| //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // This file defines the interfaces that ARM uses to lower LLVM code into a | 
 | // selection DAG. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "ARM.h" | 
 | #include "ARMAddressingModes.h" | 
 | #include "ARMConstantPoolValue.h" | 
 | #include "ARMISelLowering.h" | 
 | #include "ARMMachineFunctionInfo.h" | 
 | #include "ARMPerfectShuffle.h" | 
 | #include "ARMRegisterInfo.h" | 
 | #include "ARMSubtarget.h" | 
 | #include "ARMTargetMachine.h" | 
 | #include "ARMTargetObjectFile.h" | 
 | #include "llvm/CallingConv.h" | 
 | #include "llvm/Constants.h" | 
 | #include "llvm/Function.h" | 
 | #include "llvm/GlobalValue.h" | 
 | #include "llvm/Instruction.h" | 
 | #include "llvm/Intrinsics.h" | 
 | #include "llvm/Type.h" | 
 | #include "llvm/CodeGen/CallingConvLower.h" | 
 | #include "llvm/CodeGen/MachineBasicBlock.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineFunction.h" | 
 | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/PseudoSourceValue.h" | 
 | #include "llvm/CodeGen/SelectionDAG.h" | 
 | #include "llvm/MC/MCSectionMachO.h" | 
 | #include "llvm/Target/TargetOptions.h" | 
 | #include "llvm/ADT/VectorExtras.h" | 
 | #include "llvm/Support/CommandLine.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/MathExtras.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | #include <sstream> | 
 | using namespace llvm; | 
 |  | 
 | static cl::opt<bool> | 
 | EnableARMLongCalls("arm-long-calls", cl::Hidden, | 
 |   cl::desc("Generate calls via indirect call instructions."), | 
 |   cl::init(false)); | 
 |  | 
 | static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT, | 
 |                                    CCValAssign::LocInfo &LocInfo, | 
 |                                    ISD::ArgFlagsTy &ArgFlags, | 
 |                                    CCState &State); | 
 | static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT, | 
 |                                     CCValAssign::LocInfo &LocInfo, | 
 |                                     ISD::ArgFlagsTy &ArgFlags, | 
 |                                     CCState &State); | 
 | static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT, | 
 |                                       CCValAssign::LocInfo &LocInfo, | 
 |                                       ISD::ArgFlagsTy &ArgFlags, | 
 |                                       CCState &State); | 
 | static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT, | 
 |                                        CCValAssign::LocInfo &LocInfo, | 
 |                                        ISD::ArgFlagsTy &ArgFlags, | 
 |                                        CCState &State); | 
 |  | 
 | void ARMTargetLowering::addTypeForNEON(EVT VT, EVT PromotedLdStVT, | 
 |                                        EVT PromotedBitwiseVT) { | 
 |   if (VT != PromotedLdStVT) { | 
 |     setOperationAction(ISD::LOAD, VT.getSimpleVT(), Promote); | 
 |     AddPromotedToType (ISD::LOAD, VT.getSimpleVT(), | 
 |                        PromotedLdStVT.getSimpleVT()); | 
 |  | 
 |     setOperationAction(ISD::STORE, VT.getSimpleVT(), Promote); | 
 |     AddPromotedToType (ISD::STORE, VT.getSimpleVT(), | 
 |                        PromotedLdStVT.getSimpleVT()); | 
 |   } | 
 |  | 
 |   EVT ElemTy = VT.getVectorElementType(); | 
 |   if (ElemTy != MVT::i64 && ElemTy != MVT::f64) | 
 |     setOperationAction(ISD::VSETCC, VT.getSimpleVT(), Custom); | 
 |   if (ElemTy == MVT::i8 || ElemTy == MVT::i16) | 
 |     setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT.getSimpleVT(), Custom); | 
 |   if (ElemTy != MVT::i32) { | 
 |     setOperationAction(ISD::SINT_TO_FP, VT.getSimpleVT(), Expand); | 
 |     setOperationAction(ISD::UINT_TO_FP, VT.getSimpleVT(), Expand); | 
 |     setOperationAction(ISD::FP_TO_SINT, VT.getSimpleVT(), Expand); | 
 |     setOperationAction(ISD::FP_TO_UINT, VT.getSimpleVT(), Expand); | 
 |   } | 
 |   setOperationAction(ISD::BUILD_VECTOR, VT.getSimpleVT(), Custom); | 
 |   setOperationAction(ISD::VECTOR_SHUFFLE, VT.getSimpleVT(), Custom); | 
 |   if (llvm::ModelWithRegSequence()) | 
 |     setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Legal); | 
 |   else | 
 |     setOperationAction(ISD::CONCAT_VECTORS, VT.getSimpleVT(), Custom); | 
 |   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT.getSimpleVT(), Expand); | 
 |   setOperationAction(ISD::SELECT, VT.getSimpleVT(), Expand); | 
 |   setOperationAction(ISD::SELECT_CC, VT.getSimpleVT(), Expand); | 
 |   if (VT.isInteger()) { | 
 |     setOperationAction(ISD::SHL, VT.getSimpleVT(), Custom); | 
 |     setOperationAction(ISD::SRA, VT.getSimpleVT(), Custom); | 
 |     setOperationAction(ISD::SRL, VT.getSimpleVT(), Custom); | 
 |   } | 
 |  | 
 |   // Promote all bit-wise operations. | 
 |   if (VT.isInteger() && VT != PromotedBitwiseVT) { | 
 |     setOperationAction(ISD::AND, VT.getSimpleVT(), Promote); | 
 |     AddPromotedToType (ISD::AND, VT.getSimpleVT(), | 
 |                        PromotedBitwiseVT.getSimpleVT()); | 
 |     setOperationAction(ISD::OR,  VT.getSimpleVT(), Promote); | 
 |     AddPromotedToType (ISD::OR,  VT.getSimpleVT(), | 
 |                        PromotedBitwiseVT.getSimpleVT()); | 
 |     setOperationAction(ISD::XOR, VT.getSimpleVT(), Promote); | 
 |     AddPromotedToType (ISD::XOR, VT.getSimpleVT(), | 
 |                        PromotedBitwiseVT.getSimpleVT()); | 
 |   } | 
 |  | 
 |   // Neon does not support vector divide/remainder operations. | 
 |   setOperationAction(ISD::SDIV, VT.getSimpleVT(), Expand); | 
 |   setOperationAction(ISD::UDIV, VT.getSimpleVT(), Expand); | 
 |   setOperationAction(ISD::FDIV, VT.getSimpleVT(), Expand); | 
 |   setOperationAction(ISD::SREM, VT.getSimpleVT(), Expand); | 
 |   setOperationAction(ISD::UREM, VT.getSimpleVT(), Expand); | 
 |   setOperationAction(ISD::FREM, VT.getSimpleVT(), Expand); | 
 | } | 
 |  | 
 | void ARMTargetLowering::addDRTypeForNEON(EVT VT) { | 
 |   addRegisterClass(VT, ARM::DPRRegisterClass); | 
 |   addTypeForNEON(VT, MVT::f64, MVT::v2i32); | 
 | } | 
 |  | 
 | void ARMTargetLowering::addQRTypeForNEON(EVT VT) { | 
 |   addRegisterClass(VT, ARM::QPRRegisterClass); | 
 |   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32); | 
 | } | 
 |  | 
 | static TargetLoweringObjectFile *createTLOF(TargetMachine &TM) { | 
 |   if (TM.getSubtarget<ARMSubtarget>().isTargetDarwin()) | 
 |     return new TargetLoweringObjectFileMachO(); | 
 |  | 
 |   return new ARMElfTargetObjectFile(); | 
 | } | 
 |  | 
 | ARMTargetLowering::ARMTargetLowering(TargetMachine &TM) | 
 |     : TargetLowering(TM, createTLOF(TM)) { | 
 |   Subtarget = &TM.getSubtarget<ARMSubtarget>(); | 
 |  | 
 |   if (Subtarget->isTargetDarwin()) { | 
 |     // Uses VFP for Thumb libfuncs if available. | 
 |     if (Subtarget->isThumb() && Subtarget->hasVFP2()) { | 
 |       // Single-precision floating-point arithmetic. | 
 |       setLibcallName(RTLIB::ADD_F32, "__addsf3vfp"); | 
 |       setLibcallName(RTLIB::SUB_F32, "__subsf3vfp"); | 
 |       setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp"); | 
 |       setLibcallName(RTLIB::DIV_F32, "__divsf3vfp"); | 
 |  | 
 |       // Double-precision floating-point arithmetic. | 
 |       setLibcallName(RTLIB::ADD_F64, "__adddf3vfp"); | 
 |       setLibcallName(RTLIB::SUB_F64, "__subdf3vfp"); | 
 |       setLibcallName(RTLIB::MUL_F64, "__muldf3vfp"); | 
 |       setLibcallName(RTLIB::DIV_F64, "__divdf3vfp"); | 
 |  | 
 |       // Single-precision comparisons. | 
 |       setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp"); | 
 |       setLibcallName(RTLIB::UNE_F32, "__nesf2vfp"); | 
 |       setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp"); | 
 |       setLibcallName(RTLIB::OLE_F32, "__lesf2vfp"); | 
 |       setLibcallName(RTLIB::OGE_F32, "__gesf2vfp"); | 
 |       setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp"); | 
 |       setLibcallName(RTLIB::UO_F32,  "__unordsf2vfp"); | 
 |       setLibcallName(RTLIB::O_F32,   "__unordsf2vfp"); | 
 |  | 
 |       setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE); | 
 |       setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE); | 
 |       setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE); | 
 |       setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE); | 
 |       setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE); | 
 |       setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE); | 
 |       setCmpLibcallCC(RTLIB::UO_F32,  ISD::SETNE); | 
 |       setCmpLibcallCC(RTLIB::O_F32,   ISD::SETEQ); | 
 |  | 
 |       // Double-precision comparisons. | 
 |       setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp"); | 
 |       setLibcallName(RTLIB::UNE_F64, "__nedf2vfp"); | 
 |       setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp"); | 
 |       setLibcallName(RTLIB::OLE_F64, "__ledf2vfp"); | 
 |       setLibcallName(RTLIB::OGE_F64, "__gedf2vfp"); | 
 |       setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp"); | 
 |       setLibcallName(RTLIB::UO_F64,  "__unorddf2vfp"); | 
 |       setLibcallName(RTLIB::O_F64,   "__unorddf2vfp"); | 
 |  | 
 |       setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE); | 
 |       setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE); | 
 |       setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE); | 
 |       setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE); | 
 |       setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE); | 
 |       setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE); | 
 |       setCmpLibcallCC(RTLIB::UO_F64,  ISD::SETNE); | 
 |       setCmpLibcallCC(RTLIB::O_F64,   ISD::SETEQ); | 
 |  | 
 |       // Floating-point to integer conversions. | 
 |       // i64 conversions are done via library routines even when generating VFP | 
 |       // instructions, so use the same ones. | 
 |       setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp"); | 
 |       setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp"); | 
 |       setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp"); | 
 |       setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp"); | 
 |  | 
 |       // Conversions between floating types. | 
 |       setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp"); | 
 |       setLibcallName(RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp"); | 
 |  | 
 |       // Integer to floating-point conversions. | 
 |       // i64 conversions are done via library routines even when generating VFP | 
 |       // instructions, so use the same ones. | 
 |       // FIXME: There appears to be some naming inconsistency in ARM libgcc: | 
 |       // e.g., __floatunsidf vs. __floatunssidfvfp. | 
 |       setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp"); | 
 |       setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp"); | 
 |       setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp"); | 
 |       setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp"); | 
 |     } | 
 |   } | 
 |  | 
 |   // These libcalls are not available in 32-bit. | 
 |   setLibcallName(RTLIB::SHL_I128, 0); | 
 |   setLibcallName(RTLIB::SRL_I128, 0); | 
 |   setLibcallName(RTLIB::SRA_I128, 0); | 
 |  | 
 |   // Libcalls should use the AAPCS base standard ABI, even if hard float | 
 |   // is in effect, as per the ARM RTABI specification, section 4.1.2. | 
 |   if (Subtarget->isAAPCS_ABI()) { | 
 |     for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) { | 
 |       setLibcallCallingConv(static_cast<RTLIB::Libcall>(i), | 
 |                             CallingConv::ARM_AAPCS); | 
 |     } | 
 |   } | 
 |  | 
 |   if (Subtarget->isThumb1Only()) | 
 |     addRegisterClass(MVT::i32, ARM::tGPRRegisterClass); | 
 |   else | 
 |     addRegisterClass(MVT::i32, ARM::GPRRegisterClass); | 
 |   if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) { | 
 |     addRegisterClass(MVT::f32, ARM::SPRRegisterClass); | 
 |     addRegisterClass(MVT::f64, ARM::DPRRegisterClass); | 
 |  | 
 |     setTruncStoreAction(MVT::f64, MVT::f32, Expand); | 
 |   } | 
 |  | 
 |   if (Subtarget->hasNEON()) { | 
 |     addDRTypeForNEON(MVT::v2f32); | 
 |     addDRTypeForNEON(MVT::v8i8); | 
 |     addDRTypeForNEON(MVT::v4i16); | 
 |     addDRTypeForNEON(MVT::v2i32); | 
 |     addDRTypeForNEON(MVT::v1i64); | 
 |  | 
 |     addQRTypeForNEON(MVT::v4f32); | 
 |     addQRTypeForNEON(MVT::v2f64); | 
 |     addQRTypeForNEON(MVT::v16i8); | 
 |     addQRTypeForNEON(MVT::v8i16); | 
 |     addQRTypeForNEON(MVT::v4i32); | 
 |     addQRTypeForNEON(MVT::v2i64); | 
 |  | 
 |     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but | 
 |     // neither Neon nor VFP support any arithmetic operations on it. | 
 |     setOperationAction(ISD::FADD, MVT::v2f64, Expand); | 
 |     setOperationAction(ISD::FSUB, MVT::v2f64, Expand); | 
 |     setOperationAction(ISD::FMUL, MVT::v2f64, Expand); | 
 |     setOperationAction(ISD::FDIV, MVT::v2f64, Expand); | 
 |     setOperationAction(ISD::FREM, MVT::v2f64, Expand); | 
 |     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand); | 
 |     setOperationAction(ISD::VSETCC, MVT::v2f64, Expand); | 
 |     setOperationAction(ISD::FNEG, MVT::v2f64, Expand); | 
 |     setOperationAction(ISD::FABS, MVT::v2f64, Expand); | 
 |     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand); | 
 |     setOperationAction(ISD::FSIN, MVT::v2f64, Expand); | 
 |     setOperationAction(ISD::FCOS, MVT::v2f64, Expand); | 
 |     setOperationAction(ISD::FPOWI, MVT::v2f64, Expand); | 
 |     setOperationAction(ISD::FPOW, MVT::v2f64, Expand); | 
 |     setOperationAction(ISD::FLOG, MVT::v2f64, Expand); | 
 |     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand); | 
 |     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand); | 
 |     setOperationAction(ISD::FEXP, MVT::v2f64, Expand); | 
 |     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand); | 
 |     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand); | 
 |     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand); | 
 |     setOperationAction(ISD::FRINT, MVT::v2f64, Expand); | 
 |     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand); | 
 |     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand); | 
 |  | 
 |     // Neon does not support some operations on v1i64 and v2i64 types. | 
 |     setOperationAction(ISD::MUL, MVT::v1i64, Expand); | 
 |     setOperationAction(ISD::MUL, MVT::v2i64, Expand); | 
 |     setOperationAction(ISD::VSETCC, MVT::v1i64, Expand); | 
 |     setOperationAction(ISD::VSETCC, MVT::v2i64, Expand); | 
 |  | 
 |     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); | 
 |     setTargetDAGCombine(ISD::SHL); | 
 |     setTargetDAGCombine(ISD::SRL); | 
 |     setTargetDAGCombine(ISD::SRA); | 
 |     setTargetDAGCombine(ISD::SIGN_EXTEND); | 
 |     setTargetDAGCombine(ISD::ZERO_EXTEND); | 
 |     setTargetDAGCombine(ISD::ANY_EXTEND); | 
 |     setTargetDAGCombine(ISD::SELECT_CC); | 
 |   } | 
 |  | 
 |   computeRegisterProperties(); | 
 |  | 
 |   // ARM does not have f32 extending load. | 
 |   setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); | 
 |  | 
 |   // ARM does not have i1 sign extending load. | 
 |   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote); | 
 |  | 
 |   // ARM supports all 4 flavors of integer indexed load / store. | 
 |   if (!Subtarget->isThumb1Only()) { | 
 |     for (unsigned im = (unsigned)ISD::PRE_INC; | 
 |          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { | 
 |       setIndexedLoadAction(im,  MVT::i1,  Legal); | 
 |       setIndexedLoadAction(im,  MVT::i8,  Legal); | 
 |       setIndexedLoadAction(im,  MVT::i16, Legal); | 
 |       setIndexedLoadAction(im,  MVT::i32, Legal); | 
 |       setIndexedStoreAction(im, MVT::i1,  Legal); | 
 |       setIndexedStoreAction(im, MVT::i8,  Legal); | 
 |       setIndexedStoreAction(im, MVT::i16, Legal); | 
 |       setIndexedStoreAction(im, MVT::i32, Legal); | 
 |     } | 
 |   } | 
 |  | 
 |   // i64 operation support. | 
 |   if (Subtarget->isThumb1Only()) { | 
 |     setOperationAction(ISD::MUL,     MVT::i64, Expand); | 
 |     setOperationAction(ISD::MULHU,   MVT::i32, Expand); | 
 |     setOperationAction(ISD::MULHS,   MVT::i32, Expand); | 
 |     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); | 
 |     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); | 
 |   } else { | 
 |     setOperationAction(ISD::MUL,     MVT::i64, Expand); | 
 |     setOperationAction(ISD::MULHU,   MVT::i32, Expand); | 
 |     if (!Subtarget->hasV6Ops()) | 
 |       setOperationAction(ISD::MULHS, MVT::i32, Expand); | 
 |   } | 
 |   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); | 
 |   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); | 
 |   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); | 
 |   setOperationAction(ISD::SRL,       MVT::i64, Custom); | 
 |   setOperationAction(ISD::SRA,       MVT::i64, Custom); | 
 |  | 
 |   // ARM does not have ROTL. | 
 |   setOperationAction(ISD::ROTL,  MVT::i32, Expand); | 
 |   setOperationAction(ISD::CTTZ,  MVT::i32, Custom); | 
 |   setOperationAction(ISD::CTPOP, MVT::i32, Expand); | 
 |   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) | 
 |     setOperationAction(ISD::CTLZ, MVT::i32, Expand); | 
 |  | 
 |   // Only ARMv6 has BSWAP. | 
 |   if (!Subtarget->hasV6Ops()) | 
 |     setOperationAction(ISD::BSWAP, MVT::i32, Expand); | 
 |  | 
 |   // These are expanded into libcalls. | 
 |   if (!Subtarget->hasDivide()) { | 
 |     // v7M has a hardware divider | 
 |     setOperationAction(ISD::SDIV,  MVT::i32, Expand); | 
 |     setOperationAction(ISD::UDIV,  MVT::i32, Expand); | 
 |   } | 
 |   setOperationAction(ISD::SREM,  MVT::i32, Expand); | 
 |   setOperationAction(ISD::UREM,  MVT::i32, Expand); | 
 |   setOperationAction(ISD::SDIVREM, MVT::i32, Expand); | 
 |   setOperationAction(ISD::UDIVREM, MVT::i32, Expand); | 
 |  | 
 |   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom); | 
 |   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom); | 
 |   setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom); | 
 |   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); | 
 |   setOperationAction(ISD::BlockAddress, MVT::i32, Custom); | 
 |  | 
 |   setOperationAction(ISD::TRAP, MVT::Other, Legal); | 
 |  | 
 |   // Use the default implementation. | 
 |   setOperationAction(ISD::VASTART,            MVT::Other, Custom); | 
 |   setOperationAction(ISD::VAARG,              MVT::Other, Expand); | 
 |   setOperationAction(ISD::VACOPY,             MVT::Other, Expand); | 
 |   setOperationAction(ISD::VAEND,              MVT::Other, Expand); | 
 |   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand); | 
 |   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand); | 
 |   setOperationAction(ISD::EHSELECTION,        MVT::i32,   Expand); | 
 |   // FIXME: Shouldn't need this, since no register is used, but the legalizer | 
 |   // doesn't yet know how to not do that for SjLj. | 
 |   setExceptionSelectorRegister(ARM::R0); | 
 |   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); | 
 |   setOperationAction(ISD::MEMBARRIER,         MVT::Other, Custom); | 
 |  | 
 |   // If the subtarget does not have extract instructions, sign_extend_inreg | 
 |   // needs to be expanded. Extract is available in ARM mode on v6 and up, | 
 |   // and on most Thumb2 implementations. | 
 |   if ((!Subtarget->isThumb() && !Subtarget->hasV6Ops()) | 
 |       || (Subtarget->isThumb2() && !Subtarget->hasT2ExtractPack())) { | 
 |     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); | 
 |     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand); | 
 |   } | 
 |   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); | 
 |  | 
 |   if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) | 
 |     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR | 
 |     // iff target supports vfp2. | 
 |     setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom); | 
 |  | 
 |   // We want to custom lower some of our intrinsics. | 
 |   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); | 
 |  | 
 |   setOperationAction(ISD::SETCC,     MVT::i32, Expand); | 
 |   setOperationAction(ISD::SETCC,     MVT::f32, Expand); | 
 |   setOperationAction(ISD::SETCC,     MVT::f64, Expand); | 
 |   setOperationAction(ISD::SELECT,    MVT::i32, Expand); | 
 |   setOperationAction(ISD::SELECT,    MVT::f32, Expand); | 
 |   setOperationAction(ISD::SELECT,    MVT::f64, Expand); | 
 |   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); | 
 |   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); | 
 |   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); | 
 |  | 
 |   setOperationAction(ISD::BRCOND,    MVT::Other, Expand); | 
 |   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom); | 
 |   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom); | 
 |   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom); | 
 |   setOperationAction(ISD::BR_JT,     MVT::Other, Custom); | 
 |  | 
 |   // We don't support sin/cos/fmod/copysign/pow | 
 |   setOperationAction(ISD::FSIN,      MVT::f64, Expand); | 
 |   setOperationAction(ISD::FSIN,      MVT::f32, Expand); | 
 |   setOperationAction(ISD::FCOS,      MVT::f32, Expand); | 
 |   setOperationAction(ISD::FCOS,      MVT::f64, Expand); | 
 |   setOperationAction(ISD::FREM,      MVT::f64, Expand); | 
 |   setOperationAction(ISD::FREM,      MVT::f32, Expand); | 
 |   if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb1Only()) { | 
 |     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); | 
 |     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); | 
 |   } | 
 |   setOperationAction(ISD::FPOW,      MVT::f64, Expand); | 
 |   setOperationAction(ISD::FPOW,      MVT::f32, Expand); | 
 |  | 
 |   // Various VFP goodness | 
 |   if (!UseSoftFloat && !Subtarget->isThumb1Only()) { | 
 |     // int <-> fp are custom expanded into bit_convert + ARMISD ops. | 
 |     if (Subtarget->hasVFP2()) { | 
 |       setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); | 
 |       setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); | 
 |       setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); | 
 |       setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); | 
 |     } | 
 |     // Special handling for half-precision FP. | 
 |     if (!Subtarget->hasFP16()) { | 
 |       setOperationAction(ISD::FP16_TO_FP32, MVT::f32, Expand); | 
 |       setOperationAction(ISD::FP32_TO_FP16, MVT::i32, Expand); | 
 |     } | 
 |   } | 
 |  | 
 |   // We have target-specific dag combine patterns for the following nodes: | 
 |   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine | 
 |   setTargetDAGCombine(ISD::ADD); | 
 |   setTargetDAGCombine(ISD::SUB); | 
 |   setTargetDAGCombine(ISD::MUL); | 
 |  | 
 |   setStackPointerRegisterToSaveRestore(ARM::SP); | 
 |   setSchedulingPreference(SchedulingForRegPressure); | 
 |  | 
 |   // FIXME: If-converter should use instruction latency to determine | 
 |   // profitability rather than relying on fixed limits. | 
 |   if (Subtarget->getCPUString() == "generic") { | 
 |     // Generic (and overly aggressive) if-conversion limits. | 
 |     setIfCvtBlockSizeLimit(10); | 
 |     setIfCvtDupBlockSizeLimit(2); | 
 |   } else if (Subtarget->hasV7Ops()) { | 
 |     setIfCvtBlockSizeLimit(3); | 
 |     setIfCvtDupBlockSizeLimit(1); | 
 |   } else if (Subtarget->hasV6Ops()) { | 
 |     setIfCvtBlockSizeLimit(2); | 
 |     setIfCvtDupBlockSizeLimit(1); | 
 |   } else { | 
 |     setIfCvtBlockSizeLimit(3); | 
 |     setIfCvtDupBlockSizeLimit(2); | 
 |   } | 
 |  | 
 |   maxStoresPerMemcpy = 1;   //// temporary - rewrite interface to use type | 
 |   // Do not enable CodePlacementOpt for now: it currently runs after the | 
 |   // ARMConstantIslandPass and messes up branch relaxation and placement | 
 |   // of constant islands. | 
 |   // benefitFromCodePlacementOpt = true; | 
 | } | 
 |  | 
 | const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const { | 
 |   switch (Opcode) { | 
 |   default: return 0; | 
 |   case ARMISD::Wrapper:       return "ARMISD::Wrapper"; | 
 |   case ARMISD::WrapperJT:     return "ARMISD::WrapperJT"; | 
 |   case ARMISD::CALL:          return "ARMISD::CALL"; | 
 |   case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED"; | 
 |   case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK"; | 
 |   case ARMISD::tCALL:         return "ARMISD::tCALL"; | 
 |   case ARMISD::BRCOND:        return "ARMISD::BRCOND"; | 
 |   case ARMISD::BR_JT:         return "ARMISD::BR_JT"; | 
 |   case ARMISD::BR2_JT:        return "ARMISD::BR2_JT"; | 
 |   case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG"; | 
 |   case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD"; | 
 |   case ARMISD::CMP:           return "ARMISD::CMP"; | 
 |   case ARMISD::CMPZ:          return "ARMISD::CMPZ"; | 
 |   case ARMISD::CMPFP:         return "ARMISD::CMPFP"; | 
 |   case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0"; | 
 |   case ARMISD::FMSTAT:        return "ARMISD::FMSTAT"; | 
 |   case ARMISD::CMOV:          return "ARMISD::CMOV"; | 
 |   case ARMISD::CNEG:          return "ARMISD::CNEG"; | 
 |  | 
 |   case ARMISD::RBIT:          return "ARMISD::RBIT"; | 
 |  | 
 |   case ARMISD::FTOSI:         return "ARMISD::FTOSI"; | 
 |   case ARMISD::FTOUI:         return "ARMISD::FTOUI"; | 
 |   case ARMISD::SITOF:         return "ARMISD::SITOF"; | 
 |   case ARMISD::UITOF:         return "ARMISD::UITOF"; | 
 |  | 
 |   case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG"; | 
 |   case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG"; | 
 |   case ARMISD::RRX:           return "ARMISD::RRX"; | 
 |  | 
 |   case ARMISD::VMOVRRD:         return "ARMISD::VMOVRRD"; | 
 |   case ARMISD::VMOVDRR:         return "ARMISD::VMOVDRR"; | 
 |  | 
 |   case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP"; | 
 |   case ARMISD::EH_SJLJ_LONGJMP:return "ARMISD::EH_SJLJ_LONGJMP"; | 
 |  | 
 |   case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER"; | 
