMLI = std::make_unique<MachineLoopInfo>(); |
| OwnedMLI->getBase().analyze(MDT->getBase()); |
| MLI = OwnedMLI.get(); |
| } |
| } |
| |
| // Print out code for the function. |
| bool HasAnyRealCode = false; |
| int NumInstsInFunction = 0; |
| for (auto &MBB : *MF) { |
| // Print a label for the basic block. |
| EmitBasicBlockStart(MBB); |
| for (auto &MI : MBB) { |
| // Print the assembly for the instruction. |
| if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() && |
| !MI.isDebugInstr()) { |
| HasAnyRealCode = true; |
| ++NumInstsInFunction; |
| } |
| |
| // If there is a pre-instruction symbol, emit a label for it here. If the |
| // instruction was duplicated and the label has already been emitted, |
| // don't re-emit the same label. |
| // FIXME: Consider strengthening that to an assertion. |
| if (MCSymbol *S = MI.getPreInstrSymbol()) |
| if (S->isUndefined()) |
| OutStreamer->EmitLabel(S); |
| |
| if (ShouldPrintDebugScopes) { |
| for (const HandlerInfo &HI : Handlers) { |
| NamedRegionTimer T(HI.TimerName, HI.TimerDescription, |
| HI.TimerGroupName, HI.TimerGroupDescription, |
| TimePassesIsEnabled); |
| HI.Handler->beginInstruction(&MI); |
| } |
| } |
| |
| if (isVerbose()) |
| emitComments(MI, OutStreamer->GetCommentOS()); |
| |
| switch (MI.getOpcode()) { |
| case TargetOpcode::CFI_INSTRUCTION: |
| emitCFIInstruction(MI); |
| break; |
| case TargetOpcode::LOCAL_ESCAPE: |
| emitFrameAlloc(MI); |
| break; |
| case TargetOpcode::ANNOTATION_LABEL: |
| case TargetOpcode::EH_LABEL: |
| case TargetOpcode::GC_LABEL: |
| OutStreamer->EmitLabel(MI.getOperand(0).getMCSymbol()); |
| break; |
| case TargetOpcode::INLINEASM: |
| case TargetOpcode::INLINEASM_BR: |
| EmitInlineAsm(&MI); |
| break; |
| case TargetOpcode::DBG_VALUE: |
| if (isVerbose()) { |
| if (!emitDebugValueComment(&MI, *this)) |
| EmitInstruction(&MI); |
| } |
| break; |
| case TargetOpcode::DBG_LABEL: |
| if (isVerbose()) { |
| if (!emitDebugLabelComment(&MI, *this)) |
| EmitInstruction(&MI); |
| } |
| break; |
| case TargetOpcode::IMPLICIT_DEF: |
| if (isVerbose()) emitImplicitDef(&MI); |
| break; |
| case TargetOpcode::KILL: |
| if (isVerbose()) emitKill(&MI, *this); |
| break; |
| default: |
| EmitInstruction(&MI); |
| break; |
| } |
| |
| // If there is a post-instruction symbol, emit a label for it here. If |
| // the instruction was duplicated and the label has already been emitted, |
| // don't re-emit the same label. |
| // FIXME: Consider strengthening that to an assertion. |
| if (MCSymbol *S = MI.getPostInstrSymbol()) |
| if (S->isUndefined()) |
| OutStreamer->EmitLabel(S); |
| |
| if (ShouldPrintDebugScopes) { |
| for (const HandlerInfo &HI : Handlers) { |
| NamedRegionTimer T(HI.TimerName, HI.TimerDescription, |
| HI.TimerGroupName, HI.TimerGroupDescription, |
| TimePassesIsEnabled); |
| HI.Handler->endInstruction(); |
| } |
| } |
| } |
| |
| EmitBasicBlockEnd(MBB); |
| } |
| |
| EmittedInsts += NumInstsInFunction; |
| MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount", |
| MF->getFunction().getSubprogram(), |
| &MF->front()); |
| R << ore::NV("NumInstructions", NumInstsInFunction) |
| << " instructions in function"; |
| ORE->emit(R); |
| |
| // If the function is empty and the object file uses .subsections_via_symbols, |
| // then we need to emit *something* to the function body to prevent the |
| // labels from collapsing together. Just emit a noop. |
| // Similarly, don't emit empty functions on Windows either. It can lead to |
| // duplicate entries (two functions with the same RVA) in the Guard CF Table |
| // after linking, causing the kernel not to load the binary: |
| // https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html |
| // FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer. |
| const Triple &TT = TM.getTargetTriple(); |
| if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() || |
| (TT.isOSWindows() && TT.isOSBinFormatCOFF()))) { |
| MCInst Noop; |
| MF->getSubtarget().getInstrInfo()->getNoop(Noop); |
| |
| // Targets can opt-out of emitting the noop here by leaving the opcode |
| // unspecified. |
| if (Noop.getOpcode()) { |
| OutStreamer->AddComment("avoids zero-length function"); |
| OutStreamer->EmitInstruction(Noop, getSubtargetInfo()); |
| } |
| } |
| |
| const Function &F = MF->getFunction(); |
| for (const auto &BB : F) { |
| if (!BB.hasAddressTaken()) |
| continue; |
| MCSymbol *Sym = GetBlockAddressSymbol(&BB); |
| if (Sym->isDefined()) |
| continue; |
| OutStreamer->AddComment("Address of block that was removed by CodeGen"); |
| OutStreamer->EmitLabel(Sym); |
| } |
| |
| // Emit target-specific gunk after the function body. |
| EmitFunctionBodyEnd(); |
| |
| if (needFuncLabelsForEHOrDebugInfo(*MF, MMI) || |
| MAI->hasDotTypeDotSizeDirective()) { |
| // Create a symbol for the end of function. |
| CurrentFnEnd = createTempSymbol("func_end"); |
| OutStreamer->EmitLabel(CurrentFnEnd); |
| } |
| |
| // If the target wants a .size directive for the size of the function, emit |
| // it. |
| if (MAI->hasDotTypeDotSizeDirective()) { |
| // We can get the size as difference between the function label and the |
| // temp label. |
| const MCExpr *SizeExp = MCBinaryExpr::createSub( |
| MCSymbolRefExpr::create(CurrentFnEnd, OutContext), |
| MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext); |
| OutStreamer->emitELFSize(CurrentFnSym, SizeExp); |
| } |
| |
| for (const HandlerInfo &HI : Handlers) { |
| NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, |
| HI.TimerGroupDescription, TimePassesIsEnabled); |
| HI.Handler->markFunctionEnd(); |
| } |
| |
| // Print out jump tables referenced by the function. |
| EmitJumpTableInfo(); |
| |
| // Emit post-function debug and/or EH information. |
| for (const HandlerInfo &HI : Handlers) { |
| NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, |
| HI.TimerGroupDescription, TimePassesIsEnabled); |
| HI.Handler->endFunction(MF); |
| } |
| |
| // Emit section containing stack size metadata. |
| emitStackSizeSection(*MF); |
| |
| if (isVerbose()) |
| OutStreamer->GetCommentOS() << "-- End function\n"; |
| |
| OutStreamer->AddBlankLine(); |
| } |
| |
| /// Compute the number of Global Variables that uses a Constant. |
| static unsigned getNumGlobalVariableUses(const Constant *C) { |
| if (!C) |
| return 0; |
| |
| if (isa<GlobalVariable>(C)) |
| return 1; |
| |
| unsigned NumUses = 0; |
| for (auto *CU : C->users()) |
| NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU)); |
| |
| return NumUses; |
| } |
| |
| /// Only consider global GOT equivalents if at least one user is a |
| /// cstexpr inside an initializer of another global variables. Also, don't |
| /// handle cstexpr inside instructions. During global variable emission, |
| /// candidates are skipped and are emitted later in case at least one cstexpr |
| /// isn't replaced by a PC relative GOT entry access. |
| static bool isGOTEquivalentCandidate(const GlobalVariable *GV, |
| unsigned &NumGOTEquivUsers) { |
| // Global GOT equivalents are unnamed private globals with a constant |
| // pointer initializer to another global symbol. They must point to a |
| // GlobalVariable or Function, i.e., as GlobalValue. |
| if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() || |
| !GV->isConstant() || !GV->isDiscardableIfUnused() || |
| !isa<GlobalValue>(GV->getOperand(0))) |
| return false; |
| |
| // To be a got equivalent, at least one of its users need to be a constant |
| // expression used by another global variable. |
| for (auto *U : GV->users()) |
| NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U)); |
| |
| return NumGOTEquivUsers > 0; |
| } |
| |
| /// Unnamed constant global variables solely contaning a pointer to |
| /// another globals variable is equivalent to a GOT table entry; it contains the |
| /// the address of another symbol. Optimize it and replace accesses to these |
| /// "GOT equivalents" by using the GOT entry for the final global instead. |
| /// Compute GOT equivalent candidates among all global variables to avoid |
| /// emitting them if possible later on, after it use is replaced by a GOT entry |
| /// access. |
| void AsmPrinter::computeGlobalGOTEquivs(Module &M) { |
| if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) |
| return; |
| |
| for (const auto &G : M.globals()) { |
| unsigned NumGOTEquivUsers = 0; |
| if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers)) |
| continue; |
| |
| const MCSymbol *GOTEquivSym = getSymbol(&G); |
| GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers); |
| } |
| } |
| |
| /// Constant expressions using GOT equivalent globals may not be eligible |
| /// for PC relative GOT entry conversion, in such cases we need to emit such |
| /// globals we previously omitted in EmitGlobalVariable. |
| void AsmPrinter::emitGlobalGOTEquivs() { |
| if (!getObjFileLowering().supportIndirectSymViaGOTPCRel()) |
| return; |
| |
| SmallVector<const GlobalVariable *, 8> FailedCandidates; |
| for (auto &I : GlobalGOTEquivs) { |
| const GlobalVariable *GV = I.second.first; |
| unsigned Cnt = I.second.second; |
| if (Cnt) |
| FailedCandidates.push_back(GV); |
| } |
| GlobalGOTEquivs.clear(); |
| |
| for (auto *GV : FailedCandidates) |
| EmitGlobalVariable(GV); |
| } |
| |
| void AsmPrinter::emitGlobalIndirectSymbol(Module &M, |
| const GlobalIndirectSymbol& GIS) { |
| MCSymbol *Name = getSymbol(&GIS); |
| |
| if (GIS.hasExternalLinkage() || !MAI->getWeakRefDirective()) |
| OutStreamer->EmitSymbolAttribute(Name, MCSA_Global); |
| else if (GIS.hasWeakLinkage() || GIS.hasLinkOnceLinkage()) |
| OutStreamer->EmitSymbolAttribute(Name, MCSA_WeakReference); |
| else |
| assert(GIS.hasLocalLinkage() && "Invalid alias or ifunc linkage"); |
| |
| bool IsFunction = GIS.getValueType()->isFunctionTy(); |
| |
| // Treat bitcasts of functions as functions also. This is important at least |
| // on WebAssembly where object and function addresses can't alias each other. |
