blob: e4f29fbb3dba2407c30821eec4b333aeda34c4fd [file] [log] [blame]
//===------ BPFAbstractMemberAccess.cpp - Abstracting Member Accesses -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass abstracted struct/union member accesses in order to support
// compile-once run-everywhere (CO-RE). The CO-RE intends to compile the program
// which can run on different kernels. In particular, if bpf program tries to
// access a particular kernel data structure member, the details of the
// intermediate member access will be remembered so bpf loader can do
// necessary adjustment right before program loading.
//
// For example,
//
// struct s {
// int a;
// int b;
// };
// struct t {
// struct s c;
// int d;
// };
// struct t e;
//
// For the member access e.c.b, the compiler will generate code
// &e + 4
//
// The compile-once run-everywhere instead generates the following code
// r = 4
// &e + r
// The "4" in "r = 4" can be changed based on a particular kernel version.
// For example, on a particular kernel version, if struct s is changed to
//
// struct s {
// int new_field;
// int a;
// int b;
// }
//
// By repeating the member access on the host, the bpf loader can
// adjust "r = 4" as "r = 8".
//
// This feature relies on the following three intrinsic calls:
// addr = preserve_array_access_index(base, dimension, index)
// addr = preserve_union_access_index(base, di_index)
// !llvm.preserve.access.index <union_ditype>
// addr = preserve_struct_access_index(base, gep_index, di_index)
// !llvm.preserve.access.index <struct_ditype>
//
//===----------------------------------------------------------------------===//
#include "BPF.h"
#include "BPFCORE.h"
#include "BPFTargetMachine.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <stack>
#define DEBUG_TYPE "bpf-abstract-member-access"
namespace llvm {
const std::string BPFCoreSharedInfo::AmaAttr = "btf_ama";
const std::string BPFCoreSharedInfo::PatchableExtSecName =
".BPF.patchable_externs";
} // namespace llvm
using namespace llvm;
namespace {
class BPFAbstractMemberAccess final : public ModulePass {
StringRef getPassName() const override {
return "BPF Abstract Member Access";
}
bool runOnModule(Module &M) override;
public:
static char ID;
BPFAbstractMemberAccess() : ModulePass(ID) {}
private:
enum : uint32_t {
BPFPreserveArrayAI = 1,
BPFPreserveUnionAI = 2,
BPFPreserveStructAI = 3,
};
std::map<std::string, GlobalVariable *> GEPGlobals;
// A map to link preserve_*_access_index instrinsic calls.
std::map<CallInst *, std::pair<CallInst *, uint32_t>> AIChain;
// A map to hold all the base preserve_*_access_index instrinsic calls.
// The base call is not an input of any other preserve_*_access_index
// intrinsics.
std::map<CallInst *, uint32_t> BaseAICalls;
bool doTransformation(Module &M);
void traceAICall(CallInst *Call, uint32_t Kind, const MDNode *ParentMeta,
uint32_t ParentAI);
void traceBitCast(BitCastInst *BitCast, CallInst *Parent, uint32_t Kind,
const MDNode *ParentMeta, uint32_t ParentAI);
void traceGEP(GetElementPtrInst *GEP, CallInst *Parent, uint32_t Kind,
const MDNode *ParentMeta, uint32_t ParentAI);
void collectAICallChains(Module &M, Function &F);
bool IsPreserveDIAccessIndexCall(const CallInst *Call, uint32_t &Kind,
const MDNode *&TypeMeta, uint32_t &AccessIndex);
bool IsValidAIChain(const MDNode *ParentMeta, uint32_t ParentAI,
const MDNode *ChildMeta);
bool removePreserveAccessIndexIntrinsic(Module &M);
void replaceWithGEP(std::vector<CallInst *> &CallList,
uint32_t NumOfZerosIndex, uint32_t DIIndex);
Value *computeBaseAndAccessKey(CallInst *Call, std::string &AccessKey,
uint32_t Kind, MDNode *&BaseMeta);
bool getAccessIndex(const Value *IndexValue, uint64_t &AccessIndex);
bool transformGEPChain(Module &M, CallInst *Call, uint32_t Kind);
};
} // End anonymous namespace
char BPFAbstractMemberAccess::ID = 0;
INITIALIZE_PASS(BPFAbstractMemberAccess, DEBUG_TYPE,
"abstracting struct/union member accessees", false, false)
ModulePass *llvm::createBPFAbstractMemberAccess() {
return new BPFAbstractMemberAccess();
}
bool BPFAbstractMemberAccess::runOnModule(Module &M) {
LLVM_DEBUG(dbgs() << "********** Abstract Member Accesses **********\n");
// Bail out if no debug info.