 |  | 
 |   case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC"; | 
 |  | 
 |   case ARMISD::MEMBARRIER:    return "ARMISD::MEMBARRIER"; | 
 |   case ARMISD::SYNCBARRIER:   return "ARMISD::SYNCBARRIER"; | 
 |  | 
 |   case ARMISD::VCEQ:          return "ARMISD::VCEQ"; | 
 |   case ARMISD::VCGE:          return "ARMISD::VCGE"; | 
 |   case ARMISD::VCGEU:         return "ARMISD::VCGEU"; | 
 |   case ARMISD::VCGT:          return "ARMISD::VCGT"; | 
 |   case ARMISD::VCGTU:         return "ARMISD::VCGTU"; | 
 |   case ARMISD::VTST:          return "ARMISD::VTST"; | 
 |  | 
 |   case ARMISD::VSHL:          return "ARMISD::VSHL"; | 
 |   case ARMISD::VSHRs:         return "ARMISD::VSHRs"; | 
 |   case ARMISD::VSHRu:         return "ARMISD::VSHRu"; | 
 |   case ARMISD::VSHLLs:        return "ARMISD::VSHLLs"; | 
 |   case ARMISD::VSHLLu:        return "ARMISD::VSHLLu"; | 
 |   case ARMISD::VSHLLi:        return "ARMISD::VSHLLi"; | 
 |   case ARMISD::VSHRN:         return "ARMISD::VSHRN"; | 
 |   case ARMISD::VRSHRs:        return "ARMISD::VRSHRs"; | 
 |   case ARMISD::VRSHRu:        return "ARMISD::VRSHRu"; | 
 |   case ARMISD::VRSHRN:        return "ARMISD::VRSHRN"; | 
 |   case ARMISD::VQSHLs:        return "ARMISD::VQSHLs"; | 
 |   case ARMISD::VQSHLu:        return "ARMISD::VQSHLu"; | 
 |   case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu"; | 
 |   case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs"; | 
 |   case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu"; | 
 |   case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu"; | 
 |   case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs"; | 
 |   case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu"; | 
 |   case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu"; | 
 |   case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu"; | 
 |   case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs"; | 
 |   case ARMISD::VDUP:          return "ARMISD::VDUP"; | 
 |   case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE"; | 
 |   case ARMISD::VEXT:          return "ARMISD::VEXT"; | 
 |   case ARMISD::VREV64:        return "ARMISD::VREV64"; | 
 |   case ARMISD::VREV32:        return "ARMISD::VREV32"; | 
 |   case ARMISD::VREV16:        return "ARMISD::VREV16"; | 
 |   case ARMISD::VZIP:          return "ARMISD::VZIP"; | 
 |   case ARMISD::VUZP:          return "ARMISD::VUZP"; | 
 |   case ARMISD::VTRN:          return "ARMISD::VTRN"; | 
 |   case ARMISD::FMAX:          return "ARMISD::FMAX"; | 
 |   case ARMISD::FMIN:          return "ARMISD::FMIN"; | 
 |   } | 
 | } | 
 |  | 
 | /// getRegClassFor - Return the register class that should be used for the | 
 | /// specified value type. | 
 | TargetRegisterClass *ARMTargetLowering::getRegClassFor(EVT VT) const { | 
 |   // Map v4i64 to QQ registers but do not make the type legal. Similarly map | 
 |   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to | 
 |   // load / store 4 to 8 consecutive D registers. | 
 |   if (Subtarget->hasNEON()) { | 
 |     if (VT == MVT::v4i64) | 
 |       return ARM::QQPRRegisterClass; | 
 |     else if (VT == MVT::v8i64) | 
 |       return ARM::QQQQPRRegisterClass; | 
 |   } | 
 |   return TargetLowering::getRegClassFor(VT); | 
 | } | 
 |  | 
 | /// getFunctionAlignment - Return the Log2 alignment of this function. | 
 | unsigned ARMTargetLowering::getFunctionAlignment(const Function *F) const { | 
 |   return getTargetMachine().getSubtarget<ARMSubtarget>().isThumb() ? 0 : 1; | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | // Lowering Code | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC | 
 | static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) { | 
 |   switch (CC) { | 
 |   default: llvm_unreachable("Unknown condition code!"); | 
 |   case ISD::SETNE:  return ARMCC::NE; | 
 |   case ISD::SETEQ:  return ARMCC::EQ; | 
 |   case ISD::SETGT:  return ARMCC::GT; | 
 |   case ISD::SETGE:  return ARMCC::GE; | 
 |   case ISD::SETLT:  return ARMCC::LT; | 
 |   case ISD::SETLE:  return ARMCC::LE; | 
 |   case ISD::SETUGT: return ARMCC::HI; | 
 |   case ISD::SETUGE: return ARMCC::HS; | 
 |   case ISD::SETULT: return ARMCC::LO; | 
 |   case ISD::SETULE: return ARMCC::LS; | 
 |   } | 
 | } | 
 |  | 
 | /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. | 
 | static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode, | 
 |                         ARMCC::CondCodes &CondCode2) { | 
 |   CondCode2 = ARMCC::AL; | 
 |   switch (CC) { | 
 |   default: llvm_unreachable("Unknown FP condition!"); | 
 |   case ISD::SETEQ: | 
 |   case ISD::SETOEQ: CondCode = ARMCC::EQ; break; | 
 |   case ISD::SETGT: | 
 |   case ISD::SETOGT: CondCode = ARMCC::GT; break; | 
 |   case ISD::SETGE: | 
 |   case ISD::SETOGE: CondCode = ARMCC::GE; break; | 
 |   case ISD::SETOLT: CondCode = ARMCC::MI; break; | 
 |   case ISD::SETOLE: CondCode = ARMCC::LS; break; | 
 |   case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break; | 
 |   case ISD::SETO:   CondCode = ARMCC::VC; break; | 
 |   case ISD::SETUO:  CondCode = ARMCC::VS; break; | 
 |   case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break; | 
 |   case ISD::SETUGT: CondCode = ARMCC::HI; break; | 
 |   case ISD::SETUGE: CondCode = ARMCC::PL; break; | 
 |   case ISD::SETLT: | 
 |   case ISD::SETULT: CondCode = ARMCC::LT; break; | 
 |   case ISD::SETLE: | 
 |   case ISD::SETULE: CondCode = ARMCC::LE; break; | 
 |   case ISD::SETNE: | 
 |   case ISD::SETUNE: CondCode = ARMCC::NE; break; | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                      Calling Convention Implementation | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "ARMGenCallingConv.inc" | 
 |  | 
 | // APCS f64 is in register pairs, possibly split to stack | 
 | static bool f64AssignAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT, | 
 |                           CCValAssign::LocInfo &LocInfo, | 
 |                           CCState &State, bool CanFail) { | 
 |   static const unsigned RegList[] = { ARM::R0, ARM::R1, ARM::R2, ARM::R3 }; | 
 |  | 
 |   // Try to get the first register. | 
 |   if (unsigned Reg = State.AllocateReg(RegList, 4)) | 
 |     State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); | 
 |   else { | 
 |     // For the 2nd half of a v2f64, do not fail. | 
 |     if (CanFail) | 
 |       return false; | 
 |  | 
 |     // Put the whole thing on the stack. | 
 |     State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, | 
 |                                            State.AllocateStack(8, 4), | 
 |                                            LocVT, LocInfo)); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // Try to get the second register. | 
 |   if (unsigned Reg = State.AllocateReg(RegList, 4)) | 
 |     State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); | 
 |   else | 
 |     State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, | 
 |                                            State.AllocateStack(4, 4), | 
 |                                            LocVT, LocInfo)); | 
 |   return true; | 
 | } | 
 |  | 
 | static bool CC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT, | 
 |                                    CCValAssign::LocInfo &LocInfo, | 
 |                                    ISD::ArgFlagsTy &ArgFlags, | 
 |                                    CCState &State) { | 
 |   if (!f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, true)) | 
 |     return false; | 
 |   if (LocVT == MVT::v2f64 && | 
 |       !f64AssignAPCS(ValNo, ValVT, LocVT, LocInfo, State, false)) | 
 |     return false; | 
 |   return true;  // we handled it | 
 | } | 
 |  | 
 | // AAPCS f64 is in aligned register pairs | 
 | static bool f64AssignAAPCS(unsigned &ValNo, EVT &ValVT, EVT &LocVT, | 
 |                            CCValAssign::LocInfo &LocInfo, | 
 |                            CCState &State, bool CanFail) { | 
 |   static const unsigned HiRegList[] = { ARM::R0, ARM::R2 }; | 
 |   static const unsigned LoRegList[] = { ARM::R1, ARM::R3 }; | 
 |  | 
 |   unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2); | 
 |   if (Reg == 0) { | 
 |     // For the 2nd half of a v2f64, do not just fail. | 
 |     if (CanFail) | 
 |       return false; | 
 |  | 
 |     // Put the whole thing on the stack. | 
 |     State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT, | 
 |                                            State.AllocateStack(8, 8), | 
 |                                            LocVT, LocInfo)); | 
 |     return true; | 
 |   } | 
 |  | 
 |   unsigned i; | 
 |   for (i = 0; i < 2; ++i) | 
 |     if (HiRegList[i] == Reg) | 
 |       break; | 
 |  | 
 |   State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); | 
 |   State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i], | 
 |                                          LocVT, LocInfo)); | 
 |   return true; | 
 | } | 
 |  | 
 | static bool CC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT, | 
 |                                     CCValAssign::LocInfo &LocInfo, | 
 |                                     ISD::ArgFlagsTy &ArgFlags, | 
 |                                     CCState &State) { | 
 |   if (!f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, true)) | 
 |     return false; | 
 |   if (LocVT == MVT::v2f64 && | 
 |       !f64AssignAAPCS(ValNo, ValVT, LocVT, LocInfo, State, false)) | 
 |     return false; | 
 |   return true;  // we handled it | 
 | } | 
 |  | 
 | static bool f64RetAssign(unsigned &ValNo, EVT &ValVT, EVT &LocVT, | 
 |                          CCValAssign::LocInfo &LocInfo, CCState &State) { | 
 |   static const unsigned HiRegList[] = { ARM::R0, ARM::R2 }; | 
 |   static const unsigned LoRegList[] = { ARM::R1, ARM::R3 }; | 
 |  | 
 |   unsigned Reg = State.AllocateReg(HiRegList, LoRegList, 2); | 
 |   if (Reg == 0) | 
 |     return false; // we didn't handle it | 
 |  | 
 |   unsigned i; | 
 |   for (i = 0; i < 2; ++i) | 
 |     if (HiRegList[i] == Reg) | 
 |       break; | 
 |  | 
 |   State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo)); | 
 |   State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, LoRegList[i], | 
 |                                          LocVT, LocInfo)); | 
 |   return true; | 
 | } | 
 |  | 
 | static bool RetCC_ARM_APCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT, | 
 |                                       CCValAssign::LocInfo &LocInfo, | 
 |                                       ISD::ArgFlagsTy &ArgFlags, | 
 |                                       CCState &State) { | 
 |   if (!f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State)) | 
 |     return false; | 
 |   if (LocVT == MVT::v2f64 && !f64RetAssign(ValNo, ValVT, LocVT, LocInfo, State)) | 
 |     return false; | 
 |   return true;  // we handled it | 
 | } | 
 |  | 
 | static bool RetCC_ARM_AAPCS_Custom_f64(unsigned &ValNo, EVT &ValVT, EVT &LocVT, | 
 |                                        CCValAssign::LocInfo &LocInfo, | 
 |                                        ISD::ArgFlagsTy &ArgFlags, | 
 |                                        CCState &State) { | 
 |   return RetCC_ARM_APCS_Custom_f64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, | 
 |                                    State); | 
 | } | 
 |  | 
 | /// CCAssignFnForNode - Selects the correct CCAssignFn for a the | 
 | /// given CallingConvention value. | 
 | CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC, | 
 |                                                  bool Return, | 
 |                                                  bool isVarArg) const { | 
 |   switch (CC) { | 
 |   default: | 
 |     llvm_unreachable("Unsupported calling convention"); | 
 |   case CallingConv::C: | 
 |   case CallingConv::Fast: | 
 |     // Use target triple & subtarget features to do actual dispatch. | 
 |     if (Subtarget->isAAPCS_ABI()) { | 
 |       if (Subtarget->hasVFP2() && | 
 |           FloatABIType == FloatABI::Hard && !isVarArg) | 
 |         return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); | 
 |       else | 
 |         return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); | 
 |     } else | 
 |         return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); | 
 |   case CallingConv::ARM_AAPCS_VFP: | 
 |     return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); | 
 |   case CallingConv::ARM_AAPCS: | 
 |     return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); | 
 |   case CallingConv::ARM_APCS: | 
 |     return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); | 
 |   } | 
 | } | 
 |  | 
 | /// LowerCallResult - Lower the result values of a call into the | 
 | /// appropriate copies out of appropriate physical registers. | 
 | SDValue | 
 | ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, | 
 |                                    CallingConv::ID CallConv, bool isVarArg, | 
 |                                    const SmallVectorImpl<ISD::InputArg> &Ins, | 
 |                                    DebugLoc dl, SelectionDAG &DAG, | 
 |                                    SmallVectorImpl<SDValue> &InVals) const { | 
 |  | 
 |   // Assign locations to each value returned by this call. | 
 |   SmallVector<CCValAssign, 16> RVLocs; | 
 |   CCState CCInfo(CallConv, isVarArg, getTargetMachine(), | 
 |                  RVLocs, *DAG.getContext()); | 
 |   CCInfo.AnalyzeCallResult(Ins, | 
 |                            CCAssignFnForNode(CallConv, /* Return*/ true, | 
 |                                              isVarArg)); | 
 |  | 
 |   // Copy all of the result registers out of their specified physreg. | 
 |   for (unsigned i = 0; i != RVLocs.size(); ++i) { | 
 |     CCValAssign VA = RVLocs[i]; | 
 |  | 
 |     SDValue Val; | 
 |     if (VA.needsCustom()) { | 
 |       // Handle f64 or half of a v2f64. | 
 |       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, | 
 |                                       InFlag); | 
 |       Chain = Lo.getValue(1); | 
 |       InFlag = Lo.getValue(2); | 
 |       VA = RVLocs[++i]; // skip ahead to next loc | 
 |       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, | 
 |                                       InFlag); | 
 |       Chain = Hi.getValue(1); | 
 |       InFlag = Hi.getValue(2); | 
 |       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); | 
 |  | 
 |       if (VA.getLocVT() == MVT::v2f64) { | 
 |         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); | 
 |         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, | 
 |                           DAG.getConstant(0, MVT::i32)); | 
 |  | 
 |         VA = RVLocs[++i]; // skip ahead to next loc | 
 |         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); | 
 |         Chain = Lo.getValue(1); | 
 |         InFlag = Lo.getValue(2); | 
 |         VA = RVLocs[++i]; // skip ahead to next loc | 
 |         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); | 
 |         Chain = Hi.getValue(1); | 
 |         InFlag = Hi.getValue(2); | 
 |         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); | 
 |         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, | 
 |                           DAG.getConstant(1, MVT::i32)); | 
 |       } | 
 |     } else { | 
 |       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(), | 
 |                                InFlag); | 
 |       Chain = Val.getValue(1); | 
 |       InFlag = Val.getValue(2); | 
 |     } | 
 |  | 
 |     switch (VA.getLocInfo()) { | 
 |     default: llvm_unreachable("Unknown loc info!"); | 
 |     case CCValAssign::Full: break; | 
 |     case CCValAssign::BCvt: | 
 |       Val = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), Val); | 
 |       break; | 
 |     } | 
 |  | 
 |     InVals.push_back(Val); | 
 |   } | 
 |  | 
 |   return Chain; | 
 | } | 
 |  | 
 | /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified | 
 | /// by "Src" to address "Dst" of size "Size".  Alignment information is | 
 | /// specified by the specific parameter attribute.  The copy will be passed as | 
 | /// a byval function parameter. | 
 | /// Sometimes what we are copying is the end of a larger object, the part that | 
 | /// does not fit in registers. | 
 | static SDValue | 
 | CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, | 
 |                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG, | 
 |                           DebugLoc dl) { | 
 |   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); | 
 |   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), | 
 |                        /*isVolatile=*/false, /*AlwaysInline=*/false, | 
 |                        NULL, 0, NULL, 0); | 
 | } | 
 |  | 
 | /// LowerMemOpCallTo - Store the argument to the stack. | 
 | SDValue | 
 | ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, | 
 |                                     SDValue StackPtr, SDValue Arg, | 
 |                                     DebugLoc dl, SelectionDAG &DAG, | 
 |                                     const CCValAssign &VA, | 
 |                                     ISD::ArgFlagsTy Flags) const { | 
 |   unsigned LocMemOffset = VA.getLocMemOffset(); | 
 |   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset); | 
 |   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff); | 
 |   if (Flags.isByVal()) { | 
 |     return CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl); | 
 |   } | 
 |   return DAG.getStore(Chain, dl, Arg, PtrOff, | 
 |                       PseudoSourceValue::getStack(), LocMemOffset, | 
 |                       false, false, 0); | 
 | } | 
 |  | 
 | void ARMTargetLowering::PassF64ArgInRegs(DebugLoc dl, SelectionDAG &DAG, | 
 |                                          SDValue Chain, SDValue &Arg, | 
 |                                          RegsToPassVector &RegsToPass, | 
 |                                          CCValAssign &VA, CCValAssign &NextVA, | 
 |                                          SDValue &StackPtr, | 
 |                                          SmallVector<SDValue, 8> &MemOpChains, | 
 |                                          ISD::ArgFlagsTy Flags) const { | 
 |  | 
 |   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl, | 
 |                               DAG.getVTList(MVT::i32, MVT::i32), Arg); | 
 |   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd)); | 
 |  | 
 |   if (NextVA.isRegLoc()) | 
 |     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1))); | 
 |   else { | 
 |     assert(NextVA.isMemLoc()); | 
 |     if (StackPtr.getNode() == 0) | 
 |       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy()); | 
 |  | 
 |     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1), | 
 |                                            dl, DAG, NextVA, | 
 |                                            Flags)); | 
 |   } | 
 | } | 
 |  | 
 | /// LowerCall - Lowering a call into a callseq_start <- | 
 | /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter | 
 | /// nodes. | 
 | SDValue | 
 | ARMTargetLowering::LowerCall(SDValue Chain, SDValue Callee, | 
 |                              CallingConv::ID CallConv, bool isVarArg, | 
 |                              bool &isTailCall, | 
 |                              const SmallVectorImpl<ISD::OutputArg> &Outs, | 
 |                              const SmallVectorImpl<ISD::InputArg> &Ins, | 
 |                              DebugLoc dl, SelectionDAG &DAG, | 
 |                              SmallVectorImpl<SDValue> &InVals) const { | 
 |   // ARM target does not yet support tail call optimization. | 
 |   isTailCall = false; | 
 |  | 
 |   // Analyze operands of the call, assigning locations to each operand. | 
 |   SmallVector<CCValAssign, 16> ArgLocs; | 
 |   CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs, | 
 |                  *DAG.getContext()); | 
 |   CCInfo.AnalyzeCallOperands(Outs, | 
 |                              CCAssignFnForNode(CallConv, /* Return*/ false, | 
 |                                                isVarArg)); | 
 |  | 
 |   // Get a count of how many bytes are to be pushed on the stack. | 
 |   unsigned NumBytes = CCInfo.getNextStackOffset(); | 
 |  | 
 |   // Adjust the stack pointer for the new arguments... | 
 |   // These operations are automatically eliminated by the prolog/epilog pass | 
 |   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true)); | 
 |  | 
 |   SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy()); | 
 |  | 
 |   RegsToPassVector RegsToPass; | 
 |   SmallVector<SDValue, 8> MemOpChains; | 
 |  | 
 |   // Walk the register/memloc assignments, inserting copies/loads.  In the case | 
 |   // of tail call optimization, arguments are handled later. | 
 |   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); | 
 |        i != e; | 
 |        ++i, ++realArgIdx) { | 
 |     CCValAssign &VA = ArgLocs[i]; | 
 |     SDValue Arg = Outs[realArgIdx].Val; | 
 |     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; | 
 |  | 
 |     // Promote the value if needed. | 
 |     switch (VA.getLocInfo()) { | 
 |     default: llvm_unreachable("Unknown loc info!"); | 
 |     case CCValAssign::Full: break; | 
 |     case CCValAssign::SExt: | 
 |       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); | 
 |       break; | 
 |     case CCValAssign::ZExt: | 
 |       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); | 
 |       break; | 
 |     case CCValAssign::AExt: | 
 |       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); | 
 |       break; | 
 |     case CCValAssign::BCvt: | 
 |       Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg); | 
 |       break; | 
 |     } | 
 |  | 
 |     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces | 
 |     if (VA.needsCustom()) { | 
 |       if (VA.getLocVT() == MVT::v2f64) { | 
 |         SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, | 
 |                                   DAG.getConstant(0, MVT::i32)); | 
 |         SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, | 
 |                                   DAG.getConstant(1, MVT::i32)); | 
 |  | 
 |         PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass, | 
 |                          VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); | 
 |  | 
 |         VA = ArgLocs[++i]; // skip ahead to next loc | 
 |         if (VA.isRegLoc()) { | 
 |           PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass, | 
 |                            VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); | 
 |         } else { | 
 |           assert(VA.isMemLoc()); | 
 |  | 
 |           MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1, | 
 |                                                  dl, DAG, VA, Flags)); | 
 |         } | 
 |       } else { | 
 |         PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i], | 
 |                          StackPtr, MemOpChains, Flags); | 
 |       } | 
 |     } else if (VA.isRegLoc()) { | 
 |       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); | 
 |     } else { | 
 |       assert(VA.isMemLoc()); | 
 |  | 
 |       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, | 
 |                                              dl, DAG, VA, Flags)); | 
 |     } | 
 |   } | 
 |  | 
 |   if (!MemOpChains.empty()) | 
 |     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
 |                         &MemOpChains[0], MemOpChains.size()); | 
 |  | 
 |   // Build a sequence of copy-to-reg nodes chained together with token chain | 
 |   // and flag operands which copy the outgoing args into the appropriate regs. | 
 |   SDValue InFlag; | 
 |   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { | 
 |     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, | 
 |                              RegsToPass[i].second, InFlag); | 
 |     InFlag = Chain.getValue(1); | 
 |   } | 
 |  | 
 |   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every | 
 |   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol | 
 |   // node so that legalize doesn't hack it. | 
 |   bool isDirect = false; | 
 |   bool isARMFunc = false; | 
 |   bool isLocalARMFunc = false; | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); | 
 |  | 
 |   if (EnableARMLongCalls) { | 
 |     assert (getTargetMachine().getRelocationModel() == Reloc::Static | 
 |             && "long-calls with non-static relocation model!"); | 
 |     // Handle a global address or an external symbol. If it's not one of | 
 |     // those, the target's already in a register, so we don't need to do | 
 |     // anything extra. | 
 |     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { | 
 |       const GlobalValue *GV = G->getGlobal(); | 
 |       // Create a constant pool entry for the callee address | 
 |       unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId(); | 
 |       ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, | 
 |                                                            ARMPCLabelIndex, | 
 |                                                            ARMCP::CPValue, 0); | 
 |       // Get the address of the callee into a register | 
 |       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); | 
 |       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); | 
 |       Callee = DAG.getLoad(getPointerTy(), dl, | 
 |                            DAG.getEntryNode(), CPAddr, | 
 |                            PseudoSourceValue::getConstantPool(), 0, | 
 |                            false, false, 0); | 
 |     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) { | 
 |       const char *Sym = S->getSymbol(); | 
 |  | 
 |       // Create a constant pool entry for the callee address | 
 |       unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId(); | 
 |       ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(), | 
 |                                                        Sym, ARMPCLabelIndex, 0); | 
 |       // Get the address of the callee into a register | 
 |       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); | 
 |       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); | 