| if (!IsFunction) |
| if (auto *CE = dyn_cast<ConstantExpr>(GIS.getIndirectSymbol())) |
| if (CE->getOpcode() == Instruction::BitCast) |
| IsFunction = |
| CE->getOperand(0)->getType()->getPointerElementType()->isFunctionTy(); |
| |
| // Set the symbol type to function if the alias has a function type. |
| // This affects codegen when the aliasee is not a function. |
| if (IsFunction) |
| OutStreamer->EmitSymbolAttribute(Name, isa<GlobalIFunc>(GIS) |
| ? MCSA_ELF_TypeIndFunction |
| : MCSA_ELF_TypeFunction); |
| |
| EmitVisibility(Name, GIS.getVisibility()); |
| |
| const MCExpr *Expr = lowerConstant(GIS.getIndirectSymbol()); |
| |
| if (isa<GlobalAlias>(&GIS) && MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr)) |
| OutStreamer->EmitSymbolAttribute(Name, MCSA_AltEntry); |
| |
| // Emit the directives as assignments aka .set: |
| OutStreamer->EmitAssignment(Name, Expr); |
| |
| if (auto *GA = dyn_cast<GlobalAlias>(&GIS)) { |
| // If the aliasee does not correspond to a symbol in the output, i.e. the |
| // alias is not of an object or the aliased object is private, then set the |
| // size of the alias symbol from the type of the alias. We don't do this in |
| // other situations as the alias and aliasee having differing types but same |
| // size may be intentional. |
| const GlobalObject *BaseObject = GA->getBaseObject(); |
| if (MAI->hasDotTypeDotSizeDirective() && GA->getValueType()->isSized() && |
| (!BaseObject || BaseObject->hasPrivateLinkage())) { |
| const DataLayout &DL = M.getDataLayout(); |
| uint64_t Size = DL.getTypeAllocSize(GA->getValueType()); |
| OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext)); |
| } |
| } |
| } |
| |
| void AsmPrinter::emitRemarksSection(Module &M) { |
| RemarkStreamer *RS = M.getContext().getRemarkStreamer(); |
| if (!RS) |
| return; |
| remarks::RemarkSerializer &RemarkSerializer = RS->getSerializer(); |
| |
| Optional<SmallString<128>> Filename; |
| if (Optional<StringRef> FilenameRef = RS->getFilename()) { |
| Filename = *FilenameRef; |
| sys::fs::make_absolute(*Filename); |
| assert(!Filename->empty() && "The filename can't be empty."); |
| } |
| |
| std::string Buf; |
| raw_string_ostream OS(Buf); |
| std::unique_ptr<remarks::MetaSerializer> MetaSerializer = |
| Filename ? RemarkSerializer.metaSerializer(OS, StringRef(*Filename)) |
| : RemarkSerializer.metaSerializer(OS); |
| MetaSerializer->emit(); |
| |
| // Switch to the right section: .remarks/__remarks. |
| MCSection *RemarksSection = |
| OutContext.getObjectFileInfo()->getRemarksSection(); |
| OutStreamer->SwitchSection(RemarksSection); |
| |
| OutStreamer->EmitBinaryData(OS.str()); |
| } |
| |
| bool AsmPrinter::doFinalization(Module &M) { |
| // Set the MachineFunction to nullptr so that we can catch attempted |
| // accesses to MF specific features at the module level and so that |
| // we can conditionalize accesses based on whether or not it is nullptr. |
| MF = nullptr; |
| |
| // Gather all GOT equivalent globals in the module. We really need two |
| // passes over the globals: one to compute and another to avoid its emission |
| // in EmitGlobalVariable, otherwise we would not be able to handle cases |
| // where the got equivalent shows up before its use. |
| computeGlobalGOTEquivs(M); |
| |
| // Emit global variables. |
| for (const auto &G : M.globals()) |
| EmitGlobalVariable(&G); |
| |
| // Emit remaining GOT equivalent globals. |
| emitGlobalGOTEquivs(); |
| |
| // Emit visibility info for declarations |
| for (const Function &F : M) { |
| if (!F.isDeclarationForLinker()) |
| continue; |
| GlobalValue::VisibilityTypes V = F.getVisibility(); |
| if (V == GlobalValue::DefaultVisibility) |
| continue; |
| |
| MCSymbol *Name = getSymbol(&F); |
| EmitVisibility(Name, V, false); |
| } |
| |
| // Emit the remarks section contents. |
| // FIXME: Figure out when is the safest time to emit this section. It should |
| // not come after debug info. |
| if (EnableRemarksSection) |
| emitRemarksSection(M); |
| |
| const TargetLoweringObjectFile &TLOF = getObjFileLowering(); |
| |
| TLOF.emitModuleMetadata(*OutStreamer, M); |
| |
| if (TM.getTargetTriple().isOSBinFormatELF()) { |
| MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>(); |
| |
| // Output stubs for external and common global variables. |
| MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList(); |
| if (!Stubs.empty()) { |
| OutStreamer->SwitchSection(TLOF.getDataSection()); |
| const DataLayout &DL = M.getDataLayout(); |
| |
| EmitAlignment(Align(DL.getPointerSize())); |
| for (const auto &Stub : Stubs) { |
| OutStreamer->EmitLabel(Stub.first); |
| OutStreamer->EmitSymbolValue(Stub.second.getPointer(), |
| DL.getPointerSize()); |
| } |
| } |
| } |
| |
| if (TM.getTargetTriple().isOSBinFormatCOFF()) { |
| MachineModuleInfoCOFF &MMICOFF = |
| MMI->getObjFileInfo<MachineModuleInfoCOFF>(); |
| |
| // Output stubs for external and common global variables. |
| MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList(); |
| if (!Stubs.empty()) { |
| const DataLayout &DL = M.getDataLayout(); |
| |
| for (const auto &Stub : Stubs) { |
| SmallString<256> SectionName = StringRef(".rdata$"); |
| SectionName += Stub.first->getName(); |
| OutStreamer->SwitchSection(OutContext.getCOFFSection( |
| SectionName, |
| COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ | |
| COFF::IMAGE_SCN_LNK_COMDAT, |
| SectionKind::getReadOnly(), Stub.first->getName(), |
| COFF::IMAGE_COMDAT_SELECT_ANY)); |
| EmitAlignment(Align(DL.getPointerSize())); |
| OutStreamer->EmitSymbolAttribute(Stub.first, MCSA_Global); |
| OutStreamer->EmitLabel(Stub.first); |
| OutStreamer->EmitSymbolValue(Stub.second.getPointer(), |
| DL.getPointerSize()); |
| } |
| } |
| } |
| |
| // Finalize debug and EH information. |
| for (const HandlerInfo &HI : Handlers) { |
| NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName, |
| HI.TimerGroupDescription, TimePassesIsEnabled); |
| HI.Handler->endModule(); |
| } |
| Handlers.clear(); |
| DD = nullptr; |
| |
| // If the target wants to know about weak references, print them all. |
| if (MAI->getWeakRefDirective()) { |
| // FIXME: This is not lazy, it would be nice to only print weak references |
| // to stuff that is actually used. Note that doing so would require targets |
| // to notice uses in operands (due to constant exprs etc). This should |
| // happen with the MC stuff eventually. |
| |
| // Print out module-level global objects here. |
| for (const auto &GO : M.global_objects()) { |
| if (!GO.hasExternalWeakLinkage()) |
| continue; |
| OutStreamer->EmitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference); |
| } |
| } |
| |
| OutStreamer->AddBlankLine(); |
| |
| // Print aliases in topological order, that is, for each alias a = b, |
| // b must be printed before a. |
| // This is because on some targets (e.g. PowerPC) linker expects aliases in |
| // such an order to generate correct TOC information. |
| SmallVector<const GlobalAlias *, 16> AliasStack; |
| SmallPtrSet<const GlobalAlias *, 16> AliasVisited; |
| for (const auto &Alias : M.aliases()) { |
| for (const GlobalAlias *Cur = &Alias; Cur; |
| Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) { |
| if (!AliasVisited.insert(Cur).second) |
| break; |
| AliasStack.push_back(Cur); |
| } |
| for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack)) |
| emitGlobalIndirectSymbol(M, *AncestorAlias); |
| AliasStack.clear(); |
| } |
| for (const auto &IFunc : M.ifuncs()) |
| emitGlobalIndirectSymbol(M, IFunc); |
| |
| GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); |
| assert(MI && "AsmPrinter didn't require GCModuleInfo?"); |
| for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) |
| if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(**--I)) |
| MP->finishAssembly(M, *MI, *this); |
| |
| // Emit llvm.ident metadata in an '.ident' directive. |
| EmitModuleIdents(M); |
| |
| // Emit bytes for llvm.commandline metadata. |
| EmitModuleCommandLines(M); |
| |
| // Emit __morestack address if needed for indirect calls. |
| if (MMI->usesMorestackAddr()) { |
| unsigned Align = 1; |
| MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant( |
| getDataLayout(), SectionKind::getReadOnly(), |
| /*C=*/nullptr, Align); |
| OutStreamer->SwitchSection(ReadOnlySection); |
| |
| MCSymbol *AddrSymbol = |
| OutContext.getOrCreateSymbol(StringRef("__morestack_addr")); |
| OutStreamer->EmitLabel(AddrSymbol); |
| |
| unsigned PtrSize = MAI->getCodePointerSize(); |
| OutStreamer->EmitSymbolValue(GetExternalSymbolSymbol("__morestack"), |
| PtrSize); |
| } |
| |
| // Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if |
| // split-stack is used. |
| if (TM.getTargetTriple().isOSBinFormatELF() && MMI->hasSplitStack()) { |
| OutStreamer->SwitchSection( |
| OutContext.getELFSection(".note.GNU-split-stack", ELF::SHT_PROGBITS, 0)); |
| if (MMI->hasNosplitStack()) |
| OutStreamer->SwitchSection( |
| OutContext.getELFSection(".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0)); |
| } |
| |
| // If we don't have any trampolines, then we don't require stack memory |
| // to be executable. Some targets have a directive to declare this. |
| Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); |
| if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) |
| if (MCSection *S = MAI->getNonexecutableStackSection(OutContext)) |
| OutStreamer->SwitchSection(S); |
| |
| if (TM.getTargetTriple().isOSBinFormatCOFF()) { |
| // Emit /EXPORT: flags for each exported global as necessary. |
| const auto &TLOF = getObjFileLowering(); |
| std::string Flags; |
| |
| for (const GlobalValue &GV : M.global_values()) { |
| raw_string_ostream OS(Flags); |
| TLOF.emitLinkerFlagsForGlobal(OS, &GV); |
| OS.flush(); |
| if (!Flags.empty()) { |
| OutStreamer->SwitchSection(TLOF.getDrectveSection()); |
| OutStreamer->EmitBytes(Flags); |
| } |
| Flags.clear(); |
| } |
| |
| // Emit /INCLUDE: flags for each used global as necessary. |
