blob: 766c41188ff8c82565d3e56830be374703106286 [file] [log] [blame]
//===- Instructions.cpp - Implement the LLVM instructions -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements all of the non-inline methods for the LLVM instruction
// classes.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Instructions.h"
#include "LLVMContextImpl.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <vector>
using namespace llvm;
//===----------------------------------------------------------------------===//
// AllocaInst Class
//===----------------------------------------------------------------------===//
Optional<uint64_t>
AllocaInst::getAllocationSizeInBits(const DataLayout &DL) const {
uint64_t Size = DL.getTypeAllocSizeInBits(getAllocatedType());
if (isArrayAllocation()) {
auto C = dyn_cast<ConstantInt>(getArraySize());
if (!C)
return None;
Size *= C->getZExtValue();
}
return Size;
}
//===----------------------------------------------------------------------===//
// CallSite Class
//===----------------------------------------------------------------------===//
User::op_iterator CallSite::getCallee() const {
return cast<CallBase>(getInstruction())->op_end() - 1;
}
//===----------------------------------------------------------------------===//
// SelectInst Class
//===----------------------------------------------------------------------===//
/// areInvalidOperands - Return a string if the specified operands are invalid
/// for a select operation, otherwise return null.
const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
if (Op1->getType() != Op2->getType())
return "both values to select must have same type";
if (Op1->getType()->isTokenTy())
return "select values cannot have token type";
if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
// Vector select.
if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
return "vector select condition element type must be i1";
VectorType *ET = dyn_cast<VectorType>(Op1->getType());
if (!ET)
return "selected values for vector select must be vectors";
if (ET->getNumElements() != VT->getNumElements())
return "vector select requires selected vectors to have "
"the same vector length as select condition";
} else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
return "select condition must be i1 or <n x i1>";
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// PHINode Class
//===----------------------------------------------------------------------===//
PHINode::PHINode(const PHINode &PN)
: Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
ReservedSpace(PN.getNumOperands()) {
allocHungoffUses(PN.getNumOperands());
std::copy(PN.op_begin(), PN.op_end(), op_begin());
std::copy(PN.block_begin(), PN.block_end(), block_begin());
SubclassOptionalData = PN.SubclassOptionalData;
}
// removeIncomingValue - Remove an incoming value. This is useful if a
// predecessor basic block is deleted.
Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
Value *Removed = getIncomingValue(Idx);
// Move everything after this operand down.
//
// FIXME: we could just swap with the end of the list, then erase. However,
// clients might not expect this to happen. The code as it is thrashes the
// use/def lists, which is kinda lame.
std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
// Nuke the last value.
Op<-1>().set(nullptr);
setNumHungOffUseOperands(getNumOperands() - 1);
// If the PHI node is dead, because it has zero entries, nuke it now.
if (getNumOperands() == 0 && DeletePHIIfEmpty) {
// If anyone is using this PHI, make them use a dummy value instead...
replaceAllUsesWith(UndefValue::get(getType()));
eraseFromParent();
}
return Removed;
}
/// growOperands - grow operands - This grows the operand list in response
/// to a push_back style of operation. This grows the number of ops by 1.5
/// times.
///
void PHINode::growOperands() {
unsigned e = getNumOperands();
unsigned NumOps = e + e / 2;
if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
ReservedSpace = NumOps;
growHungoffUses(ReservedSpace, /* IsPhi */ true);
}
/// hasConstantValue - If the specified PHI node always merges together the same
/// value, return the value, otherwise return null.
Value *PHINode::hasConstantValue() const {
// Exploit the fact that phi nodes always have at least one entry.
Value *ConstantValue = getIncomingValue(0);
for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
if (ConstantValue != this)
return nullptr; // Incoming values not all the same.
// The case where the first value is this PHI.
ConstantValue = getIncomingValue(i);
}
if (ConstantValue == this)
return UndefValue::get(getType());
return ConstantValue;
}
/// hasConstantOrUndefValue - Whether the specified PHI node always merges
/// together the same value, assuming that undefs result in the same value as
/// non-undefs.
/// Unlike \ref hasConstantValue, this does not return a value because the
/// unique non-undef incoming value need not dominate the PHI node.
bool PHINode::hasConstantOrUndefValue() const {
Value *ConstantValue = nullptr;
for (unsigned i = 0, e = getNumIncomingValues(); i != e; ++i) {
Value *Incoming = getIncomingValue(i);
if (Incoming != this && !isa<UndefValue>(Incoming)) {
if (ConstantValue && ConstantValue != Incoming)
return false;
ConstantValue = Incoming;
}
}
return true;
}
//===----------------------------------------------------------------------===//
// LandingPadInst Implementation
//===----------------------------------------------------------------------===//
LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
const Twine &NameStr, Instruction *InsertBefore)
: Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
init(NumReservedValues, NameStr);
}
LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
const Twine &NameStr, BasicBlock *InsertAtEnd)
: Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
init(NumReservedValues, NameStr);
}
LandingPadInst::LandingPadInst(const LandingPadInst &LP)
: Instruction(LP.getType(), Instruction::LandingPad, nullptr,
LP.getNumOperands()),
ReservedSpace(LP.getNumOperands()) {
allocHungoffUses(LP.getNumOperands());
Use *OL = getOperandList();
const Use *InOL = LP.getOperandList();
for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
OL[I] = InOL[I];
setCleanup(LP.isCleanup());
}
LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
const Twine &NameStr,
Instruction *InsertBefore) {
return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
}
LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
}
void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
ReservedSpace = NumReservedValues;
setNumHungOffUseOperands(0);
allocHungoffUses(ReservedSpace);
setName(NameStr);
setCleanup(false);
}
/// growOperands - grow operands - This grows the operand list in response to a
/// push_back style of operation. This grows the number of ops by 2 times.
void LandingPadInst::growOperands(unsigned Size) {
unsigned e = getNumOperands();
if (ReservedSpace >= e + Size) return;
ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
growHungoffUses(ReservedSpace);
}
void LandingPadInst::addClause(Constant *Val) {
unsigned OpNo = getNumOperands();
growOperands(1);
assert(OpNo < ReservedSpace && "Growing didn't work!");
setNumHungOffUseOperands(getNumOperands() + 1);
getOperandList()[OpNo] = Val;
}
//===----------------------------------------------------------------------===//
// CallBase Implementation
//===----------------------------------------------------------------------===//
Function *CallBase::getCaller() { return getParent()->getParent(); }
unsigned CallBase::getNumSubclassExtraOperandsDynamic() const {
assert(getOpcode() == Instruction::CallBr && "Unexpected opcode!");
return cast<CallBrInst>(this)->getNumIndirectDests() + 1;
}
bool CallBase::isIndirectCall() const {
const Value *V = getCalledValue();
if (isa<Function>(V) || isa<Constant>(V))
return false;
if (const CallInst *CI = dyn_cast<CallInst>(this))
if (CI->isInlineAsm())
return false;
return true;
}
/// Tests if this call site must be tail call optimized. Only a CallInst can
/// be tail call optimized.
bool CallBase::isMustTailCall() const {
if (auto *CI = dyn_cast<CallInst>(this))
return CI->isMustTailCall();
return false;
}
/// Tests if this call site is marked as a tail call.
bool CallBase::isTailCall() const {
if (auto *CI = dyn_cast<CallInst>(this))
return CI->isTailCall();
return false;
}
Intrinsic::ID CallBase::getIntrinsicID() const {
if (auto *F = getCalledFunction())
return F->getIntrinsicID();
return Intrinsic::not_intrinsic;
}
bool CallBase::isReturnNonNull() const {
if (hasRetAttr(Attribute::NonNull))
return true;
if (getDereferenceableBytes(AttributeList::ReturnIndex) > 0 &&
!NullPointerIsDefined(getCaller(),
getType()->getPointerAddressSpace()))
return true;
return false;
}
Value *CallBase::getReturnedArgOperand() const {
unsigned Index;
if (Attrs.hasAttrSomewhere(Attribute::Returned, &Index) && Index)
return getArgOperand(Index - AttributeList::FirstArgIndex);
if (const Function *F = getCalledFunction())
if (F->getAttributes().hasAttrSomewhere(Attribute::Returned, &Index) &&
Index)
return getArgOperand(Index - AttributeList::FirstArgIndex);
return nullptr;
}
bool CallBase::hasRetAttr(Attribute::AttrKind Kind) const {
if (Attrs.hasAttribute(AttributeList::ReturnIndex, Kind))
return true;
// Look at the callee, if available.
if (const Function *F = getCalledFunction())
return F->getAttributes().hasAttribute(AttributeList::ReturnIndex, Kind);
return false;
}
/// Determine whether the argument or parameter has the given attribute.