 |       Callee = DAG.getLoad(getPointerTy(), dl, | 
 |                            DAG.getEntryNode(), CPAddr, | 
 |                            PseudoSourceValue::getConstantPool(), 0, | 
 |                            false, false, 0); | 
 |     } | 
 |   } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { | 
 |     const GlobalValue *GV = G->getGlobal(); | 
 |     isDirect = true; | 
 |     bool isExt = GV->isDeclaration() || GV->isWeakForLinker(); | 
 |     bool isStub = (isExt && Subtarget->isTargetDarwin()) && | 
 |                    getTargetMachine().getRelocationModel() != Reloc::Static; | 
 |     isARMFunc = !Subtarget->isThumb() || isStub; | 
 |     // ARM call to a local ARM function is predicable. | 
 |     isLocalARMFunc = !Subtarget->isThumb() && !isExt; | 
 |     // tBX takes a register source operand. | 
 |     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { | 
 |       unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId(); | 
 |       ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, | 
 |                                                            ARMPCLabelIndex, | 
 |                                                            ARMCP::CPValue, 4); | 
 |       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); | 
 |       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); | 
 |       Callee = DAG.getLoad(getPointerTy(), dl, | 
 |                            DAG.getEntryNode(), CPAddr, | 
 |                            PseudoSourceValue::getConstantPool(), 0, | 
 |                            false, false, 0); | 
 |       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); | 
 |       Callee = DAG.getNode(ARMISD::PIC_ADD, dl, | 
 |                            getPointerTy(), Callee, PICLabel); | 
 |     } else | 
 |       Callee = DAG.getTargetGlobalAddress(GV, getPointerTy()); | 
 |   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { | 
 |     isDirect = true; | 
 |     bool isStub = Subtarget->isTargetDarwin() && | 
 |                   getTargetMachine().getRelocationModel() != Reloc::Static; | 
 |     isARMFunc = !Subtarget->isThumb() || isStub; | 
 |     // tBX takes a register source operand. | 
 |     const char *Sym = S->getSymbol(); | 
 |     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { | 
 |       unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId(); | 
 |       ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(), | 
 |                                                        Sym, ARMPCLabelIndex, 4); | 
 |       SDValue CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 4); | 
 |       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); | 
 |       Callee = DAG.getLoad(getPointerTy(), dl, | 
 |                            DAG.getEntryNode(), CPAddr, | 
 |                            PseudoSourceValue::getConstantPool(), 0, | 
 |                            false, false, 0); | 
 |       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); | 
 |       Callee = DAG.getNode(ARMISD::PIC_ADD, dl, | 
 |                            getPointerTy(), Callee, PICLabel); | 
 |     } else | 
 |       Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy()); | 
 |   } | 
 |  | 
 |   // FIXME: handle tail calls differently. | 
 |   unsigned CallOpc; | 
 |   if (Subtarget->isThumb()) { | 
 |     if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps()) | 
 |       CallOpc = ARMISD::CALL_NOLINK; | 
 |     else | 
 |       CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL; | 
 |   } else { | 
 |     CallOpc = (isDirect || Subtarget->hasV5TOps()) | 
 |       ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL) | 
 |       : ARMISD::CALL_NOLINK; | 
 |   } | 
 |   if (CallOpc == ARMISD::CALL_NOLINK && !Subtarget->isThumb1Only()) { | 
 |     // implicit def LR - LR mustn't be allocated as GRP:$dst of CALL_NOLINK | 
 |     Chain = DAG.getCopyToReg(Chain, dl, ARM::LR, DAG.getUNDEF(MVT::i32),InFlag); | 
 |     InFlag = Chain.getValue(1); | 
 |   } | 
 |  | 
 |   std::vector<SDValue> Ops; | 
 |   Ops.push_back(Chain); | 
 |   Ops.push_back(Callee); | 
 |  | 
 |   // Add argument registers to the end of the list so that they are known live | 
 |   // into the call. | 
 |   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) | 
 |     Ops.push_back(DAG.getRegister(RegsToPass[i].first, | 
 |                                   RegsToPass[i].second.getValueType())); | 
 |  | 
 |   if (InFlag.getNode()) | 
 |     Ops.push_back(InFlag); | 
 |   // Returns a chain and a flag for retval copy to use. | 
 |   Chain = DAG.getNode(CallOpc, dl, DAG.getVTList(MVT::Other, MVT::Flag), | 
 |                       &Ops[0], Ops.size()); | 
 |   InFlag = Chain.getValue(1); | 
 |  | 
 |   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), | 
 |                              DAG.getIntPtrConstant(0, true), InFlag); | 
 |   if (!Ins.empty()) | 
 |     InFlag = Chain.getValue(1); | 
 |  | 
 |   // Handle result values, copying them out of physregs into vregs that we | 
 |   // return. | 
 |   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, | 
 |                          dl, DAG, InVals); | 
 | } | 
 |  | 
 | SDValue | 
 | ARMTargetLowering::LowerReturn(SDValue Chain, | 
 |                                CallingConv::ID CallConv, bool isVarArg, | 
 |                                const SmallVectorImpl<ISD::OutputArg> &Outs, | 
 |                                DebugLoc dl, SelectionDAG &DAG) const { | 
 |  | 
 |   // CCValAssign - represent the assignment of the return value to a location. | 
 |   SmallVector<CCValAssign, 16> RVLocs; | 
 |  | 
 |   // CCState - Info about the registers and stack slots. | 
 |   CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs, | 
 |                  *DAG.getContext()); | 
 |  | 
 |   // Analyze outgoing return values. | 
 |   CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true, | 
 |                                                isVarArg)); | 
 |  | 
 |   // If this is the first return lowered for this function, add | 
 |   // the regs to the liveout set for the function. | 
 |   if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { | 
 |     for (unsigned i = 0; i != RVLocs.size(); ++i) | 
 |       if (RVLocs[i].isRegLoc()) | 
 |         DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); | 
 |   } | 
 |  | 
 |   SDValue Flag; | 
 |  | 
 |   // Copy the result values into the output registers. | 
 |   for (unsigned i = 0, realRVLocIdx = 0; | 
 |        i != RVLocs.size(); | 
 |        ++i, ++realRVLocIdx) { | 
 |     CCValAssign &VA = RVLocs[i]; | 
 |     assert(VA.isRegLoc() && "Can only return in registers!"); | 
 |  | 
 |     SDValue Arg = Outs[realRVLocIdx].Val; | 
 |  | 
 |     switch (VA.getLocInfo()) { | 
 |     default: llvm_unreachable("Unknown loc info!"); | 
 |     case CCValAssign::Full: break; | 
 |     case CCValAssign::BCvt: | 
 |       Arg = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getLocVT(), Arg); | 
 |       break; | 
 |     } | 
 |  | 
 |     if (VA.needsCustom()) { | 
 |       if (VA.getLocVT() == MVT::v2f64) { | 
 |         // Extract the first half and return it in two registers. | 
 |         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, | 
 |                                    DAG.getConstant(0, MVT::i32)); | 
 |         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl, | 
 |                                        DAG.getVTList(MVT::i32, MVT::i32), Half); | 
 |  | 
 |         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), HalfGPRs, Flag); | 
 |         Flag = Chain.getValue(1); | 
 |         VA = RVLocs[++i]; // skip ahead to next loc | 
 |         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), | 
 |                                  HalfGPRs.getValue(1), Flag); | 
 |         Flag = Chain.getValue(1); | 
 |         VA = RVLocs[++i]; // skip ahead to next loc | 
 |  | 
 |         // Extract the 2nd half and fall through to handle it as an f64 value. | 
 |         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, | 
 |                           DAG.getConstant(1, MVT::i32)); | 
 |       } | 
 |       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is | 
 |       // available. | 
 |       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl, | 
 |                                   DAG.getVTList(MVT::i32, MVT::i32), &Arg, 1); | 
 |       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd, Flag); | 
 |       Flag = Chain.getValue(1); | 
 |       VA = RVLocs[++i]; // skip ahead to next loc | 
 |       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), fmrrd.getValue(1), | 
 |                                Flag); | 
 |     } else | 
 |       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); | 
 |  | 
 |     // Guarantee that all emitted copies are | 
 |     // stuck together, avoiding something bad. | 
 |     Flag = Chain.getValue(1); | 
 |   } | 
 |  | 
 |   SDValue result; | 
 |   if (Flag.getNode()) | 
 |     result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain, Flag); | 
 |   else // Return Void | 
 |     result = DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, Chain); | 
 |  | 
 |   return result; | 
 | } | 
 |  | 
 | // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as | 
 | // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is | 
 | // one of the above mentioned nodes. It has to be wrapped because otherwise | 
 | // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only | 
 | // be used to form addressing mode. These wrapped nodes will be selected | 
 | // into MOVi. | 
 | static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) { | 
 |   EVT PtrVT = Op.getValueType(); | 
 |   // FIXME there is no actual debug info here | 
 |   DebugLoc dl = Op.getDebugLoc(); | 
 |   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); | 
 |   SDValue Res; | 
 |   if (CP->isMachineConstantPoolEntry()) | 
 |     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, | 
 |                                     CP->getAlignment()); | 
 |   else | 
 |     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, | 
 |                                     CP->getAlignment()); | 
 |   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res); | 
 | } | 
 |  | 
 | SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op, | 
 |                                              SelectionDAG &DAG) const { | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); | 
 |   unsigned ARMPCLabelIndex = 0; | 
 |   DebugLoc DL = Op.getDebugLoc(); | 
 |   EVT PtrVT = getPointerTy(); | 
 |   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); | 
 |   Reloc::Model RelocM = getTargetMachine().getRelocationModel(); | 
 |   SDValue CPAddr; | 
 |   if (RelocM == Reloc::Static) { | 
 |     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4); | 
 |   } else { | 
 |     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; | 
 |     ARMPCLabelIndex = AFI->createConstPoolEntryUId(); | 
 |     ARMConstantPoolValue *CPV = new ARMConstantPoolValue(BA, ARMPCLabelIndex, | 
 |                                                          ARMCP::CPBlockAddress, | 
 |                                                          PCAdj); | 
 |     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); | 
 |   } | 
 |   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr); | 
 |   SDValue Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr, | 
 |                                PseudoSourceValue::getConstantPool(), 0, | 
 |                                false, false, 0); | 
 |   if (RelocM == Reloc::Static) | 
 |     return Result; | 
 |   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); | 
 |   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel); | 
 | } | 
 |  | 
 | // Lower ISD::GlobalTLSAddress using the "general dynamic" model | 
 | SDValue | 
 | ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, | 
 |                                                  SelectionDAG &DAG) const { | 
 |   DebugLoc dl = GA->getDebugLoc(); | 
 |   EVT PtrVT = getPointerTy(); | 
 |   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); | 
 |   unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId(); | 
 |   ARMConstantPoolValue *CPV = | 
 |     new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, | 
 |                              ARMCP::CPValue, PCAdj, "tlsgd", true); | 
 |   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4); | 
 |   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument); | 
 |   Argument = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument, | 
 |                          PseudoSourceValue::getConstantPool(), 0, | 
 |                          false, false, 0); | 
 |   SDValue Chain = Argument.getValue(1); | 
 |  | 
 |   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); | 
 |   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel); | 
 |  | 
 |   // call __tls_get_addr. | 
 |   ArgListTy Args; | 
 |   ArgListEntry Entry; | 
 |   Entry.Node = Argument; | 
 |   Entry.Ty = (const Type *) Type::getInt32Ty(*DAG.getContext()); | 
 |   Args.push_back(Entry); | 
 |   // FIXME: is there useful debug info available here? | 
 |   std::pair<SDValue, SDValue> CallResult = | 
 |     LowerCallTo(Chain, (const Type *) Type::getInt32Ty(*DAG.getContext()), | 
 |                 false, false, false, false, | 
 |                 0, CallingConv::C, false, /*isReturnValueUsed=*/true, | 
 |                 DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG, dl); | 
 |   return CallResult.first; | 
 | } | 
 |  | 
 | // Lower ISD::GlobalTLSAddress using the "initial exec" or | 
 | // "local exec" model. | 
 | SDValue | 
 | ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA, | 
 |                                         SelectionDAG &DAG) const { | 
 |   const GlobalValue *GV = GA->getGlobal(); | 
 |   DebugLoc dl = GA->getDebugLoc(); | 
 |   SDValue Offset; | 
 |   SDValue Chain = DAG.getEntryNode(); | 
 |   EVT PtrVT = getPointerTy(); | 
 |   // Get the Thread Pointer | 
 |   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); | 
 |  | 
 |   if (GV->isDeclaration()) { | 
 |     MachineFunction &MF = DAG.getMachineFunction(); | 
 |     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); | 
 |     unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId(); | 
 |     // Initial exec model. | 
 |     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; | 
 |     ARMConstantPoolValue *CPV = | 
 |       new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, | 
 |                                ARMCP::CPValue, PCAdj, "gottpoff", true); | 
 |     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4); | 
 |     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); | 
 |     Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, | 
 |                          PseudoSourceValue::getConstantPool(), 0, | 
 |                          false, false, 0); | 
 |     Chain = Offset.getValue(1); | 
 |  | 
 |     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); | 
 |     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel); | 
 |  | 
 |     Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, | 
 |                          PseudoSourceValue::getConstantPool(), 0, | 
 |                          false, false, 0); | 
 |   } else { | 
 |     // local exec model | 
 |     ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, "tpoff"); | 
 |     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4); | 
 |     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); | 
 |     Offset = DAG.getLoad(PtrVT, dl, Chain, Offset, | 
 |                          PseudoSourceValue::getConstantPool(), 0, | 
 |                          false, false, 0); | 
 |   } | 
 |  | 
 |   // The address of the thread local variable is the add of the thread | 
 |   // pointer with the offset of the variable. | 
 |   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); | 
 | } | 
 |  | 
 | SDValue | 
 | ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { | 
 |   // TODO: implement the "local dynamic" model | 
 |   assert(Subtarget->isTargetELF() && | 
 |          "TLS not implemented for non-ELF targets"); | 
 |   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); | 
 |   // If the relocation model is PIC, use the "General Dynamic" TLS Model, | 
 |   // otherwise use the "Local Exec" TLS Model | 
 |   if (getTargetMachine().getRelocationModel() == Reloc::PIC_) | 
 |     return LowerToTLSGeneralDynamicModel(GA, DAG); | 
 |   else | 
 |     return LowerToTLSExecModels(GA, DAG); | 
 | } | 
 |  | 
 | SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op, | 
 |                                                  SelectionDAG &DAG) const { | 
 |   EVT PtrVT = getPointerTy(); | 
 |   DebugLoc dl = Op.getDebugLoc(); | 
 |   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); | 
 |   Reloc::Model RelocM = getTargetMachine().getRelocationModel(); | 
 |   if (RelocM == Reloc::PIC_) { | 
 |     bool UseGOTOFF = GV->hasLocalLinkage() || GV->hasHiddenVisibility(); | 
 |     ARMConstantPoolValue *CPV = | 
 |       new ARMConstantPoolValue(GV, UseGOTOFF ? "GOTOFF" : "GOT"); | 
 |     SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); | 
 |     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); | 
 |     SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), | 
 |                                  CPAddr, | 
 |                                  PseudoSourceValue::getConstantPool(), 0, | 
 |                                  false, false, 0); | 
 |     SDValue Chain = Result.getValue(1); | 
 |     SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(PtrVT); | 
 |     Result = DAG.getNode(ISD::ADD, dl, PtrVT, Result, GOT); | 
 |     if (!UseGOTOFF) | 
 |       Result = DAG.getLoad(PtrVT, dl, Chain, Result, | 
 |                            PseudoSourceValue::getGOT(), 0, | 
 |                            false, false, 0); | 
 |     return Result; | 
 |   } else { | 
 |     // If we have T2 ops, we can materialize the address directly via movt/movw | 
 |     // pair. This is always cheaper. | 
 |     if (Subtarget->useMovt()) { | 
 |       return DAG.getNode(ARMISD::Wrapper, dl, PtrVT, | 
 |                          DAG.getTargetGlobalAddress(GV, PtrVT)); | 
 |     } else { | 
 |       SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4); | 
 |       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); | 
 |       return DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, | 
 |                          PseudoSourceValue::getConstantPool(), 0, | 
 |                          false, false, 0); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op, | 
 |                                                     SelectionDAG &DAG) const { | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); | 
 |   unsigned ARMPCLabelIndex = 0; | 
 |   EVT PtrVT = getPointerTy(); | 
 |   DebugLoc dl = Op.getDebugLoc(); | 
 |   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); | 
 |   Reloc::Model RelocM = getTargetMachine().getRelocationModel(); | 
 |   SDValue CPAddr; | 
 |   if (RelocM == Reloc::Static) | 
 |     CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4); | 
 |   else { | 
 |     ARMPCLabelIndex = AFI->createConstPoolEntryUId(); | 
 |     unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : (Subtarget->isThumb()?4:8); | 
 |     ARMConstantPoolValue *CPV = | 
 |       new ARMConstantPoolValue(GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj); | 
 |     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); | 
 |   } | 
 |   CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); | 
 |  | 
 |   SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, | 
 |                                PseudoSourceValue::getConstantPool(), 0, | 
 |                                false, false, 0); | 
 |   SDValue Chain = Result.getValue(1); | 
 |  | 
 |   if (RelocM == Reloc::PIC_) { | 
 |     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); | 
 |     Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); | 
 |   } | 
 |  | 
 |   if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) | 
 |     Result = DAG.getLoad(PtrVT, dl, Chain, Result, | 
 |                          PseudoSourceValue::getGOT(), 0, | 
 |                          false, false, 0); | 
 |  | 
 |   return Result; | 
 | } | 
 |  | 
 | SDValue ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDValue Op, | 
 |                                                     SelectionDAG &DAG) const { | 
 |   assert(Subtarget->isTargetELF() && | 
 |          "GLOBAL OFFSET TABLE not implemented for non-ELF targets"); | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); | 
 |   unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId(); | 
 |   EVT PtrVT = getPointerTy(); | 
 |   DebugLoc dl = Op.getDebugLoc(); | 
 |   unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; | 
 |   ARMConstantPoolValue *CPV = new ARMConstantPoolValue(*DAG.getContext(), | 
 |                                                        "_GLOBAL_OFFSET_TABLE_", | 
 |                                                        ARMPCLabelIndex, PCAdj); | 
 |   SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); | 
 |   CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); | 
 |   SDValue Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, | 
 |                                PseudoSourceValue::getConstantPool(), 0, | 
 |                                false, false, 0); | 
 |   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); | 
 |   return DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); | 
 | } | 
 |  | 
 | SDValue | 
 | ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG, | 
 |                                            const ARMSubtarget *Subtarget) | 
 |                                              const { | 
 |   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
 |   DebugLoc dl = Op.getDebugLoc(); | 
 |   switch (IntNo) { | 
 |   default: return SDValue();    // Don't custom lower most intrinsics. | 
 |   case Intrinsic::arm_thread_pointer: { | 
 |     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
 |     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); | 
 |   } | 
 |   case Intrinsic::eh_sjlj_lsda: { | 
 |     MachineFunction &MF = DAG.getMachineFunction(); | 
 |     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); | 
 |     unsigned ARMPCLabelIndex = AFI->createConstPoolEntryUId(); | 
 |     EVT PtrVT = getPointerTy(); | 
 |     DebugLoc dl = Op.getDebugLoc(); | 
 |     Reloc::Model RelocM = getTargetMachine().getRelocationModel(); | 
 |     SDValue CPAddr; | 
 |     unsigned PCAdj = (RelocM != Reloc::PIC_) | 
 |       ? 0 : (Subtarget->isThumb() ? 4 : 8); | 
 |     ARMConstantPoolValue *CPV = | 
 |       new ARMConstantPoolValue(MF.getFunction(), ARMPCLabelIndex, | 
 |                                ARMCP::CPLSDA, PCAdj); | 
 |     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); | 
 |     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); | 
 |     SDValue Result = | 
 |       DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), CPAddr, | 
 |                   PseudoSourceValue::getConstantPool(), 0, | 
 |                   false, false, 0); | 
 |     SDValue Chain = Result.getValue(1); | 
 |  | 
 |     if (RelocM == Reloc::PIC_) { | 
 |       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, MVT::i32); | 
 |       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); | 
 |     } | 
 |     return Result; | 
 |   } | 
 |   case Intrinsic::eh_sjlj_setjmp: | 
 |     SDValue Val = Subtarget->isThumb() ? | 
 |       DAG.getCopyFromReg(DAG.getEntryNode(), dl, ARM::SP, MVT::i32) : | 
 |       DAG.getConstant(0, MVT::i32); | 
 |     return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, MVT::i32, Op.getOperand(1), | 
 |                        Val); | 
 |   } | 
 | } | 
 |  | 
 | static SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG, | 
 |                           const ARMSubtarget *Subtarget) { | 
 |   DebugLoc dl = Op.getDebugLoc(); | 
 |   SDValue Op5 = Op.getOperand(5); | 
 |   SDValue Res; | 
 |   unsigned isDeviceBarrier = cast<ConstantSDNode>(Op5)->getZExtValue(); | 
 |   if (isDeviceBarrier) { | 
 |     if (Subtarget->hasV7Ops()) | 
 |       Res = DAG.getNode(ARMISD::SYNCBARRIER, dl, MVT::Other, Op.getOperand(0)); | 
 |     else | 
 |       Res = DAG.getNode(ARMISD::SYNCBARRIER, dl, MVT::Other, Op.getOperand(0), | 
 |                         DAG.getConstant(0, MVT::i32)); | 
 |   } else { | 
 |     if (Subtarget->hasV7Ops()) | 
 |       Res = DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0)); | 
 |     else | 
 |       Res = DAG.getNode(ARMISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0), | 
 |                         DAG.getConstant(0, MVT::i32)); | 
 |   } | 
 |   return Res; | 
 | } | 
 |  | 
 | static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) { | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>(); | 
 |  | 
 |   // vastart just stores the address of the VarArgsFrameIndex slot into the | 
 |   // memory location argument. | 
 |   DebugLoc dl = Op.getDebugLoc(); | 
 |   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); | 
 |   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); | 
 |   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); | 
 |   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), SV, 0, | 
 |                       false, false, 0); | 
 | } | 
 |  | 
 | SDValue | 
 | ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, | 
 |                                            SelectionDAG &DAG) const { | 
 |   SDNode *Node = Op.getNode(); | 
 |   DebugLoc dl = Node->getDebugLoc(); | 
 |   EVT VT = Node->getValueType(0); | 
 |   SDValue Chain = Op.getOperand(0); | 
 |   SDValue Size  = Op.getOperand(1); | 
 |   SDValue Align = Op.getOperand(2); | 
 |  | 
 |   // Chain the dynamic stack allocation so that it doesn't modify the stack | 
 |   // pointer when other instructions are using the stack. | 
 |   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true)); | 