| if (const auto *LU = M.getNamedGlobal("llvm.used")) { |
| assert(LU->hasInitializer() && |
| "expected llvm.used to have an initializer"); |
| assert(isa<ArrayType>(LU->getValueType()) && |
| "expected llvm.used to be an array type"); |
| if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { |
| for (const Value *Op : A->operands()) { |
| const auto *GV = cast<GlobalValue>(Op->stripPointerCasts()); |
| // Global symbols with internal or private linkage are not visible to |
| // the linker, and thus would cause an error when the linker tried to |
| // preserve the symbol due to the `/include:` directive. |
| if (GV->hasLocalLinkage()) |
| continue; |
| |
| raw_string_ostream OS(Flags); |
| TLOF.emitLinkerFlagsForUsed(OS, GV); |
| OS.flush(); |
| |
| if (!Flags.empty()) { |
| OutStreamer->SwitchSection(TLOF.getDrectveSection()); |
| OutStreamer->EmitBytes(Flags); |
| } |
| Flags.clear(); |
| } |
| } |
| } |
| } |
| |
| if (TM.Options.EmitAddrsig) { |
| // Emit address-significance attributes for all globals. |
| OutStreamer->EmitAddrsig(); |
| for (const GlobalValue &GV : M.global_values()) |
| if (!GV.use_empty() && !GV.isThreadLocal() && |
| !GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") && |
| !GV.hasAtLeastLocalUnnamedAddr()) |
| OutStreamer->EmitAddrsigSym(getSymbol(&GV)); |
| } |
| |
| // Emit symbol partition specifications (ELF only). |
| if (TM.getTargetTriple().isOSBinFormatELF()) { |
| unsigned UniqueID = 0; |
| for (const GlobalValue &GV : M.global_values()) { |
| if (!GV.hasPartition() || GV.isDeclarationForLinker() || |
| GV.getVisibility() != GlobalValue::DefaultVisibility) |
| continue; |
| |
| OutStreamer->SwitchSection(OutContext.getELFSection( |
| ".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0, "", ++UniqueID)); |
| OutStreamer->EmitBytes(GV.getPartition()); |
| OutStreamer->EmitZeros(1); |
| OutStreamer->EmitValue( |
| MCSymbolRefExpr::create(getSymbol(&GV), OutContext), |
| MAI->getCodePointerSize()); |
| } |
| } |
| |
| // Allow the target to emit any magic that it wants at the end of the file, |
| // after everything else has gone out. |
| EmitEndOfAsmFile(M); |
| |
| MMI = nullptr; |
| |
| OutStreamer->Finish(); |
| OutStreamer->reset(); |
| OwnedMLI.reset(); |
| OwnedMDT.reset(); |
| |
| return false; |
| } |
| |
| MCSymbol *AsmPrinter::getCurExceptionSym() { |
| if (!CurExceptionSym) |
| CurExceptionSym = createTempSymbol("exception"); |
| return CurExceptionSym; |
| } |
| |
| void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { |
| this->MF = &MF; |
| |
| // Get the function symbol. |
| if (MAI->needsFunctionDescriptors()) { |
| assert(TM.getTargetTriple().isOSAIX() && "Function descriptor is only" |
| " supported on AIX."); |
| assert(CurrentFnDescSym && "The function descriptor symbol needs to be" |
| " initalized first."); |
| |
| // Get the function entry point symbol. |
| CurrentFnSym = |
| OutContext.getOrCreateSymbol("." + CurrentFnDescSym->getName()); |
| |
| const Function &F = MF.getFunction(); |
| MCSectionXCOFF *FnEntryPointSec = |
| cast<MCSectionXCOFF>(getObjFileLowering().SectionForGlobal(&F, TM)); |
| // Set the containing csect. |
| cast<MCSymbolXCOFF>(CurrentFnSym)->setContainingCsect(FnEntryPointSec); |
| } else { |
| CurrentFnSym = getSymbol(&MF.getFunction()); |
| } |
| |
| CurrentFnSymForSize = CurrentFnSym; |
| CurrentFnBegin = nullptr; |
| CurExceptionSym = nullptr; |
| bool NeedsLocalForSize = MAI->needsLocalForSize(); |
| if (needFuncLabelsForEHOrDebugInfo(MF, MMI) || NeedsLocalForSize || |
| MF.getTarget().Options.EmitStackSizeSection) { |
| CurrentFnBegin = createTempSymbol("func_begin"); |
| if (NeedsLocalForSize) |
| CurrentFnSymForSize = CurrentFnBegin; |
| } |
| |
| ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); |
| } |
| |
| namespace { |
| |
| // Keep track the alignment, constpool entries per Section. |
| struct SectionCPs { |
| MCSection *S; |
| unsigned Alignment; |
| SmallVector<unsigned, 4> CPEs; |
| |
| SectionCPs(MCSection *s, unsigned a) : S(s), Alignment(a) {} |
| }; |
| |
| } // end anonymous namespace |
| |
| /// EmitConstantPool - Print to the current output stream assembly |
| /// representations of the constants in the constant pool MCP. This is |
| /// used to print out constants which have been "spilled to memory" by |
| /// the code generator. |
| void AsmPrinter::EmitConstantPool() { |
| const MachineConstantPool *MCP = MF->getConstantPool(); |
| const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); |
| if (CP.empty()) return; |
| |
| // Calculate sections for constant pool entries. We collect entries to go into |
| // the same section together to reduce amount of section switch statements. |
| SmallVector<SectionCPs, 4> CPSections; |
| for (unsigned i = 0, e = CP.size(); i != e; ++i) { |
| const MachineConstantPoolEntry &CPE = CP[i]; |
| unsigned Align = CPE.getAlignment(); |
| |
| SectionKind Kind = CPE.getSectionKind(&getDataLayout()); |
| |
| const Constant *C = nullptr; |
| if (!CPE.isMachineConstantPoolEntry()) |
| C = CPE.Val.ConstVal; |
| |
| MCSection *S = getObjFileLowering().getSectionForConstant(getDataLayout(), |
| Kind, C, Align); |
| |
| // The number of sections are small, just do a linear search from the |
| // last section to the first. |
| bool Found = false; |
| unsigned SecIdx = CPSections.size(); |
| while (SecIdx != 0) { |
| if (CPSections[--SecIdx].S == S) { |
| Found = true; |
| break; |
| } |
| } |
| if (!Found) { |
| SecIdx = CPSections.size(); |
| CPSections.push_back(SectionCPs(S, Align)); |
| } |
| |
| if (Align > CPSections[SecIdx].Alignment) |
| CPSections[SecIdx].Alignment = Align; |
| CPSections[SecIdx].CPEs.push_back(i); |
| } |
| |
| // Now print stuff into the calculated sections. |
| const MCSection *CurSection = nullptr; |
| unsigned Offset = 0; |
| for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { |
| for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { |
| unsigned CPI = CPSections[i].CPEs[j]; |
| MCSymbol *Sym = GetCPISymbol(CPI); |
| if (!Sym->isUndefined()) |
| continue; |
| |
| if (CurSection != CPSections[i].S) { |
| OutStreamer->SwitchSection(CPSections[i].S); |
| EmitAlignment(Align(CPSections[i].Alignment)); |
| CurSection = CPSections[i].S; |
| Offset = 0; |
| } |
| |
| MachineConstantPoolEntry CPE = CP[CPI]; |
| |
| // Emit inter-object padding for alignment. |
| unsigned AlignMask = CPE.getAlignment() - 1; |
| unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; |
| OutStreamer->EmitZeros(NewOffset - Offset); |
| |
| Type *Ty = CPE.getType(); |
| Offset = NewOffset + getDataLayout().getTypeAllocSize(Ty); |
| |
| OutStreamer->EmitLabel(Sym); |
| if (CPE.isMachineConstantPoolEntry()) |
| EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); |
| else |
| EmitGlobalConstant(getDataLayout(), CPE.Val.ConstVal); |
| } |
| } |
| } |
| |
| /// EmitJumpTableInfo - Print assembly representations of the jump tables used |
| /// by the current function to the current output stream. |
| void AsmPrinter::EmitJumpTableInfo() { |
| const DataLayout &DL = MF->getDataLayout(); |
| const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); |
| if (!MJTI) return; |
| if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; |
| const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); |
| if (JT.empty()) return; |
| |
| // Pick the directive to use to print the jump table entries, and switch to |
| // the appropriate section. |
| const Function &F = MF->getFunction(); |
| const TargetLoweringObjectFile &TLOF = getObjFileLowering(); |
| bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection( |
| MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32, |
| F); |
| if (JTInDiffSection) { |
| // Drop it in the readonly section. |
| MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM); |
| OutStreamer->SwitchSection(ReadOnlySection); |
| } |
| |
| EmitAlignment(Align(MJTI->getEntryAlignment(DL))); |
| |
| // Jump tables in code sections are marked with a data_region directive |
| // where that's supported. |
| if (!JTInDiffSection) |
| OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); |
| |
| for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { |
| const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; |
| |
| // If this jump table was deleted, ignore it. |
| if (JTBBs.empty()) continue; |
| |
| // For the EK_LabelDifference32 entry, if using .set avoids a relocation, |
| /// emit a .set directive for each unique entry. |
| if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && |
| MAI->doesSetDirectiveSuppressReloc()) { |
| SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; |
| const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); |
| const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); |
| for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { |
| const MachineBasicBlock *MBB = JTBBs[ii]; |
| if (!EmittedSets.insert(MBB).second) |
| continue; |
| |
| // .set LJTSet, LBB32-base |
| const MCExpr *LHS = |
| MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); |
| OutStreamer->EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), |
| MCBinaryExpr::createSub(LHS, Base, |
| OutContext)); |
| } |
| } |
| |
| // On some targets (e.g. Darwin) we want to emit two consecutive labels |
| // before each jump table. The first label is never referenced, but tells |
| // the assembler and linker the extents of the jump table object. The |
| // second label is actually referenced by the code. |
| if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix()) |
| // FIXME: This doesn't have to have any specific name, just any randomly |
| // named and numbered 'l' label would work. Simplify GetJTISymbol. |
| OutStreamer->EmitLabel(GetJTISymbol(JTI, true)); |
| |
| OutStreamer->EmitLabel(GetJTISymbol(JTI)); |
| |
| for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) |
| EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); |
| } |
| if (!JTInDiffSection) |
| OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); |
| } |
| |
| /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the |
| /// current stream. |
| void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, |
| const MachineBasicBlock *MBB, |
| unsigned UID) const { |
| assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); |
| const MCExpr *Value = nullptr; |
| switch (MJTI->getEntryKind()) { |
| case MachineJumpTableInfo::EK_Inline: |
| llvm_unreachable("Cannot emit EK_Inline jump table entry"); |
| case MachineJumpTableInfo::EK_Custom32: |
| Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry( |
| MJTI, MBB, UID, OutContext); |
| break; |
| case MachineJumpTableInfo::EK_BlockAddress: |
| // EK_BlockAddress - Each entry is a plain address of block, e.g.: |
| // .word LBB123 |
| Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); |
| break; |
| case MachineJumpTableInfo::EK_GPRel32BlockAddress: { |
| // EK_GPRel32BlockAddress - Each entry is an address of block, encoded |
| // with a relocation as gp-relative, e.g.: |
| // .gprel32 LBB123 |
| MCSymbol *MBBSym = MBB->getSymbol(); |
| OutStreamer->EmitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext)); |
| return; |
| } |
| |
| case MachineJumpTableInfo::EK_GPRel64BlockAddress: { |
| // EK_GPRel64BlockAddress - Each entry is an address of block, encoded |
| // with a relocation as gp-relative, e.g.: |
| // .gpdword LBB123 |
| MCSymbol *MBBSym = MBB->getSymbol(); |
| OutStreamer->EmitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext)); |
| return; |
| } |
| |
| case MachineJumpTableInfo::EK_LabelDifference32: { |
| // Each entry is the address of the block minus the address of the jump |
| // table. This is used for PIC jump tables where gprel32 is not supported. |
| // e.g.: |
| // .word LBB123 - LJTI1_2 |
| // If the .set directive avoids relocations, this is emitted as: |
| // .set L4_5_set_123, LBB123 - LJTI1_2 |
| // .word L4_5_set_123 |
| if (MAI->doesSetDirectiveSuppressReloc()) { |
| Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()), |
| OutContext); |
| break; |
| } |
| Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); |
| const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); |
| const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext); |
| Value = MCBinaryExpr::createSub(Value, Base, OutContext); |
| break; |
| } |
| } |
| |
| assert(Value && "Unknown entry kind!"); |
| |
| unsigned EntrySize = MJTI->getEntrySize(getDataLayout()); |
| OutStreamer->EmitValue(Value, EntrySize); |
| } |
| |
| /// EmitSpecialLLVMGlobal - Check to see if the specified global is a |
| /// special global used by LLVM. If so, emit it and return true, otherwise |
| /// do nothing and return false. |
| bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { |
| if (GV->getName() == "llvm.used") { |
| if (MAI->hasNoDeadStrip()) // No need to emit this at all. |
| EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer())); |
| return true; |
| } |
| |
| // Ignore debug and non-emitted data. This handles llvm.compiler.used. |
| if (GV->getSection() == "llvm.metadata" || |
| GV->hasAvailableExternallyLinkage()) |
| return true; |
| |
| if (!GV->hasAppendingLinkage()) return false; |
| |
| assert(GV->hasInitializer() && "Not a special LLVM global!"); |
| |
| if (GV->getName() == "llvm.global_ctors") { |
| EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), |
| /* isCtor */ true); |
| |
| return true; |
| } |
| |
| if (GV->getName() == "llvm.global_dtors") { |
| EmitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(), |
| /* isCtor */ false); |
| |
| return true; |
| } |
| |
| report_fatal_error("unknown special variable"); |
| } |
| |
| /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each |
| /// global in the specified llvm.used list. |
| void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) { |
| // Should be an array of 'i8*'. |
| for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { |
| const GlobalValue *GV = |
| dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); |
| if (GV) |
| OutStreamer->EmitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip); |
| } |
| } |
| |
| namespace { |
| |
| struct Structor { |
| int Priority = 0; |
| Constant *Func = nullptr; |
| GlobalValue *ComdatKey = nullptr; |
| |
| Structor() = default; |
| }; |
| |
| } // end anonymous namespace |
| |
| /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init |
| /// priority. |
| void AsmPrinter::EmitXXStructorList(const DataLayout &DL, const Constant *List, |
| bool isCtor) { |
| // Should be an array of '{ i32, void ()*, i8* }' structs. The first value is the |
| // init priority. |
| if (!isa<ConstantArray>(List)) return; |
| |
| // Sanity check the structors list. |
| const ConstantArray *InitList = dyn_cast<ConstantArray>(List); |
| if (!InitList) return; // Not an array! |
| StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); |
| if (!ETy || ETy->getNumElements() != 3 || |
| !isa<IntegerType>(ETy->getTypeAtIndex(0U)) || |
| !isa<PointerType>(ETy->getTypeAtIndex(1U)) || |
| !isa<PointerType>(ETy->getTypeAtIndex(2U))) |
| return; // Not (int, ptr, ptr). |
| |
| // Gather the structors in a form that's convenient for sorting by priority. |
| SmallVector<Structor, 8> Structors; |
| for (Value *O : InitList->operands()) { |
| ConstantStruct *CS = dyn_cast<ConstantStruct>(O); |
| if (!CS) continue; // Malformed. |
| if (CS->getOperand(1)->isNullValue()) |
| break; // Found a null terminator, skip the rest. |
| ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); |
| if (!Priority) continue; // Malformed. |
| Structors.push_back(Structor()); |
| Structor &S = Structors.back(); |
| S.Priority = Priority->getLimitedValue(65535); |
| S.Func = CS->getOperand(1); |
| if (!CS->getOperand(2)->isNullValue()) |
| S.ComdatKey = |
| dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts()); |
| } |
| |
| // Emit the function pointers in the target-specific order |
| llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) { |
| return L.Priority < R.Priority; |
| }); |
| const Align Align = DL.getPointerPrefAlignment(); |
| for (Structor &S : Structors) { |
| const TargetLoweringObjectFile &Obj = getObjFileLowering(); |
| const MCSymbol *KeySym = nullptr; |
| if (GlobalValue *GV = S.ComdatKey) { |
| if (GV->isDeclarationForLinker()) |
| // If the associated variable is not defined in this module |
| // (it might be available_externally, or have been an |
| // available_externally definition that was dropped by the |
| // EliminateAvailableExternally pass), some other TU |
| // will provide its dynamic initializer. |
| continue; |
| |
| KeySym = getSymbol(GV); |
| } |
| MCSection *OutputSection = |
| (isCtor ? Obj.getStaticCtorSection(S.Priority, KeySym) |
| : Obj.getStaticDtorSection(S.Priority, KeySym)); |
| OutStreamer->SwitchSection(OutputSection); |
| if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection()) |
| EmitAlignment(Align); |
| EmitXXStructor(DL, S.Func); |
| } |
| } |
| |
| void AsmPrinter::EmitModuleIdents(Module &M) { |
| if (!MAI->hasIdentDirective()) |
| return; |
| |
| if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) { |
| for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { |
| const MDNode *N = NMD->getOperand(i); |
| assert(N->getNumOperands() == 1 && |
| "llvm.ident metadata entry can have only one operand"); |
| const MDString *S = cast<MDString>(N->getOperand(0)); |
| OutStreamer->EmitIdent(S->getString()); |
| } |
| } |
| } |
| |
| void AsmPrinter::EmitModuleCommandLines(Module &M) { |
| MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines(); |
| if (!CommandLine) |
| return; |
| |
| const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline"); |
| if (!NMD || !NMD->getNumOperands()) |
| return; |
| |
| OutStreamer->PushSection(); |
| OutStreamer->SwitchSection(CommandLine); |
| OutStreamer->EmitZeros(1); |
| for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) { |
| const MDNode *N = NMD->getOperand(i); |
| assert(N->getNumOperands() == 1 && |
| "llvm.commandline metadata entry can have only one operand"); |
| const MDString *S = cast<MDString>(N->getOperand(0)); |
| OutStreamer->EmitBytes(S->getString()); |
| OutStreamer->EmitZeros(1); |
| } |
| OutStreamer->PopSection(); |
| } |
| |
| //===--------------------------------------------------------------------===// |
| // Emission and print routines |
| // |
| |
| /// Emit a byte directive and value. |
| /// |
| void AsmPrinter::emitInt8(int Value) const { |
| OutStreamer->EmitIntValue(Value, 1); |
| } |
| |
| /// Emit a short directive and value. |
| void AsmPrinter::emitInt16(int Value) const { |
| OutStreamer->EmitIntValue(Value, 2); |
| } |
| |
| /// Emit a long directive and value. |
| void AsmPrinter::emitInt32(int Value) const { |
| OutStreamer->EmitIntValue(Value, 4); |
| } |
| |
| /// Emit a long long directive and value. |
| void AsmPrinter::emitInt64(uint64_t Value) const { |
| OutStreamer->EmitIntValue(Value, 8); |
| } |
| |
| /// Emit something like ".long Hi-Lo" where the size in bytes of the directive |
| /// is specified by Size and Hi/Lo specify the labels. This implicitly uses |
| /// .set if it avoids relocations. |
| void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, |
| unsigned Size) const { |
| OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size); |
| } |
| |
| /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" |
| /// where the size in bytes of the directive is specified by Size and Label |
| /// specifies the label. This implicitly uses .set if it is available. |
| void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, |
| unsigned Size, |
| bool IsSectionRelative) const { |
| if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) { |
| OutStreamer->EmitCOFFSecRel32(Label, Offset); |
| if (Size > 4) |
| OutStreamer->EmitZeros(Size - 4); |
| return; |
| } |
| |
| // Emit Label+Offset (or just Label if Offset is zero) |