if (empty(M.debug_compile_units()))
return false;
return doTransformation(M);
}
static bool SkipDIDerivedTag(unsigned Tag) {
if (Tag != dwarf::DW_TAG_typedef && Tag != dwarf::DW_TAG_const_type &&
Tag != dwarf::DW_TAG_volatile_type &&
Tag != dwarf::DW_TAG_restrict_type &&
Tag != dwarf::DW_TAG_member)
return false;
return true;
}
static DIType * stripQualifiers(DIType *Ty) {
while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
if (!SkipDIDerivedTag(DTy->getTag()))
break;
Ty = DTy->getBaseType();
}
return Ty;
}
static const DIType * stripQualifiers(const DIType *Ty) {
while (auto *DTy = dyn_cast<DIDerivedType>(Ty)) {
if (!SkipDIDerivedTag(DTy->getTag()))
break;
Ty = DTy->getBaseType();
}
return Ty;
}
static uint32_t calcArraySize(const DICompositeType *CTy, uint32_t StartDim) {
DINodeArray Elements = CTy->getElements();
uint32_t DimSize = 1;
for (uint32_t I = StartDim; I < Elements.size(); ++I) {
if (auto *Element = dyn_cast_or_null<DINode>(Elements[I]))
if (Element->getTag() == dwarf::DW_TAG_subrange_type) {
const DISubrange *SR = cast<DISubrange>(Element);
auto *CI = SR->getCount().dyn_cast<ConstantInt *>();
DimSize *= CI->getSExtValue();
}
}
return DimSize;
}
/// Check whether a call is a preserve_*_access_index intrinsic call or not.
bool BPFAbstractMemberAccess::IsPreserveDIAccessIndexCall(const CallInst *Call,
uint32_t &Kind,
const MDNode *&TypeMeta,
uint32_t &AccessIndex) {
if (!Call)
return false;
const auto *GV = dyn_cast<GlobalValue>(Call->getCalledValue());
if (!GV)
return false;
if (GV->getName().startswith("llvm.preserve.array.access.index")) {
Kind = BPFPreserveArrayAI;
TypeMeta = Call->getMetadata(LLVMContext::MD_preserve_access_index);
if (!TypeMeta)
report_fatal_error("Missing metadata for llvm.preserve.array.access.index intrinsic");
AccessIndex = cast<ConstantInt>(Call->getArgOperand(2))
->getZExtValue();
return true;
}
if (GV->getName().startswith("llvm.preserve.union.access.index")) {
Kind = BPFPreserveUnionAI;
TypeMeta = Call->getMetadata(LLVMContext::MD_preserve_access_index);
if (!TypeMeta)
report_fatal_error("Missing metadata for llvm.preserve.union.access.index intrinsic");
AccessIndex = cast<ConstantInt>(Call->getArgOperand(1))
->getZExtValue();
return true;
}
if (GV->getName().startswith("llvm.preserve.struct.access.index")) {
Kind = BPFPreserveStructAI;
TypeMeta = Call->getMetadata(LLVMContext::MD_preserve_access_index);
if (!TypeMeta)
report_fatal_error("Missing metadata for llvm.preserve.struct.access.index intrinsic");
AccessIndex = cast<ConstantInt>(Call->getArgOperand(2))
->getZExtValue();
return true;
}
return false;
}