bool CallBase::paramHasAttr(unsigned ArgNo, Attribute::AttrKind Kind) const {
assert(ArgNo < getNumArgOperands() && "Param index out of bounds!");
if (Attrs.hasParamAttribute(ArgNo, Kind))
return true;
if (const Function *F = getCalledFunction())
return F->getAttributes().hasParamAttribute(ArgNo, Kind);
return false;
}
bool CallBase::hasFnAttrOnCalledFunction(Attribute::AttrKind Kind) const {
if (const Function *F = getCalledFunction())
return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
return false;
}
bool CallBase::hasFnAttrOnCalledFunction(StringRef Kind) const {
if (const Function *F = getCalledFunction())
return F->getAttributes().hasAttribute(AttributeList::FunctionIndex, Kind);
return false;
}
CallBase::op_iterator
CallBase::populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
const unsigned BeginIndex) {
auto It = op_begin() + BeginIndex;
for (auto &B : Bundles)
It = std::copy(B.input_begin(), B.input_end(), It);
auto *ContextImpl = getContext().pImpl;
auto BI = Bundles.begin();
unsigned CurrentIndex = BeginIndex;
for (auto &BOI : bundle_op_infos()) {
assert(BI != Bundles.end() && "Incorrect allocation?");
BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
BOI.Begin = CurrentIndex;
BOI.End = CurrentIndex + BI->input_size();
CurrentIndex = BOI.End;
BI++;
}
assert(BI == Bundles.end() && "Incorrect allocation?");
return It;
}
//===----------------------------------------------------------------------===//
// CallInst Implementation
//===----------------------------------------------------------------------===//
void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
this->FTy = FTy;
assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
"NumOperands not set up?");
setCalledOperand(Func);
#ifndef NDEBUG
assert((Args.size() == FTy->getNumParams() ||
(FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
"Calling a function with bad signature!");
for (unsigned i = 0; i != Args.size(); ++i)
assert((i >= FTy->getNumParams() ||
FTy->getParamType(i) == Args[i]->getType()) &&
"Calling a function with a bad signature!");
#endif
llvm::copy(Args, op_begin());
auto It = populateBundleOperandInfos(Bundles, Args.size());
(void)It;
assert(It + 1 == op_end() && "Should add up!");
setName(NameStr);
}
void CallInst::init(FunctionType *FTy, Value *Func, const Twine &NameStr) {
this->FTy = FTy;
assert(getNumOperands() == 1 && "NumOperands not set up?");
setCalledOperand(Func);
assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
setName(NameStr);
}
CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
Instruction *InsertBefore)
: CallBase(Ty->getReturnType(), Instruction::Call,
OperandTraits<CallBase>::op_end(this) - 1, 1, InsertBefore) {
init(Ty, Func, Name);
}
CallInst::CallInst(FunctionType *Ty, Value *Func, const Twine &Name,
BasicBlock *InsertAtEnd)
: CallBase(Ty->getReturnType(), Instruction::Call,
OperandTraits<CallBase>::op_end(this) - 1, 1, InsertAtEnd) {
init(Ty, Func, Name);
}
CallInst::CallInst(const CallInst &CI)
: CallBase(CI.Attrs, CI.FTy, CI.getType(), Instruction::Call,
OperandTraits<CallBase>::op_end(this) - CI.getNumOperands(),
CI.getNumOperands()) {
setTailCallKind(CI.getTailCallKind());
setCallingConv(CI.getCallingConv());
std::copy(CI.op_begin(), CI.op_end(), op_begin());
std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
bundle_op_info_begin());
SubclassOptionalData = CI.SubclassOptionalData;
}
CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
Instruction *InsertPt) {
std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
auto *NewCI = CallInst::Create(CI->getFunctionType(), CI->getCalledValue(),
Args, OpB, CI->getName(), InsertPt);
NewCI->setTailCallKind(CI->getTailCallKind());
NewCI->setCallingConv(CI->getCallingConv());
NewCI->SubclassOptionalData = CI->SubclassOptionalData;
NewCI->setAttributes(CI->getAttributes());
NewCI->setDebugLoc(CI->getDebugLoc());
return NewCI;
}
/// IsConstantOne - Return true only if val is constant int 1
static bool IsConstantOne(Value *val) {
assert(val && "IsConstantOne does not work with nullptr val");
const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
return CVal && CVal->isOne();
}
static Instruction *createMalloc(Instruction *InsertBefore,
BasicBlock *InsertAtEnd, Type *IntPtrTy,
Type *AllocTy, Value *AllocSize,
Value *ArraySize,
ArrayRef<OperandBundleDef> OpB,
Function *MallocF, const Twine &Name) {
assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
"createMalloc needs either InsertBefore or InsertAtEnd");
// malloc(type) becomes:
// bitcast (i8* malloc(typeSize)) to type*
// malloc(type, arraySize) becomes:
// bitcast (i8* malloc(typeSize*arraySize)) to type*
if (!ArraySize)
ArraySize = ConstantInt::get(IntPtrTy, 1);
else if (ArraySize->getType() != IntPtrTy) {
if (InsertBefore)
ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
"", InsertBefore);
else
ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
"", InsertAtEnd);
}
if (!IsConstantOne(ArraySize)) {
if (IsConstantOne(AllocSize)) {
AllocSize = ArraySize; // Operand * 1 = Operand
} else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
false /*ZExt*/);
// Malloc arg is constant product of type size and array size
AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
} else {
// Multiply type size by the array size...
if (InsertBefore)
AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
"mallocsize", InsertBefore);
else
AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
"mallocsize", InsertAtEnd);
}
}
assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
// Create the call to Malloc.
BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
Module *M = BB->getParent()->getParent();
Type *BPTy = Type::getInt8PtrTy(BB->getContext());
FunctionCallee MallocFunc = MallocF;
if (!MallocFunc)
// prototype malloc as "void *malloc(size_t)"
MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy);
PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
CallInst *MCall = nullptr;
Instruction *Result = nullptr;
if (InsertBefore) {
MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall",
InsertBefore);
Result = MCall;
if (Result->getType() != AllocPtrType)
// Create a cast instruction to convert to the right type...
Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
} else {
MCall = CallInst::Create(MallocFunc, AllocSize, OpB, "malloccall");
Result = MCall;
if (Result->getType() != AllocPtrType) {
InsertAtEnd->getInstList().push_back(MCall);
// Create a cast instruction to convert to the right type...
Result = new BitCastInst(MCall, AllocPtrType, Name);
}
}
MCall->setTailCall();
if (Function *F = dyn_cast<Function>(MallocFunc.getCallee())) {
MCall->setCallingConv(F->getCallingConv());
if (!F->returnDoesNotAlias())
F->setReturnDoesNotAlias();
}
assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
return Result;
}
/// CreateMalloc - Generate the IR for a call to malloc:
/// 1. Compute the malloc call's argument as the specified type's size,
/// possibly multiplied by the array size if the array size is not
/// constant 1.
/// 2. Call malloc with that argument.
/// 3. Bitcast the result of the malloc call to the specified type.
Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
Type *IntPtrTy, Type *AllocTy,
Value *AllocSize, Value *ArraySize,
Function *MallocF,
const Twine &Name) {
return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
ArraySize, None, MallocF, Name);
}
Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
Type *IntPtrTy, Type *AllocTy,
Value *AllocSize, Value *ArraySize,
ArrayRef<OperandBundleDef> OpB,
Function *MallocF,
const Twine &Name) {
return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
ArraySize, OpB, MallocF, Name);
}
/// CreateMalloc - Generate the IR for a call to malloc:
/// 1. Compute the malloc call's argument as the specified type's size,
/// possibly multiplied by the array size if the array size is not
/// constant 1.
/// 2. Call malloc with that argument.
/// 3. Bitcast the result of the malloc call to the specified type.
/// Note: This function does not add the bitcast to the basic block, that is the
/// responsibility of the caller.
Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
Type *IntPtrTy, Type *AllocTy,
Value *AllocSize, Value *ArraySize,
Function *MallocF, const Twine &Name) {
return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
ArraySize, None, MallocF, Name);
}
Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
Type *IntPtrTy, Type *AllocTy,
Value *AllocSize, Value *ArraySize,
ArrayRef<OperandBundleDef> OpB,
Function *MallocF, const Twine &Name) {
return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
ArraySize, OpB, MallocF, Name);
}
static Instruction *createFree(Value *Source,
ArrayRef<OperandBundleDef> Bundles,
Instruction *InsertBefore,
BasicBlock *InsertAtEnd) {
assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
"createFree needs either InsertBefore or InsertAtEnd");
assert(Source->getType()->isPointerTy() &&
"Can not free something of nonpointer type!");
BasicBlock *BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
Module *M = BB->getParent()->getParent();
Type *VoidTy = Type::getVoidTy(M->getContext());
Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
// prototype free as "void free(void*)"
FunctionCallee FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy);
CallInst *Result = nullptr;
Value *PtrCast = Source;
if (InsertBefore) {
if (Source->getType() != IntPtrTy)
PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "", InsertBefore);
} else {
if (Source->getType() != IntPtrTy)
PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
Result = CallInst::Create(FreeFunc, PtrCast, Bundles, "");
}
Result->setTailCall();
if (Function *F = dyn_cast<Function>(FreeFunc.getCallee()))
Result->setCallingConv(F->getCallingConv());
return Result;
}
/// CreateFree - Generate the IR for a call to the builtin free function.
Instruction *CallInst::CreateFree(Value *Source, Instruction *InsertBefore) {
return createFree(Source, None, InsertBefore, nullptr);
}
Instruction *CallInst::CreateFree(Value *Source,
ArrayRef<OperandBundleDef> Bundles,
Instruction *InsertBefore) {
return createFree(Source, Bundles, InsertBefore, nullptr);
}
/// CreateFree - Generate the IR for a call to the builtin free function.
/// Note: This function does not add the call to the basic block, that is the
/// responsibility of the caller.