 |  | 
 |   unsigned AlignVal = cast<ConstantSDNode>(Align)->getZExtValue(); | 
 |   unsigned StackAlign = getTargetMachine().getFrameInfo()->getStackAlignment(); | 
 |   if (AlignVal > StackAlign) | 
 |     // Do this now since selection pass cannot introduce new target | 
 |     // independent node. | 
 |     Align = DAG.getConstant(-(uint64_t)AlignVal, VT); | 
 |  | 
 |   // In Thumb1 mode, there isn't a "sub r, sp, r" instruction, we will end up | 
 |   // using a "add r, sp, r" instead. Negate the size now so we don't have to | 
 |   // do even more horrible hack later. | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); | 
 |   if (AFI->isThumb1OnlyFunction()) { | 
 |     bool Negate = true; | 
 |     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Size); | 
 |     if (C) { | 
 |       uint32_t Val = C->getZExtValue(); | 
 |       if (Val <= 508 && ((Val & 3) == 0)) | 
 |         Negate = false; | 
 |     } | 
 |     if (Negate) | 
 |       Size = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, VT), Size); | 
 |   } | 
 |  | 
 |   SDVTList VTList = DAG.getVTList(VT, MVT::Other); | 
 |   SDValue Ops1[] = { Chain, Size, Align }; | 
 |   SDValue Res = DAG.getNode(ARMISD::DYN_ALLOC, dl, VTList, Ops1, 3); | 
 |   Chain = Res.getValue(1); | 
 |   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, true), | 
 |                              DAG.getIntPtrConstant(0, true), SDValue()); | 
 |   SDValue Ops2[] = { Res, Chain }; | 
 |   return DAG.getMergeValues(Ops2, 2, dl); | 
 | } | 
 |  | 
 | SDValue | 
 | ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA, | 
 |                                         SDValue &Root, SelectionDAG &DAG, | 
 |                                         DebugLoc dl) const { | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); | 
 |  | 
 |   TargetRegisterClass *RC; | 
 |   if (AFI->isThumb1OnlyFunction()) | 
 |     RC = ARM::tGPRRegisterClass; | 
 |   else | 
 |     RC = ARM::GPRRegisterClass; | 
 |  | 
 |   // Transform the arguments stored in physical registers into virtual ones. | 
 |   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); | 
 |   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); | 
 |  | 
 |   SDValue ArgValue2; | 
 |   if (NextVA.isMemLoc()) { | 
 |     MachineFrameInfo *MFI = MF.getFrameInfo(); | 
 |     int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true, false); | 
 |  | 
 |     // Create load node to retrieve arguments from the stack. | 
 |     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); | 
 |     ArgValue2 = DAG.getLoad(MVT::i32, dl, Root, FIN, | 
 |                             PseudoSourceValue::getFixedStack(FI), 0, | 
 |                             false, false, 0); | 
 |   } else { | 
 |     Reg = MF.addLiveIn(NextVA.getLocReg(), RC); | 
 |     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); | 
 |   } | 
 |  | 
 |   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2); | 
 | } | 
 |  | 
 | SDValue | 
 | ARMTargetLowering::LowerFormalArguments(SDValue Chain, | 
 |                                         CallingConv::ID CallConv, bool isVarArg, | 
 |                                         const SmallVectorImpl<ISD::InputArg> | 
 |                                           &Ins, | 
 |                                         DebugLoc dl, SelectionDAG &DAG, | 
 |                                         SmallVectorImpl<SDValue> &InVals) | 
 |                                           const { | 
 |  | 
 |   MachineFunction &MF = DAG.getMachineFunction(); | 
 |   MachineFrameInfo *MFI = MF.getFrameInfo(); | 
 |  | 
 |   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); | 
 |  | 
 |   // Assign locations to all of the incoming arguments. | 
 |   SmallVector<CCValAssign, 16> ArgLocs; | 
 |   CCState CCInfo(CallConv, isVarArg, getTargetMachine(), ArgLocs, | 
 |                  *DAG.getContext()); | 
 |   CCInfo.AnalyzeFormalArguments(Ins, | 
 |                                 CCAssignFnForNode(CallConv, /* Return*/ false, | 
 |                                                   isVarArg)); | 
 |  | 
 |   SmallVector<SDValue, 16> ArgValues; | 
 |  | 
 |   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
 |     CCValAssign &VA = ArgLocs[i]; | 
 |  | 
 |     // Arguments stored in registers. | 
 |     if (VA.isRegLoc()) { | 
 |       EVT RegVT = VA.getLocVT(); | 
 |  | 
 |       SDValue ArgValue; | 
 |       if (VA.needsCustom()) { | 
 |         // f64 and vector types are split up into multiple registers or | 
 |         // combinations of registers and stack slots. | 
 |         if (VA.getLocVT() == MVT::v2f64) { | 
 |           SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i], | 
 |                                                    Chain, DAG, dl); | 
 |           VA = ArgLocs[++i]; // skip ahead to next loc | 
 |           SDValue ArgValue2; | 
 |           if (VA.isMemLoc()) { | 
 |             int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), | 
 |                                             true, false); | 
 |             SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); | 
 |             ArgValue2 = DAG.getLoad(MVT::f64, dl, Chain, FIN, | 
 |                                     PseudoSourceValue::getFixedStack(FI), 0, | 
 |                                     false, false, 0); | 
 |           } else { | 
 |             ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i], | 
 |                                              Chain, DAG, dl); | 
 |           } | 
 |           ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); | 
 |           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, | 
 |                                  ArgValue, ArgValue1, DAG.getIntPtrConstant(0)); | 
 |           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, | 
 |                                  ArgValue, ArgValue2, DAG.getIntPtrConstant(1)); | 
 |         } else | 
 |           ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl); | 
 |  | 
 |       } else { | 
 |         TargetRegisterClass *RC; | 
 |  | 
 |         if (RegVT == MVT::f32) | 
 |           RC = ARM::SPRRegisterClass; | 
 |         else if (RegVT == MVT::f64) | 
 |           RC = ARM::DPRRegisterClass; | 
 |         else if (RegVT == MVT::v2f64) | 
 |           RC = ARM::QPRRegisterClass; | 
 |         else if (RegVT == MVT::i32) | 
 |           RC = (AFI->isThumb1OnlyFunction() ? | 
 |                 ARM::tGPRRegisterClass : ARM::GPRRegisterClass); | 
 |         else | 
 |           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering"); | 
 |  | 
 |         // Transform the arguments in physical registers into virtual ones. | 
 |         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); | 
 |         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); | 
 |       } | 
 |  | 
 |       // If this is an 8 or 16-bit value, it is really passed promoted | 
 |       // to 32 bits.  Insert an assert[sz]ext to capture this, then | 
 |       // truncate to the right size. | 
 |       switch (VA.getLocInfo()) { | 
 |       default: llvm_unreachable("Unknown loc info!"); | 
 |       case CCValAssign::Full: break; | 
 |       case CCValAssign::BCvt: | 
 |         ArgValue = DAG.getNode(ISD::BIT_CONVERT, dl, VA.getValVT(), ArgValue); | 
 |         break; | 
 |       case CCValAssign::SExt: | 
 |         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, | 
 |                                DAG.getValueType(VA.getValVT())); | 
 |         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); | 
 |         break; | 
 |       case CCValAssign::ZExt: | 
 |         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, | 
 |                                DAG.getValueType(VA.getValVT())); | 
 |         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); | 
 |         break; | 
 |       } | 
 |  | 
 |       InVals.push_back(ArgValue); | 
 |  | 
 |     } else { // VA.isRegLoc() | 
 |  | 
 |       // sanity check | 
 |       assert(VA.isMemLoc()); | 
 |       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered"); | 
 |  | 
 |       unsigned ArgSize = VA.getLocVT().getSizeInBits()/8; | 
 |       int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(), | 
 |                                       true, false); | 
 |  | 
 |       // Create load nodes to retrieve arguments from the stack. | 
 |       SDValue FIN = DAG.getFrameIndex(FI, getPointerTy()); | 
 |       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN, | 
 |                                    PseudoSourceValue::getFixedStack(FI), 0, | 
 |                                    false, false, 0)); | 
 |     } | 
 |   } | 
 |  | 
 |   // varargs | 
 |   if (isVarArg) { | 
 |     static const unsigned GPRArgRegs[] = { | 
 |       ARM::R0, ARM::R1, ARM::R2, ARM::R3 | 
 |     }; | 
 |  | 
 |     unsigned NumGPRs = CCInfo.getFirstUnallocated | 
 |       (GPRArgRegs, sizeof(GPRArgRegs) / sizeof(GPRArgRegs[0])); | 
 |  | 
 |     unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment(); | 
 |     unsigned VARegSize = (4 - NumGPRs) * 4; | 
 |     unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1); | 
 |     unsigned ArgOffset = CCInfo.getNextStackOffset(); | 
 |     if (VARegSaveSize) { | 
 |       // If this function is vararg, store any remaining integer argument regs | 
 |       // to their spots on the stack so that they may be loaded by deferencing | 
 |       // the result of va_next. | 
 |       AFI->setVarArgsRegSaveSize(VARegSaveSize); | 
 |       AFI->setVarArgsFrameIndex( | 
 |         MFI->CreateFixedObject(VARegSaveSize, | 
 |                                ArgOffset + VARegSaveSize - VARegSize, | 
 |                                true, false)); | 
 |       SDValue FIN = DAG.getFrameIndex(AFI->getVarArgsFrameIndex(), | 
 |                                       getPointerTy()); | 
 |  | 
 |       SmallVector<SDValue, 4> MemOps; | 
 |       for (; NumGPRs < 4; ++NumGPRs) { | 
 |         TargetRegisterClass *RC; | 
 |         if (AFI->isThumb1OnlyFunction()) | 
 |           RC = ARM::tGPRRegisterClass; | 
 |         else | 
 |           RC = ARM::GPRRegisterClass; | 
 |  | 
 |         unsigned VReg = MF.addLiveIn(GPRArgRegs[NumGPRs], RC); | 
 |         SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); | 
 |         SDValue Store = | 
 |           DAG.getStore(Val.getValue(1), dl, Val, FIN, | 
 |                        PseudoSourceValue::getFixedStack(AFI->getVarArgsFrameIndex()), 0, | 
 |                        false, false, 0); | 
 |         MemOps.push_back(Store); | 
 |         FIN = DAG.getNode(ISD::ADD, dl, getPointerTy(), FIN, | 
 |                           DAG.getConstant(4, getPointerTy())); | 
 |       } | 
 |       if (!MemOps.empty()) | 
 |         Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, | 
 |                             &MemOps[0], MemOps.size()); | 
 |     } else | 
 |       // This will point to the next argument passed via stack. | 
 |       AFI->setVarArgsFrameIndex(MFI->CreateFixedObject(4, ArgOffset, | 
 |                                                        true, false)); | 
 |   } | 
 |  | 
 |   return Chain; | 
 | } | 
 |  | 
 | /// isFloatingPointZero - Return true if this is +0.0. | 
 | static bool isFloatingPointZero(SDValue Op) { | 
 |   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) | 
 |     return CFP->getValueAPF().isPosZero(); | 
 |   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { | 
 |     // Maybe this has already been legalized into the constant pool? | 
 |     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) { | 
 |       SDValue WrapperOp = Op.getOperand(1).getOperand(0); | 
 |       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp)) | 
 |         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) | 
 |           return CFP->getValueAPF().isPosZero(); | 
 |     } | 
 |   } | 
 |   return false; | 
 | } | 
 |  | 
 | /// Returns appropriate ARM CMP (cmp) and corresponding condition code for | 
 | /// the given operands. | 
 | SDValue | 
 | ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, | 
 |                              SDValue &ARMCC, SelectionDAG &DAG, | 
 |                              DebugLoc dl) const { | 
 |   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { | 
 |     unsigned C = RHSC->getZExtValue(); | 
 |     if (!isLegalICmpImmediate(C)) { | 
 |       // Constant does not fit, try adjusting it by one? | 
 |       switch (CC) { | 
 |       default: break; | 
 |       case ISD::SETLT: | 
 |       case ISD::SETGE: | 
 |         if (isLegalICmpImmediate(C-1)) { | 
 |           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; | 
 |           RHS = DAG.getConstant(C-1, MVT::i32); | 
 |         } | 
 |         break; | 
 |       case ISD::SETULT: | 
 |       case ISD::SETUGE: | 
 |         if (C > 0 && isLegalICmpImmediate(C-1)) { | 
 |           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; | 
 |           RHS = DAG.getConstant(C-1, MVT::i32); | 
 |         } | 
 |         break; | 
 |       case ISD::SETLE: | 
 |       case ISD::SETGT: | 
 |         if (isLegalICmpImmediate(C+1)) { | 
 |           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; | 
 |           RHS = DAG.getConstant(C+1, MVT::i32); | 
 |         } | 
 |         break; | 
 |       case ISD::SETULE: | 
 |       case ISD::SETUGT: | 
 |         if (C < 0xffffffff && isLegalICmpImmediate(C+1)) { | 
 |           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; | 
 |           RHS = DAG.getConstant(C+1, MVT::i32); | 
 |         } | 
 |         break; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   ARMCC::CondCodes CondCode = IntCCToARMCC(CC); | 
 |   ARMISD::NodeType CompareType; | 
 |   switch (CondCode) { | 
 |   default: | 
 |     CompareType = ARMISD::CMP; | 
 |     break; | 
 |   case ARMCC::EQ: | 
 |   case ARMCC::NE: | 
 |     // Uses only Z Flag | 
 |     CompareType = ARMISD::CMPZ; | 
 |     break; | 
 |   } | 
 |   ARMCC = DAG.getConstant(CondCode, MVT::i32); | 
 |   return DAG.getNode(CompareType, dl, MVT::Flag, LHS, RHS); | 
 | } | 
 |  | 
 | /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands. | 
 | static SDValue getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG, | 
 |                          DebugLoc dl) { | 
 |   SDValue Cmp; | 
 |   if (!isFloatingPointZero(RHS)) | 
 |     Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Flag, LHS, RHS); | 
 |   else | 
 |     Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Flag, LHS); | 
 |   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Flag, Cmp); | 
 | } | 
 |  | 
 | SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { | 
 |   EVT VT = Op.getValueType(); | 
 |   SDValue LHS = Op.getOperand(0); | 
 |   SDValue RHS = Op.getOperand(1); | 
 |   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); | 
 |   SDValue TrueVal = Op.getOperand(2); | 
 |   SDValue FalseVal = Op.getOperand(3); | 
 |   DebugLoc dl = Op.getDebugLoc(); | 
 |  | 
 |   if (LHS.getValueType() == MVT::i32) { | 
 |     SDValue ARMCC; | 
 |     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); | 
 |     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, dl); | 
 |     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC, CCR,Cmp); | 
 |   } | 
 |  | 
 |   ARMCC::CondCodes CondCode, CondCode2; | 
 |   FPCCToARMCC(CC, CondCode, CondCode2); | 
 |  | 
 |   SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32); | 
 |   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); | 
 |   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); | 
 |   SDValue Result = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, | 
 |                                  ARMCC, CCR, Cmp); | 
 |   if (CondCode2 != ARMCC::AL) { | 
 |     SDValue ARMCC2 = DAG.getConstant(CondCode2, MVT::i32); | 
 |     // FIXME: Needs another CMP because flag can have but one use. | 
 |     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl); | 
 |     Result = DAG.getNode(ARMISD::CMOV, dl, VT, | 
 |                          Result, TrueVal, ARMCC2, CCR, Cmp2); | 
 |   } | 
 |   return Result; | 
 | } | 
 |  | 
 | SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { | 
 |   SDValue  Chain = Op.getOperand(0); | 
 |   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); | 
 |   SDValue    LHS = Op.getOperand(2); | 
 |   SDValue    RHS = Op.getOperand(3); | 
 |   SDValue   Dest = Op.getOperand(4); | 
 |   DebugLoc dl = Op.getDebugLoc(); | 
 |  | 
 |   if (LHS.getValueType() == MVT::i32) { | 
 |     SDValue ARMCC; | 
 |     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); | 
 |     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, dl); | 
 |     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, | 
 |                        Chain, Dest, ARMCC, CCR,Cmp); | 
 |   } | 
 |  | 
 |   assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); | 
 |   ARMCC::CondCodes CondCode, CondCode2; | 
 |   FPCCToARMCC(CC, CondCode, CondCode2); | 
 |  | 
 |   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); | 
 |   SDValue ARMCC = DAG.getConstant(CondCode, MVT::i32); | 
 |   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); | 
 |   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag); | 
 |   SDValue Ops[] = { Chain, Dest, ARMCC, CCR, Cmp }; | 
 |   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5); | 
 |   if (CondCode2 != ARMCC::AL) { | 
 |     ARMCC = DAG.getConstant(CondCode2, MVT::i32); | 
 |     SDValue Ops[] = { Res, Dest, ARMCC, CCR, Res.getValue(1) }; | 
 |     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops, 5); | 
 |   } | 
 |   return Res; | 
 | } | 
 |  | 
 | SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const { | 
 |   SDValue Chain = Op.getOperand(0); | 
 |   SDValue Table = Op.getOperand(1); | 
 |   SDValue Index = Op.getOperand(2); | 
 |   DebugLoc dl = Op.getDebugLoc(); | 
 |  | 
 |   EVT PTy = getPointerTy(); | 
 |   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table); | 
 |   ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>(); | 
 |   SDValue UId = DAG.getConstant(AFI->createJumpTableUId(), PTy); | 
 |   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy); | 
 |   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI, UId); | 
 |   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, PTy)); | 
 |   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); | 
 |   if (Subtarget->isThumb2()) { | 
 |     // Thumb2 uses a two-level jump. That is, it jumps into the jump table | 
 |     // which does another jump to the destination. This also makes it easier | 
 |     // to translate it to TBB / TBH later. | 
 |     // FIXME: This might not work if the function is extremely large. | 
 |     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain, | 
 |                        Addr, Op.getOperand(2), JTI, UId); | 
 |   } | 
 |   if (getTargetMachine().getRelocationModel() == Reloc::PIC_) { | 
 |     Addr = DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr, | 
 |                        PseudoSourceValue::getJumpTable(), 0, | 
 |                        false, false, 0); | 
 |     Chain = Addr.getValue(1); | 
 |     Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table); | 
 |     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId); | 
 |   } else { | 
 |     Addr = DAG.getLoad(PTy, dl, Chain, Addr, | 
 |                        PseudoSourceValue::getJumpTable(), 0, false, false, 0); | 
 |     Chain = Addr.getValue(1); | 
 |     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI, UId); | 
 |   } | 
 | } | 
 |  | 
 | static SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) { | 
 |   DebugLoc dl = Op.getDebugLoc(); | 
 |   unsigned Opc; | 
 |  | 
 |   switch (Op.getOpcode()) { | 
 |   default: | 
 |     assert(0 && "Invalid opcode!"); | 
 |   case ISD::FP_TO_SINT: | 
 |     Opc = ARMISD::FTOSI; | 
 |     break; | 
 |   case ISD::FP_TO_UINT: | 
 |     Opc = ARMISD::FTOUI; | 
 |     break; | 
 |   } | 
 |   Op = DAG.getNode(Opc, dl, MVT::f32, Op.getOperand(0)); | 
 |   return DAG.getNode(ISD::BIT_CONVERT, dl, MVT::i32, Op); | 
 | } | 
 |  | 
 | static SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) { | 
 |   EVT VT = Op.getValueType(); | 
 |   DebugLoc dl = Op.getDebugLoc(); | 
 |   unsigned Opc; | 
 |  | 
 |   switch (Op.getOpcode()) { | 
 |   default: | 
 |     assert(0 && "Invalid opcode!"); | 
 |   case ISD::SINT_TO_FP: | 
 |     Opc = ARMISD::SITOF; | 
 |     break; | 
 |   case ISD::UINT_TO_FP: | 
 |     Opc = ARMISD::UITOF; | 
 |     break; | 
 |   } | 
 |  | 
 |   Op = DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f32, Op.getOperand(0)); | 
 |   return DAG.getNode(Opc, dl, VT, Op); | 
 | } | 
 |  | 
 | static SDValue LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) { | 
 |   // Implement fcopysign with a fabs and a conditional fneg. | 
 |   SDValue Tmp0 = Op.getOperand(0); | 
 |   SDValue Tmp1 = Op.getOperand(1); | 
 |   DebugLoc dl = Op.getDebugLoc(); | 
 |   EVT VT = Op.getValueType(); | 
 |   EVT SrcVT = Tmp1.getValueType(); | 
 |   SDValue AbsVal = DAG.getNode(ISD::FABS, dl, VT, Tmp0); | 
 |   SDValue Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG, dl); | 
 |   SDValue ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32); | 
 |   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); | 
 |   return DAG.getNode(ARMISD::CNEG, dl, VT, AbsVal, AbsVal, ARMCC, CCR, Cmp); | 
 | } | 
 |  | 
 | SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { | 
 |   MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); | 
 |   MFI->setFrameAddressIsTaken(true); | 
 |   EVT VT = Op.getValueType(); | 
 |   DebugLoc dl = Op.getDebugLoc();  // FIXME probably not meaningful | 
 |   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
 |   unsigned FrameReg = (Subtarget->isThumb() || Subtarget->isTargetDarwin()) | 
 |     ? ARM::R7 : ARM::R11; | 
 |   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); | 
 |   while (Depth--) | 
 |     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, NULL, 0, | 
 |                             false, false, 0); | 
 |   return FrameAddr; | 
 | } | 
 |  | 
 | /// ExpandBIT_CONVERT - If the target supports VFP, this function is called to | 
 | /// expand a bit convert where either the source or destination type is i64 to | 
 | /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64 | 
 | /// operand type is illegal (e.g., v2f32 for a target that doesn't support | 
 | /// vectors), since the legalizer won't know what to do with that. | 
 | static SDValue ExpandBIT_CONVERT(SDNode *N, SelectionDAG &DAG) { | 
 |   const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |   DebugLoc dl = N->getDebugLoc(); | 
 |   SDValue Op = N->getOperand(0); | 
 |  | 
 |   // This function is only supposed to be called for i64 types, either as the | 
 |   // source or destination of the bit convert. | 
 |   EVT SrcVT = Op.getValueType(); | 
 |   EVT DstVT = N->getValueType(0); | 
 |   assert((SrcVT == MVT::i64 || DstVT == MVT::i64) && | 
 |          "ExpandBIT_CONVERT called for non-i64 type"); | 
 |  | 
 |   // Turn i64->f64 into VMOVDRR. | 
 |   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) { | 
 |     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, | 
 |                              DAG.getConstant(0, MVT::i32)); | 
 |     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, | 
 |                              DAG.getConstant(1, MVT::i32)); | 
 |     return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); | 
 |   } | 
 |  | 
 |   // Turn f64->i64 into VMOVRRD. | 
 |   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) { | 
 |     SDValue Cvt = DAG.getNode(ARMISD::VMOVRRD, dl, | 
 |                               DAG.getVTList(MVT::i32, MVT::i32), &Op, 1); | 
 |     // Merge the pieces into a single i64 value. | 
 |     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1)); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// getZeroVector - Returns a vector of specified type with all zero elements. | 
 | /// | 
 | static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) { | 
 |   assert(VT.isVector() && "Expected a vector type"); | 
 |  | 
 |   // Zero vectors are used to represent vector negation and in those cases | 
 |   // will be implemented with the NEON VNEG instruction.  However, VNEG does | 
 |   // not support i64 elements, so sometimes the zero vectors will need to be | 
 |   // explicitly constructed.  For those cases, and potentially other uses in | 
 |   // the future, always build zero vectors as <16 x i8> or <8 x i8> bitcasted | 
 |   // to their dest type.  This ensures they get CSE'd. | 
 |   SDValue Vec; | 
 |   SDValue Cst = DAG.getTargetConstant(0, MVT::i8); | 
 |   SmallVector<SDValue, 8> Ops; | 
 |   MVT TVT; | 
 |  | 
 |   if (VT.getSizeInBits() == 64) { | 
 |     Ops.assign(8, Cst); TVT = MVT::v8i8; | 
 |   } else { | 
 |     Ops.assign(16, Cst); TVT = MVT::v16i8; | 
 |   } | 
 |   Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, TVT, &Ops[0], Ops.size()); | 
 |  | 
 |   return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec); | 
 | } | 
 |  | 
 | /// getOnesVector - Returns a vector of specified type with all bits set. | 
 | /// | 
 | static SDValue getOnesVector(EVT VT, SelectionDAG &DAG, DebugLoc dl) { | 
 |   assert(VT.isVector() && "Expected a vector type"); | 
 |  | 
 |   // Always build ones vectors as <16 x i8> or <8 x i8> bitcasted to their | 
 |   // dest type. This ensures they get CSE'd. | 
 |   SDValue Vec; | 
 |   SDValue Cst = DAG.getTargetConstant(0xFF, MVT::i8); | 
 |   SmallVector<SDValue, 8> Ops; | 
 |   MVT TVT; | 
 |  | 
 |   if (VT.getSizeInBits() == 64) { | 
 |     Ops.assign(8, Cst); TVT = MVT::v8i8; | 
 |   } else { | 
 |     Ops.assign(16, Cst); TVT = MVT::v16i8; | 
 |   } | 
 |   Vec = DAG.getNode(ISD::BUILD_VECTOR, dl, TVT, &Ops[0], Ops.size()); | 
 |  | 
 |   return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Vec); | 
 | } | 
 |  | 
 | /// LowerShiftRightParts - Lower SRA_PARTS, which returns two | 
 | /// i32 values and take a 2 x i32 value to shift plus a shift amount. | 
 | SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op, | 
 |                                                 SelectionDAG &DAG) const { | 
 |   assert(Op.getNumOperands() == 3 && "Not a double-shift!"); | 
 |   EVT VT = Op.getValueType(); | 
 |   unsigned VTBits = VT.getSizeInBits(); | 
 |   DebugLoc dl = Op.getDebugLoc(); | 
 |   SDValue ShOpLo = Op.getOperand(0); | 
 |   SDValue ShOpHi = Op.getOperand(1); | 
 |   SDValue ShAmt  = Op.getOperand(2); | 
 |   SDValue ARMCC; | 
 |   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; | 
 |  | 
 |   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); | 
 |  | 
 |   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, | 
 |                                  DAG.getConstant(VTBits, MVT::i32), ShAmt); | 
 |   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); | 
 |   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, | 
 |                                    DAG.getConstant(VTBits, MVT::i32)); | 
 |   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); | 
 |   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); | 
 |   SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); | 
 |  | 
 |   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); | 
 |   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE, | 
 |                           ARMCC, DAG, dl); | 
 |   SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); | 
 |   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMCC, | 
 |                            CCR, Cmp); | 
 |  | 
 |   SDValue Ops[2] = { Lo, Hi }; | 
 |   return DAG.getMergeValues(Ops, 2, dl); | 
 | } | 
 |  | 
 | /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two | 
 | /// i32 values and take a 2 x i32 value to shift plus a shift amount. | 
 | SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op, | 
 |                                                SelectionDAG &DAG) const { | 
 |   assert(Op.getNumOperands() == 3 && "Not a double-shift!"); | 
 |   EVT VT = Op.getValueType(); | 
 |   unsigned VTBits = VT.getSizeInBits(); | 
 |   DebugLoc dl = Op.getDebugLoc(); | 
 |   SDValue ShOpLo = Op.getOperand(0); | 
 |   SDValue ShOpHi = Op.getOperand(1); | 
 |   SDValue ShAmt  = Op.getOperand(2); | 
 |   SDValue ARMCC; | 
 |  | 
 |   assert(Op.getOpcode() == ISD::SHL_PARTS); | 
 |   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, | 
 |                                  DAG.getConstant(VTBits, MVT::i32), ShAmt); | 
 |   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); | 
 |   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, | 
 |                                    DAG.getConstant(VTBits, MVT::i32)); | 
 |   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); | 
 |   SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); | 
 |  | 
 |   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); | 
 |   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); | 
 |   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, MVT::i32), ISD::SETGE, | 
 |                           ARMCC, DAG, dl); | 
 |   SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); | 
 |   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMCC, | 
 |                            CCR, Cmp); | 
 |  | 
 |   SDValue Ops[2] = { Lo, Hi }; | 
 |   return DAG.getMergeValues(Ops, 2, dl); | 
 | } | 
 |  | 
 | static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG, | 
 |                          const ARMSubtarget *ST) { | 
 |   EVT VT = N->getValueType(0); | 
 |   DebugLoc dl = N->getDebugLoc(); | 
 |  | 
 |   if (!ST->hasV6T2Ops()) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue rbit = DAG.getNode(ARMISD::RBIT, dl, VT, N->getOperand(0)); | 
 |   return DAG.getNode(ISD::CTLZ, dl, VT, rbit); | 
 | } | 
 |  | 
 | static SDValue LowerShift(SDNode *N, SelectionDAG &DAG, | 
 |                           const ARMSubtarget *ST) { | 
 |   EVT VT = N->getValueType(0); | 
 |   DebugLoc dl = N->getDebugLoc(); | 
 |  | 
 |   // Lower vector shifts on NEON to use VSHL. | 
 |   if (VT.isVector()) { | 
 |     assert(ST->hasNEON() && "unexpected vector shift"); | 
 |  | 
 |     // Left shifts translate directly to the vshiftu intrinsic. | 
 |     if (N->getOpcode() == ISD::SHL) | 
 |       return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, | 
 |                          DAG.getConstant(Intrinsic::arm_neon_vshiftu, MVT::i32), | 
 |                          N->getOperand(0), N->getOperand(1)); | 
 |  | 
 |     assert((N->getOpcode() == ISD::SRA || | 
 |             N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode"); | 
 |  | 
 |     // NEON uses the same intrinsics for both left and right shifts.  For | 
 |     // right shifts, the shift amounts are negative, so negate the vector of | 
 |     // shift amounts. | 
 |     EVT ShiftVT = N->getOperand(1).getValueType(); | 
 |     SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT, | 
 |                                        getZeroVector(ShiftVT, DAG, dl), | 
 |                                        N->getOperand(1)); | 
 |     Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ? | 
 |                                Intrinsic::arm_neon_vshifts : | 
 |                                Intrinsic::arm_neon_vshiftu); | 
 |     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, | 
 |                        DAG.getConstant(vshiftInt, MVT::i32), | 
 |                        N->getOperand(0), NegatedCount); | 
 |   } | 
 |  | 
 |   // We can get here for a node like i32 = ISD::SHL i32, i64 | 
 |   if (VT != MVT::i64) | 
 |     return SDValue(); | 
 |  | 
 |   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && | 
 |          "Unknown shift to lower!"); | 
 |  | 
 |   // We only lower SRA, SRL of 1 here, all others use generic lowering. | 
 |   if (!isa<ConstantSDNode>(N->getOperand(1)) || | 
 |       cast<ConstantSDNode>(N->getOperand(1))->getZExtValue() != 1) | 
 |     return SDValue(); | 
 |  | 
 |   // If we are in thumb mode, we don't have RRX. | 
 |   if (ST->isThumb1Only()) return SDValue(); | 
 |  | 
 |   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr. | 
 |   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), | 
 |                              DAG.getConstant(0, MVT::i32)); | 
 |   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), | 
 |                              DAG.getConstant(1, MVT::i32)); | 
 |  | 
 |   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and | 
 |   // captures the result into a carry flag. | 
 |   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG; | 
 |   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1); | 
 |  | 
 |   // The low part is an ARMISD::RRX operand, which shifts the carry in. | 
 |   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1)); | 
 |  | 
 |   // Merge the pieces into a single i64 value. | 
 |  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); | 
 | } | 
 |  | 
 | static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) { | 
 |   SDValue TmpOp0, TmpOp1; | 
 |   bool Invert = false; | 
 |   bool Swap = false; | 
 |   unsigned Opc = 0; | 
 |  | 
 |   SDValue Op0 = Op.getOperand(0); | 
 |   SDValue Op1 = Op.getOperand(1); | 
 |   SDValue CC = Op.getOperand(2); | 
 |   EVT VT = Op.getValueType(); | 
 |   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); | 
 |   DebugLoc dl = Op.getDebugLoc(); | 
 |  | 
 |   if (Op.getOperand(1).getValueType().isFloatingPoint()) { | 
 |     switch (SetCCOpcode) { | 
 |     default: llvm_unreachable("Illegal FP comparison"); break; | 
 |     case ISD::SETUNE: | 
 |     case ISD::SETNE:  Invert = true; // Fallthrough | 
 |     case ISD::SETOEQ: | 
 |     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break; | 
 |     case ISD::SETOLT: | 
 |     case ISD::SETLT: Swap = true; // Fallthrough | 
 |     case ISD::SETOGT: | 
 |     case ISD::SETGT:  Opc = ARMISD::VCGT; break; | 
 |     case ISD::SETOLE: | 
 |     case ISD::SETLE:  Swap = true; // Fallthrough | 
 |     case ISD::SETOGE: | 
 |     case ISD::SETGE: Opc = ARMISD::VCGE; break; | 
 |     case ISD::SETUGE: Swap = true; // Fallthrough | 
 |     case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break; | 
 |     case ISD::SETUGT: Swap = true; // Fallthrough | 
 |     case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break; | 
 |     case ISD::SETUEQ: Invert = true; // Fallthrough | 
 |     case ISD::SETONE: | 
 |       // Expand this to (OLT | OGT). | 
 |       TmpOp0 = Op0; | 
 |       TmpOp1 = Op1; | 
 |       Opc = ISD::OR; | 
 |       Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0); | 
 |       Op1 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp0, TmpOp1); | 
 |       break; | 
 |     case ISD::SETUO: Invert = true; // Fallthrough | 
 |     case ISD::SETO: | 
 |       // Expand this to (OLT | OGE). | 
 |       TmpOp0 = Op0; | 
 |       TmpOp1 = Op1; | 
 |       Opc = ISD::OR; | 
 |       Op0 = DAG.getNode(ARMISD::VCGT, dl, VT, TmpOp1, TmpOp0); | 
 |       Op1 = DAG.getNode(ARMISD::VCGE, dl, VT, TmpOp0, TmpOp1); | 
 |       break; | 
 |     } | 
 |   } else { | 
 |     // Integer comparisons. | 
 |     switch (SetCCOpcode) { | 
 |     default: llvm_unreachable("Illegal integer comparison"); break; | 
 |     case ISD::SETNE:  Invert = true; | 
 |     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break; | 
 |     case ISD::SETLT:  Swap = true; | 
 |     case ISD::SETGT:  Opc = ARMISD::VCGT; break; | 
 |     case ISD::SETLE:  Swap = true; | 
 |     case ISD::SETGE:  Opc = ARMISD::VCGE; break; | 
 |     case ISD::SETULT: Swap = true; | 
 |     case ISD::SETUGT: Opc = ARMISD::VCGTU; break; | 
 |     case ISD::SETULE: Swap = true; | 
 |     case ISD::SETUGE: Opc = ARMISD::VCGEU; break; | 
 |     } | 
 |  | 
 |     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero). | 
 |     if (Opc == ARMISD::VCEQ) { | 
 |  | 
 |       SDValue AndOp; | 
 |       if (ISD::isBuildVectorAllZeros(Op1.getNode())) | 
 |         AndOp = Op0; | 
 |       else if (ISD::isBuildVectorAllZeros(Op0.getNode())) | 
 |         AndOp = Op1; | 
 |  | 
 |       // Ignore bitconvert. | 
 |       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BIT_CONVERT) | 
 |         AndOp = AndOp.getOperand(0); | 
 |  | 
 |       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) { | 
 |         Opc = ARMISD::VTST; | 
 |         Op0 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(0)); | 
 |         Op1 = DAG.getNode(ISD::BIT_CONVERT, dl, VT, AndOp.getOperand(1)); | 
 |         Invert = !Invert; | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (Swap) | 
 |     std::swap(Op0, Op1); | 
 |  | 
 |   SDValue Result = DAG.getNode(Opc, dl, VT, Op0, Op1); | 
 |  | 
 |   if (Invert) | 
 |     Result = DAG.getNOT(dl, Result, VT); | 
 |  | 
 |   return Result; | 
 | } | 
 |  | 
 | /// isVMOVSplat - Check if the specified splat value corresponds to an immediate | 
 | /// VMOV instruction, and if so, return the constant being splatted. | 
 | static SDValue isVMOVSplat(uint64_t SplatBits, uint64_t SplatUndef, | 
 |                            unsigned SplatBitSize, SelectionDAG &DAG) { | 
 |   switch (SplatBitSize) { | 
 |   case 8: | 
 |     // Any 1-byte value is OK. | 
 |     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big"); | 
 |     return DAG.getTargetConstant(SplatBits, MVT::i8); | 
 |  | 
 |   case 16: | 
 |     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero. | 
 |     if ((SplatBits & ~0xff) == 0 || | 
 |         (SplatBits & ~0xff00) == 0) | 
 |       return DAG.getTargetConstant(SplatBits, MVT::i16); | 
 |     break; | 
 |  | 
 |   case 32: | 
 |     // NEON's 32-bit VMOV supports splat values where: | 
 |     // * only one byte is nonzero, or | 
 |     // * the least significant byte is 0xff and the second byte is nonzero, or | 
 |     // * the least significant 2 bytes are 0xff and the third is nonzero. | 
 |     if ((SplatBits & ~0xff) == 0 || | 
 |         (SplatBits & ~0xff00) == 0 || | 
 |         (SplatBits & ~0xff0000) == 0 || | 
 |         (SplatBits & ~0xff000000) == 0) | 
 |       return DAG.getTargetConstant(SplatBits, MVT::i32); | 
 |  | 
 |     if ((SplatBits & ~0xffff) == 0 && | 
 |         ((SplatBits | SplatUndef) & 0xff) == 0xff) | 
 |       return DAG.getTargetConstant(SplatBits | 0xff, MVT::i32); | 
 |  | 
 |     if ((SplatBits & ~0xffffff) == 0 && | 
 |         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) | 
 |       return DAG.getTargetConstant(SplatBits | 0xffff, MVT::i32); | 
 |  | 
 |     // Note: there are a few 32-bit splat values (specifically: 00ffff00, | 
 |     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not | 
 |     // VMOV.I32.  A (very) minor optimization would be to replicate the value | 
 |     // and fall through here to test for a valid 64-bit splat.  But, then the | 
 |     // caller would also need to check and handle the change in size. | 
 |     break; | 
 |  | 
 |   case 64: { | 
 |     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff. | 
 |     uint64_t BitMask = 0xff; | 
 |     uint64_t Val = 0; | 
 |     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) { | 
 |       if (((SplatBits | SplatUndef) & BitMask) == BitMask) | 
 |         Val |= BitMask; | 
 |       else if ((SplatBits & BitMask) != 0) | 
 |         return SDValue(); | 
 |       BitMask <<= 8; | 
 |     } | 
 |     return DAG.getTargetConstant(Val, MVT::i64); | 
 |   } | 
 |  | 
 |   default: | 
 |     llvm_unreachable("unexpected size for isVMOVSplat"); | 
 |     break; | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// getVMOVImm - If this is a build_vector of constants which can be | 
 | /// formed by using a VMOV instruction of the specified element size, | 
 | /// return the constant being splatted.  The ByteSize field indicates the | 
 | /// number of bytes of each element [1248]. | 
 | SDValue ARM::getVMOVImm(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) { | 
 |   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N); | 
 |   APInt SplatBits, SplatUndef; | 
 |   unsigned SplatBitSize; | 
 |   bool HasAnyUndefs; | 
 |   if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, | 
 |                                       HasAnyUndefs, ByteSize * 8)) | 
 |     return SDValue(); | 
 |  | 
 |   if (SplatBitSize > ByteSize * 8) | 
 |     return SDValue(); | 
 |  | 
 |   return isVMOVSplat(SplatBits.getZExtValue(), SplatUndef.getZExtValue(), | 
 |                      SplatBitSize, DAG); | 
 | } | 
 |  | 
 | static bool isVEXTMask(const SmallVectorImpl<int> &M, EVT VT, | 
 |                        bool &ReverseVEXT, unsigned &Imm) { | 
 |   unsigned NumElts = VT.getVectorNumElements(); | 
 |   ReverseVEXT = false; | 
 |   Imm = M[0]; | 
 |  | 
 |   // If this is a VEXT shuffle, the immediate value is the index of the first | 
 |   // element.  The other shuffle indices must be the successive elements after | 
 |   // the first one. | 
 |   unsigned ExpectedElt = Imm; | 
 |   for (unsigned i = 1; i < NumElts; ++i) { | 
 |     // Increment the expected index.  If it wraps around, it may still be | 
 |     // a VEXT but the source vectors must be swapped. | 
 |     ExpectedElt += 1; | 
 |     if (ExpectedElt == NumElts * 2) { | 
 |       ExpectedElt = 0; | 
 |       ReverseVEXT = true; | 
 |     } | 
 |  | 
 |     if (ExpectedElt != static_cast<unsigned>(M[i])) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // Adjust the index value if the source operands will be swapped. | 
 |   if (ReverseVEXT) | 
 |     Imm -= NumElts; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// isVREVMask - Check if a vector shuffle corresponds to a VREV | 
 | /// instruction with the specified blocksize.  (The order of the elements | 
 | /// within each block of the vector is reversed.) | 
 | static bool isVREVMask(const SmallVectorImpl<int> &M, EVT VT, | 
 |                        unsigned BlockSize) { | 
 |   assert((BlockSize==16 || BlockSize==32 || BlockSize==64) && | 
 |          "Only possible block sizes for VREV are: 16, 32, 64"); | 
 |  | 
 |   unsigned EltSz = VT.getVectorElementType().getSizeInBits(); | 
 |   if (EltSz == 64) | 
 |     return false; | 
 |  | 
 |   unsigned NumElts = VT.getVectorNumElements(); | 
 |   unsigned BlockElts = M[0] + 1; | 
 |  | 
 |   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) | 
 |     return false; | 
 |  | 
 |   for (unsigned i = 0; i < NumElts; ++i) { | 
 |     if ((unsigned) M[i] != | 
 |         (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts)) | 
 |       return false; | 
 |   } | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static bool isVTRNMask(const SmallVectorImpl<int> &M, EVT VT, | 
 |                        unsigned &WhichResult) { | 
 |   unsigned EltSz = VT.getVectorElementType().getSizeInBits(); | 
 |   if (EltSz == 64) | 
 |     return false; | 
 |  | 
 |   unsigned NumElts = VT.getVectorNumElements(); | 
 |   WhichResult = (M[0] == 0 ? 0 : 1); | 
 |   for (unsigned i = 0; i < NumElts; i += 2) { | 
 |     if ((unsigned) M[i] != i + WhichResult || | 
 |         (unsigned) M[i+1] != i + NumElts + WhichResult) | 
 |       return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of | 
 | /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". | 
 | /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>. | 
 | static bool isVTRN_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT, | 
 |                                 unsigned &WhichResult) { | 
 |   unsigned EltSz = VT.getVectorElementType().getSizeInBits(); | 
 |   if (EltSz == 64) | 
 |     return false; | 
 |  | 
 |   unsigned NumElts = VT.getVectorNumElements(); | 
 |   WhichResult = (M[0] == 0 ? 0 : 1); | 
 |   for (unsigned i = 0; i < NumElts; i += 2) { | 
 |     if ((unsigned) M[i] != i + WhichResult || | 
 |         (unsigned) M[i+1] != i + WhichResult) | 
 |       return false; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | static bool isVUZPMask(const SmallVectorImpl<int> &M, EVT VT, | 
 |                        unsigned &WhichResult) { | 
 |   unsigned EltSz = VT.getVectorElementType().getSizeInBits(); | 
 |   if (EltSz == 64) | 
 |     return false; | 
 |  | 
 |   unsigned NumElts = VT.getVectorNumElements(); | 
 |   WhichResult = (M[0] == 0 ? 0 : 1); | 
 |   for (unsigned i = 0; i != NumElts; ++i) { | 
 |     if ((unsigned) M[i] != 2 * i + WhichResult) | 
 |       return false; | 
 |   } | 
 |  | 
 |   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. | 
 |   if (VT.is64BitVector() && EltSz == 32) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of | 
 | /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". | 
 | /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>, | 
 | static bool isVUZP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT, | 
 |                                 unsigned &WhichResult) { | 
 |   unsigned EltSz = VT.getVectorElementType().getSizeInBits(); | 
 |   if (EltSz == 64) | 
 |     return false; | 
 |  | 
 |   unsigned Half = VT.getVectorNumElements() / 2; | 
 |   WhichResult = (M[0] == 0 ? 0 : 1); | 
 |   for (unsigned j = 0; j != 2; ++j) { | 
 |     unsigned Idx = WhichResult; | 
 |     for (unsigned i = 0; i != Half; ++i) { | 
 |       if ((unsigned) M[i + j * Half] != Idx) | 
 |         return false; | 
 |       Idx += 2; | 
 |     } | 
 |   } | 
 |  | 
 |   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. | 
 |   if (VT.is64BitVector() && EltSz == 32) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static bool isVZIPMask(const SmallVectorImpl<int> &M, EVT VT, | 
 |                        unsigned &WhichResult) { | 
 |   unsigned EltSz = VT.getVectorElementType().getSizeInBits(); | 
 |   if (EltSz == 64) | 
 |     return false; | 
 |  | 
 |   unsigned NumElts = VT.getVectorNumElements(); | 
 |   WhichResult = (M[0] == 0 ? 0 : 1); | 
 |   unsigned Idx = WhichResult * NumElts / 2; | 
 |   for (unsigned i = 0; i != NumElts; i += 2) { | 
 |     if ((unsigned) M[i] != Idx || | 
 |         (unsigned) M[i+1] != Idx + NumElts) | 
 |       return false; | 
 |     Idx += 1; | 
 |   } | 
 |  | 
 |   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. | 
 |   if (VT.is64BitVector() && EltSz == 32) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of | 
 | /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". | 
 | /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>. | 
 | static bool isVZIP_v_undef_Mask(const SmallVectorImpl<int> &M, EVT VT, | 
 |                                 unsigned &WhichResult) { | 
 |   unsigned EltSz = VT.getVectorElementType().getSizeInBits(); | 
 |   if (EltSz == 64) | 
 |     return false; | 
 |  | 
 |   unsigned NumElts = VT.getVectorNumElements(); | 
 |   WhichResult = (M[0] == 0 ? 0 : 1); | 
 |   unsigned Idx = WhichResult * NumElts / 2; | 
 |   for (unsigned i = 0; i != NumElts; i += 2) { | 
 |     if ((unsigned) M[i] != Idx || | 
 |         (unsigned) M[i+1] != Idx) | 
 |       return false; | 
 |     Idx += 1; | 
 |   } | 
 |  | 
 |   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. | 
 |   if (VT.is64BitVector() && EltSz == 32) | 
 |     return false; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 |  | 
 | static SDValue BuildSplat(SDValue Val, EVT VT, SelectionDAG &DAG, DebugLoc dl) { | 
 |   // Canonicalize all-zeros and all-ones vectors. | 
 |   ConstantSDNode *ConstVal = cast<ConstantSDNode>(Val.getNode()); | 
 |   if (ConstVal->isNullValue()) | 
 |     return getZeroVector(VT, DAG, dl); | 
 |   if (ConstVal->isAllOnesValue()) | 
 |     return getOnesVector(VT, DAG, dl); | 
 |  | 
 |   EVT CanonicalVT; | 
 |   if (VT.is64BitVector()) { | 
 |     switch (Val.getValueType().getSizeInBits()) { | 
 |     case 8:  CanonicalVT = MVT::v8i8; break; | 
 |     case 16: CanonicalVT = MVT::v4i16; break; | 
 |     case 32: CanonicalVT = MVT::v2i32; break; | 
 |     case 64: CanonicalVT = MVT::v1i64; break; | 
 |     default: llvm_unreachable("unexpected splat element type"); break; | 
 |     } | 
 |   } else { | 
 |     assert(VT.is128BitVector() && "unknown splat vector size"); | 
 |     switch (Val.getValueType().getSizeInBits()) { | 
 |     case 8:  CanonicalVT = MVT::v16i8; break; | 
 |     case 16: CanonicalVT = MVT::v8i16; break; | 
 |     case 32: CanonicalVT = MVT::v4i32; break; | 
 |     case 64: CanonicalVT = MVT::v2i64; break; | 
 |     default: llvm_unreachable("unexpected splat element type"); break; | 
 |     } | 
 |   } | 
 |  | 
 |   // Build a canonical splat for this value. | 
 |   SmallVector<SDValue, 8> Ops; | 
 |   Ops.assign(CanonicalVT.getVectorNumElements(), Val); | 
 |   SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT, &Ops[0], | 
 |                             Ops.size()); | 
 |   return DAG.getNode(ISD::BIT_CONVERT, dl, VT, Res); | 
 | } | 
 |  | 
 | // If this is a case we can't handle, return null and let the default | 
 | // expansion code take care of it. | 
 | static SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) { | 
 |   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); | 
 |   DebugLoc dl = Op.getDebugLoc(); | 
 |   EVT VT = Op.getValueType(); | 
 |  | 
 |   APInt SplatBits, SplatUndef; | 
 |   unsigned SplatBitSize; | 
 |   bool HasAnyUndefs; | 
 |   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { | 
 |     if (SplatBitSize <= 64) { | 
 |       SDValue Val = isVMOVSplat(SplatBits.getZExtValue(), | 
 |                                 SplatUndef.getZExtValue(), SplatBitSize, DAG); | 
 |       if (Val.getNode()) | 
 |         return BuildSplat(Val, VT, DAG, dl); | 
 |     } | 
 |   } | 
 |  | 
 |   // If there are only 2 elements in a 128-bit vector, insert them into an | 
 |   // undef vector.  This handles the common case for 128-bit vector argument | 
 |   // passing, where the insertions should be translated to subreg accesses | 
 |   // with no real instructions. | 
 |   if (VT.is128BitVector() && Op.getNumOperands() == 2) { | 
 |     SDValue Val = DAG.getUNDEF(VT); | 
 |     SDValue Op0 = Op.getOperand(0); | 
 |     SDValue Op1 = Op.getOperand(1); | 
 |     if (Op0.getOpcode() != ISD::UNDEF) | 
 |       Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op0, | 
 |                         DAG.getIntPtrConstant(0)); | 
 |     if (Op1.getOpcode() != ISD::UNDEF) | 
 |       Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Val, Op1, | 
 |                         DAG.getIntPtrConstant(1)); | 
 |     return Val; | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// isShuffleMaskLegal - Targets can use this to indicate that they only | 
 | /// support *some* VECTOR_SHUFFLE operations, those with specific masks. | 
 | /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values | 
 | /// are assumed to be legal. | 
 | bool | 
 | ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, | 
 |                                       EVT VT) const { | 
 |   if (VT.getVectorNumElements() == 4 && | 
 |       (VT.is128BitVector() || VT.is64BitVector())) { | 
 |     unsigned PFIndexes[4]; | 
 |     for (unsigned i = 0; i != 4; ++i) { | 
 |       if (M[i] < 0) | 
 |         PFIndexes[i] = 8; | 
 |       else | 
 |         PFIndexes[i] = M[i]; | 
 |     } | 
 |  | 
 |     // Compute the index in the perfect shuffle table. | 
 |     unsigned PFTableIndex = | 
 |       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; | 
 |     unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; | 
 |     unsigned Cost = (PFEntry >> 30); | 
 |  | 
 |     if (Cost <= 4) | 
 |       return true; | 
 |   } | 
 |  | 
 |   bool ReverseVEXT; | 
 |   unsigned Imm, WhichResult; | 
 |  | 
 |   return (ShuffleVectorSDNode::isSplatMask(&M[0], VT) || | 
 |           isVREVMask(M, VT, 64) || | 
 |           isVREVMask(M, VT, 32) || | 
 |           isVREVMask(M, VT, 16) || | 
 |           isVEXTMask(M, VT, ReverseVEXT, Imm) || | 
 |           isVTRNMask(M, VT, WhichResult) || | 
 |           isVUZPMask(M, VT, WhichResult) || | 
 |           isVZIPMask(M, VT, WhichResult) || | 
 |           isVTRN_v_undef_Mask(M, VT, WhichResult) || | 
 |           isVUZP_v_undef_Mask(M, VT, WhichResult) || | 
 |           isVZIP_v_undef_Mask(M, VT, WhichResult)); | 
 | } | 
 |  | 
 | /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit | 