void BPFAbstractMemberAccess::replaceWithGEP(std::vector<CallInst *> &CallList,
uint32_t DimensionIndex,
uint32_t GEPIndex) {
for (auto Call : CallList) {
uint32_t Dimension = 1;
if (DimensionIndex > 0)
Dimension = cast<ConstantInt>(Call->getArgOperand(DimensionIndex))
->getZExtValue();
Constant *Zero =
ConstantInt::get(Type::getInt32Ty(Call->getParent()->getContext()), 0);
SmallVector<Value *, 4> IdxList;
for (unsigned I = 0; I < Dimension; ++I)
IdxList.push_back(Zero);
IdxList.push_back(Call->getArgOperand(GEPIndex));
auto *GEP = GetElementPtrInst::CreateInBounds(Call->getArgOperand(0),
IdxList, "", Call);
Call->replaceAllUsesWith(GEP);
Call->eraseFromParent();
}
}
bool BPFAbstractMemberAccess::removePreserveAccessIndexIntrinsic(Module &M) {
std::vector<CallInst *> PreserveArrayIndexCalls;
std::vector<CallInst *> PreserveUnionIndexCalls;
std::vector<CallInst *> PreserveStructIndexCalls;
bool Found = false;
for (Function &F : M)
for (auto &BB : F)
for (auto &I : BB) {
auto *Call = dyn_cast<CallInst>(&I);
uint32_t Kind;
const MDNode *TypeMeta;
uint32_t AccessIndex;
if (!IsPreserveDIAccessIndexCall(Call, Kind, TypeMeta, AccessIndex))
continue;
Found = true;
if (Kind == BPFPreserveArrayAI)
PreserveArrayIndexCalls.push_back(Call);
else if (Kind == BPFPreserveUnionAI)
PreserveUnionIndexCalls.push_back(Call);
else
PreserveStructIndexCalls.push_back(Call);
}
// do the following transformation:
// . addr = preserve_array_access_index(base, dimension, index)
// is transformed to
// addr = GEP(base, dimenion's zero's, index)
// . addr = preserve_union_access_index(base, di_index)
// is transformed to
// addr = base, i.e., all usages of "addr" are replaced by "base".
// . addr = preserve_struct_access_index(base, gep_index, di_index)
// is transformed to
// addr = GEP(base, 0, gep_index)
replaceWithGEP(PreserveArrayIndexCalls, 1, 2);
replaceWithGEP(PreserveStructIndexCalls, 0, 1);
for (auto Call : PreserveUnionIndexCalls) {
Call->replaceAllUsesWith(Call->getArgOperand(0));
Call->eraseFromParent();
}
return Found;
}
/// Check whether the access index chain is valid. We check
/// here because there may be type casts between two
/// access indexes. We want to ensure memory access still valid.
bool BPFAbstractMemberAccess::IsValidAIChain(const MDNode *ParentType,
uint32_t ParentAI,
const MDNode *ChildType) {
const DIType *PType = stripQualifiers(cast<DIType>(ParentType));
const DIType *CType = stripQualifiers(cast<DIType>(ChildType));
// Child is a derived/pointer type, which is due to type casting.
// Pointer type cannot be in the middle of chain.
if (isa<DIDerivedType>(CType))
return false;
// Parent is a pointer type.