Instruction *CallInst::CreateFree(Value *Source, BasicBlock *InsertAtEnd) {
Instruction *FreeCall = createFree(Source, None, nullptr, InsertAtEnd);
assert(FreeCall && "CreateFree did not create a CallInst");
return FreeCall;
}
Instruction *CallInst::CreateFree(Value *Source,
ArrayRef<OperandBundleDef> Bundles,
BasicBlock *InsertAtEnd) {
Instruction *FreeCall = createFree(Source, Bundles, nullptr, InsertAtEnd);
assert(FreeCall && "CreateFree did not create a CallInst");
return FreeCall;
}
//===----------------------------------------------------------------------===//
// InvokeInst Implementation
//===----------------------------------------------------------------------===//
void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
BasicBlock *IfException, ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles,
const Twine &NameStr) {
this->FTy = FTy;
assert((int)getNumOperands() ==
ComputeNumOperands(Args.size(), CountBundleInputs(Bundles)) &&
"NumOperands not set up?");
setNormalDest(IfNormal);
setUnwindDest(IfException);
setCalledOperand(Fn);
#ifndef NDEBUG
assert(((Args.size() == FTy->getNumParams()) ||
(FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
"Invoking a function with bad signature");
for (unsigned i = 0, e = Args.size(); i != e; i++)
assert((i >= FTy->getNumParams() ||
FTy->getParamType(i) == Args[i]->getType()) &&
"Invoking a function with a bad signature!");
#endif
llvm::copy(Args, op_begin());
auto It = populateBundleOperandInfos(Bundles, Args.size());
(void)It;
assert(It + 3 == op_end() && "Should add up!");
setName(NameStr);
}
InvokeInst::InvokeInst(const InvokeInst &II)
: CallBase(II.Attrs, II.FTy, II.getType(), Instruction::Invoke,
OperandTraits<CallBase>::op_end(this) - II.getNumOperands(),
II.getNumOperands()) {
setCallingConv(II.getCallingConv());
std::copy(II.op_begin(), II.op_end(), op_begin());
std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
bundle_op_info_begin());
SubclassOptionalData = II.SubclassOptionalData;
}
InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
Instruction *InsertPt) {
std::vector<Value *> Args(II->arg_begin(), II->arg_end());
auto *NewII = InvokeInst::Create(II->getFunctionType(), II->getCalledValue(),
II->getNormalDest(), II->getUnwindDest(),
Args, OpB, II->getName(), InsertPt);
NewII->setCallingConv(II->getCallingConv());
NewII->SubclassOptionalData = II->SubclassOptionalData;
NewII->setAttributes(II->getAttributes());
NewII->setDebugLoc(II->getDebugLoc());
return NewII;
}
LandingPadInst *InvokeInst::getLandingPadInst() const {
return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
}
//===----------------------------------------------------------------------===//
// CallBrInst Implementation
//===----------------------------------------------------------------------===//
void CallBrInst::init(FunctionType *FTy, Value *Fn, BasicBlock *Fallthrough,
ArrayRef<BasicBlock *> IndirectDests,
ArrayRef<Value *> Args,
ArrayRef<OperandBundleDef> Bundles,
const Twine &NameStr) {
this->FTy = FTy;
assert((int)getNumOperands() ==
ComputeNumOperands(Args.size(), IndirectDests.size(),
CountBundleInputs(Bundles)) &&
"NumOperands not set up?");
NumIndirectDests = IndirectDests.size();
setDefaultDest(Fallthrough);
for (unsigned i = 0; i != NumIndirectDests; ++i)
setIndirectDest(i, IndirectDests[i]);
setCalledOperand(Fn);
#ifndef NDEBUG
assert(((Args.size() == FTy->getNumParams()) ||
(FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
"Calling a function with bad signature");
for (unsigned i = 0, e = Args.size(); i != e; i++)
assert((i >= FTy->getNumParams() ||
FTy->getParamType(i) == Args[i]->getType()) &&
"Calling a function with a bad signature!");
#endif
std::copy(Args.begin(), Args.end(), op_begin());
auto It = populateBundleOperandInfos(Bundles, Args.size());
(void)It;
assert(It + 2 + IndirectDests.size() == op_end() && "Should add up!");
setName(NameStr);
}
CallBrInst::CallBrInst(const CallBrInst &CBI)
: CallBase(CBI.Attrs, CBI.FTy, CBI.getType(), Instruction::CallBr,
OperandTraits<CallBase>::op_end(this) - CBI.getNumOperands(),
CBI.getNumOperands()) {
setCallingConv(CBI.getCallingConv());
std::copy(CBI.op_begin(), CBI.op_end(), op_begin());
std::copy(CBI.bundle_op_info_begin(), CBI.bundle_op_info_end(),
bundle_op_info_begin());
SubclassOptionalData = CBI.SubclassOptionalData;
NumIndirectDests = CBI.NumIndirectDests;
}
CallBrInst *CallBrInst::Create(CallBrInst *CBI, ArrayRef<OperandBundleDef> OpB,
Instruction *InsertPt) {
std::vector<Value *> Args(CBI->arg_begin(), CBI->arg_end());
auto *NewCBI = CallBrInst::Create(CBI->getFunctionType(),
CBI->getCalledValue(),
CBI->getDefaultDest(),
CBI->getIndirectDests(),
Args, OpB, CBI->getName(), InsertPt);
NewCBI->setCallingConv(CBI->getCallingConv());
NewCBI->SubclassOptionalData = CBI->SubclassOptionalData;
NewCBI->setAttributes(CBI->getAttributes());
NewCBI->setDebugLoc(CBI->getDebugLoc());
NewCBI->NumIndirectDests = CBI->NumIndirectDests;
return NewCBI;
}
//===----------------------------------------------------------------------===//
// ReturnInst Implementation
//===----------------------------------------------------------------------===//
ReturnInst::ReturnInst(const ReturnInst &RI)
: Instruction(Type::getVoidTy(RI.getContext()), Instruction::Ret,
OperandTraits<ReturnInst>::op_end(this) - RI.getNumOperands(),
RI.getNumOperands()) {
if (RI.getNumOperands())
Op<0>() = RI.Op<0>();
SubclassOptionalData = RI.SubclassOptionalData;
}
ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
: Instruction(Type::getVoidTy(C), Instruction::Ret,
OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
InsertBefore) {
if (retVal)
Op<0>() = retVal;
}
ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
: Instruction(Type::getVoidTy(C), Instruction::Ret,
OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
InsertAtEnd) {
if (retVal)
Op<0>() = retVal;
}
ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
: Instruction(Type::getVoidTy(Context), Instruction::Ret,
OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {}
//===----------------------------------------------------------------------===//
// ResumeInst Implementation
//===----------------------------------------------------------------------===//
ResumeInst::ResumeInst(const ResumeInst &RI)
: Instruction(Type::getVoidTy(RI.getContext()), Instruction::Resume,
OperandTraits<ResumeInst>::op_begin(this), 1) {
Op<0>() = RI.Op<0>();
}
ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
: Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
Op<0>() = Exn;
}
ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
: Instruction(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
Op<0>() = Exn;
}
//===----------------------------------------------------------------------===//
// CleanupReturnInst Implementation
//===----------------------------------------------------------------------===//
CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
: Instruction(CRI.getType(), Instruction::CleanupRet,
OperandTraits<CleanupReturnInst>::op_end(this) -
CRI.getNumOperands(),
CRI.getNumOperands()) {
setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
Op<0>() = CRI.Op<0>();
if (CRI.hasUnwindDest())
Op<1>() = CRI.Op<1>();
}
void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
if (UnwindBB)
setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
Op<0>() = CleanupPad;
if (UnwindBB)
Op<1>() = UnwindBB;
}
CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
unsigned Values, Instruction *InsertBefore)
: Instruction(Type::getVoidTy(CleanupPad->getContext()),
Instruction::CleanupRet,
OperandTraits<CleanupReturnInst>::op_end(this) - Values,
Values, InsertBefore) {
init(CleanupPad, UnwindBB);
}
CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
unsigned Values, BasicBlock *InsertAtEnd)
: Instruction(Type::getVoidTy(CleanupPad->getContext()),
Instruction::CleanupRet,
OperandTraits<CleanupReturnInst>::op_end(this) - Values,
Values, InsertAtEnd) {
init(CleanupPad, UnwindBB);
}
//===----------------------------------------------------------------------===//
// CatchReturnInst Implementation
//===----------------------------------------------------------------------===//
void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
Op<0>() = CatchPad;
Op<1>() = BB;
}
CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
: Instruction(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
OperandTraits<CatchReturnInst>::op_begin(this), 2) {
Op<0>() = CRI.Op<0>();
Op<1>() = CRI.Op<1>();
}
CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
Instruction *InsertBefore)
: Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
OperandTraits<CatchReturnInst>::op_begin(this), 2,
InsertBefore) {
init(CatchPad, BB);
}
CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
BasicBlock *InsertAtEnd)
: Instruction(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
OperandTraits<CatchReturnInst>::op_begin(this), 2,
InsertAtEnd) {
init(CatchPad, BB);
}
//===----------------------------------------------------------------------===//
// CatchSwitchInst Implementation
//===----------------------------------------------------------------------===//
CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
unsigned NumReservedValues,
const Twine &NameStr,
Instruction *InsertBefore)
: Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
InsertBefore) {
if (UnwindDest)
++NumReservedValues;
init(ParentPad, UnwindDest, NumReservedValues + 1);
setName(NameStr);
}
CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
unsigned NumReservedValues,
const Twine &NameStr, BasicBlock *InsertAtEnd)
: Instruction(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
InsertAtEnd) {
if (UnwindDest)
++NumReservedValues;
init(ParentPad, UnwindDest, NumReservedValues + 1);
setName(NameStr);
}
CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
: Instruction(CSI.getType(), Instruction::CatchSwitch, nullptr,
CSI.getNumOperands()) {
init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
setNumHungOffUseOperands(ReservedSpace);
Use *OL = getOperandList();
const Use *InOL = CSI.getOperandList();
for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
OL[I] = InOL[I];
}
void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
unsigned NumReservedValues) {
assert(ParentPad && NumReservedValues);
ReservedSpace = NumReservedValues;
setNumHungOffUseOperands(UnwindDest ? 2 : 1);
allocHungoffUses(ReservedSpace);
Op<0>() = ParentPad;
if (UnwindDest) {
setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
setUnwindDest(UnwindDest);
}
}
/// growOperands - grow operands - This grows the operand list in response to a
/// push_back style of operation. This grows the number of ops by 2 times.