 | /// the specified operations to build the shuffle. | 
 | static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, | 
 |                                       SDValue RHS, SelectionDAG &DAG, | 
 |                                       DebugLoc dl) { | 
 |   unsigned OpNum = (PFEntry >> 26) & 0x0F; | 
 |   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); | 
 |   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1); | 
 |  | 
 |   enum { | 
 |     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> | 
 |     OP_VREV, | 
 |     OP_VDUP0, | 
 |     OP_VDUP1, | 
 |     OP_VDUP2, | 
 |     OP_VDUP3, | 
 |     OP_VEXT1, | 
 |     OP_VEXT2, | 
 |     OP_VEXT3, | 
 |     OP_VUZPL, // VUZP, left result | 
 |     OP_VUZPR, // VUZP, right result | 
 |     OP_VZIPL, // VZIP, left result | 
 |     OP_VZIPR, // VZIP, right result | 
 |     OP_VTRNL, // VTRN, left result | 
 |     OP_VTRNR  // VTRN, right result | 
 |   }; | 
 |  | 
 |   if (OpNum == OP_COPY) { | 
 |     if (LHSID == (1*9+2)*9+3) return LHS; | 
 |     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); | 
 |     return RHS; | 
 |   } | 
 |  | 
 |   SDValue OpLHS, OpRHS; | 
 |   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); | 
 |   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); | 
 |   EVT VT = OpLHS.getValueType(); | 
 |  | 
 |   switch (OpNum) { | 
 |   default: llvm_unreachable("Unknown shuffle opcode!"); | 
 |   case OP_VREV: | 
 |     return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS); | 
 |   case OP_VDUP0: | 
 |   case OP_VDUP1: | 
 |   case OP_VDUP2: | 
 |   case OP_VDUP3: | 
 |     return DAG.getNode(ARMISD::VDUPLANE, dl, VT, | 
 |                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, MVT::i32)); | 
 |   case OP_VEXT1: | 
 |   case OP_VEXT2: | 
 |   case OP_VEXT3: | 
 |     return DAG.getNode(ARMISD::VEXT, dl, VT, | 
 |                        OpLHS, OpRHS, | 
 |                        DAG.getConstant(OpNum-OP_VEXT1+1, MVT::i32)); | 
 |   case OP_VUZPL: | 
 |   case OP_VUZPR: | 
 |     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), | 
 |                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL); | 
 |   case OP_VZIPL: | 
 |   case OP_VZIPR: | 
 |     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), | 
 |                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL); | 
 |   case OP_VTRNL: | 
 |   case OP_VTRNR: | 
 |     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), | 
 |                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL); | 
 |   } | 
 | } | 
 |  | 
 | static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) { | 
 |   SDValue V1 = Op.getOperand(0); | 
 |   SDValue V2 = Op.getOperand(1); | 
 |   DebugLoc dl = Op.getDebugLoc(); | 
 |   EVT VT = Op.getValueType(); | 
 |   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); | 
 |   SmallVector<int, 8> ShuffleMask; | 
 |  | 
 |   // Convert shuffles that are directly supported on NEON to target-specific | 
 |   // DAG nodes, instead of keeping them as shuffles and matching them again | 
 |   // during code selection.  This is more efficient and avoids the possibility | 
 |   // of inconsistencies between legalization and selection. | 
 |   // FIXME: floating-point vectors should be canonicalized to integer vectors | 
 |   // of the same time so that they get CSEd properly. | 
 |   SVN->getMask(ShuffleMask); | 
 |  | 
 |   if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) { | 
 |     int Lane = SVN->getSplatIndex(); | 
 |     // If this is undef splat, generate it via "just" vdup, if possible. | 
 |     if (Lane == -1) Lane = 0; | 
 |  | 
 |     if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) { | 
 |       return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0)); | 
 |     } | 
 |     return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1, | 
 |                        DAG.getConstant(Lane, MVT::i32)); | 
 |   } | 
 |  | 
 |   bool ReverseVEXT; | 
 |   unsigned Imm; | 
 |   if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) { | 
 |     if (ReverseVEXT) | 
 |       std::swap(V1, V2); | 
 |     return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2, | 
 |                        DAG.getConstant(Imm, MVT::i32)); | 
 |   } | 
 |  | 
 |   if (isVREVMask(ShuffleMask, VT, 64)) | 
 |     return DAG.getNode(ARMISD::VREV64, dl, VT, V1); | 
 |   if (isVREVMask(ShuffleMask, VT, 32)) | 
 |     return DAG.getNode(ARMISD::VREV32, dl, VT, V1); | 
 |   if (isVREVMask(ShuffleMask, VT, 16)) | 
 |     return DAG.getNode(ARMISD::VREV16, dl, VT, V1); | 
 |  | 
 |   // Check for Neon shuffles that modify both input vectors in place. | 
 |   // If both results are used, i.e., if there are two shuffles with the same | 
 |   // source operands and with masks corresponding to both results of one of | 
 |   // these operations, DAG memoization will ensure that a single node is | 
 |   // used for both shuffles. | 
 |   unsigned WhichResult; | 
 |   if (isVTRNMask(ShuffleMask, VT, WhichResult)) | 
 |     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), | 
 |                        V1, V2).getValue(WhichResult); | 
 |   if (isVUZPMask(ShuffleMask, VT, WhichResult)) | 
 |     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), | 
 |                        V1, V2).getValue(WhichResult); | 
 |   if (isVZIPMask(ShuffleMask, VT, WhichResult)) | 
 |     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), | 
 |                        V1, V2).getValue(WhichResult); | 
 |  | 
 |   if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) | 
 |     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), | 
 |                        V1, V1).getValue(WhichResult); | 
 |   if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) | 
 |     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), | 
 |                        V1, V1).getValue(WhichResult); | 
 |   if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) | 
 |     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), | 
 |                        V1, V1).getValue(WhichResult); | 
 |  | 
 |   // If the shuffle is not directly supported and it has 4 elements, use | 
 |   // the PerfectShuffle-generated table to synthesize it from other shuffles. | 
 |   if (VT.getVectorNumElements() == 4 && | 
 |       (VT.is128BitVector() || VT.is64BitVector())) { | 
 |     unsigned PFIndexes[4]; | 
 |     for (unsigned i = 0; i != 4; ++i) { | 
 |       if (ShuffleMask[i] < 0) | 
 |         PFIndexes[i] = 8; | 
 |       else | 
 |         PFIndexes[i] = ShuffleMask[i]; | 
 |     } | 
 |  | 
 |     // Compute the index in the perfect shuffle table. | 
 |     unsigned PFTableIndex = | 
 |       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; | 
 |  | 
 |     unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; | 
 |     unsigned Cost = (PFEntry >> 30); | 
 |  | 
 |     if (Cost <= 4) | 
 |       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { | 
 |   EVT VT = Op.getValueType(); | 
 |   DebugLoc dl = Op.getDebugLoc(); | 
 |   SDValue Vec = Op.getOperand(0); | 
 |   SDValue Lane = Op.getOperand(1); | 
 |   assert(VT == MVT::i32 && | 
 |          Vec.getValueType().getVectorElementType().getSizeInBits() < 32 && | 
 |          "unexpected type for custom-lowering vector extract"); | 
 |   return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane); | 
 | } | 
 |  | 
 | static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { | 
 |   // The only time a CONCAT_VECTORS operation can have legal types is when | 
 |   // two 64-bit vectors are concatenated to a 128-bit vector. | 
 |   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 && | 
 |          "unexpected CONCAT_VECTORS"); | 
 |   DebugLoc dl = Op.getDebugLoc(); | 
 |   SDValue Val = DAG.getUNDEF(MVT::v2f64); | 
 |   SDValue Op0 = Op.getOperand(0); | 
 |   SDValue Op1 = Op.getOperand(1); | 
 |   if (Op0.getOpcode() != ISD::UNDEF) | 
 |     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, | 
 |                       DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op0), | 
 |                       DAG.getIntPtrConstant(0)); | 
 |   if (Op1.getOpcode() != ISD::UNDEF) | 
 |     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, | 
 |                       DAG.getNode(ISD::BIT_CONVERT, dl, MVT::f64, Op1), | 
 |                       DAG.getIntPtrConstant(1)); | 
 |   return DAG.getNode(ISD::BIT_CONVERT, dl, Op.getValueType(), Val); | 
 | } | 
 |  | 
 | SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { | 
 |   switch (Op.getOpcode()) { | 
 |   default: llvm_unreachable("Don't know how to custom lower this!"); | 
 |   case ISD::ConstantPool:  return LowerConstantPool(Op, DAG); | 
 |   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG); | 
 |   case ISD::GlobalAddress: | 
 |     return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) : | 
 |       LowerGlobalAddressELF(Op, DAG); | 
 |   case ISD::GlobalTLSAddress:   return LowerGlobalTLSAddress(Op, DAG); | 
 |   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG); | 
 |   case ISD::BR_CC:         return LowerBR_CC(Op, DAG); | 
 |   case ISD::BR_JT:         return LowerBR_JT(Op, DAG); | 
 |   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); | 
 |   case ISD::VASTART:       return LowerVASTART(Op, DAG); | 
 |   case ISD::MEMBARRIER:    return LowerMEMBARRIER(Op, DAG, Subtarget); | 
 |   case ISD::SINT_TO_FP: | 
 |   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG); | 
 |   case ISD::FP_TO_SINT: | 
 |   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG); | 
 |   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG); | 
 |   case ISD::RETURNADDR:    break; | 
 |   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG); | 
 |   case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG); | 
 |   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG, | 
 |                                                                Subtarget); | 
 |   case ISD::BIT_CONVERT:   return ExpandBIT_CONVERT(Op.getNode(), DAG); | 
 |   case ISD::SHL: | 
 |   case ISD::SRL: | 
 |   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget); | 
 |   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG); | 
 |   case ISD::SRL_PARTS: | 
 |   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG); | 
 |   case ISD::CTTZ:          return LowerCTTZ(Op.getNode(), DAG, Subtarget); | 
 |   case ISD::VSETCC:        return LowerVSETCC(Op, DAG); | 
 |   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG); | 
 |   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); | 
 |   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); | 
 |   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// ReplaceNodeResults - Replace the results of node with an illegal result | 
 | /// type with new values built out of custom code. | 
 | void ARMTargetLowering::ReplaceNodeResults(SDNode *N, | 
 |                                            SmallVectorImpl<SDValue>&Results, | 
 |                                            SelectionDAG &DAG) const { | 
 |   SDValue Res; | 
 |   switch (N->getOpcode()) { | 
 |   default: | 
 |     llvm_unreachable("Don't know how to custom expand this!"); | 
 |     break; | 
 |   case ISD::BIT_CONVERT: | 
 |     Res = ExpandBIT_CONVERT(N, DAG); | 
 |     break; | 
 |   case ISD::SRL: | 
 |   case ISD::SRA: | 
 |     Res = LowerShift(N, DAG, Subtarget); | 
 |     break; | 
 |   } | 
 |   if (Res.getNode()) | 
 |     Results.push_back(Res); | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                           ARM Scheduler Hooks | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | MachineBasicBlock * | 
 | ARMTargetLowering::EmitAtomicCmpSwap(MachineInstr *MI, | 
 |                                      MachineBasicBlock *BB, | 
 |                                      unsigned Size) const { | 
 |   unsigned dest    = MI->getOperand(0).getReg(); | 
 |   unsigned ptr     = MI->getOperand(1).getReg(); | 
 |   unsigned oldval  = MI->getOperand(2).getReg(); | 
 |   unsigned newval  = MI->getOperand(3).getReg(); | 
 |   unsigned scratch = BB->getParent()->getRegInfo() | 
 |     .createVirtualRegister(ARM::GPRRegisterClass); | 
 |   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
 |   DebugLoc dl = MI->getDebugLoc(); | 
 |   bool isThumb2 = Subtarget->isThumb2(); | 
 |  | 
 |   unsigned ldrOpc, strOpc; | 
 |   switch (Size) { | 
 |   default: llvm_unreachable("unsupported size for AtomicCmpSwap!"); | 
 |   case 1: | 
 |     ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB; | 
 |     strOpc = isThumb2 ? ARM::t2LDREXB : ARM::STREXB; | 
 |     break; | 
 |   case 2: | 
 |     ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH; | 
 |     strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH; | 
 |     break; | 
 |   case 4: | 
 |     ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX; | 
 |     strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX; | 
 |     break; | 
 |   } | 
 |  | 
 |   MachineFunction *MF = BB->getParent(); | 
 |   const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
 |   MachineFunction::iterator It = BB; | 
 |   ++It; // insert the new blocks after the current block | 
 |  | 
 |   MachineBasicBlock *loop1MBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
 |   MachineBasicBlock *loop2MBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
 |   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
 |   MF->insert(It, loop1MBB); | 
 |   MF->insert(It, loop2MBB); | 
 |   MF->insert(It, exitMBB); | 
 |   exitMBB->transferSuccessors(BB); | 
 |  | 
 |   //  thisMBB: | 
 |   //   ... | 
 |   //   fallthrough --> loop1MBB | 
 |   BB->addSuccessor(loop1MBB); | 
 |  | 
 |   // loop1MBB: | 
 |   //   ldrex dest, [ptr] | 
 |   //   cmp dest, oldval | 
 |   //   bne exitMBB | 
 |   BB = loop1MBB; | 
 |   AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr)); | 
 |   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) | 
 |                  .addReg(dest).addReg(oldval)); | 
 |   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) | 
 |     .addMBB(exitMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); | 
 |   BB->addSuccessor(loop2MBB); | 
 |   BB->addSuccessor(exitMBB); | 
 |  | 
 |   // loop2MBB: | 
 |   //   strex scratch, newval, [ptr] | 
 |   //   cmp scratch, #0 | 
 |   //   bne loop1MBB | 
 |   BB = loop2MBB; | 
 |   AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(newval) | 
 |                  .addReg(ptr)); | 
 |   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) | 
 |                  .addReg(scratch).addImm(0)); | 
 |   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) | 
 |     .addMBB(loop1MBB).addImm(ARMCC::NE).addReg(ARM::CPSR); | 
 |   BB->addSuccessor(loop1MBB); | 
 |   BB->addSuccessor(exitMBB); | 
 |  | 
 |   //  exitMBB: | 
 |   //   ... | 
 |   BB = exitMBB; | 
 |  | 
 |   MF->DeleteMachineInstr(MI);   // The instruction is gone now. | 
 |  | 
 |   return BB; | 
 | } | 
 |  | 
 | MachineBasicBlock * | 
 | ARMTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB, | 
 |                                     unsigned Size, unsigned BinOpcode) const { | 
 |   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0. | 
 |   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
 |  | 
 |   const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
 |   MachineFunction *MF = BB->getParent(); | 
 |   MachineFunction::iterator It = BB; | 
 |   ++It; | 
 |  | 
 |   unsigned dest = MI->getOperand(0).getReg(); | 
 |   unsigned ptr = MI->getOperand(1).getReg(); | 
 |   unsigned incr = MI->getOperand(2).getReg(); | 
 |   DebugLoc dl = MI->getDebugLoc(); | 
 |  | 
 |   bool isThumb2 = Subtarget->isThumb2(); | 
 |   unsigned ldrOpc, strOpc; | 
 |   switch (Size) { | 
 |   default: llvm_unreachable("unsupported size for AtomicCmpSwap!"); | 
 |   case 1: | 
 |     ldrOpc = isThumb2 ? ARM::t2LDREXB : ARM::LDREXB; | 
 |     strOpc = isThumb2 ? ARM::t2STREXB : ARM::STREXB; | 
 |     break; | 
 |   case 2: | 
 |     ldrOpc = isThumb2 ? ARM::t2LDREXH : ARM::LDREXH; | 
 |     strOpc = isThumb2 ? ARM::t2STREXH : ARM::STREXH; | 
 |     break; | 
 |   case 4: | 
 |     ldrOpc = isThumb2 ? ARM::t2LDREX : ARM::LDREX; | 
 |     strOpc = isThumb2 ? ARM::t2STREX : ARM::STREX; | 
 |     break; | 
 |   } | 
 |  | 
 |   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
 |   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); | 
 |   MF->insert(It, loopMBB); | 
 |   MF->insert(It, exitMBB); | 
 |   exitMBB->transferSuccessors(BB); | 
 |  | 
 |   MachineRegisterInfo &RegInfo = MF->getRegInfo(); | 
 |   unsigned scratch = RegInfo.createVirtualRegister(ARM::GPRRegisterClass); | 
 |   unsigned scratch2 = (!BinOpcode) ? incr : | 
 |     RegInfo.createVirtualRegister(ARM::GPRRegisterClass); | 
 |  | 
 |   //  thisMBB: | 
 |   //   ... | 
 |   //   fallthrough --> loopMBB | 
 |   BB->addSuccessor(loopMBB); | 
 |  | 
 |   //  loopMBB: | 
 |   //   ldrex dest, ptr | 
 |   //   <binop> scratch2, dest, incr | 
 |   //   strex scratch, scratch2, ptr | 
 |   //   cmp scratch, #0 | 
 |   //   bne- loopMBB | 
 |   //   fallthrough --> exitMBB | 
 |   BB = loopMBB; | 
 |   AddDefaultPred(BuildMI(BB, dl, TII->get(ldrOpc), dest).addReg(ptr)); | 
 |   if (BinOpcode) { | 
 |     // operand order needs to go the other way for NAND | 
 |     if (BinOpcode == ARM::BICrr || BinOpcode == ARM::t2BICrr) | 
 |       AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2). | 
 |                      addReg(incr).addReg(dest)).addReg(0); | 
 |     else | 
 |       AddDefaultPred(BuildMI(BB, dl, TII->get(BinOpcode), scratch2). | 
 |                      addReg(dest).addReg(incr)).addReg(0); | 
 |   } | 
 |  | 
 |   AddDefaultPred(BuildMI(BB, dl, TII->get(strOpc), scratch).addReg(scratch2) | 
 |                  .addReg(ptr)); | 
 |   AddDefaultPred(BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) | 
 |                  .addReg(scratch).addImm(0)); | 
 |   BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) | 
 |     .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); | 
 |  | 
 |   BB->addSuccessor(loopMBB); | 
 |   BB->addSuccessor(exitMBB); | 
 |  | 
 |   //  exitMBB: | 
 |   //   ... | 
 |   BB = exitMBB; | 
 |  | 
 |   MF->DeleteMachineInstr(MI);   // The instruction is gone now. | 
 |  | 
 |   return BB; | 
 | } | 
 |  | 
 | MachineBasicBlock * | 
 | ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, | 
 |                                                MachineBasicBlock *BB) const { | 
 |   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); | 
 |   DebugLoc dl = MI->getDebugLoc(); | 
 |   bool isThumb2 = Subtarget->isThumb2(); | 
 |   switch (MI->getOpcode()) { | 
 |   default: | 
 |     MI->dump(); | 
 |     llvm_unreachable("Unexpected instr type to insert"); | 
 |  | 
 |   case ARM::ATOMIC_LOAD_ADD_I8: | 
 |      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr); | 
 |   case ARM::ATOMIC_LOAD_ADD_I16: | 
 |      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr); | 
 |   case ARM::ATOMIC_LOAD_ADD_I32: | 
 |      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ADDrr : ARM::ADDrr); | 
 |  | 
 |   case ARM::ATOMIC_LOAD_AND_I8: | 
 |      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr); | 
 |   case ARM::ATOMIC_LOAD_AND_I16: | 
 |      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr); | 
 |   case ARM::ATOMIC_LOAD_AND_I32: | 
 |      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ANDrr : ARM::ANDrr); | 
 |  | 
 |   case ARM::ATOMIC_LOAD_OR_I8: | 
 |      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr); | 
 |   case ARM::ATOMIC_LOAD_OR_I16: | 
 |      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr); | 
 |   case ARM::ATOMIC_LOAD_OR_I32: | 
 |      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2ORRrr : ARM::ORRrr); | 
 |  | 
 |   case ARM::ATOMIC_LOAD_XOR_I8: | 
 |      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2EORrr : ARM::EORrr); | 
 |   case ARM::ATOMIC_LOAD_XOR_I16: | 
 |      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2EORrr : ARM::EORrr); | 
 |   case ARM::ATOMIC_LOAD_XOR_I32: | 
 |      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2EORrr : ARM::EORrr); | 
 |  | 
 |   case ARM::ATOMIC_LOAD_NAND_I8: | 
 |      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2BICrr : ARM::BICrr); | 
 |   case ARM::ATOMIC_LOAD_NAND_I16: | 
 |      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2BICrr : ARM::BICrr); | 
 |   case ARM::ATOMIC_LOAD_NAND_I32: | 
 |      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2BICrr : ARM::BICrr); | 
 |  | 
 |   case ARM::ATOMIC_LOAD_SUB_I8: | 
 |      return EmitAtomicBinary(MI, BB, 1, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr); | 
 |   case ARM::ATOMIC_LOAD_SUB_I16: | 
 |      return EmitAtomicBinary(MI, BB, 2, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr); | 
 |   case ARM::ATOMIC_LOAD_SUB_I32: | 
 |      return EmitAtomicBinary(MI, BB, 4, isThumb2 ? ARM::t2SUBrr : ARM::SUBrr); | 
 |  | 
 |   case ARM::ATOMIC_SWAP_I8:  return EmitAtomicBinary(MI, BB, 1, 0); | 
 |   case ARM::ATOMIC_SWAP_I16: return EmitAtomicBinary(MI, BB, 2, 0); | 
 |   case ARM::ATOMIC_SWAP_I32: return EmitAtomicBinary(MI, BB, 4, 0); | 
 |  | 
 |   case ARM::ATOMIC_CMP_SWAP_I8:  return EmitAtomicCmpSwap(MI, BB, 1); | 
 |   case ARM::ATOMIC_CMP_SWAP_I16: return EmitAtomicCmpSwap(MI, BB, 2); | 
 |   case ARM::ATOMIC_CMP_SWAP_I32: return EmitAtomicCmpSwap(MI, BB, 4); | 
 |  | 
 |   case ARM::tMOVCCr_pseudo: { | 
 |     // To "insert" a SELECT_CC instruction, we actually have to insert the | 
 |     // diamond control-flow pattern.  The incoming instruction knows the | 
 |     // destination vreg to set, the condition code register to branch on, the | 
 |     // true/false values to select between, and a branch opcode to use. | 
 |     const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
 |     MachineFunction::iterator It = BB; | 
 |     ++It; | 
 |  | 
 |     //  thisMBB: | 
 |     //  ... | 
 |     //   TrueVal = ... | 
 |     //   cmpTY ccX, r1, r2 | 
 |     //   bCC copy1MBB | 
 |     //   fallthrough --> copy0MBB | 
 |     MachineBasicBlock *thisMBB  = BB; | 
 |     MachineFunction *F = BB->getParent(); | 
 |     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); | 
 |     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB); | 
 |     BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB) | 
 |       .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg()); | 
 |     F->insert(It, copy0MBB); | 
 |     F->insert(It, sinkMBB); | 
 |     // Update machine-CFG edges by first adding all successors of the current | 
 |     // block to the new block which will contain the Phi node for the select. | 
 |     for (MachineBasicBlock::succ_iterator I = BB->succ_begin(),  | 
 |            E = BB->succ_end(); I != E; ++I) | 
 |       sinkMBB->addSuccessor(*I); | 
 |     // Next, remove all successors of the current block, and add the true | 
 |     // and fallthrough blocks as its successors. | 
 |     while (!BB->succ_empty()) | 
 |       BB->removeSuccessor(BB->succ_begin()); | 
 |     BB->addSuccessor(copy0MBB); | 
 |     BB->addSuccessor(sinkMBB); | 
 |  | 
 |     //  copy0MBB: | 
 |     //   %FalseValue = ... | 
 |     //   # fallthrough to sinkMBB | 
 |     BB = copy0MBB; | 
 |  | 
 |     // Update machine-CFG edges | 
 |     BB->addSuccessor(sinkMBB); | 
 |  | 
 |     //  sinkMBB: | 
 |     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] | 
 |     //  ... | 
 |     BB = sinkMBB; | 
 |     BuildMI(BB, dl, TII->get(ARM::PHI), MI->getOperand(0).getReg()) | 
 |       .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) | 
 |       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); | 
 |  | 
 |     F->DeleteMachineInstr(MI);   // The pseudo instruction is gone now. | 
 |     return BB; | 
 |   } | 
 |  | 
 |   case ARM::tANDsp: | 
 |   case ARM::tADDspr_: | 
 |   case ARM::tSUBspi_: | 
 |   case ARM::t2SUBrSPi_: | 
 |   case ARM::t2SUBrSPi12_: | 
 |   case ARM::t2SUBrSPs_: { | 
 |     MachineFunction *MF = BB->getParent(); | 
 |     unsigned DstReg = MI->getOperand(0).getReg(); | 
 |     unsigned SrcReg = MI->getOperand(1).getReg(); | 
 |     bool DstIsDead = MI->getOperand(0).isDead(); | 
 |     bool SrcIsKill = MI->getOperand(1).isKill(); | 
 |  | 
 |     if (SrcReg != ARM::SP) { | 
 |       // Copy the source to SP from virtual register. | 
 |       const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(SrcReg); | 
 |       unsigned CopyOpc = (RC == ARM::tGPRRegisterClass) | 
 |         ? ARM::tMOVtgpr2gpr : ARM::tMOVgpr2gpr; | 
 |       BuildMI(BB, dl, TII->get(CopyOpc), ARM::SP) | 
 |         .addReg(SrcReg, getKillRegState(SrcIsKill)); | 
 |     } | 
 |  | 
 |     unsigned OpOpc = 0; | 
 |     bool NeedPred = false, NeedCC = false, NeedOp3 = false; | 
 |     switch (MI->getOpcode()) { | 
 |     default: | 
 |       llvm_unreachable("Unexpected pseudo instruction!"); | 
 |     case ARM::tANDsp: | 
 |       OpOpc = ARM::tAND; | 
 |       NeedPred = true; | 
 |       break; | 
 |     case ARM::tADDspr_: | 
 |       OpOpc = ARM::tADDspr; | 
 |       break; | 
 |     case ARM::tSUBspi_: | 
 |       OpOpc = ARM::tSUBspi; | 
 |       break; | 
 |     case ARM::t2SUBrSPi_: | 
 |       OpOpc = ARM::t2SUBrSPi; | 
 |       NeedPred = true; NeedCC = true; | 
 |       break; | 
 |     case ARM::t2SUBrSPi12_: | 
 |       OpOpc = ARM::t2SUBrSPi12; | 
 |       NeedPred = true; | 
 |       break; | 
 |     case ARM::t2SUBrSPs_: | 
 |       OpOpc = ARM::t2SUBrSPs; | 
 |       NeedPred = true; NeedCC = true; NeedOp3 = true; | 
 |       break; | 
 |     } | 
 |     MachineInstrBuilder MIB = BuildMI(BB, dl, TII->get(OpOpc), ARM::SP); | 
 |     if (OpOpc == ARM::tAND) | 
 |       AddDefaultT1CC(MIB); | 
 |     MIB.addReg(ARM::SP); | 
 |     MIB.addOperand(MI->getOperand(2)); | 
 |     if (NeedOp3) | 
 |       MIB.addOperand(MI->getOperand(3)); | 
 |     if (NeedPred) | 
 |       AddDefaultPred(MIB); | 
 |     if (NeedCC) | 
 |       AddDefaultCC(MIB); | 
 |  | 