| const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext); |
| if (Offset) |
| Expr = MCBinaryExpr::createAdd( |
| Expr, MCConstantExpr::create(Offset, OutContext), OutContext); |
| |
| OutStreamer->EmitValue(Expr, Size); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| |
| // EmitAlignment - Emit an alignment directive to the specified power of |
| // two boundary. If a global value is specified, and if that global has |
| // an explicit alignment requested, it will override the alignment request |
| // if required for correctness. |
| void AsmPrinter::EmitAlignment(Align Alignment, const GlobalObject *GV) const { |
| if (GV) |
| Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment); |
| |
| if (Alignment == Align::None()) |
| return; // 1-byte aligned: no need to emit alignment. |
| |
| if (getCurrentSection()->getKind().isText()) |
| OutStreamer->EmitCodeAlignment(Alignment.value()); |
| else |
| OutStreamer->EmitValueToAlignment(Alignment.value()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Constant emission. |
| //===----------------------------------------------------------------------===// |
| |
| const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) { |
| MCContext &Ctx = OutContext; |
| |
| if (CV->isNullValue() || isa<UndefValue>(CV)) |
| return MCConstantExpr::create(0, Ctx); |
| |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) |
| return MCConstantExpr::create(CI->getZExtValue(), Ctx); |
| |
| if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) |
| return MCSymbolRefExpr::create(getSymbol(GV), Ctx); |
| |
| if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) |
| return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx); |
| |
| const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); |
| if (!CE) { |
| llvm_unreachable("Unknown constant value to lower!"); |
| } |
| |
| switch (CE->getOpcode()) { |
| default: |
| // If the code isn't optimized, there may be outstanding folding |
| // opportunities. Attempt to fold the expression using DataLayout as a |
| // last resort before giving up. |
| if (Constant *C = ConstantFoldConstant(CE, getDataLayout())) |
| if (C != CE) |
| return lowerConstant(C); |
| |
| // Otherwise report the problem to the user. |
| { |
| std::string S; |
| raw_string_ostream OS(S); |
| OS << "Unsupported expression in static initializer: "; |
| CE->printAsOperand(OS, /*PrintType=*/false, |
| !MF ? nullptr : MF->getFunction().getParent()); |
| report_fatal_error(OS.str()); |
| } |
| case Instruction::GetElementPtr: { |
| // Generate a symbolic expression for the byte address |
| APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0); |
| cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI); |
| |
| const MCExpr *Base = lowerConstant(CE->getOperand(0)); |
| if (!OffsetAI) |
| return Base; |
| |
| int64_t Offset = OffsetAI.getSExtValue(); |
| return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx), |
| Ctx); |
| } |
| |
| case Instruction::Trunc: |
| // We emit the value and depend on the assembler to truncate the generated |
| // expression properly. This is important for differences between |
| // blockaddress labels. Since the two labels are in the same function, it |
| // is reasonable to treat their delta as a 32-bit value. |
| LLVM_FALLTHROUGH; |
| case Instruction::BitCast: |
| return lowerConstant(CE->getOperand(0)); |
| |
| case Instruction::IntToPtr: { |
| const DataLayout &DL = getDataLayout(); |
| |
| // Handle casts to pointers by changing them into casts to the appropriate |
| // integer type. This promotes constant folding and simplifies this code. |
| Constant *Op = CE->getOperand(0); |
| Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()), |
| false/*ZExt*/); |
| return lowerConstant(Op); |
| } |
| |
| case Instruction::PtrToInt: { |
| const DataLayout &DL = getDataLayout(); |
| |
| // Support only foldable casts to/from pointers that can be eliminated by |
| // changing the pointer to the appropriately sized integer type. |
| Constant *Op = CE->getOperand(0); |
| Type *Ty = CE->getType(); |
| |
| const MCExpr *OpExpr = lowerConstant(Op); |
| |
| // We can emit the pointer value into this slot if the slot is an |
| // integer slot equal to the size of the pointer. |
| // |
| // If the pointer is larger than the resultant integer, then |
| // as with Trunc just depend on the assembler to truncate it. |
| if (DL.getTypeAllocSize(Ty) <= DL.getTypeAllocSize(Op->getType())) |
| return OpExpr; |
| |
| // Otherwise the pointer is smaller than the resultant integer, mask off |
| // the high bits so we are sure to get a proper truncation if the input is |
| // a constant expr. |
| unsigned InBits = DL.getTypeAllocSizeInBits(Op->getType()); |
| const MCExpr *MaskExpr = MCConstantExpr::create(~0ULL >> (64-InBits), Ctx); |
| return MCBinaryExpr::createAnd(OpExpr, MaskExpr, Ctx); |
| } |
| |
| case Instruction::Sub: { |
| GlobalValue *LHSGV; |
| APInt LHSOffset; |
| if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset, |
| getDataLayout())) { |
| GlobalValue *RHSGV; |
| APInt RHSOffset; |
| if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset, |
| getDataLayout())) { |
| const MCExpr *RelocExpr = |
| getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM); |
| if (!RelocExpr) |
| RelocExpr = MCBinaryExpr::createSub( |
| MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx), |
| MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx); |
| int64_t Addend = (LHSOffset - RHSOffset).getSExtValue(); |
| if (Addend != 0) |
| RelocExpr = MCBinaryExpr::createAdd( |
| RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx); |
| return RelocExpr; |
| } |
| } |
| } |
| // else fallthrough |
| LLVM_FALLTHROUGH; |
| |
| // The MC library also has a right-shift operator, but it isn't consistently |
| // signed or unsigned between different targets. |
| case Instruction::Add: |
| case Instruction::Mul: |
| case Instruction::SDiv: |
| case Instruction::SRem: |
| case Instruction::Shl: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: { |
| const MCExpr *LHS = lowerConstant(CE->getOperand(0)); |
| const MCExpr *RHS = lowerConstant(CE->getOperand(1)); |
| switch (CE->getOpcode()) { |
| default: llvm_unreachable("Unknown binary operator constant cast expr"); |
| case Instruction::Add: return MCBinaryExpr::createAdd(LHS, RHS, Ctx); |
| case Instruction::Sub: return MCBinaryExpr::createSub(LHS, RHS, Ctx); |
| case Instruction::Mul: return MCBinaryExpr::createMul(LHS, RHS, Ctx); |
| case Instruction::SDiv: return MCBinaryExpr::createDiv(LHS, RHS, Ctx); |
| case Instruction::SRem: return MCBinaryExpr::createMod(LHS, RHS, Ctx); |
| case Instruction::Shl: return MCBinaryExpr::createShl(LHS, RHS, Ctx); |
| case Instruction::And: return MCBinaryExpr::createAnd(LHS, RHS, Ctx); |
| case Instruction::Or: return MCBinaryExpr::createOr (LHS, RHS, Ctx); |
| case Instruction::Xor: return MCBinaryExpr::createXor(LHS, RHS, Ctx); |
| } |
| } |
| } |
| } |
| |
| static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C, |
| AsmPrinter &AP, |
| const Constant *BaseCV = nullptr, |
| uint64_t Offset = 0); |
| |
| static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP); |
| static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP); |
| |
| /// isRepeatedByteSequence - Determine whether the given value is |
| /// composed of a repeated sequence of identical bytes and return the |
| /// byte value. If it is not a repeated sequence, return -1. |
| static int isRepeatedByteSequence(const ConstantDataSequential *V) { |
| StringRef Data = V->getRawDataValues(); |
| assert(!Data.empty() && "Empty aggregates should be CAZ node"); |
| char C = Data[0]; |
| for (unsigned i = 1, e = Data.size(); i != e; ++i) |
| if (Data[i] != C) return -1; |
| return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. |
| } |
| |
| /// isRepeatedByteSequence - Determine whether the given value is |
| /// composed of a repeated sequence of identical bytes and return the |
| /// byte value. If it is not a repeated sequence, return -1. |
| static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) { |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { |
| uint64_t Size = DL.getTypeAllocSizeInBits(V->getType()); |
| assert(Size % 8 == 0); |
| |
| // Extend the element to take zero padding into account. |
| APInt Value = CI->getValue().zextOrSelf(Size); |
| if (!Value.isSplat(8)) |
| return -1; |
| |
| return Value.zextOrTrunc(8).getZExtValue(); |
| } |
| if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { |
| // Make sure all array elements are sequences of the same repeated |
| // byte. |
| assert(CA->getNumOperands() != 0 && "Should be a CAZ"); |
| Constant *Op0 = CA->getOperand(0); |
| int Byte = isRepeatedByteSequence(Op0, DL); |
| if (Byte == -1) |
| return -1; |
| |
| // All array elements must be equal. |
| for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) |
| if (CA->getOperand(i) != Op0) |
| return -1; |
| return Byte; |
| } |
| |
| if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) |
| return isRepeatedByteSequence(CDS); |
| |
| return -1; |
| } |
| |
| static void emitGlobalConstantDataSequential(const DataLayout &DL, |
| const ConstantDataSequential *CDS, |
| AsmPrinter &AP) { |
| // See if we can aggregate this into a .fill, if so, emit it as such. |
| int Value = isRepeatedByteSequence(CDS, DL); |
| if (Value != -1) { |
| uint64_t Bytes = DL.getTypeAllocSize(CDS->getType()); |
| // Don't emit a 1-byte object as a .fill. |
| if (Bytes > 1) |
| return AP.OutStreamer->emitFill(Bytes, Value); |
| } |
| |
| // If this can be emitted with .ascii/.asciz, emit it as such. |
| if (CDS->isString()) |
| return AP.OutStreamer->EmitBytes(CDS->getAsString()); |
| |
| // Otherwise, emit the values in successive locations. |
| unsigned ElementByteSize = CDS->getElementByteSize(); |
| if (isa<IntegerType>(CDS->getElementType())) { |
| for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { |
| if (AP.isVerbose()) |
| AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", |
| CDS->getElementAsInteger(i)); |
| AP.OutStreamer->EmitIntValue(CDS->getElementAsInteger(i), |
| ElementByteSize); |
| } |
| } else { |
| Type *ET = CDS->getElementType(); |
| for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) |
| emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP); |
| } |
| |
| unsigned Size = DL.getTypeAllocSize(CDS->getType()); |
| unsigned EmittedSize = DL.getTypeAllocSize(CDS->getType()->getElementType()) * |
| CDS->getNumElements(); |
| assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!"); |
| if (unsigned Padding = Size - EmittedSize) |
| AP.OutStreamer->EmitZeros(Padding); |
| } |
| |
| static void emitGlobalConstantArray(const DataLayout &DL, |
| const ConstantArray *CA, AsmPrinter &AP, |
| const Constant *BaseCV, uint64_t Offset) { |
| // See if we can aggregate some values. Make sure it can be |
| // represented as a series of bytes of the constant value. |
| int Value = isRepeatedByteSequence(CA, DL); |
| |
| if (Value != -1) { |
| uint64_t Bytes = DL.getTypeAllocSize(CA->getType()); |
| AP.OutStreamer->emitFill(Bytes, Value); |
| } |
| else { |
| for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) { |
| emitGlobalConstantImpl(DL, CA->getOperand(i), AP, BaseCV, Offset); |
| Offset += DL.getTypeAllocSize(CA->getOperand(i)->getType()); |
| } |
| } |
| } |
| |
| static void emitGlobalConstantVector(const DataLayout &DL, |
| const ConstantVector *CV, AsmPrinter &AP) { |
| for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) |
| emitGlobalConstantImpl(DL, CV->getOperand(i), AP); |
| |
| unsigned Size = DL.getTypeAllocSize(CV->getType()); |
| unsigned EmittedSize = DL.getTypeAllocSize(CV->getType()->getElementType()) * |
| CV->getType()->getNumElements(); |
| if (unsigned Padding = Size - EmittedSize) |
| AP.OutStreamer->EmitZeros(Padding); |
| } |
| |
| static void emitGlobalConstantStruct(const DataLayout &DL, |
| const ConstantStruct *CS, AsmPrinter &AP, |
| const Constant *BaseCV, uint64_t Offset) { |
| // Print the fields in successive locations. Pad to align if needed! |
| unsigned Size = DL.getTypeAllocSize(CS->getType()); |
| const StructLayout *Layout = DL.getStructLayout(CS->getType()); |
| uint64_t SizeSoFar = 0; |
| for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { |
| const Constant *Field = CS->getOperand(i); |
| |
| // Print the actual field value. |
| emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar); |
| |
| // Check if padding is needed and insert one or more 0s. |
| uint64_t FieldSize = DL.getTypeAllocSize(Field->getType()); |
| uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) |
| - Layout->getElementOffset(i)) - FieldSize; |
| SizeSoFar += FieldSize + PadSize; |
| |
| // Insert padding - this may include padding to increase the size of the |
| // current field up to the ABI size (if the struct is not packed) as well |
| // as padding to ensure that the next field starts at the right offset. |
| AP.OutStreamer->EmitZeros(PadSize); |
| } |
| assert(SizeSoFar == Layout->getSizeInBytes() && |
| "Layout of constant struct may be incorrect!"); |
| } |
| |
| static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) { |
| assert(ET && "Unknown float type"); |
| APInt API = APF.bitcastToAPInt(); |
| |
| // First print a comment with what we think the original floating-point value |
| // should have been. |
| if (AP.isVerbose()) { |
| SmallString<8> StrVal; |
| APF.toString(StrVal); |
| ET->print(AP.OutStreamer->GetCommentOS()); |
| AP.OutStreamer->GetCommentOS() << ' ' << StrVal << '\n'; |
| } |
| |
| // Now iterate through the APInt chunks, emitting them in endian-correct |
| // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit |
| // floats). |
| unsigned NumBytes = API.getBitWidth() / 8; |
| unsigned TrailingBytes = NumBytes % sizeof(uint64_t); |
| const uint64_t *p = API.getRawData(); |
| |
| // PPC's long double has odd notions of endianness compared to how LLVM |
| // handles it: p[0] goes first for *big* endian on PPC. |
| if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) { |
| int Chunk = API.getNumWords() - 1; |
| |
| if (TrailingBytes) |
| AP.OutStreamer->EmitIntValue(p[Chunk--], TrailingBytes); |
| |
| for (; Chunk >= 0; --Chunk) |
| AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); |
| } else { |
| unsigned Chunk; |
| for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) |
| AP.OutStreamer->EmitIntValue(p[Chunk], sizeof(uint64_t)); |
| |
| if (TrailingBytes) |
| AP.OutStreamer->EmitIntValue(p[Chunk], TrailingBytes); |
| } |
| |
| // Emit the tail padding for the long double. |
| const DataLayout &DL = AP.getDataLayout(); |
| AP.OutStreamer->EmitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET)); |
| } |
| |
| static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) { |
| emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP); |
| } |
| |
| static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) { |
| const DataLayout &DL = AP.getDataLayout(); |
| unsigned BitWidth = CI->getBitWidth(); |
| |
| // Copy the value as we may massage the layout for constants whose bit width |
| // is not a multiple of 64-bits. |
| APInt Realigned(CI->getValue()); |
| uint64_t ExtraBits = 0; |
| unsigned ExtraBitsSize = BitWidth & 63; |
| |
| if (ExtraBitsSize) { |
| // The bit width of the data is not a multiple of 64-bits. |
| // The extra bits are expected to be at the end of the chunk of the memory. |
| // Little endian: |
| // * Nothing to be done, just record the extra bits to emit. |
| // Big endian: |
| // * Record the extra bits to emit. |
| // * Realign the raw data to emit the chunks of 64-bits. |
| if (DL.isBigEndian()) { |
| // Basically the structure of the raw data is a chunk of 64-bits cells: |
| // 0 1 BitWidth / 64 |
| // [chunk1][chunk2] ... [chunkN]. |
| // The most significant chunk is chunkN and it should be emitted first. |
| // However, due to the alignment issue chunkN contains useless bits. |
| // Realign the chunks so that they contain only useless information: |
| // ExtraBits 0 1 (BitWidth / 64) - 1 |
| // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN] |
| ExtraBits = Realigned.getRawData()[0] & |
| (((uint64_t)-1) >> (64 - ExtraBitsSize)); |
| Realigned.lshrInPlace(ExtraBitsSize); |
| } else |
| ExtraBits = Realigned.getRawData()[BitWidth / 64]; |
| } |
| |
| // We don't expect assemblers to support integer data directives |
| // for more than 64 bits, so we emit the data in at most 64-bit |
| // quantities at a time. |
| const uint64_t *RawData = Realigned.getRawData(); |
| for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { |
| uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i]; |
| AP.OutStreamer->EmitIntValue(Val, 8); |
| } |
| |
| if (ExtraBitsSize) { |
| // Emit the extra bits after the 64-bits chunks. |
| |
| // Emit a directive that fills the expected size. |
| uint64_t Size = AP.getDataLayout().getTypeAllocSize(CI->getType()); |
| Size -= (BitWidth / 64) * 8; |
| assert(Size && Size * 8 >= ExtraBitsSize && |
| (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize))) |
| == ExtraBits && "Directive too small for extra bits."); |
| AP.OutStreamer->EmitIntValue(ExtraBits, Size); |
| } |
| } |
| |
| /// Transform a not absolute MCExpr containing a reference to a GOT |
| /// equivalent global, by a target specific GOT pc relative access to the |
| /// final symbol. |
| static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME, |
| const Constant *BaseCst, |
| uint64_t Offset) { |
| // The global @foo below illustrates a global that uses a got equivalent. |
| // |
| // @bar = global i32 42 |
| // @gotequiv = private unnamed_addr constant i32* @bar |
| // @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64), |
| // i64 ptrtoint (i32* @foo to i64)) |
| // to i32) |
| // |
| // The cstexpr in @foo is converted into the MCExpr `ME`, where we actually |
| // check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the |
| // form: |
| // |
| // foo = cstexpr, where |
| // cstexpr := <gotequiv> - "." + <cst> |
| // cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst> |
| // |
| // After canonicalization by evaluateAsRelocatable `ME` turns into: |
| // |
| // cstexpr := <gotequiv> - <foo> + gotpcrelcst, where |
| // gotpcrelcst := <offset from @foo base> + <cst> |
| MCValue MV; |
| if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute()) |
| return; |
| const MCSymbolRefExpr *SymA = MV.getSymA(); |
| if (!SymA) |
| return; |
| |
| // Check that GOT equivalent symbol is cached. |
| const MCSymbol *GOTEquivSym = &SymA->getSymbol(); |
| if (!AP.GlobalGOTEquivs.count(GOTEquivSym)) |
| return; |
| |
| const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst); |
| if (!BaseGV) |
| return; |
| |
| // Check for a valid base symbol |
| const MCSymbol *BaseSym = AP.getSymbol(BaseGV); |
| const MCSymbolRefExpr *SymB = MV.getSymB(); |
| |
| if (!SymB || BaseSym != &SymB->getSymbol()) |
| return; |
| |
| // Make sure to match: |
| // |
| // gotpcrelcst := <offset from @foo base> + <cst> |
| // |
| // If gotpcrelcst is positive it means that we can safely fold the pc rel |
| // displacement into the GOTPCREL. We can also can have an extra offset <cst> |
| // if the target knows how to encode it. |
| int64_t GOTPCRelCst = Offset + MV.getConstant(); |
| if (GOTPCRelCst < 0) |
| return; |
| if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0) |
| return; |
| |
| // Emit the GOT PC relative to replace the got equivalent global, i.e.: |
| // |
| // bar: |
| // .long 42 |
| // gotequiv: |
| // .quad bar |
| // foo: |
| // .long gotequiv - "." + <cst> |
| // |
| // is replaced by the target specific equivalent to: |
| // |
| // bar: |
| // .long 42 |
| // foo: |
| // .long bar@GOTPCREL+<gotpcrelcst> |
| AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym]; |