void CatchSwitchInst::growOperands(unsigned Size) {
unsigned NumOperands = getNumOperands();
assert(NumOperands >= 1);
if (ReservedSpace >= NumOperands + Size)
return;
ReservedSpace = (NumOperands + Size / 2) * 2;
growHungoffUses(ReservedSpace);
}
void CatchSwitchInst::addHandler(BasicBlock *Handler) {
unsigned OpNo = getNumOperands();
growOperands(1);
assert(OpNo < ReservedSpace && "Growing didn't work!");
setNumHungOffUseOperands(getNumOperands() + 1);
getOperandList()[OpNo] = Handler;
}
void CatchSwitchInst::removeHandler(handler_iterator HI) {
// Move all subsequent handlers up one.
Use *EndDst = op_end() - 1;
for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
*CurDst = *(CurDst + 1);
// Null out the last handler use.
*EndDst = nullptr;
setNumHungOffUseOperands(getNumOperands() - 1);
}
//===----------------------------------------------------------------------===//
// FuncletPadInst Implementation
//===----------------------------------------------------------------------===//
void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
const Twine &NameStr) {
assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
llvm::copy(Args, op_begin());
setParentPad(ParentPad);
setName(NameStr);
}
FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
: Instruction(FPI.getType(), FPI.getOpcode(),
OperandTraits<FuncletPadInst>::op_end(this) -
FPI.getNumOperands(),
FPI.getNumOperands()) {
std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
setParentPad(FPI.getParentPad());
}
FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
ArrayRef<Value *> Args, unsigned Values,
const Twine &NameStr, Instruction *InsertBefore)
: Instruction(ParentPad->getType(), Op,
OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
InsertBefore) {
init(ParentPad, Args, NameStr);
}
FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
ArrayRef<Value *> Args, unsigned Values,
const Twine &NameStr, BasicBlock *InsertAtEnd)
: Instruction(ParentPad->getType(), Op,
OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
InsertAtEnd) {
init(ParentPad, Args, NameStr);
}
//===----------------------------------------------------------------------===//
// UnreachableInst Implementation
//===----------------------------------------------------------------------===//
UnreachableInst::UnreachableInst(LLVMContext &Context,
Instruction *InsertBefore)
: Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
0, InsertBefore) {}
UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
: Instruction(Type::getVoidTy(Context), Instruction::Unreachable, nullptr,
0, InsertAtEnd) {}
//===----------------------------------------------------------------------===//
// BranchInst Implementation
//===----------------------------------------------------------------------===//
void BranchInst::AssertOK() {
if (isConditional())
assert(getCondition()->getType()->isIntegerTy(1) &&
"May only branch on boolean predicates!");
}
BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
: Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
OperandTraits<BranchInst>::op_end(this) - 1, 1,
InsertBefore) {
assert(IfTrue && "Branch destination may not be null!");
Op<-1>() = IfTrue;
}
BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
Instruction *InsertBefore)
: Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
OperandTraits<BranchInst>::op_end(this) - 3, 3,
InsertBefore) {
Op<-1>() = IfTrue;
Op<-2>() = IfFalse;
Op<-3>() = Cond;
#ifndef NDEBUG
AssertOK();
#endif
}
BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
: Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
OperandTraits<BranchInst>::op_end(this) - 1, 1, InsertAtEnd) {
assert(IfTrue && "Branch destination may not be null!");
Op<-1>() = IfTrue;
}
BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
BasicBlock *InsertAtEnd)
: Instruction(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
OperandTraits<BranchInst>::op_end(this) - 3, 3, InsertAtEnd) {
Op<-1>() = IfTrue;
Op<-2>() = IfFalse;
Op<-3>() = Cond;
#ifndef NDEBUG
AssertOK();
#endif
}
BranchInst::BranchInst(const BranchInst &BI)
: Instruction(Type::getVoidTy(BI.getContext()), Instruction::Br,
OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
BI.getNumOperands()) {
Op<-1>() = BI.Op<-1>();
if (BI.getNumOperands() != 1) {
assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
Op<-3>() = BI.Op<-3>();
Op<-2>() = BI.Op<-2>();
}
SubclassOptionalData = BI.SubclassOptionalData;
}
void BranchInst::swapSuccessors() {
assert(isConditional() &&
"Cannot swap successors of an unconditional branch");
Op<-1>().swap(Op<-2>());
// Update profile metadata if present and it matches our structural
// expectations.
swapProfMetadata();
}
//===----------------------------------------------------------------------===//
// AllocaInst Implementation
//===----------------------------------------------------------------------===//
static Value *getAISize(LLVMContext &Context, Value *Amt) {
if (!Amt)
Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
else {
assert(!isa<BasicBlock>(Amt) &&
"Passed basic block into allocation size parameter! Use other ctor");
assert(Amt->getType()->isIntegerTy() &&
"Allocation array size is not an integer!");
}
return Amt;
}
AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
Instruction *InsertBefore)
: AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertBefore) {}
AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, const Twine &Name,
BasicBlock *InsertAtEnd)
: AllocaInst(Ty, AddrSpace, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
const Twine &Name, Instruction *InsertBefore)
: AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertBefore) {}
AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
const Twine &Name, BasicBlock *InsertAtEnd)
: AllocaInst(Ty, AddrSpace, ArraySize, /*Align=*/0, Name, InsertAtEnd) {}
AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
unsigned Align, const Twine &Name,
Instruction *InsertBefore)
: UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
getAISize(Ty->getContext(), ArraySize), InsertBefore),
AllocatedType(Ty) {
setAlignment(Align);
assert(!Ty->isVoidTy() && "Cannot allocate void!");
setName(Name);
}
AllocaInst::AllocaInst(Type *Ty, unsigned AddrSpace, Value *ArraySize,
unsigned Align, const Twine &Name,
BasicBlock *InsertAtEnd)
: UnaryInstruction(PointerType::get(Ty, AddrSpace), Alloca,
getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
AllocatedType(Ty) {
setAlignment(Align);
assert(!Ty->isVoidTy() && "Cannot allocate void!");
setName(Name);
}
void AllocaInst::setAlignment(unsigned Align) {
assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
assert(Align <= MaximumAlignment &&
"Alignment is greater than MaximumAlignment!");
setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
(Log2_32(Align) + 1));
assert(getAlignment() == Align && "Alignment representation error!");
}
bool AllocaInst::isArrayAllocation() const {
if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
return !CI->isOne();
return true;
}
/// isStaticAlloca - Return true if this alloca is in the entry block of the
/// function and is a constant size. If so, the code generator will fold it
/// into the prolog/epilog code, so it is basically free.
bool AllocaInst::isStaticAlloca() const {
// Must be constant size.
if (!isa<ConstantInt>(getArraySize())) return false;
// Must be in the entry block.