 |     // Copy the result from SP to virtual register. | 
 |     const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(DstReg); | 
 |     unsigned CopyOpc = (RC == ARM::tGPRRegisterClass) | 
 |       ? ARM::tMOVgpr2tgpr : ARM::tMOVgpr2gpr; | 
 |     BuildMI(BB, dl, TII->get(CopyOpc)) | 
 |       .addReg(DstReg, getDefRegState(true) | getDeadRegState(DstIsDead)) | 
 |       .addReg(ARM::SP); | 
 |     MF->DeleteMachineInstr(MI);   // The pseudo instruction is gone now. | 
 |     return BB; | 
 |   } | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                           ARM Optimization Hooks | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | static | 
 | SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, | 
 |                             TargetLowering::DAGCombinerInfo &DCI) { | 
 |   SelectionDAG &DAG = DCI.DAG; | 
 |   const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |   EVT VT = N->getValueType(0); | 
 |   unsigned Opc = N->getOpcode(); | 
 |   bool isSlctCC = Slct.getOpcode() == ISD::SELECT_CC; | 
 |   SDValue LHS = isSlctCC ? Slct.getOperand(2) : Slct.getOperand(1); | 
 |   SDValue RHS = isSlctCC ? Slct.getOperand(3) : Slct.getOperand(2); | 
 |   ISD::CondCode CC = ISD::SETCC_INVALID; | 
 |  | 
 |   if (isSlctCC) { | 
 |     CC = cast<CondCodeSDNode>(Slct.getOperand(4))->get(); | 
 |   } else { | 
 |     SDValue CCOp = Slct.getOperand(0); | 
 |     if (CCOp.getOpcode() == ISD::SETCC) | 
 |       CC = cast<CondCodeSDNode>(CCOp.getOperand(2))->get(); | 
 |   } | 
 |  | 
 |   bool DoXform = false; | 
 |   bool InvCC = false; | 
 |   assert ((Opc == ISD::ADD || (Opc == ISD::SUB && Slct == N->getOperand(1))) && | 
 |           "Bad input!"); | 
 |  | 
 |   if (LHS.getOpcode() == ISD::Constant && | 
 |       cast<ConstantSDNode>(LHS)->isNullValue()) { | 
 |     DoXform = true; | 
 |   } else if (CC != ISD::SETCC_INVALID && | 
 |              RHS.getOpcode() == ISD::Constant && | 
 |              cast<ConstantSDNode>(RHS)->isNullValue()) { | 
 |     std::swap(LHS, RHS); | 
 |     SDValue Op0 = Slct.getOperand(0); | 
 |     EVT OpVT = isSlctCC ? Op0.getValueType() : | 
 |                           Op0.getOperand(0).getValueType(); | 
 |     bool isInt = OpVT.isInteger(); | 
 |     CC = ISD::getSetCCInverse(CC, isInt); | 
 |  | 
 |     if (!TLI.isCondCodeLegal(CC, OpVT)) | 
 |       return SDValue();         // Inverse operator isn't legal. | 
 |  | 
 |     DoXform = true; | 
 |     InvCC = true; | 
 |   } | 
 |  | 
 |   if (DoXform) { | 
 |     SDValue Result = DAG.getNode(Opc, RHS.getDebugLoc(), VT, OtherOp, RHS); | 
 |     if (isSlctCC) | 
 |       return DAG.getSelectCC(N->getDebugLoc(), OtherOp, Result, | 
 |                              Slct.getOperand(0), Slct.getOperand(1), CC); | 
 |     SDValue CCOp = Slct.getOperand(0); | 
 |     if (InvCC) | 
 |       CCOp = DAG.getSetCC(Slct.getDebugLoc(), CCOp.getValueType(), | 
 |                           CCOp.getOperand(0), CCOp.getOperand(1), CC); | 
 |     return DAG.getNode(ISD::SELECT, N->getDebugLoc(), VT, | 
 |                        CCOp, OtherOp, Result); | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD. | 
 | static SDValue PerformADDCombine(SDNode *N, | 
 |                                  TargetLowering::DAGCombinerInfo &DCI) { | 
 |   // added by evan in r37685 with no testcase. | 
 |   SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); | 
 |  | 
 |   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) | 
 |   if (N0.getOpcode() == ISD::SELECT && N0.getNode()->hasOneUse()) { | 
 |     SDValue Result = combineSelectAndUse(N, N0, N1, DCI); | 
 |     if (Result.getNode()) return Result; | 
 |   } | 
 |   if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) { | 
 |     SDValue Result = combineSelectAndUse(N, N1, N0, DCI); | 
 |     if (Result.getNode()) return Result; | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB. | 
 | static SDValue PerformSUBCombine(SDNode *N, | 
 |                                  TargetLowering::DAGCombinerInfo &DCI) { | 
 |   // added by evan in r37685 with no testcase. | 
 |   SDValue N0 = N->getOperand(0), N1 = N->getOperand(1); | 
 |  | 
 |   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) | 
 |   if (N1.getOpcode() == ISD::SELECT && N1.getNode()->hasOneUse()) { | 
 |     SDValue Result = combineSelectAndUse(N, N1, N0, DCI); | 
 |     if (Result.getNode()) return Result; | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | static SDValue PerformMULCombine(SDNode *N, | 
 |                                  TargetLowering::DAGCombinerInfo &DCI, | 
 |                                  const ARMSubtarget *Subtarget) { | 
 |   SelectionDAG &DAG = DCI.DAG; | 
 |  | 
 |   if (Subtarget->isThumb1Only()) | 
 |     return SDValue(); | 
 |  | 
 |   if (DAG.getMachineFunction(). | 
 |       getFunction()->hasFnAttr(Attribute::OptimizeForSize)) | 
 |     return SDValue(); | 
 |  | 
 |   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) | 
 |     return SDValue(); | 
 |  | 
 |   EVT VT = N->getValueType(0); | 
 |   if (VT != MVT::i32) | 
 |     return SDValue(); | 
 |  | 
 |   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
 |   if (!C) | 
 |     return SDValue(); | 
 |  | 
 |   uint64_t MulAmt = C->getZExtValue(); | 
 |   unsigned ShiftAmt = CountTrailingZeros_64(MulAmt); | 
 |   ShiftAmt = ShiftAmt & (32 - 1); | 
 |   SDValue V = N->getOperand(0); | 
 |   DebugLoc DL = N->getDebugLoc(); | 
 |  | 
 |   SDValue Res; | 
 |   MulAmt >>= ShiftAmt; | 
 |   if (isPowerOf2_32(MulAmt - 1)) { | 
 |     // (mul x, 2^N + 1) => (add (shl x, N), x) | 
 |     Res = DAG.getNode(ISD::ADD, DL, VT, | 
 |                       V, DAG.getNode(ISD::SHL, DL, VT, | 
 |                                      V, DAG.getConstant(Log2_32(MulAmt-1), | 
 |                                                         MVT::i32))); | 
 |   } else if (isPowerOf2_32(MulAmt + 1)) { | 
 |     // (mul x, 2^N - 1) => (sub (shl x, N), x) | 
 |     Res = DAG.getNode(ISD::SUB, DL, VT, | 
 |                       DAG.getNode(ISD::SHL, DL, VT, | 
 |                                   V, DAG.getConstant(Log2_32(MulAmt+1), | 
 |                                                      MVT::i32)), | 
 |                                                      V); | 
 |   } else | 
 |     return SDValue(); | 
 |  | 
 |   if (ShiftAmt != 0) | 
 |     Res = DAG.getNode(ISD::SHL, DL, VT, Res, | 
 |                       DAG.getConstant(ShiftAmt, MVT::i32)); | 
 |  | 
 |   // Do not add new nodes to DAG combiner worklist. | 
 |   DCI.CombineTo(N, Res, false); | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// PerformVMOVRRDCombine - Target-specific dag combine xforms for | 
 | /// ARMISD::VMOVRRD. | 
 | static SDValue PerformVMOVRRDCombine(SDNode *N, | 
 |                                    TargetLowering::DAGCombinerInfo &DCI) { | 
 |   // fmrrd(fmdrr x, y) -> x,y | 
 |   SDValue InDouble = N->getOperand(0); | 
 |   if (InDouble.getOpcode() == ARMISD::VMOVDRR) | 
 |     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1)); | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// getVShiftImm - Check if this is a valid build_vector for the immediate | 
 | /// operand of a vector shift operation, where all the elements of the | 
 | /// build_vector must have the same constant integer value. | 
 | static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { | 
 |   // Ignore bit_converts. | 
 |   while (Op.getOpcode() == ISD::BIT_CONVERT) | 
 |     Op = Op.getOperand(0); | 
 |   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); | 
 |   APInt SplatBits, SplatUndef; | 
 |   unsigned SplatBitSize; | 
 |   bool HasAnyUndefs; | 
 |   if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, | 
 |                                       HasAnyUndefs, ElementBits) || | 
 |       SplatBitSize > ElementBits) | 
 |     return false; | 
 |   Cnt = SplatBits.getSExtValue(); | 
 |   return true; | 
 | } | 
 |  | 
 | /// isVShiftLImm - Check if this is a valid build_vector for the immediate | 
 | /// operand of a vector shift left operation.  That value must be in the range: | 
 | ///   0 <= Value < ElementBits for a left shift; or | 
 | ///   0 <= Value <= ElementBits for a long left shift. | 
 | static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) { | 
 |   assert(VT.isVector() && "vector shift count is not a vector type"); | 
 |   unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); | 
 |   if (! getVShiftImm(Op, ElementBits, Cnt)) | 
 |     return false; | 
 |   return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits); | 
 | } | 
 |  | 
 | /// isVShiftRImm - Check if this is a valid build_vector for the immediate | 
 | /// operand of a vector shift right operation.  For a shift opcode, the value | 
 | /// is positive, but for an intrinsic the value count must be negative. The | 
 | /// absolute value must be in the range: | 
 | ///   1 <= |Value| <= ElementBits for a right shift; or | 
 | ///   1 <= |Value| <= ElementBits/2 for a narrow right shift. | 
 | static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic, | 
 |                          int64_t &Cnt) { | 
 |   assert(VT.isVector() && "vector shift count is not a vector type"); | 
 |   unsigned ElementBits = VT.getVectorElementType().getSizeInBits(); | 
 |   if (! getVShiftImm(Op, ElementBits, Cnt)) | 
 |     return false; | 
 |   if (isIntrinsic) | 
 |     Cnt = -Cnt; | 
 |   return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits)); | 
 | } | 
 |  | 
 | /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics. | 
 | static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) { | 
 |   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); | 
 |   switch (IntNo) { | 
 |   default: | 
 |     // Don't do anything for most intrinsics. | 
 |     break; | 
 |  | 
 |   // Vector shifts: check for immediate versions and lower them. | 
 |   // Note: This is done during DAG combining instead of DAG legalizing because | 
 |   // the build_vectors for 64-bit vector element shift counts are generally | 
 |   // not legal, and it is hard to see their values after they get legalized to | 
 |   // loads from a constant pool. | 
 |   case Intrinsic::arm_neon_vshifts: | 
 |   case Intrinsic::arm_neon_vshiftu: | 
 |   case Intrinsic::arm_neon_vshiftls: | 
 |   case Intrinsic::arm_neon_vshiftlu: | 
 |   case Intrinsic::arm_neon_vshiftn: | 
 |   case Intrinsic::arm_neon_vrshifts: | 
 |   case Intrinsic::arm_neon_vrshiftu: | 
 |   case Intrinsic::arm_neon_vrshiftn: | 
 |   case Intrinsic::arm_neon_vqshifts: | 
 |   case Intrinsic::arm_neon_vqshiftu: | 
 |   case Intrinsic::arm_neon_vqshiftsu: | 
 |   case Intrinsic::arm_neon_vqshiftns: | 
 |   case Intrinsic::arm_neon_vqshiftnu: | 
 |   case Intrinsic::arm_neon_vqshiftnsu: | 
 |   case Intrinsic::arm_neon_vqrshiftns: | 
 |   case Intrinsic::arm_neon_vqrshiftnu: | 
 |   case Intrinsic::arm_neon_vqrshiftnsu: { | 
 |     EVT VT = N->getOperand(1).getValueType(); | 
 |     int64_t Cnt; | 
 |     unsigned VShiftOpc = 0; | 
 |  | 
 |     switch (IntNo) { | 
 |     case Intrinsic::arm_neon_vshifts: | 
 |     case Intrinsic::arm_neon_vshiftu: | 
 |       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) { | 
 |         VShiftOpc = ARMISD::VSHL; | 
 |         break; | 
 |       } | 
 |       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) { | 
 |         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? | 
 |                      ARMISD::VSHRs : ARMISD::VSHRu); | 
 |         break; | 
 |       } | 
 |       return SDValue(); | 
 |  | 
 |     case Intrinsic::arm_neon_vshiftls: | 
 |     case Intrinsic::arm_neon_vshiftlu: | 
 |       if (isVShiftLImm(N->getOperand(2), VT, true, Cnt)) | 
 |         break; | 
 |       llvm_unreachable("invalid shift count for vshll intrinsic"); | 
 |  | 
 |     case Intrinsic::arm_neon_vrshifts: | 
 |     case Intrinsic::arm_neon_vrshiftu: | 
 |       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) | 
 |         break; | 
 |       return SDValue(); | 
 |  | 
 |     case Intrinsic::arm_neon_vqshifts: | 
 |     case Intrinsic::arm_neon_vqshiftu: | 
 |       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) | 
 |         break; | 
 |       return SDValue(); | 
 |  | 
 |     case Intrinsic::arm_neon_vqshiftsu: | 
 |       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) | 
 |         break; | 
 |       llvm_unreachable("invalid shift count for vqshlu intrinsic"); | 
 |  | 
 |     case Intrinsic::arm_neon_vshiftn: | 
 |     case Intrinsic::arm_neon_vrshiftn: | 
 |     case Intrinsic::arm_neon_vqshiftns: | 
 |     case Intrinsic::arm_neon_vqshiftnu: | 
 |     case Intrinsic::arm_neon_vqshiftnsu: | 
 |     case Intrinsic::arm_neon_vqrshiftns: | 
 |     case Intrinsic::arm_neon_vqrshiftnu: | 
 |     case Intrinsic::arm_neon_vqrshiftnsu: | 
 |       // Narrowing shifts require an immediate right shift. | 
 |       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt)) | 
 |         break; | 
 |       llvm_unreachable("invalid shift count for narrowing vector shift intrinsic"); | 
 |  | 
 |     default: | 
 |       llvm_unreachable("unhandled vector shift"); | 
 |     } | 
 |  | 
 |     switch (IntNo) { | 
 |     case Intrinsic::arm_neon_vshifts: | 
 |     case Intrinsic::arm_neon_vshiftu: | 
 |       // Opcode already set above. | 
 |       break; | 
 |     case Intrinsic::arm_neon_vshiftls: | 
 |     case Intrinsic::arm_neon_vshiftlu: | 
 |       if (Cnt == VT.getVectorElementType().getSizeInBits()) | 
 |         VShiftOpc = ARMISD::VSHLLi; | 
 |       else | 
 |         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshiftls ? | 
 |                      ARMISD::VSHLLs : ARMISD::VSHLLu); | 
 |       break; | 
 |     case Intrinsic::arm_neon_vshiftn: | 
 |       VShiftOpc = ARMISD::VSHRN; break; | 
 |     case Intrinsic::arm_neon_vrshifts: | 
 |       VShiftOpc = ARMISD::VRSHRs; break; | 
 |     case Intrinsic::arm_neon_vrshiftu: | 
 |       VShiftOpc = ARMISD::VRSHRu; break; | 
 |     case Intrinsic::arm_neon_vrshiftn: | 
 |       VShiftOpc = ARMISD::VRSHRN; break; | 
 |     case Intrinsic::arm_neon_vqshifts: | 
 |       VShiftOpc = ARMISD::VQSHLs; break; | 
 |     case Intrinsic::arm_neon_vqshiftu: | 
 |       VShiftOpc = ARMISD::VQSHLu; break; | 
 |     case Intrinsic::arm_neon_vqshiftsu: | 
 |       VShiftOpc = ARMISD::VQSHLsu; break; | 
 |     case Intrinsic::arm_neon_vqshiftns: | 
 |       VShiftOpc = ARMISD::VQSHRNs; break; | 
 |     case Intrinsic::arm_neon_vqshiftnu: | 
 |       VShiftOpc = ARMISD::VQSHRNu; break; | 
 |     case Intrinsic::arm_neon_vqshiftnsu: | 
 |       VShiftOpc = ARMISD::VQSHRNsu; break; | 
 |     case Intrinsic::arm_neon_vqrshiftns: | 
 |       VShiftOpc = ARMISD::VQRSHRNs; break; | 
 |     case Intrinsic::arm_neon_vqrshiftnu: | 
 |       VShiftOpc = ARMISD::VQRSHRNu; break; | 
 |     case Intrinsic::arm_neon_vqrshiftnsu: | 
 |       VShiftOpc = ARMISD::VQRSHRNsu; break; | 
 |     } | 
 |  | 
 |     return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0), | 
 |                        N->getOperand(1), DAG.getConstant(Cnt, MVT::i32)); | 
 |   } | 
 |  | 
 |   case Intrinsic::arm_neon_vshiftins: { | 
 |     EVT VT = N->getOperand(1).getValueType(); | 
 |     int64_t Cnt; | 
 |     unsigned VShiftOpc = 0; | 
 |  | 
 |     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt)) | 
 |       VShiftOpc = ARMISD::VSLI; | 
 |     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt)) | 
 |       VShiftOpc = ARMISD::VSRI; | 
 |     else { | 
 |       llvm_unreachable("invalid shift count for vsli/vsri intrinsic"); | 
 |     } | 
 |  | 
 |     return DAG.getNode(VShiftOpc, N->getDebugLoc(), N->getValueType(0), | 
 |                        N->getOperand(1), N->getOperand(2), | 
 |                        DAG.getConstant(Cnt, MVT::i32)); | 
 |   } | 
 |  | 
 |   case Intrinsic::arm_neon_vqrshifts: | 
 |   case Intrinsic::arm_neon_vqrshiftu: | 
 |     // No immediate versions of these to check for. | 
 |     break; | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// PerformShiftCombine - Checks for immediate versions of vector shifts and | 
 | /// lowers them.  As with the vector shift intrinsics, this is done during DAG | 
 | /// combining instead of DAG legalizing because the build_vectors for 64-bit | 
 | /// vector element shift counts are generally not legal, and it is hard to see | 
 | /// their values after they get legalized to loads from a constant pool. | 
 | static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG, | 
 |                                    const ARMSubtarget *ST) { | 
 |   EVT VT = N->getValueType(0); | 
 |  | 
 |   // Nothing to be done for scalar shifts. | 
 |   if (! VT.isVector()) | 
 |     return SDValue(); | 
 |  | 
 |   assert(ST->hasNEON() && "unexpected vector shift"); | 
 |   int64_t Cnt; | 
 |  | 
 |   switch (N->getOpcode()) { | 
 |   default: llvm_unreachable("unexpected shift opcode"); | 
 |  | 
 |   case ISD::SHL: | 
 |     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) | 
 |       return DAG.getNode(ARMISD::VSHL, N->getDebugLoc(), VT, N->getOperand(0), | 
 |                          DAG.getConstant(Cnt, MVT::i32)); | 
 |     break; | 
 |  | 
 |   case ISD::SRA: | 
 |   case ISD::SRL: | 
 |     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) { | 
 |       unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ? | 
 |                             ARMISD::VSHRs : ARMISD::VSHRu); | 
 |       return DAG.getNode(VShiftOpc, N->getDebugLoc(), VT, N->getOperand(0), | 
 |                          DAG.getConstant(Cnt, MVT::i32)); | 
 |     } | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND, | 
 | /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND. | 
 | static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG, | 
 |                                     const ARMSubtarget *ST) { | 
 |   SDValue N0 = N->getOperand(0); | 
 |  | 
 |   // Check for sign- and zero-extensions of vector extract operations of 8- | 
 |   // and 16-bit vector elements.  NEON supports these directly.  They are | 
 |   // handled during DAG combining because type legalization will promote them | 
 |   // to 32-bit types and it is messy to recognize the operations after that. | 
 |   if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { | 
 |     SDValue Vec = N0.getOperand(0); | 
 |     SDValue Lane = N0.getOperand(1); | 
 |     EVT VT = N->getValueType(0); | 
 |     EVT EltVT = N0.getValueType(); | 
 |     const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
 |  | 
 |     if (VT == MVT::i32 && | 
 |         (EltVT == MVT::i8 || EltVT == MVT::i16) && | 
 |         TLI.isTypeLegal(Vec.getValueType())) { | 
 |  | 
 |       unsigned Opc = 0; | 
 |       switch (N->getOpcode()) { | 
 |       default: llvm_unreachable("unexpected opcode"); | 
 |       case ISD::SIGN_EXTEND: | 
 |         Opc = ARMISD::VGETLANEs; | 
 |         break; | 
 |       case ISD::ZERO_EXTEND: | 
 |       case ISD::ANY_EXTEND: | 
 |         Opc = ARMISD::VGETLANEu; | 
 |         break; | 
 |       } | 
 |       return DAG.getNode(Opc, N->getDebugLoc(), VT, Vec, Lane); | 
 |     } | 
 |   } | 
 |  | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | /// PerformSELECT_CCCombine - Target-specific DAG combining for ISD::SELECT_CC | 
 | /// to match f32 max/min patterns to use NEON vmax/vmin instructions. | 
 | static SDValue PerformSELECT_CCCombine(SDNode *N, SelectionDAG &DAG, | 
 |                                        const ARMSubtarget *ST) { | 
 |   // If the target supports NEON, try to use vmax/vmin instructions for f32 | 
 |   // selects like "x < y ? x : y".  Unless the FiniteOnlyFPMath option is set, | 
 |   // be careful about NaNs:  NEON's vmax/vmin return NaN if either operand is | 
 |   // a NaN; only do the transformation when it matches that behavior. | 
 |  | 
 |   // For now only do this when using NEON for FP operations; if using VFP, it | 
 |   // is not obvious that the benefit outweighs the cost of switching to the | 
 |   // NEON pipeline. | 
 |   if (!ST->hasNEON() || !ST->useNEONForSinglePrecisionFP() || | 
 |       N->getValueType(0) != MVT::f32) | 
 |     return SDValue(); | 
 |  | 
 |   SDValue CondLHS = N->getOperand(0); | 
 |   SDValue CondRHS = N->getOperand(1); | 
 |   SDValue LHS = N->getOperand(2); | 
 |   SDValue RHS = N->getOperand(3); | 
 |   ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get(); | 
 |  | 
 |   unsigned Opcode = 0; | 
 |   bool IsReversed; | 
 |   if (DAG.isEqualTo(LHS, CondLHS) && DAG.isEqualTo(RHS, CondRHS)) { | 
 |     IsReversed = false; // x CC y ? x : y | 
 |   } else if (DAG.isEqualTo(LHS, CondRHS) && DAG.isEqualTo(RHS, CondLHS)) { | 
 |     IsReversed = true ; // x CC y ? y : x | 
 |   } else { | 
 |     return SDValue(); | 
 |   } | 
 |  | 
 |   bool IsUnordered; | 
 |   switch (CC) { | 
 |   default: break; | 
 |   case ISD::SETOLT: | 
 |   case ISD::SETOLE: | 
 |   case ISD::SETLT: | 
 |   case ISD::SETLE: | 
 |   case ISD::SETULT: | 
 |   case ISD::SETULE: | 
 |     // If LHS is NaN, an ordered comparison will be false and the result will | 
 |     // be the RHS, but vmin(NaN, RHS) = NaN.  Avoid this by checking that LHS | 
 |     // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN. | 
 |     IsUnordered = (CC == ISD::SETULT || CC == ISD::SETULE); | 
 |     if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS)) | 
 |       break; | 
 |     // For less-than-or-equal comparisons, "+0 <= -0" will be true but vmin | 
 |     // will return -0, so vmin can only be used for unsafe math or if one of | 
 |     // the operands is known to be nonzero. | 
 |     if ((CC == ISD::SETLE || CC == ISD::SETOLE || CC == ISD::SETULE) && | 
 |         !UnsafeFPMath && | 
 |         !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) | 
 |       break; | 
 |     Opcode = IsReversed ? ARMISD::FMAX : ARMISD::FMIN; | 
 |     break; | 
 |  | 
 |   case ISD::SETOGT: | 
 |   case ISD::SETOGE: | 
 |   case ISD::SETGT: | 
 |   case ISD::SETGE: | 
 |   case ISD::SETUGT: | 
 |   case ISD::SETUGE: | 
 |     // If LHS is NaN, an ordered comparison will be false and the result will | 
 |     // be the RHS, but vmax(NaN, RHS) = NaN.  Avoid this by checking that LHS | 
 |     // != NaN.  Likewise, for unordered comparisons, check for RHS != NaN. | 
 |     IsUnordered = (CC == ISD::SETUGT || CC == ISD::SETUGE); | 
 |     if (!DAG.isKnownNeverNaN(IsUnordered ? RHS : LHS)) | 
 |       break; | 
 |     // For greater-than-or-equal comparisons, "-0 >= +0" will be true but vmax | 
 |     // will return +0, so vmax can only be used for unsafe math or if one of | 
 |     // the operands is known to be nonzero. | 
 |     if ((CC == ISD::SETGE || CC == ISD::SETOGE || CC == ISD::SETUGE) && | 
 |         !UnsafeFPMath && | 
 |         !(DAG.isKnownNeverZero(LHS) || DAG.isKnownNeverZero(RHS))) | 
 |       break; | 
 |     Opcode = IsReversed ? ARMISD::FMIN : ARMISD::FMAX; | 
 |     break; | 
 |   } | 
 |  | 
 |   if (!Opcode) | 
 |     return SDValue(); | 
 |   return DAG.getNode(Opcode, N->getDebugLoc(), N->getValueType(0), LHS, RHS); | 
 | } | 
 |  | 
 | SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N, | 
 |                                              DAGCombinerInfo &DCI) const { | 
 |   switch (N->getOpcode()) { | 
 |   default: break; | 
 |   case ISD::ADD:        return PerformADDCombine(N, DCI); | 
 |   case ISD::SUB:        return PerformSUBCombine(N, DCI); | 
 |   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget); | 
 |   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI); | 
 |   case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG); | 
 |   case ISD::SHL: | 
 |   case ISD::SRA: | 
 |   case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget); | 
 |   case ISD::SIGN_EXTEND: | 
 |   case ISD::ZERO_EXTEND: | 
 |   case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget); | 
 |   case ISD::SELECT_CC:  return PerformSELECT_CCCombine(N, DCI.DAG, Subtarget); | 
 |   } | 
 |   return SDValue(); | 
 | } | 
 |  | 
 | bool ARMTargetLowering::allowsUnalignedMemoryAccesses(EVT VT) const { | 
 |   if (!Subtarget->hasV6Ops()) | 
 |     // Pre-v6 does not support unaligned mem access. | 
 |     return false; | 
 |   else { | 
 |     // v6+ may or may not support unaligned mem access depending on the system | 
 |     // configuration. | 
 |     // FIXME: This is pretty conservative. Should we provide cmdline option to | 
 |     // control the behaviour? | 
 |     if (!Subtarget->isTargetDarwin()) | 
 |       return false; | 
 |   } | 
 |  | 
 |   switch (VT.getSimpleVT().SimpleTy) { | 
 |   default: | 
 |     return false; | 
 |   case MVT::i8: | 
 |   case MVT::i16: | 
 |   case MVT::i32: | 
 |     return true; | 
 |   // FIXME: VLD1 etc with standard alignment is legal. | 
 |   } | 
 | } | 
 |  | 
 | static bool isLegalT1AddressImmediate(int64_t V, EVT VT) { | 
 |   if (V < 0) | 
 |     return false; | 
 |  | 
 |   unsigned Scale = 1; | 
 |   switch (VT.getSimpleVT().SimpleTy) { | 
 |   default: return false; | 
 |   case MVT::i1: | 
 |   case MVT::i8: | 
 |     // Scale == 1; | 
 |     break; | 
 |   case MVT::i16: | 
 |     // Scale == 2; | 
 |     Scale = 2; | 
 |     break; | 
 |   case MVT::i32: | 
 |     // Scale == 4; | 
 |     Scale = 4; | 
 |     break; | 
 |   } | 
 |  | 
 |   if ((V & (Scale - 1)) != 0) | 
 |     return false; | 
 |   V /= Scale; | 
 |   return V == (V & ((1LL << 5) - 1)); | 
 | } | 
 |  | 
 | static bool isLegalT2AddressImmediate(int64_t V, EVT VT, | 
 |                                       const ARMSubtarget *Subtarget) { | 
 |   bool isNeg = false; | 
 |   if (V < 0) { | 
 |     isNeg = true; | 
 |     V = - V; | 
 |   } | 
 |  | 
 |   switch (VT.getSimpleVT().SimpleTy) { | 
 |   default: return false; | 
 |   case MVT::i1: | 
 |   case MVT::i8: | 
 |   case MVT::i16: | 
 |   case MVT::i32: | 
 |     // + imm12 or - imm8 | 
 |     if (isNeg) | 
 |       return V == (V & ((1LL << 8) - 1)); | 
 |     return V == (V & ((1LL << 12) - 1)); | 
 |   case MVT::f32: | 
 |   case MVT::f64: | 
 |     // Same as ARM mode. FIXME: NEON? | 
 |     if (!Subtarget->hasVFP2()) | 
 |       return false; | 