| const GlobalVariable *GV = Result.first; |
| int NumUses = (int)Result.second; |
| const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0)); |
| const MCSymbol *FinalSym = AP.getSymbol(FinalGV); |
| *ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel( |
| FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer); |
| |
| // Update GOT equivalent usage information |
| --NumUses; |
| if (NumUses >= 0) |
| AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses); |
| } |
| |
| static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV, |
| AsmPrinter &AP, const Constant *BaseCV, |
| uint64_t Offset) { |
| uint64_t Size = DL.getTypeAllocSize(CV->getType()); |
| |
| // Globals with sub-elements such as combinations of arrays and structs |
| // are handled recursively by emitGlobalConstantImpl. Keep track of the |
| // constant symbol base and the current position with BaseCV and Offset. |
| if (!BaseCV && CV->hasOneUse()) |
| BaseCV = dyn_cast<Constant>(CV->user_back()); |
| |
| if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) |
| return AP.OutStreamer->EmitZeros(Size); |
| |
| if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { |
| switch (Size) { |
| case 1: |
| case 2: |
| case 4: |
| case 8: |
| if (AP.isVerbose()) |
| AP.OutStreamer->GetCommentOS() << format("0x%" PRIx64 "\n", |
| CI->getZExtValue()); |
| AP.OutStreamer->EmitIntValue(CI->getZExtValue(), Size); |
| return; |
| default: |
| emitGlobalConstantLargeInt(CI, AP); |
| return; |
| } |
| } |
| |
| if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) |
| return emitGlobalConstantFP(CFP, AP); |
| |
| if (isa<ConstantPointerNull>(CV)) { |
| AP.OutStreamer->EmitIntValue(0, Size); |
| return; |
| } |
| |
| if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) |
| return emitGlobalConstantDataSequential(DL, CDS, AP); |
| |
| if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) |
| return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset); |
| |
| if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) |
| return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset); |
| |
| if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { |
| // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of |
| // vectors). |
| if (CE->getOpcode() == Instruction::BitCast) |
| return emitGlobalConstantImpl(DL, CE->getOperand(0), AP); |
| |
| if (Size > 8) { |
| // If the constant expression's size is greater than 64-bits, then we have |
| // to emit the value in chunks. Try to constant fold the value and emit it |
| // that way. |
| Constant *New = ConstantFoldConstant(CE, DL); |
| if (New && New != CE) |
| return emitGlobalConstantImpl(DL, New, AP); |
| } |
| } |
| |
| if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) |
| return emitGlobalConstantVector(DL, V, AP); |
| |
| // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it |
| // thread the streamer with EmitValue. |
| const MCExpr *ME = AP.lowerConstant(CV); |
| |
| // Since lowerConstant already folded and got rid of all IR pointer and |
| // integer casts, detect GOT equivalent accesses by looking into the MCExpr |
| // directly. |
| if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel()) |
| handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset); |
| |
| AP.OutStreamer->EmitValue(ME, Size); |
| } |
| |
| /// EmitGlobalConstant - Print a general LLVM constant to the .s file. |
| void AsmPrinter::EmitGlobalConstant(const DataLayout &DL, const Constant *CV) { |
| uint64_t Size = DL.getTypeAllocSize(CV->getType()); |
| if (Size) |
| emitGlobalConstantImpl(DL, CV, *this); |
| else if (MAI->hasSubsectionsViaSymbols()) { |
| // If the global has zero size, emit a single byte so that two labels don't |
| // look like they are at the same location. |
| OutStreamer->EmitIntValue(0, 1); |
| } |
| } |
| |
| void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { |
| // Target doesn't support this yet! |
| llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); |
| } |
| |
| void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { |
| if (Offset > 0) |
| OS << '+' << Offset; |
| else if (Offset < 0) |
| OS << Offset; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Symbol Lowering Routines. |
| //===----------------------------------------------------------------------===// |
| |
| MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const { |
| return OutContext.createTempSymbol(Name, true); |
| } |
| |
| MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { |
| return MMI->getAddrLabelSymbol(BA->getBasicBlock()); |
| } |
| |
| MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { |
| return MMI->getAddrLabelSymbol(BB); |
| } |
| |
| /// GetCPISymbol - Return the symbol for the specified constant pool entry. |
| MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { |
| if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) { |
| const MachineConstantPoolEntry &CPE = |
| MF->getConstantPool()->getConstants()[CPID]; |
| if (!CPE.isMachineConstantPoolEntry()) { |
| const DataLayout &DL = MF->getDataLayout(); |
| SectionKind Kind = CPE.getSectionKind(&DL); |
| const Constant *C = CPE.Val.ConstVal; |
| unsigned Align = CPE.Alignment; |
| if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>( |
| getObjFileLowering().getSectionForConstant(DL, Kind, C, Align))) { |
| if (MCSymbol *Sym = S->getCOMDATSymbol()) { |
| if (Sym->isUndefined()) |
| OutStreamer->EmitSymbolAttribute(Sym, MCSA_Global); |
| return Sym; |
| } |
| } |
| } |
| } |
| |
| const DataLayout &DL = getDataLayout(); |
| return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + |
| "CPI" + Twine(getFunctionNumber()) + "_" + |
| Twine(CPID)); |
| } |
| |
| /// GetJTISymbol - Return the symbol for the specified jump table entry. |
| MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { |
| return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); |
| } |
| |
| /// GetJTSetSymbol - Return the symbol for the specified jump table .set |
| /// FIXME: privatize to AsmPrinter. |
| MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { |
| const DataLayout &DL = getDataLayout(); |
| return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) + |
| Twine(getFunctionNumber()) + "_" + |
| Twine(UID) + "_set_" + Twine(MBBID)); |
| } |
| |
| MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV, |
| StringRef Suffix) const { |
| return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM); |
| } |
| |
| /// Return the MCSymbol for the specified ExternalSymbol. |
| MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { |
| SmallString<60> NameStr; |
| Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout()); |
| return OutContext.getOrCreateSymbol(NameStr); |
| } |
| |
| /// PrintParentLoopComment - Print comments about parent loops of this one. |
| static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, |
| unsigned FunctionNumber) { |
| if (!Loop) return; |
| PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); |
| OS.indent(Loop->getLoopDepth()*2) |
| << "Parent Loop BB" << FunctionNumber << "_" |
| << Loop->getHeader()->getNumber() |
| << " Depth=" << Loop->getLoopDepth() << '\n'; |
| } |
| |
| /// PrintChildLoopComment - Print comments about child loops within |
| /// the loop for this basic block, with nesting. |
| static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, |
| unsigned FunctionNumber) { |
| // Add child loop information |
| for (const MachineLoop *CL : *Loop) { |
| OS.indent(CL->getLoopDepth()*2) |
| << "Child Loop BB" << FunctionNumber << "_" |
| << CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth() |
| << '\n'; |
| PrintChildLoopComment(OS, CL, FunctionNumber); |
| } |
| } |
| |
| /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. |
| static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, |
| const MachineLoopInfo *LI, |
| const AsmPrinter &AP) { |
| // Add loop depth information |
| const MachineLoop *Loop = LI->getLoopFor(&MBB); |
| if (!Loop) return; |
| |
| MachineBasicBlock *Header = Loop->getHeader(); |
| assert(Header && "No header for loop"); |
| |
| // If this block is not a loop header, just print out what is the loop header |
| // and return. |
| if (Header != &MBB) { |
| AP.OutStreamer->AddComment(" in Loop: Header=BB" + |
| Twine(AP.getFunctionNumber())+"_" + |
| Twine(Loop->getHeader()->getNumber())+ |
| " Depth="+Twine(Loop->getLoopDepth())); |
| return; |
| } |
| |
| // Otherwise, it is a loop header. Print out information about child and |
| // parent loops. |
| raw_ostream &OS = AP.OutStreamer->GetCommentOS(); |
| |
| PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); |
| |
| OS << "=>"; |
| OS.indent(Loop->getLoopDepth()*2-2); |
| |
| OS << "This "; |
| if (Loop->empty()) |
| OS << "Inner "; |
| OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; |
| |
| PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); |
| } |
| |
| void AsmPrinter::setupCodePaddingContext(const MachineBasicBlock &MBB, |
| MCCodePaddingContext &Context) const { |
| assert(MF != nullptr && "Machine function must be valid"); |
| Context.IsPaddingActive = !MF->hasInlineAsm() && |
| !MF->getFunction().hasOptSize() && |
| TM.getOptLevel() != CodeGenOpt::None; |
| Context.IsBasicBlockReachableViaFallthrough = |
| std::find(MBB.pred_begin(), MBB.pred_end(), MBB.getPrevNode()) != |
| MBB.pred_end(); |
| Context.IsBasicBlockReachableViaBranch = |
| MBB.pred_size() > 0 && !isBlockOnlyReachableByFallthrough(&MBB); |
| } |
| |
| /// EmitBasicBlockStart - This method prints the label for the specified |
| /// MachineBasicBlock, an alignment (if present) and a comment describing |
| /// it if appropriate. |
| void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) { |
| // End the previous funclet and start a new one. |
| if (MBB.isEHFuncletEntry()) { |
| for (const HandlerInfo &HI : Handlers) { |
| HI.Handler->endFunclet(); |
| HI.Handler->beginFunclet(MBB); |
| } |
| } |
| |