const BasicBlock *Parent = getParent();
return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
}
//===----------------------------------------------------------------------===//
// LoadInst Implementation
//===----------------------------------------------------------------------===//
void LoadInst::AssertOK() {
assert(getOperand(0)->getType()->isPointerTy() &&
"Ptr must have pointer type.");
assert(!(isAtomic() && getAlignment() == 0) &&
"Alignment required for atomic load");
}
LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
Instruction *InsertBef)
: LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertBef) {}
LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name,
BasicBlock *InsertAE)
: LoadInst(Ty, Ptr, Name, /*isVolatile=*/false, InsertAE) {}
LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
Instruction *InsertBef)
: LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {}
LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
BasicBlock *InsertAE)
: LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {}
LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
unsigned Align, Instruction *InsertBef)
: LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
SyncScope::System, InsertBef) {}
LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
unsigned Align, BasicBlock *InsertAE)
: LoadInst(Ty, Ptr, Name, isVolatile, Align, AtomicOrdering::NotAtomic,
SyncScope::System, InsertAE) {}
LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
unsigned Align, AtomicOrdering Order,
SyncScope::ID SSID, Instruction *InsertBef)
: UnaryInstruction(Ty, Load, Ptr, InsertBef) {
assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
setVolatile(isVolatile);
setAlignment(Align);
setAtomic(Order, SSID);
AssertOK();
setName(Name);
}
LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
unsigned Align, AtomicOrdering Order, SyncScope::ID SSID,
BasicBlock *InsertAE)
: UnaryInstruction(Ty, Load, Ptr, InsertAE) {
assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
setVolatile(isVolatile);
setAlignment(Align);
setAtomic(Order, SSID);
AssertOK();
setName(Name);
}
void LoadInst::setAlignment(unsigned Align) {
assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
assert(Align <= MaximumAlignment &&
"Alignment is greater than MaximumAlignment!");
setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
((Log2_32(Align)+1)<<1));
assert(getAlignment() == Align && "Alignment representation error!");
}
//===----------------------------------------------------------------------===//
// StoreInst Implementation
//===----------------------------------------------------------------------===//
void StoreInst::AssertOK() {
assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
assert(getOperand(1)->getType()->isPointerTy() &&
"Ptr must have pointer type!");
assert(getOperand(0)->getType() ==
cast<PointerType>(getOperand(1)->getType())->getElementType()
&& "Ptr must be a pointer to Val type!");
assert(!(isAtomic() && getAlignment() == 0) &&
"Alignment required for atomic store");
}
StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
: StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
: StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
Instruction *InsertBefore)
: StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {}
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
BasicBlock *InsertAtEnd)
: StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {}
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
Instruction *InsertBefore)
: StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
SyncScope::System, InsertBefore) {}
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
BasicBlock *InsertAtEnd)
: StoreInst(val, addr, isVolatile, Align, AtomicOrdering::NotAtomic,
SyncScope::System, InsertAtEnd) {}
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
unsigned Align, AtomicOrdering Order,
SyncScope::ID SSID,
Instruction *InsertBefore)
: Instruction(Type::getVoidTy(val->getContext()), Store,
OperandTraits<StoreInst>::op_begin(this),
OperandTraits<StoreInst>::operands(this),
InsertBefore) {
Op<0>() = val;
Op<1>() = addr;
setVolatile(isVolatile);
setAlignment(Align);
setAtomic(Order, SSID);
AssertOK();
}
StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
unsigned Align, AtomicOrdering Order,
SyncScope::ID SSID,
BasicBlock *InsertAtEnd)
: Instruction(Type::getVoidTy(val->getContext()), Store,
OperandTraits<StoreInst>::op_begin(this),
OperandTraits<StoreInst>::operands(this),
InsertAtEnd) {
Op<0>() = val;
Op<1>() = addr;
setVolatile(isVolatile);
setAlignment(Align);
setAtomic(Order, SSID);
AssertOK();
}
void StoreInst::setAlignment(unsigned Align) {
assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
assert(Align <= MaximumAlignment &&
"Alignment is greater than MaximumAlignment!");
setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
((Log2_32(Align)+1) << 1));
assert(getAlignment() == Align && "Alignment representation error!");
}
//===----------------------------------------------------------------------===//
// AtomicCmpXchgInst Implementation
//===----------------------------------------------------------------------===//
void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
AtomicOrdering SuccessOrdering,
AtomicOrdering FailureOrdering,
SyncScope::ID SSID) {
Op<0>() = Ptr;
Op<1>() = Cmp;
Op<2>() = NewVal;
setSuccessOrdering(SuccessOrdering);
setFailureOrdering(FailureOrdering);
setSyncScopeID(SSID);
assert(getOperand(0) && getOperand(1) && getOperand(2) &&
"All operands must be non-null!");
assert(getOperand(0)->getType()->isPointerTy() &&
"Ptr must have pointer type!");
assert(getOperand(1)->getType() ==
cast<PointerType>(getOperand(0)->getType())->getElementType()
&& "Ptr must be a pointer to Cmp type!");
assert(getOperand(2)->getType() ==
cast<PointerType>(getOperand(0)->getType())->getElementType()
&& "Ptr must be a pointer to NewVal type!");
assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
"AtomicCmpXchg instructions must be atomic!");
assert(FailureOrdering != AtomicOrdering::NotAtomic &&
"AtomicCmpXchg instructions must be atomic!");
assert(!isStrongerThan(FailureOrdering, SuccessOrdering) &&
"AtomicCmpXchg failure argument shall be no stronger than the success "
"argument");
assert(FailureOrdering != AtomicOrdering::Release &&
FailureOrdering != AtomicOrdering::AcquireRelease &&
"AtomicCmpXchg failure ordering cannot include release semantics");
}
AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
AtomicOrdering SuccessOrdering,
AtomicOrdering FailureOrdering,
SyncScope::ID SSID,
Instruction *InsertBefore)
: Instruction(
StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
}
AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
AtomicOrdering SuccessOrdering,
AtomicOrdering FailureOrdering,
SyncScope::ID SSID,
BasicBlock *InsertAtEnd)
: Instruction(
StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext())),
AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SSID);
}
//===----------------------------------------------------------------------===//
// AtomicRMWInst Implementation
//===----------------------------------------------------------------------===//
void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
AtomicOrdering Ordering,
SyncScope::ID SSID) {
Op<0>() = Ptr;
Op<1>() = Val;
setOperation(Operation);
setOrdering(Ordering);
setSyncScopeID(SSID);
assert(getOperand(0) && getOperand(1) &&
"All operands must be non-null!");
assert(getOperand(0)->getType()->isPointerTy() &&
"Ptr must have pointer type!");
assert(getOperand(1)->getType() ==
cast<PointerType>(getOperand(0)->getType())->getElementType()
&& "Ptr must be a pointer to Val type!");
assert(Ordering != AtomicOrdering::NotAtomic &&
"AtomicRMW instructions must be atomic!");
}
AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
AtomicOrdering Ordering,
SyncScope::ID SSID,
Instruction *InsertBefore)
: Instruction(Val->getType(), AtomicRMW,
OperandTraits<AtomicRMWInst>::op_begin(this),
OperandTraits<AtomicRMWInst>::operands(this),
InsertBefore) {
Init(Operation, Ptr, Val, Ordering, SSID);
}
AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
AtomicOrdering Ordering,
SyncScope::ID SSID,
BasicBlock *InsertAtEnd)
: Instruction(Val->getType(), AtomicRMW,
OperandTraits<AtomicRMWInst>::op_begin(this),
OperandTraits<AtomicRMWInst>::operands(this),
InsertAtEnd) {
Init(Operation, Ptr, Val, Ordering, SSID);
}
StringRef AtomicRMWInst::getOperationName(BinOp Op) {
switch (Op) {
case AtomicRMWInst::Xchg:
return "xchg";
case AtomicRMWInst::Add:
return "add";
case AtomicRMWInst::Sub:
return "sub";
case AtomicRMWInst::And:
return "and";
case AtomicRMWInst::Nand:
return "nand";
case AtomicRMWInst::Or:
return "or";
case AtomicRMWInst::Xor:
return "xor";
case AtomicRMWInst::Max:
return "max";
case AtomicRMWInst::Min:
return "min";
case AtomicRMWInst::UMax:
return "umax";
case AtomicRMWInst::UMin:
return "umin";
case AtomicRMWInst::FAdd:
return "fadd";
case AtomicRMWInst::FSub:
return "fsub";
case AtomicRMWInst::BAD_BINOP:
return "<invalid operation>";
}
llvm_unreachable("invalid atomicrmw operation");
}
//===----------------------------------------------------------------------===//
// FenceInst Implementation
//===----------------------------------------------------------------------===//
FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
SyncScope::ID SSID,
Instruction *InsertBefore)
: Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
setOrdering(Ordering);
setSyncScopeID(SSID);
}
FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
SyncScope::ID SSID,
BasicBlock *InsertAtEnd)
: Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
setOrdering(Ordering);
setSyncScopeID(SSID);
}
//===----------------------------------------------------------------------===//
// GetElementPtrInst Implementation
//===----------------------------------------------------------------------===//
void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
const Twine &Name) {
assert(getNumOperands() == 1 + IdxList.size() &&
"NumOperands not initialized?");
Op<0>() = Ptr;
llvm::copy(IdxList, op_begin() + 1);
setName(Name);
}
GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
: Instruction(GEPI.getType(), GetElementPtr,
OperandTraits<GetElementPtrInst>::op_end(this) -
GEPI.getNumOperands(),
GEPI.getNumOperands()),
SourceElementType(GEPI.SourceElementType),
ResultElementType(GEPI.ResultElementType) {
std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
SubclassOptionalData = GEPI.SubclassOptionalData;
}
/// getIndexedType - Returns the type of the element that would be accessed with
/// a gep instruction with the specified parameters.
///
/// The Idxs pointer should point to a continuous piece of memory containing the
/// indices, either as Value* or uint64_t.
///
/// A null type is returned if the indices are invalid for the specified
/// pointer type.