 |     if ((V & 3) != 0) | 
 |       return false; | 
 |     V >>= 2; | 
 |     return V == (V & ((1LL << 8) - 1)); | 
 |   } | 
 | } | 
 |  | 
 | /// isLegalAddressImmediate - Return true if the integer value can be used | 
 | /// as the offset of the target addressing mode for load / store of the | 
 | /// given type. | 
 | static bool isLegalAddressImmediate(int64_t V, EVT VT, | 
 |                                     const ARMSubtarget *Subtarget) { | 
 |   if (V == 0) | 
 |     return true; | 
 |  | 
 |   if (!VT.isSimple()) | 
 |     return false; | 
 |  | 
 |   if (Subtarget->isThumb1Only()) | 
 |     return isLegalT1AddressImmediate(V, VT); | 
 |   else if (Subtarget->isThumb2()) | 
 |     return isLegalT2AddressImmediate(V, VT, Subtarget); | 
 |  | 
 |   // ARM mode. | 
 |   if (V < 0) | 
 |     V = - V; | 
 |   switch (VT.getSimpleVT().SimpleTy) { | 
 |   default: return false; | 
 |   case MVT::i1: | 
 |   case MVT::i8: | 
 |   case MVT::i32: | 
 |     // +- imm12 | 
 |     return V == (V & ((1LL << 12) - 1)); | 
 |   case MVT::i16: | 
 |     // +- imm8 | 
 |     return V == (V & ((1LL << 8) - 1)); | 
 |   case MVT::f32: | 
 |   case MVT::f64: | 
 |     if (!Subtarget->hasVFP2()) // FIXME: NEON? | 
 |       return false; | 
 |     if ((V & 3) != 0) | 
 |       return false; | 
 |     V >>= 2; | 
 |     return V == (V & ((1LL << 8) - 1)); | 
 |   } | 
 | } | 
 |  | 
 | bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM, | 
 |                                                       EVT VT) const { | 
 |   int Scale = AM.Scale; | 
 |   if (Scale < 0) | 
 |     return false; | 
 |  | 
 |   switch (VT.getSimpleVT().SimpleTy) { | 
 |   default: return false; | 
 |   case MVT::i1: | 
 |   case MVT::i8: | 
 |   case MVT::i16: | 
 |   case MVT::i32: | 
 |     if (Scale == 1) | 
 |       return true; | 
 |     // r + r << imm | 
 |     Scale = Scale & ~1; | 
 |     return Scale == 2 || Scale == 4 || Scale == 8; | 
 |   case MVT::i64: | 
 |     // r + r | 
 |     if (((unsigned)AM.HasBaseReg + Scale) <= 2) | 
 |       return true; | 
 |     return false; | 
 |   case MVT::isVoid: | 
 |     // Note, we allow "void" uses (basically, uses that aren't loads or | 
 |     // stores), because arm allows folding a scale into many arithmetic | 
 |     // operations.  This should be made more precise and revisited later. | 
 |  | 
 |     // Allow r << imm, but the imm has to be a multiple of two. | 
 |     if (Scale & 1) return false; | 
 |     return isPowerOf2_32(Scale); | 
 |   } | 
 | } | 
 |  | 
 | /// isLegalAddressingMode - Return true if the addressing mode represented | 
 | /// by AM is legal for this target, for a load/store of the specified type. | 
 | bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM, | 
 |                                               const Type *Ty) const { | 
 |   EVT VT = getValueType(Ty, true); | 
 |   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget)) | 
 |     return false; | 
 |  | 
 |   // Can never fold addr of global into load/store. | 
 |   if (AM.BaseGV) | 
 |     return false; | 
 |  | 
 |   switch (AM.Scale) { | 
 |   case 0:  // no scale reg, must be "r+i" or "r", or "i". | 
 |     break; | 
 |   case 1: | 
 |     if (Subtarget->isThumb1Only()) | 
 |       return false; | 
 |     // FALL THROUGH. | 
 |   default: | 
 |     // ARM doesn't support any R+R*scale+imm addr modes. | 
 |     if (AM.BaseOffs) | 
 |       return false; | 
 |  | 
 |     if (!VT.isSimple()) | 
 |       return false; | 
 |  | 
 |     if (Subtarget->isThumb2()) | 
 |       return isLegalT2ScaledAddressingMode(AM, VT); | 
 |  | 
 |     int Scale = AM.Scale; | 
 |     switch (VT.getSimpleVT().SimpleTy) { | 
 |     default: return false; | 
 |     case MVT::i1: | 
 |     case MVT::i8: | 
 |     case MVT::i32: | 
 |       if (Scale < 0) Scale = -Scale; | 
 |       if (Scale == 1) | 
 |         return true; | 
 |       // r + r << imm | 
 |       return isPowerOf2_32(Scale & ~1); | 
 |     case MVT::i16: | 
 |     case MVT::i64: | 
 |       // r + r | 
 |       if (((unsigned)AM.HasBaseReg + Scale) <= 2) | 
 |         return true; | 
 |       return false; | 
 |  | 
 |     case MVT::isVoid: | 
 |       // Note, we allow "void" uses (basically, uses that aren't loads or | 
 |       // stores), because arm allows folding a scale into many arithmetic | 
 |       // operations.  This should be made more precise and revisited later. | 
 |  | 
 |       // Allow r << imm, but the imm has to be a multiple of two. | 
 |       if (Scale & 1) return false; | 
 |       return isPowerOf2_32(Scale); | 
 |     } | 
 |     break; | 
 |   } | 
 |   return true; | 
 | } | 
 |  | 
 | /// isLegalICmpImmediate - Return true if the specified immediate is legal | 
 | /// icmp immediate, that is the target has icmp instructions which can compare | 
 | /// a register against the immediate without having to materialize the | 
 | /// immediate into a register. | 
 | bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const { | 
 |   if (!Subtarget->isThumb()) | 
 |     return ARM_AM::getSOImmVal(Imm) != -1; | 
 |   if (Subtarget->isThumb2()) | 
 |     return ARM_AM::getT2SOImmVal(Imm) != -1;  | 
 |   return Imm >= 0 && Imm <= 255; | 
 | } | 
 |  | 
 | static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT, | 
 |                                       bool isSEXTLoad, SDValue &Base, | 
 |                                       SDValue &Offset, bool &isInc, | 
 |                                       SelectionDAG &DAG) { | 
 |   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) | 
 |     return false; | 
 |  | 
 |   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) { | 
 |     // AddressingMode 3 | 
 |     Base = Ptr->getOperand(0); | 
 |     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { | 
 |       int RHSC = (int)RHS->getZExtValue(); | 
 |       if (RHSC < 0 && RHSC > -256) { | 
 |         assert(Ptr->getOpcode() == ISD::ADD); | 
 |         isInc = false; | 
 |         Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); | 
 |         return true; | 
 |       } | 
 |     } | 
 |     isInc = (Ptr->getOpcode() == ISD::ADD); | 
 |     Offset = Ptr->getOperand(1); | 
 |     return true; | 
 |   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) { | 
 |     // AddressingMode 2 | 
 |     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { | 
 |       int RHSC = (int)RHS->getZExtValue(); | 
 |       if (RHSC < 0 && RHSC > -0x1000) { | 
 |         assert(Ptr->getOpcode() == ISD::ADD); | 
 |         isInc = false; | 
 |         Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); | 
 |         Base = Ptr->getOperand(0); | 
 |         return true; | 
 |       } | 
 |     } | 
 |  | 
 |     if (Ptr->getOpcode() == ISD::ADD) { | 
 |       isInc = true; | 
 |       ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0)); | 
 |       if (ShOpcVal != ARM_AM::no_shift) { | 
 |         Base = Ptr->getOperand(1); | 
 |         Offset = Ptr->getOperand(0); | 
 |       } else { | 
 |         Base = Ptr->getOperand(0); | 
 |         Offset = Ptr->getOperand(1); | 
 |       } | 
 |       return true; | 
 |     } | 
 |  | 
 |     isInc = (Ptr->getOpcode() == ISD::ADD); | 
 |     Base = Ptr->getOperand(0); | 
 |     Offset = Ptr->getOperand(1); | 
 |     return true; | 
 |   } | 
 |  | 
 |   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store. | 
 |   return false; | 
 | } | 
 |  | 
 | static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT, | 
 |                                      bool isSEXTLoad, SDValue &Base, | 
 |                                      SDValue &Offset, bool &isInc, | 
 |                                      SelectionDAG &DAG) { | 
 |   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) | 
 |     return false; | 
 |  | 
 |   Base = Ptr->getOperand(0); | 
 |   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { | 
 |     int RHSC = (int)RHS->getZExtValue(); | 
 |     if (RHSC < 0 && RHSC > -0x100) { // 8 bits. | 
 |       assert(Ptr->getOpcode() == ISD::ADD); | 
 |       isInc = false; | 
 |       Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); | 
 |       return true; | 
 |     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero. | 
 |       isInc = Ptr->getOpcode() == ISD::ADD; | 
 |       Offset = DAG.getConstant(RHSC, RHS->getValueType(0)); | 
 |       return true; | 
 |     } | 
 |   } | 
 |  | 
 |   return false; | 
 | } | 
 |  | 
 | /// getPreIndexedAddressParts - returns true by value, base pointer and | 
 | /// offset pointer and addressing mode by reference if the node's address | 
 | /// can be legally represented as pre-indexed load / store address. | 
 | bool | 
 | ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, | 
 |                                              SDValue &Offset, | 
 |                                              ISD::MemIndexedMode &AM, | 
 |                                              SelectionDAG &DAG) const { | 
 |   if (Subtarget->isThumb1Only()) | 
 |     return false; | 
 |  | 
 |   EVT VT; | 
 |   SDValue Ptr; | 
 |   bool isSEXTLoad = false; | 
 |   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { | 
 |     Ptr = LD->getBasePtr(); | 
 |     VT  = LD->getMemoryVT(); | 
 |     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; | 
 |   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { | 
 |     Ptr = ST->getBasePtr(); | 
 |     VT  = ST->getMemoryVT(); | 
 |   } else | 
 |     return false; | 
 |  | 
 |   bool isInc; | 
 |   bool isLegal = false; | 
 |   if (Subtarget->isThumb2()) | 
 |     isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, | 
 |                                        Offset, isInc, DAG); | 
 |   else | 
 |     isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, | 
 |                                         Offset, isInc, DAG); | 
 |   if (!isLegal) | 
 |     return false; | 
 |  | 
 |   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC; | 
 |   return true; | 
 | } | 
 |  | 
 | /// getPostIndexedAddressParts - returns true by value, base pointer and | 
 | /// offset pointer and addressing mode by reference if this node can be | 
 | /// combined with a load / store to form a post-indexed load / store. | 
 | bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, | 
 |                                                    SDValue &Base, | 
 |                                                    SDValue &Offset, | 
 |                                                    ISD::MemIndexedMode &AM, | 
 |                                                    SelectionDAG &DAG) const { | 
 |   if (Subtarget->isThumb1Only()) | 
 |     return false; | 
 |  | 
 |   EVT VT; | 
 |   SDValue Ptr; | 
 |   bool isSEXTLoad = false; | 
 |   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { | 
 |     VT  = LD->getMemoryVT(); | 
 |     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; | 
 |   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { | 
 |     VT  = ST->getMemoryVT(); | 
 |   } else | 
 |     return false; | 
 |  | 
 |   bool isInc; | 
 |   bool isLegal = false; | 
 |   if (Subtarget->isThumb2()) | 
 |     isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, | 
 |                                         isInc, DAG); | 
 |   else | 
 |     isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, | 
 |                                         isInc, DAG); | 
 |   if (!isLegal) | 
 |     return false; | 
 |  | 
 |   AM = isInc ? ISD::POST_INC : ISD::POST_DEC; | 
 |   return true; | 
 | } | 
 |  | 
 | void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op, | 
 |                                                        const APInt &Mask, | 
 |                                                        APInt &KnownZero, | 
 |                                                        APInt &KnownOne, | 
 |                                                        const SelectionDAG &DAG, | 
 |                                                        unsigned Depth) const { | 
 |   KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0); | 
 |   switch (Op.getOpcode()) { | 
 |   default: break; | 
 |   case ARMISD::CMOV: { | 
 |     // Bits are known zero/one if known on the LHS and RHS. | 
 |     DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); | 
 |     if (KnownZero == 0 && KnownOne == 0) return; | 
 |  | 
 |     APInt KnownZeroRHS, KnownOneRHS; | 
 |     DAG.ComputeMaskedBits(Op.getOperand(1), Mask, | 
 |                           KnownZeroRHS, KnownOneRHS, Depth+1); | 
 |     KnownZero &= KnownZeroRHS; | 
 |     KnownOne  &= KnownOneRHS; | 
 |     return; | 
 |   } | 
 |   } | 
 | } | 
 |  | 
 | //===----------------------------------------------------------------------===// | 
 | //                           ARM Inline Assembly Support | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | /// getConstraintType - Given a constraint letter, return the type of | 
 | /// constraint it is for this target. | 
 | ARMTargetLowering::ConstraintType | 
 | ARMTargetLowering::getConstraintType(const std::string &Constraint) const { | 
 |   if (Constraint.size() == 1) { | 
 |     switch (Constraint[0]) { | 
 |     default:  break; | 
 |     case 'l': return C_RegisterClass; | 
 |     case 'w': return C_RegisterClass; | 
 |     } | 
 |   } | 
 |   return TargetLowering::getConstraintType(Constraint); | 
 | } | 
 |  | 
 | std::pair<unsigned, const TargetRegisterClass*> | 
 | ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, | 
 |                                                 EVT VT) const { | 
 |   if (Constraint.size() == 1) { | 
 |     // GCC ARM Constraint Letters | 
 |     switch (Constraint[0]) { | 
 |     case 'l': | 
 |       if (Subtarget->isThumb()) | 
 |         return std::make_pair(0U, ARM::tGPRRegisterClass); | 
 |       else | 
 |         return std::make_pair(0U, ARM::GPRRegisterClass); | 
 |     case 'r': | 
 |       return std::make_pair(0U, ARM::GPRRegisterClass); | 
 |     case 'w': | 
 |       if (VT == MVT::f32) | 
 |         return std::make_pair(0U, ARM::SPRRegisterClass); | 
 |       if (VT.getSizeInBits() == 64) | 
 |         return std::make_pair(0U, ARM::DPRRegisterClass); | 
 |       if (VT.getSizeInBits() == 128) | 
 |         return std::make_pair(0U, ARM::QPRRegisterClass); | 
 |       break; | 
 |     } | 
 |   } | 
 |   if (StringRef("{cc}").equals_lower(Constraint)) | 
 |     return std::make_pair(0U, ARM::CCRRegisterClass); | 
 |  | 
 |   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); | 
 | } | 
 |  | 
 | std::vector<unsigned> ARMTargetLowering:: | 
 | getRegClassForInlineAsmConstraint(const std::string &Constraint, | 
 |                                   EVT VT) const { | 
 |   if (Constraint.size() != 1) | 
 |     return std::vector<unsigned>(); | 
 |  | 
 |   switch (Constraint[0]) {      // GCC ARM Constraint Letters | 
 |   default: break; | 
 |   case 'l': | 
 |     return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3, | 
 |                                  ARM::R4, ARM::R5, ARM::R6, ARM::R7, | 
 |                                  0); | 
 |   case 'r': | 
 |     return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3, | 
 |                                  ARM::R4, ARM::R5, ARM::R6, ARM::R7, | 
 |                                  ARM::R8, ARM::R9, ARM::R10, ARM::R11, | 
 |                                  ARM::R12, ARM::LR, 0); | 
 |   case 'w': | 
 |     if (VT == MVT::f32) | 
 |       return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3, | 
 |                                    ARM::S4, ARM::S5, ARM::S6, ARM::S7, | 
 |                                    ARM::S8, ARM::S9, ARM::S10, ARM::S11, | 
 |                                    ARM::S12,ARM::S13,ARM::S14,ARM::S15, | 
 |                                    ARM::S16,ARM::S17,ARM::S18,ARM::S19, | 
 |                                    ARM::S20,ARM::S21,ARM::S22,ARM::S23, | 
 |                                    ARM::S24,ARM::S25,ARM::S26,ARM::S27, | 
 |                                    ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0); | 
 |     if (VT.getSizeInBits() == 64) | 
 |       return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3, | 
 |                                    ARM::D4, ARM::D5, ARM::D6, ARM::D7, | 
 |                                    ARM::D8, ARM::D9, ARM::D10,ARM::D11, | 
 |                                    ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0); | 
 |     if (VT.getSizeInBits() == 128) | 
 |       return make_vector<unsigned>(ARM::Q0, ARM::Q1, ARM::Q2, ARM::Q3, | 
 |                                    ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7, 0); | 
 |       break; | 
 |   } | 
 |  | 
 |   return std::vector<unsigned>(); | 
 | } | 
 |  | 
 | /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops | 
 | /// vector.  If it is invalid, don't add anything to Ops. | 
 | void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op, | 
 |                                                      char Constraint, | 
 |                                                      bool hasMemory, | 
 |                                                      std::vector<SDValue>&Ops, | 
 |                                                      SelectionDAG &DAG) const { | 
 |   SDValue Result(0, 0); | 
 |  | 
 |   switch (Constraint) { | 
 |   default: break; | 
 |   case 'I': case 'J': case 'K': case 'L': | 
 |   case 'M': case 'N': case 'O': | 
 |     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); | 
 |     if (!C) | 
 |       return; | 
 |  | 
 |     int64_t CVal64 = C->getSExtValue(); | 
 |     int CVal = (int) CVal64; | 
 |     // None of these constraints allow values larger than 32 bits.  Check | 
 |     // that the value fits in an int. | 
 |     if (CVal != CVal64) | 
 |       return; | 
 |  | 
 |     switch (Constraint) { | 
 |       case 'I': | 
 |         if (Subtarget->isThumb1Only()) { | 
 |           // This must be a constant between 0 and 255, for ADD | 
 |           // immediates. | 
 |           if (CVal >= 0 && CVal <= 255) | 
 |             break; | 
 |         } else if (Subtarget->isThumb2()) { | 
 |           // A constant that can be used as an immediate value in a | 
 |           // data-processing instruction. | 
 |           if (ARM_AM::getT2SOImmVal(CVal) != -1) | 
 |             break; | 
 |         } else { | 
 |           // A constant that can be used as an immediate value in a | 
 |           // data-processing instruction. | 
 |           if (ARM_AM::getSOImmVal(CVal) != -1) | 
 |             break; | 
 |         } | 
 |         return; | 
 |  | 
 |       case 'J': | 
 |         if (Subtarget->isThumb()) {  // FIXME thumb2 | 
 |           // This must be a constant between -255 and -1, for negated ADD | 
 |           // immediates. This can be used in GCC with an "n" modifier that | 
 |           // prints the negated value, for use with SUB instructions. It is | 
 |           // not useful otherwise but is implemented for compatibility. | 
 |           if (CVal >= -255 && CVal <= -1) | 
 |             break; | 
 |         } else { | 
 |           // This must be a constant between -4095 and 4095. It is not clear | 
 |           // what this constraint is intended for. Implemented for | 
 |           // compatibility with GCC. | 
 |           if (CVal >= -4095 && CVal <= 4095) | 
 |             break; | 
 |         } | 
 |         return; | 
 |  | 
 |       case 'K': | 
 |         if (Subtarget->isThumb1Only()) { | 
 |           // A 32-bit value where only one byte has a nonzero value. Exclude | 
 |           // zero to match GCC. This constraint is used by GCC internally for | 
 |           // constants that can be loaded with a move/shift combination. | 
 |           // It is not useful otherwise but is implemented for compatibility. | 
 |           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal)) | 
 |             break; | 
 |         } else if (Subtarget->isThumb2()) { | 
 |           // A constant whose bitwise inverse can be used as an immediate | 
 |           // value in a data-processing instruction. This can be used in GCC | 
 |           // with a "B" modifier that prints the inverted value, for use with | 
 |           // BIC and MVN instructions. It is not useful otherwise but is | 
 |           // implemented for compatibility. | 
 |           if (ARM_AM::getT2SOImmVal(~CVal) != -1) | 
 |             break; | 
 |         } else { | 
 |           // A constant whose bitwise inverse can be used as an immediate | 
 |           // value in a data-processing instruction. This can be used in GCC | 
 |           // with a "B" modifier that prints the inverted value, for use with | 
 |           // BIC and MVN instructions. It is not useful otherwise but is | 
 |           // implemented for compatibility. | 
 |           if (ARM_AM::getSOImmVal(~CVal) != -1) | 
 |             break; | 
 |         } | 
 |         return; | 
 |  | 
 |       case 'L': | 
 |         if (Subtarget->isThumb1Only()) { | 
 |           // This must be a constant between -7 and 7, | 
 |           // for 3-operand ADD/SUB immediate instructions. | 
 |           if (CVal >= -7 && CVal < 7) | 
 |             break; | 
 |         } else if (Subtarget->isThumb2()) { | 
 |           // A constant whose negation can be used as an immediate value in a | 
 |           // data-processing instruction. This can be used in GCC with an "n" | 
 |           // modifier that prints the negated value, for use with SUB | 
 |           // instructions. It is not useful otherwise but is implemented for | 
 |           // compatibility. | 
 |           if (ARM_AM::getT2SOImmVal(-CVal) != -1) | 
 |             break; | 
 |         } else { | 
 |           // A constant whose negation can be used as an immediate value in a | 
 |           // data-processing instruction. This can be used in GCC with an "n" | 
 |           // modifier that prints the negated value, for use with SUB | 
 |           // instructions. It is not useful otherwise but is implemented for | 
 |           // compatibility. | 
 |           if (ARM_AM::getSOImmVal(-CVal) != -1) | 
 |             break; | 
 |         } | 
 |         return; | 
 |  | 
 |       case 'M': | 
 |         if (Subtarget->isThumb()) { // FIXME thumb2 | 
 |           // This must be a multiple of 4 between 0 and 1020, for | 
 |           // ADD sp + immediate. | 
 |           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0)) | 
 |             break; | 
 |         } else { | 
 |           // A power of two or a constant between 0 and 32.  This is used in | 
 |           // GCC for the shift amount on shifted register operands, but it is | 
 |           // useful in general for any shift amounts. | 
 |           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0)) | 
 |             break; | 
 |         } | 
 |         return; | 
 |  | 
 |       case 'N': | 
 |         if (Subtarget->isThumb()) {  // FIXME thumb2 | 
 |           // This must be a constant between 0 and 31, for shift amounts. | 
 |           if (CVal >= 0 && CVal <= 31) | 
 |             break; | 
 |         } | 
 |         return; | 
 |  | 
 |       case 'O': | 
 |         if (Subtarget->isThumb()) {  // FIXME thumb2 | 
 |           // This must be a multiple of 4 between -508 and 508, for | 
 |           // ADD/SUB sp = sp + immediate. | 
 |           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0)) | 
 |             break; | 
 |         } | 
 |         return; | 
 |     } | 
 |     Result = DAG.getTargetConstant(CVal, Op.getValueType()); | 
 |     break; | 
 |   } | 
 |  | 
 |   if (Result.getNode()) { | 
 |     Ops.push_back(Result); | 
 |     return; | 
 |   } | 
 |   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, hasMemory, | 
 |                                                       Ops, DAG); | 
 | } | 
 |  | 
 | bool | 
 | ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { | 
 |   // The ARM target isn't yet aware of offsets. | 
 |   return false; | 
 | } | 
 |  | 
 | int ARM::getVFPf32Imm(const APFloat &FPImm) { | 
 |   APInt Imm = FPImm.bitcastToAPInt(); | 
 |   uint32_t Sign = Imm.lshr(31).getZExtValue() & 1; | 
 |   int32_t Exp = (Imm.lshr(23).getSExtValue() & 0xff) - 127;  // -126 to 127 | 
 |   int64_t Mantissa = Imm.getZExtValue() & 0x7fffff;  // 23 bits | 
 |  | 
 |   // We can handle 4 bits of mantissa. | 
 |   // mantissa = (16+UInt(e:f:g:h))/16. | 
 |   if (Mantissa & 0x7ffff) | 
 |     return -1; | 
 |   Mantissa >>= 19; | 
 |   if ((Mantissa & 0xf) != Mantissa) | 
 |     return -1; | 
 |  | 
 |   // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 | 
 |   if (Exp < -3 || Exp > 4) | 
 |     return -1; | 
 |   Exp = ((Exp+3) & 0x7) ^ 4; | 
 |  | 
 |   return ((int)Sign << 7) | (Exp << 4) | Mantissa; | 
 | } | 
 |  | 
 | int ARM::getVFPf64Imm(const APFloat &FPImm) { | 
 |   APInt Imm = FPImm.bitcastToAPInt(); | 
 |   uint64_t Sign = Imm.lshr(63).getZExtValue() & 1; | 
 |   int64_t Exp = (Imm.lshr(52).getSExtValue() & 0x7ff) - 1023;   // -1022 to 1023 | 
 |   uint64_t Mantissa = Imm.getZExtValue() & 0xfffffffffffffLL; | 
 |  | 
 |   // We can handle 4 bits of mantissa. | 
 |   // mantissa = (16+UInt(e:f:g:h))/16. | 
 |   if (Mantissa & 0xffffffffffffLL) | 
 |     return -1; | 
 |   Mantissa >>= 48; | 
 |   if ((Mantissa & 0xf) != Mantissa) | 
 |     return -1; | 
 |  | 
 |   // We can handle 3 bits of exponent: exp == UInt(NOT(b):c:d)-3 | 
 |   if (Exp < -3 || Exp > 4) | 
 |     return -1; | 
 |   Exp = ((Exp+3) & 0x7) ^ 4; | 
 |  | 
 |   return ((int)Sign << 7) | (Exp << 4) | Mantissa; | 
 | } | 
 |  | 
 | /// isFPImmLegal - Returns true if the target can instruction select the | 
 | /// specified FP immediate natively. If false, the legalizer will | 
 | /// materialize the FP immediate as a load from a constant pool. | 
 | bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { | 
 |   if (!Subtarget->hasVFP3()) | 
 |     return false; | 
 |   if (VT == MVT::f32) | 
 |     return ARM::getVFPf32Imm(Imm) != -1; | 
 |   if (VT == MVT::f64) | 
 |     return ARM::getVFPf64Imm(Imm) != -1; | 
 |   return false; | 
 | } |