| // Emit an alignment directive for this block, if needed. |
| const Align Alignment = MBB.getAlignment(); |
| if (Alignment != Align::None()) |
| EmitAlignment(Alignment); |
| MCCodePaddingContext Context; |
| setupCodePaddingContext(MBB, Context); |
| OutStreamer->EmitCodePaddingBasicBlockStart(Context); |
| |
| // If the block has its address taken, emit any labels that were used to |
| // reference the block. It is possible that there is more than one label |
| // here, because multiple LLVM BB's may have been RAUW'd to this block after |
| // the references were generated. |
| if (MBB.hasAddressTaken()) { |
| const BasicBlock *BB = MBB.getBasicBlock(); |
| if (isVerbose()) |
| OutStreamer->AddComment("Block address taken"); |
| |
| // MBBs can have their address taken as part of CodeGen without having |
| // their corresponding BB's address taken in IR |
| if (BB->hasAddressTaken()) |
| for (MCSymbol *Sym : MMI->getAddrLabelSymbolToEmit(BB)) |
| OutStreamer->EmitLabel(Sym); |
| } |
| |
| // Print some verbose block comments. |
| if (isVerbose()) { |
| if (const BasicBlock *BB = MBB.getBasicBlock()) { |
| if (BB->hasName()) { |
| BB->printAsOperand(OutStreamer->GetCommentOS(), |
| /*PrintType=*/false, BB->getModule()); |
| OutStreamer->GetCommentOS() << '\n'; |
| } |
| } |
| |
| assert(MLI != nullptr && "MachineLoopInfo should has been computed"); |
| emitBasicBlockLoopComments(MBB, MLI, *this); |
| } |
| |
| // Print the main label for the block. |
| if (MBB.pred_empty() || |
| (isBlockOnlyReachableByFallthrough(&MBB) && !MBB.isEHFuncletEntry() && |
| !MBB.hasLabelMustBeEmitted())) { |
| if (isVerbose()) { |
| // NOTE: Want this comment at start of line, don't emit with AddComment. |
| OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":", |
| false); |
| } |
| } else { |
| if (isVerbose() && MBB.hasLabelMustBeEmitted()) |
| OutStreamer->AddComment("Label of block must be emitted"); |
| OutStreamer->EmitLabel(MBB.getSymbol()); |
| } |
| } |
| |
| void AsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) { |
| MCCodePaddingContext Context; |
| setupCodePaddingContext(MBB, Context); |
| OutStreamer->EmitCodePaddingBasicBlockEnd(Context); |
| } |
| |
| void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, |
| bool IsDefinition) const { |
| MCSymbolAttr Attr = MCSA_Invalid; |
| |
| switch (Visibility) { |
| default: break; |
| case GlobalValue::HiddenVisibility: |
| if (IsDefinition) |
| Attr = MAI->getHiddenVisibilityAttr(); |
| else |
| Attr = MAI->getHiddenDeclarationVisibilityAttr(); |
| break; |
| case GlobalValue::ProtectedVisibility: |
| Attr = MAI->getProtectedVisibilityAttr(); |
| break; |
| } |
| |
| if (Attr != MCSA_Invalid) |
| OutStreamer->EmitSymbolAttribute(Sym, Attr); |
| } |
| |
| /// isBlockOnlyReachableByFallthough - Return true if the basic block has |
| /// exactly one predecessor and the control transfer mechanism between |
| /// the predecessor and this block is a fall-through. |
| bool AsmPrinter:: |
| isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { |
| // If this is a landing pad, it isn't a fall through. If it has no preds, |
| // then nothing falls through to it. |
| if (MBB->isEHPad() || MBB->pred_empty()) |
| return false; |
| |
| // If there isn't exactly one predecessor, it can't be a fall through. |
| if (MBB->pred_size() > 1) |
| return false; |
| |
| // The predecessor has to be immediately before this block. |
| MachineBasicBlock *Pred = *MBB->pred_begin(); |
| if (!Pred->isLayoutSuccessor(MBB)) |
| return false; |
| |
| // If the block is completely empty, then it definitely does fall through. |
| if (Pred->empty()) |
| return true; |
| |
| // Check the terminators in the previous blocks |
| for (const auto &MI : Pred->terminators()) { |
| // If it is not a simple branch, we are in a table somewhere. |
| if (!MI.isBranch() || MI.isIndirectBranch()) |
| return false; |
| |
| // If we are the operands of one of the branches, this is not a fall |
| // through. Note that targets with delay slots will usually bundle |
| // terminators with the delay slot instruction. |
| for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) { |
| if (OP->isJTI()) |
| return false; |
| if (OP->isMBB() && OP->getMBB() == MBB) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy &S) { |
| if (!S.usesMetadata()) |
| return nullptr; |
| |
| gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); |
| gcp_map_type::iterator GCPI = GCMap.find(&S); |
| if (GCPI != GCMap.end()) |
| return GCPI->second.get(); |
| |
| auto Name = S.getName(); |
| |
| for (GCMetadataPrinterRegistry::iterator |
| I = GCMetadataPrinterRegistry::begin(), |
| E = GCMetadataPrinterRegistry::end(); I != E; ++I) |
| if (Name == I->getName()) { |
| std::unique_ptr<GCMetadataPrinter> GMP = I->instantiate(); |
| GMP->S = &S; |
| auto IterBool = GCMap.insert(std::make_pair(&S, std::move(GMP))); |
| return IterBool.first->second.get(); |
| } |
| |
| report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); |
| } |
| |
| void AsmPrinter::emitStackMaps(StackMaps &SM) { |
| GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); |
| assert(MI && "AsmPrinter didn't require GCModuleInfo?"); |
| bool NeedsDefault = false; |
| if (MI->begin() == MI->end()) |
| // No GC strategy, use the default format. |
| NeedsDefault = true; |
| else |
| for (auto &I : *MI) { |
| if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) |
| if (MP->emitStackMaps(SM, *this)) |
| continue; |
| // The strategy doesn't have printer or doesn't emit custom stack maps. |
| // Use the default format. |
| NeedsDefault = true; |
| } |
| |
| if (NeedsDefault) |
| SM.serializeToStackMapSection(); |
| } |
| |
| /// Pin vtable to this file. |
| AsmPrinterHandler::~AsmPrinterHandler() = default; |
| |
| void AsmPrinterHandler::markFunctionEnd() {} |
| |
| // In the binary's "xray_instr_map" section, an array of these function entries |
| // describes each instrumentation point. When XRay patches your code, the index |
| // into this table will be given to your handler as a patch point identifier. |
| void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out, |
| const MCSymbol *CurrentFnSym) const { |
| Out->EmitSymbolValue(Sled, Bytes); |
| Out->EmitSymbolValue(CurrentFnSym, Bytes); |
| auto Kind8 = static_cast<uint8_t>(Kind); |
| Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1)); |
| Out->EmitBinaryData( |
| StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1)); |
| Out->EmitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1)); |
| auto Padding = (4 * Bytes) - ((2 * Bytes) + 3); |
| assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size"); |
| Out->EmitZeros(Padding); |
| } |
| |
| void AsmPrinter::emitXRayTable() { |
| if (Sleds.empty()) |
| return; |
| |
| auto PrevSection = OutStreamer->getCurrentSectionOnly(); |
| const Function &F = MF->getFunction(); |
| MCSection *InstMap = nullptr; |
| MCSection *FnSledIndex = nullptr; |
| if (MF->getSubtarget().getTargetTriple().isOSBinFormatELF()) { |
| auto Associated = dyn_cast<MCSymbolELF>(CurrentFnSym); |
| assert(Associated != nullptr); |
| auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER; |
| std::string GroupName; |
| if (F.hasComdat()) { |
| Flags |= ELF::SHF_GROUP; |
| GroupName = F.getComdat()->getName(); |
| } |
| |
| auto UniqueID = ++XRayFnUniqueID; |
| InstMap = |
| OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS, Flags, 0, |
| GroupName, UniqueID, Associated); |
| FnSledIndex = |
| OutContext.getELFSection("xray_fn_idx", ELF::SHT_PROGBITS, Flags, 0, |
| GroupName, UniqueID, Associated); |
| } else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) { |
| InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0, |
| SectionKind::getReadOnlyWithRel()); |
| FnSledIndex = OutContext.getMachOSection("__DATA", "xray_fn_idx", 0, |
| SectionKind::getReadOnlyWithRel()); |
| } else { |
| llvm_unreachable("Unsupported target"); |
| } |
| |
| auto WordSizeBytes = MAI->getCodePointerSize(); |
| |
| // Now we switch to the instrumentation map section. Because this is done |
| // per-function, we are able to create an index entry that will represent the |
| // range of sleds associated with a function. |
| MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true); |
| OutStreamer->SwitchSection(InstMap); |
| OutStreamer->EmitLabel(SledsStart); |
| for (const auto &Sled : Sleds) |
| Sled.emit(WordSizeBytes, OutStreamer.get(), CurrentFnSym); |
| MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true); |
| OutStreamer->EmitLabel(SledsEnd); |
| |
| // We then emit a single entry in the index per function. We use the symbols |
| // that bound the instrumentation map as the range for a specific function. |
| // Each entry here will be 2 * word size aligned, as we're writing down two |
| // pointers. This should work for both 32-bit and 64-bit platforms. |
| OutStreamer->SwitchSection(FnSledIndex); |
| OutStreamer->EmitCodeAlignment(2 * WordSizeBytes); |
| OutStreamer->EmitSymbolValue(SledsStart, WordSizeBytes, false); |
| OutStreamer->EmitSymbolValue(SledsEnd, WordSizeBytes, false); |
| OutStreamer->SwitchSection(PrevSection); |
| Sleds.clear(); |
| } |
| |
| void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI, |
| SledKind Kind, uint8_t Version) { |
| const Function &F = MI.getMF()->getFunction(); |
| auto Attr = F.getFnAttribute("function-instrument"); |
| bool LogArgs = F.hasFnAttribute("xray-log-args"); |
| bool AlwaysInstrument = |
| Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always"; |
| if (Kind == SledKind::FUNCTION_ENTER && LogArgs) |
| Kind = SledKind::LOG_ARGS_ENTER; |
| Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind, |
| AlwaysInstrument, &F, Version}); |
| } |
| |
| uint16_t AsmPrinter::getDwarfVersion() const { |
| return OutStreamer->getContext().getDwarfVersion(); |
| } |
| |
| void AsmPrinter::setDwarfVersion(uint16_t Version) { |
| OutStreamer->getContext().setDwarfVersion(Version); |
| } |