///
template <typename IndexTy>
static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) {
// Handle the special case of the empty set index set, which is always valid.
if (IdxList.empty())
return Agg;
// If there is at least one index, the top level type must be sized, otherwise
// it cannot be 'stepped over'.
if (!Agg->isSized())
return nullptr;
unsigned CurIdx = 1;
for (; CurIdx != IdxList.size(); ++CurIdx) {
CompositeType *CT = dyn_cast<CompositeType>(Agg);
if (!CT || CT->isPointerTy()) return nullptr;
IndexTy Index = IdxList[CurIdx];
if (!CT->indexValid(Index)) return nullptr;
Agg = CT->getTypeAtIndex(Index);
}
return CurIdx == IdxList.size() ? Agg : nullptr;
}
Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
return getIndexedTypeInternal(Ty, IdxList);
}
Type *GetElementPtrInst::getIndexedType(Type *Ty,
ArrayRef<Constant *> IdxList) {
return getIndexedTypeInternal(Ty, IdxList);
}
Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
return getIndexedTypeInternal(Ty, IdxList);
}
/// hasAllZeroIndices - Return true if all of the indices of this GEP are
/// zeros. If so, the result pointer and the first operand have the same
/// value, just potentially different types.
bool GetElementPtrInst::hasAllZeroIndices() const {
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
if (!CI->isZero()) return false;
} else {
return false;
}
}
return true;
}
/// hasAllConstantIndices - Return true if all of the indices of this GEP are
/// constant integers. If so, the result pointer and the first operand have
/// a constant offset between them.
bool GetElementPtrInst::hasAllConstantIndices() const {
for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
if (!isa<ConstantInt>(getOperand(i)))
return false;
}
return true;
}
void GetElementPtrInst::setIsInBounds(bool B) {
cast<GEPOperator>(this)->setIsInBounds(B);
}
bool GetElementPtrInst::isInBounds() const {
return cast<GEPOperator>(this)->isInBounds();
}
bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
APInt &Offset) const {
// Delegate to the generic GEPOperator implementation.
return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
}
//===----------------------------------------------------------------------===//
// ExtractElementInst Implementation
//===----------------------------------------------------------------------===//
ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
const Twine &Name,
Instruction *InsertBef)
: Instruction(cast<VectorType>(Val->getType())->getElementType(),
ExtractElement,
OperandTraits<ExtractElementInst>::op_begin(this),
2, InsertBef) {
assert(isValidOperands(Val, Index) &&
"Invalid extractelement instruction operands!");
Op<0>() = Val;
Op<1>() = Index;
setName(Name);
}
ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
const Twine &Name,
BasicBlock *InsertAE)
: Instruction(cast<VectorType>(Val->getType())->getElementType(),
ExtractElement,
OperandTraits<ExtractElementInst>::op_begin(this),
2, InsertAE) {
assert(isValidOperands(Val, Index) &&
"Invalid extractelement instruction operands!");
Op<0>() = Val;
Op<1>() = Index;
setName(Name);
}
bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
return false;
return true;
}
//===----------------------------------------------------------------------===//
// InsertElementInst Implementation
//===----------------------------------------------------------------------===//
InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
const Twine &Name,
Instruction *InsertBef)
: Instruction(Vec->getType(), InsertElement,
OperandTraits<InsertElementInst>::op_begin(this),
3, InsertBef) {
assert(isValidOperands(Vec, Elt, Index) &&
"Invalid insertelement instruction operands!");
Op<0>() = Vec;
Op<1>() = Elt;
Op<2>() = Index;
setName(Name);
}
InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
const Twine &Name,
BasicBlock *InsertAE)
: Instruction(Vec->getType(), InsertElement,
OperandTraits<InsertElementInst>::op_begin(this),
3, InsertAE) {
assert(isValidOperands(Vec, Elt, Index) &&
"Invalid insertelement instruction operands!");
Op<0>() = Vec;
Op<1>() = Elt;
Op<2>() = Index;
setName(Name);
}
bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
const Value *Index) {
if (!Vec->getType()->isVectorTy())
return false; // First operand of insertelement must be vector type.
if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
return false;// Second operand of insertelement must be vector element type.
if (!Index->getType()->isIntegerTy())
return false; // Third operand of insertelement must be i32.
return true;
}
//===----------------------------------------------------------------------===//
// ShuffleVectorInst Implementation
//===----------------------------------------------------------------------===//
ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
const Twine &Name,
Instruction *InsertBefore)
: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
cast<VectorType>(Mask->getType())->getNumElements()),
ShuffleVector,
OperandTraits<ShuffleVectorInst>::op_begin(this),
OperandTraits<ShuffleVectorInst>::operands(this),
InsertBefore) {
assert(isValidOperands(V1, V2, Mask) &&
"Invalid shuffle vector instruction operands!");
Op<0>() = V1;
Op<1>() = V2;
Op<2>() = Mask;
setName(Name);
}
ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
const Twine &Name,
BasicBlock *InsertAtEnd)
: Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
cast<VectorType>(Mask->getType())->getNumElements()),
ShuffleVector,
OperandTraits<ShuffleVectorInst>::op_begin(this),
OperandTraits<ShuffleVectorInst>::operands(this),
InsertAtEnd) {
assert(isValidOperands(V1, V2, Mask) &&
"Invalid shuffle vector instruction operands!");
Op<0>() = V1;
Op<1>() = V2;
Op<2>() = Mask;
setName(Name);
}
bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
const Value *Mask) {
// V1 and V2 must be vectors of the same type.
if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
return false;
// Mask must be vector of i32.
auto *MaskTy = dyn_cast<VectorType>(Mask->getType());
if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
return false;
// Check to see if Mask is valid.
if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
return true;
if (const auto *MV = dyn_cast<ConstantVector>(Mask)) {
unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
for (Value *Op : MV->operands()) {
if (auto *CI = dyn_cast<ConstantInt>(Op)) {
if (CI->uge(V1Size*2))
return false;
} else if (!isa<UndefValue>(Op)) {
return false;
}
}
return true;
}
if (const auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
if (CDS->getElementAsInteger(i) >= V1Size*2)
return false;
return true;
}
// The bitcode reader can create a place holder for a forward reference
// used as the shuffle mask. When this occurs, the shuffle mask will
// fall into this case and fail. To avoid this error, do this bit of
// ugliness to allow such a mask pass.
if (const auto *CE = dyn_cast<ConstantExpr>(Mask))
if (CE->getOpcode() == Instruction::UserOp1)
return true;
return false;
}
int ShuffleVectorInst::getMaskValue(const Constant *Mask, unsigned i) {
assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask))
return CDS->getElementAsInteger(i);
Constant *C = Mask->getAggregateElement(i);
if (isa<UndefValue>(C))
return -1;
return cast<ConstantInt>(C)->getZExtValue();
}
void ShuffleVectorInst::getShuffleMask(const Constant *Mask,
SmallVectorImpl<int> &Result) {
unsigned NumElts = Mask->getType()->getVectorNumElements();
if (auto *CDS = dyn_cast<ConstantDataSequential>(Mask)) {
for (unsigned i = 0; i != NumElts; ++i)
Result.push_back(CDS->getElementAsInteger(i));
return;
}
for (unsigned i = 0; i != NumElts; ++i) {
Constant *C = Mask->getAggregateElement(i);
Result.push_back(isa<UndefValue>(C) ? -1 :
cast<ConstantInt>(C)->getZExtValue());
}
}
static bool isSingleSourceMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
assert(!Mask.empty() && "Shuffle mask must contain elements");
bool UsesLHS = false;
bool UsesRHS = false;
for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
if (Mask[i] == -1)
continue;
assert(Mask[i] >= 0 && Mask[i] < (NumOpElts * 2) &&
"Out-of-bounds shuffle mask element");
UsesLHS |= (Mask[i] < NumOpElts);
UsesRHS |= (Mask[i] >= NumOpElts);
if (UsesLHS && UsesRHS)
return false;
}
assert((UsesLHS ^ UsesRHS) && "Should have selected from exactly 1 source");
return true;
}
bool ShuffleVectorInst::isSingleSourceMask(ArrayRef<int> Mask) {
// We don't have vector operand size information, so assume operands are the
// same size as the mask.
return isSingleSourceMaskImpl(Mask, Mask.size());
}
static bool isIdentityMaskImpl(ArrayRef<int> Mask, int NumOpElts) {
if (!isSingleSourceMaskImpl(Mask, NumOpElts))
return false;
for (int i = 0, NumMaskElts = Mask.size(); i < NumMaskElts; ++i) {
if (Mask[i] == -1)
continue;
if (Mask[i] != i && Mask[i] != (NumOpElts + i))
return false;
}
return true;
}
bool ShuffleVectorInst::isIdentityMask(ArrayRef<int> Mask) {
// We don't have vector operand size information, so assume operands are the
// same size as the mask.
return isIdentityMaskImpl(Mask, Mask.size());
}
bool ShuffleVectorInst::isReverseMask(ArrayRef<int> Mask) {
if (!isSingleSourceMask(Mask))
return false;
for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
if (Mask[i] == -1)
continue;
if (Mask[i] != (NumElts - 1 - i) && Mask[i] != (NumElts + NumElts - 1 - i))
return false;
}
return true;
}
bool ShuffleVectorInst::isZeroEltSplatMask(ArrayRef<int> Mask) {
if (!isSingleSourceMask(Mask))
return false;
for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
if (Mask[i] == -1)
continue;
if (Mask[i] != 0 && Mask[i] != NumElts)
return false;
}
return true;
}
bool ShuffleVectorInst::isSelectMask(ArrayRef<int> Mask) {
// Select is differentiated from identity. It requires using both sources.
if (isSingleSourceMask(Mask))
return false;
for (int i = 0, NumElts = Mask.size(); i < NumElts; ++i) {
if (Mask[i] == -1)
continue;
if (Mask[i] != i && Mask[i] != (NumElts + i))
return false;
}
return true;
}
bool ShuffleVectorInst::isTransposeMask(ArrayRef<int> Mask) {
// Example masks that will return true:
// v1 = <a, b, c, d>
// v2 = <e, f, g, h>
// trn1 = shufflevector v1, v2 <0, 4, 2, 6> = <a, e, c, g>
// trn2 = shufflevector v1, v2 <1, 5, 3, 7> = <b, f, d, h>
// 1. The number of elements in the mask must be a power-of-2 and at least 2.
int NumElts = Mask.size();
if (NumElts < 2 || !isPowerOf2_32(NumElts))
return false;
// 2. The first element of the mask must be either a 0 or a 1.
if (Mask[0] != 0 && Mask[0] != 1)
return false;
// 3. The difference between the first 2 elements must be equal to the
// number of elements in the mask.
if ((Mask[1] - Mask[0]) != NumElts)
return false;
// 4. The difference between consecutive even-numbered and odd-numbered
// elements must be equal to 2.
for (int i = 2; i < NumElts; ++i) {
int MaskEltVal = Mask[i];
if (MaskEltVal == -1)
return false;
int MaskEltPrevVal = Mask[i - 2];
if (MaskEltVal - MaskEltPrevVal != 2)
return false;
}
return true;
}
bool ShuffleVectorInst::isExtractSubvectorMask(ArrayRef<int> Mask,
int NumSrcElts, int &Index) {
// Must extract from a single source.
if (!isSingleSourceMaskImpl(Mask, NumSrcElts))
return false;
// Must be smaller (else this is an Identity shuffle).
if (NumSrcElts <= (int)Mask.size())
return false;
// Find start of extraction, accounting that we may start with an UNDEF.
int SubIndex = -1;
for (int i = 0, e = Mask.size(); i != e; ++i) {
int M = Mask[i];
if (M < 0)
continue;
int Offset = (M % NumSrcElts) - i;
if (0 <= SubIndex && SubIndex != Offset)
return false;
SubIndex = Offset;
}
if (0 <= SubIndex) {
Index = SubIndex;
return true;
}
return false;
}
bool ShuffleVectorInst::isIdentityWithPadding() const {
int NumOpElts = Op<0>()->getType()->getVectorNumElements();
int NumMaskElts = getType()->getVectorNumElements();
if (NumMaskElts <= NumOpElts)
return false;
// The first part of the mask must choose elements from exactly 1 source op.
SmallVector<int, 16> Mask = getShuffleMask();
if (!isIdentityMaskImpl(Mask, NumOpElts))
return false;
// All extending must be with undef elements.
for (int i = NumOpElts; i < NumMaskElts; ++i)
if (Mask[i] != -1)
return false;
return true;
}
bool ShuffleVectorInst::isIdentityWithExtract() const {
int NumOpElts = Op<0>()->getType()->getVectorNumElements();
int NumMaskElts = getType()->getVectorNumElements();
if (NumMaskElts >= NumOpElts)
return false;
return isIdentityMaskImpl(getShuffleMask(), NumOpElts);
}
bool ShuffleVectorInst::isConcat() const {
// Vector concatenation is differentiated from identity with padding.
if (isa<UndefValue>(Op<0>()) || isa<UndefValue>(Op<1>()))
return false;
int NumOpElts = Op<0>()->getType()->getVectorNumElements();
int NumMaskElts = getType()->getVectorNumElements();
if (NumMaskElts != NumOpElts * 2)
return false;
// Use the mask length rather than the operands' vector lengths here. We
// already know that the shuffle returns a vector twice as long as the inputs,
// and neither of the inputs are undef vectors. If the mask picks consecutive
// elements from both inputs, then this is a concatenation of the inputs.
return isIdentityMaskImpl(getShuffleMask(), NumMaskElts);
}
//===----------------------------------------------------------------------===//
// InsertValueInst Class
//===----------------------------------------------------------------------===//
void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
const Twine &Name) {
assert(getNumOperands() == 2 && "NumOperands not initialized?");
// There's no fundamental reason why we require at least one index
// (other than weirdness with &*IdxBegin being invalid; see
// getelementptr's init routine for example). But there's no
// present need to support it.
assert(!Idxs.empty() && "InsertValueInst must have at least one index");
assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
Val->getType() && "Inserted value must match indexed type!");
Op<0>() = Agg;
Op<1>() = Val;
Indices.append(Idxs.begin(), Idxs.end());
setName(Name);
}
InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
: Instruction(IVI.getType(), InsertValue,
OperandTraits<InsertValueInst>::op_begin(this), 2),
Indices(IVI.Indices) {
Op<0>() = IVI.getOperand(0);
Op<1>() = IVI.getOperand(1);
SubclassOptionalData = IVI.SubclassOptionalData;
}
//===----------------------------------------------------------------------===//
// ExtractValueInst Class
//===----------------------------------------------------------------------===//
void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
assert(getNumOperands() == 1 && "NumOperands not initialized?");
// There's no fundamental reason why we require at least one index.
// But there's no present need to support it.
assert(!Idxs.empty() && "ExtractValueInst must have at least one index");
Indices.append(Idxs.begin(), Idxs.end());
setName(Name);
}
ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
: UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
Indices(EVI.Indices) {
SubclassOptionalData = EVI.SubclassOptionalData;
}
// getIndexedType - Returns the type of the element that would be extracted
// with an extractvalue instruction with the specified parameters.
//
// A null type is returned if the indices are invalid for the specified
// pointer type.
//
Type *ExtractValueInst::getIndexedType(Type *Agg,
ArrayRef<unsigned> Idxs) {
for (unsigned Index : Idxs) {
// We can't use CompositeType::indexValid(Index) here.
// indexValid() always returns true for arrays because getelementptr allows
// out-of-bounds indices. Since we don't allow those for extractvalue and
// insertvalue we need to check array indexing manually.
// Since the only other types we can index into are struct types it's just
// as easy to check those manually as well.
if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
if (Index >= AT->getNumElements())
return nullptr;
} else if (StructType *ST = dyn_cast<StructType>(Agg)) {
if (Index >= ST->getNumElements())
return nullptr;
} else {
// Not a valid type to index into.
return nullptr;
}
Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
}
return const_cast<Type*>(Agg);
}
//===----------------------------------------------------------------------===//
// UnaryOperator Class
//===----------------------------------------------------------------------===//
UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
Type *Ty, const Twine &Name,
Instruction *InsertBefore)
: UnaryInstruction(Ty, iType, S, InsertBefore) {
Op<0>() = S;
setName(Name);
AssertOK();
}
UnaryOperator::UnaryOperator(UnaryOps iType, Value *S,
Type *Ty, const Twine &Name,
BasicBlock *InsertAtEnd)
: UnaryInstruction(Ty, iType, S, InsertAtEnd) {
Op<0>() = S;
setName(Name);
AssertOK();
}
UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
const Twine &Name,
Instruction *InsertBefore) {
return new UnaryOperator(Op, S, S->getType(), Name, InsertBefore);
}
UnaryOperator *UnaryOperator::Create(UnaryOps Op, Value *S,
const Twine &Name,
BasicBlock *InsertAtEnd) {
UnaryOperator *Res = Create(Op, S, Name);
InsertAtEnd->getInstList().push_back(Res);
return Res;
}
void UnaryOperator::AssertOK() {
Value *LHS = getOperand(0);
(void)LHS; // Silence warnings.
#ifndef NDEBUG
switch (getOpcode()) {
case FNeg:
assert(getType() == LHS->getType() &&
"Unary operation should return same type as operand!");
assert(getType()->isFPOrFPVectorTy() &&
"Tried to create a floating-point operation on a "
"non-floating-point type!");
break;
default: llvm_unreachable("Invalid opcode provided");
}
#endif
}
//===----------------------------------------------------------------------===//
// BinaryOperator Class
//===----------------------------------------------------------------------===//
BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
Type *Ty, const Twine &Name,
Instruction *InsertBefore)
: Instruction(Ty, iType,
OperandTraits<BinaryOperator>::op_begin(this),
OperandTraits<BinaryOperator>::operands(this),
InsertBefore) {
Op<0>() = S1;
Op<1>() = S2;
setName(Name);
AssertOK();
}
BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
Type *Ty, const Twine &Name,
BasicBlock *InsertAtEnd)
: Instruction(Ty, iType,
OperandTraits<BinaryOperator>::op_begin(this),
OperandTraits<BinaryOperator>::operands(this),
InsertAtEnd) {
Op<0>() = S1;
Op<1>() = S2;
setName(Name);
AssertOK();
}
void BinaryOperator::AssertOK() {
Value *LHS = getOperand(0), *RHS = getOperand(1);
(void)LHS; (void)RHS; // Silence warnings.
assert(LHS->getType() == RHS->getType() &&
"Binary operator operand types must match!");
#ifndef NDEBUG
switch (getOpcode()) {
case Add: case Sub:
case Mul:
assert(getType() == LHS->getType() &&
"Arithmetic operation should return same type as operands!");
assert(getType()->isIntOrIntVectorTy() &&
"Tried to create an integer operation on a non-integer type!");
break;
case FAdd: case FSub:
case FMul:
assert(getType() == LHS->getType() &&
"Arithmetic operation should return same type as operands!");
assert(getType()->isFPOrFPVectorTy() &&
"Tried to create a floating-point operation on a "
"non-floating-point type!");
break;
case UDiv:
case SDiv:
assert(getType() == LHS->getType() &&
"Arithmetic operation should return same type as operands!");
assert(getType()->isIntOrIntVectorTy() &&
"Incorrect operand type (not integer) for S/UDIV");
break;
case FDiv:
assert(getType() == LHS->getType() &&
"Arithmetic operation should return same type as operands!");
assert(getType()->isFPOrFPVectorTy() &&
"Incorrect operand type (not floating point) for FDIV");
break;
case URem:
case SRem:
assert(getType() == LHS->getType() &&
"Arithmetic operation should return same type as operands!");
assert(getType()->isIntOrIntVectorTy() &&
"Incorrect operand type (not integer) for S/UREM");
break;
case FRem:
assert(getType() == LHS->getType() &&
"Arithmetic operation should return same type as operands!");
assert(getType()->isFPOrFPVectorTy() &&
"Incorrect operand type (not floating point) for FREM");
break;
case Shl:
case LShr:
case AShr:
assert(getType() == LHS->getType() &&
"Shift operation should return same type as operands!");
assert(getType()->isIntOrIntVectorTy() &&
"Tried to create a shift operation on a non-integral type!");
break;
case And: case Or:
case Xor:
assert(getType() == LHS->getType() &&
"Logical operation should return same type as operands!");
assert(getType()->isIntOrIntVectorTy() &&
"Tried to create a logical operation on a non-integral type!");
break;
default: llvm_unreachable("Invalid opcode provided");
}
#endif
}
BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
const Twine &Name,
Instruction *InsertBefore) {
assert(S1->getType() == S2->getType() &&
"Cannot create binary operator with two operands of differing type!");
return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
}
BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
const Twine &Name,
BasicBlock *InsertAtEnd) {
BinaryOperator *Res = Create(Op, S1, S2, Name);
InsertAtEnd->getInstList().push_back(Res);
return Res;
}
BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
Instruction *InsertBefore) {
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return new BinaryOperator(Instruction::Sub,
zero, Op,
Op->getType(), Name, InsertBefore);
}
BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
BasicBlock *InsertAtEnd) {
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return new BinaryOperator(Instruction::Sub,
zero, Op,
Op->getType(), Name, InsertAtEnd);
}
BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
Instruction *InsertBefore) {
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
}
BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
BasicBlock *InsertAtEnd) {
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
}
BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
Instruction *InsertBefore) {
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
}
BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
BasicBlock *InsertAtEnd) {
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
}
BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
Instruction *InsertBefore) {
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return new BinaryOperator(Instruction::FSub, zero, Op,
Op->getType(), Name, InsertBefore);
}
BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
BasicBlock *InsertAtEnd) {
Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
return new BinaryOperator(Instruction::FSub, zero, Op,
Op->getType(), Name, InsertAtEnd);
}
BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
Instruction *InsertBefore) {
Constant *C = Constant::getAllOnesValue(Op->getType());
return new BinaryOperator(Instruction::Xor, Op, C,
Op->getType(), Name, InsertBefore);
}
BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
BasicBlock *InsertAtEnd) {
Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
return new BinaryOperator(Instruction::Xor, Op, AllOnes,
Op->getType(), Name, InsertAtEnd);
}
// Exchange the two operands to this instruction. This instruction is safe to
// use on any binary instruction and does not modify the semantics of the
// instruction. If the instruction is order-dependent (SetLT f.e.), the opcode
// is changed.
bool BinaryOperator::swapOperands() {
if (!isCommutative())
return true; // Can't commute operands
Op<0>().swap(Op<1>());
return false;
}
//===----------------------------------------------------------------------===//
// FPMathOperator Class
//===----------------------------------------------------------------------===//
float FPMathOperator::getFPAccuracy() const {
const MDNode *MD =
cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
if (!MD)
return 0.0;
ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
return Accuracy->getValueAPF().convertToFloat();
}
//===----------------------------------------------------------------------===//
// CastInst Class
//===----------------------------------------------------------------------===//
// Just determine if this cast only deals with integral->integral conversion.
bool CastInst::isIntegerCast() const {
switch (getOpcode()) {
default: return false;
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::Trunc:
return true;
case Instruction::BitCast:
return getOperand(0)->getType()->isIntegerTy() &&
getType()->isIntegerTy();
}
}
bool CastInst::isLosslessCast() const {
// Only BitCast can be lossless, exit fast if we're not BitCast
if (getOpcode() != Instruction::BitCast)
return false;
// Identity cast is always lossless
Type *SrcTy = getOperand(0)->getType();
Type *DstTy = getType();
if (SrcTy == DstTy)
return true;
// Pointer to pointer is always lossless.
if (SrcTy->isPointerTy())
return DstTy->isPointerTy();
return false; // Other types have no identity values
}
/// This function determines if the CastInst does not require any bits to be
/// changed in order to effect the cast. Essentially, it identifies cases where
/// no code gen is necessary for the cast, hence the name no-op cast. For
/// example, the following are all no-op casts:
/// # bitcast i32* %x to i8*
/// # bitcast <2 x i32> %x to <4 x i16>
/// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
/// Determine if the described cast is a no-op.
bool CastInst::isNoopCast(Instruction::CastOps Opcode,
Type *SrcTy,
Type *DestTy,
const DataLayout &DL) {
switch (Opcode) {
default: llvm_unreachable("Invalid CastOp");
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
case Instruction::AddrSpaceCast:
// TODO: Target informations may give a more accurate answer here.
return false;
case Instruction::BitCast:
return true; // BitCast never modifies bits.
case Instruction::PtrToInt:
return DL.getIntPtrType(SrcTy)->getScalarSizeInBits() ==
DestTy->getScalarSizeInBits();
case Instruction::IntToPtr:
return DL.getIntPtrType(DestTy)->getScalarSizeInBits() ==
SrcTy->getScalarSizeInBits();
}
}
bool CastInst::isNoopCast(const DataLayout &DL) const {
return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), DL);
}
/// This function determines if a pair of casts can be eliminated and what
/// opcode should be used in the elimination. This assumes that there are two
/// instructions like this:
/// * %F = firstOpcode SrcTy %x to MidTy
/// * %S = secondOpcode MidTy %F to DstTy
/// The function returns a resultOpcode so these two casts can be replaced with:
/// * %Replacement = resultOpcode %SrcTy %x to DstTy
/// If no such cast is permitted, the function returns 0.
unsigned CastInst::isEliminableCastPair(
Instruction::CastOps firstOp, Instruction::CastOps secondOp,
Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
Type *DstIntPtrTy) {
// Define the 144 possibilities for these two cast instructions. The values
// in this matrix determine what to do in a given situation and select the
// case in the switch below. The rows correspond to firstOp, the columns
// correspond to secondOp. In looking at the table below, keep in mind
// the following cast properties:
//
// Size Compare Source Destination
// Operator Src ? Size Type Sign Type Sign
// -------- ------------ ------------------- ---------------------
// TRUNC > Integer Any Integral Any
// ZEXT < Integral Unsigned Integer Any
// SEXT < Integral Signed Integer Any
// FPTOUI n/a FloatPt n/a Integral Unsigned
// FPTOSI n/a FloatPt n/a Integral Signed
// UITOFP n/a Integral Unsigned FloatPt n/a
// SITOFP n/a Integral Signed FloatPt n/a
// FPTRUNC > FloatPt n/a FloatPt n/a
// FPEXT < FloatPt n/a FloatPt n/a
// PTRTOINT n/a Pointer n/a Integral Unsigned
// INTTOPTR n/a Integral Unsigned Pointer n/a
// BITCAST = FirstClass n/a FirstClass n/a
// ADDRSPCST n/a Pointer n/a Pointer n/a
//
// NOTE: some transforms are safe, but we consider them to be non-profitable.
// For example, we could merge "fptoui double to i32" + "zext i32 to i64",
// into "fptoui double to i64", but this loses information about the range
// of the produced value (we no longer know the top-part is all zeros).
// Further this conversion is often much more expensive for typical hardware,
// and causes issues when building libgcc. We disallow fptosi+sext for the
// same reason.
const unsigned numCastOps =
Instruction::CastOpsEnd - Instruction::CastOpsBegin;
static const uint8_t CastResults[numCastOps][numCastOps] = {
// T F F U S F F P I B A -+
// R Z S P P I I T P 2 N T S |
// U E E 2 2 2 2 R E I T C C +- secondOp
// N X X U S F F N X N 2 V V |
// C T T I I P P C T T P T T -+
{ 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
{ 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt |
{ 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
{ 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
{ 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
{ 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
{ 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
{ 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc |
{ 99,99,99, 2, 2,99,99, 8, 2,99,99, 4, 0}, // FPExt |
{ 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
{ 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
{ 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
};
// TODO: This logic could be encoded into the table above and handled in the
// switch below.
// If either of the casts are a bitcast from scalar to vector, disallow the
// merging. However, any pair of bitcasts are allowed.
bool IsFirstBitcast = (firstOp == Instruction::BitCast);
bool IsSecondBitcast = (secondOp == Instruction::BitCast);
bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
// Check if any of the casts convert scalars <-> vectors.
if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
(IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
if (!AreBothBitcasts)
return 0;
int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
[secondOp-Instruction::CastOpsBegin];
switch (ElimCase) {
case 0:
// Categorically disallowed.
return 0;
case 1:
// Allowed, use first cast's opcode.
return firstOp;
case 2:
// Allowed, use second cast's opcode.
return secondOp;
case 3:
// No-op cast in second op implies firstOp as long as the DestTy
// is integer and we are not converting between a vector and a
// non-vector type.
if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
return firstOp;