if (const auto *PtrTy = dyn_cast<DIDerivedType>(PType)) {
if (PtrTy->getTag() != dwarf::DW_TAG_pointer_type)
return false;
return stripQualifiers(PtrTy->getBaseType()) == CType;
}
// Otherwise, struct/union/array types
const auto *PTy = dyn_cast<DICompositeType>(PType);
const auto *CTy = dyn_cast<DICompositeType>(CType);
assert(PTy && CTy && "ParentType or ChildType is null or not composite");
uint32_t PTyTag = PTy->getTag();
assert(PTyTag == dwarf::DW_TAG_array_type ||
PTyTag == dwarf::DW_TAG_structure_type ||
PTyTag == dwarf::DW_TAG_union_type);
uint32_t CTyTag = CTy->getTag();
assert(CTyTag == dwarf::DW_TAG_array_type ||
CTyTag == dwarf::DW_TAG_structure_type ||
CTyTag == dwarf::DW_TAG_union_type);
// Multi dimensional arrays, base element should be the same
if (PTyTag == dwarf::DW_TAG_array_type && PTyTag == CTyTag)
return PTy->getBaseType() == CTy->getBaseType();
DIType *Ty;
if (PTyTag == dwarf::DW_TAG_array_type)
Ty = PTy->getBaseType();
else
Ty = dyn_cast<DIType>(PTy->getElements()[ParentAI]);
return dyn_cast<DICompositeType>(stripQualifiers(Ty)) == CTy;
}
void BPFAbstractMemberAccess::traceAICall(CallInst *Call, uint32_t Kind,
const MDNode *ParentMeta,
uint32_t ParentAI) {
for (User *U : Call->users()) {
Instruction *Inst = dyn_cast<Instruction>(U);
if (!Inst)
continue;
if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
traceBitCast(BI, Call, Kind, ParentMeta, ParentAI);
} else if (auto *CI = dyn_cast<CallInst>(Inst)) {
uint32_t CIKind;
const MDNode *ChildMeta;
uint32_t ChildAI;
if (IsPreserveDIAccessIndexCall(CI, CIKind, ChildMeta, ChildAI) &&
IsValidAIChain(ParentMeta, ParentAI, ChildMeta)) {
AIChain[CI] = std::make_pair(Call, Kind);
traceAICall(CI, CIKind, ChildMeta, ChildAI);
} else {
BaseAICalls[Call] = Kind;
}
} else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
if (GI->hasAllZeroIndices())
traceGEP(GI, Call, Kind, ParentMeta, ParentAI);
else
BaseAICalls[Call] = Kind;
}
}
}
void BPFAbstractMemberAccess::traceBitCast(BitCastInst *BitCast,
CallInst *Parent, uint32_t Kind,
const MDNode *ParentMeta,
uint32_t ParentAI) {
for (User *U : BitCast->users()) {
Instruction *Inst = dyn_cast<Instruction>(U);
if (!Inst)
continue;
if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
traceBitCast(BI, Parent, Kind, ParentMeta, ParentAI);
} else if (auto *CI = dyn_cast<CallInst>(Inst)) {
uint32_t CIKind;
const MDNode *ChildMeta;
uint32_t ChildAI;
if (IsPreserveDIAccessIndexCall(CI, CIKind, ChildMeta, ChildAI) &&
IsValidAIChain(ParentMeta, ParentAI, ChildMeta)) {
AIChain[CI] = std::make_pair(Parent, Kind);
traceAICall(CI, CIKind, ChildMeta, ChildAI);
} else {
BaseAICalls[Parent] = Kind;
}
} else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
if (GI->hasAllZeroIndices())
traceGEP(GI, Parent, Kind, ParentMeta, ParentAI);
else
BaseAICalls[Parent] = Kind;
}
}
}
void BPFAbstractMemberAccess::traceGEP(GetElementPtrInst *GEP, CallInst *Parent,
uint32_t Kind, const MDNode *ParentMeta,
uint32_t ParentAI) {
for (User *U : GEP->users()) {
Instruction *Inst = dyn_cast<Instruction>(U);
if (!Inst)
continue;
if (auto *BI = dyn_cast<BitCastInst>(Inst)) {
traceBitCast(BI, Parent, Kind, ParentMeta, ParentAI);
} else if (auto *CI = dyn_cast<CallInst>(Inst)) {
uint32_t CIKind;
const MDNode *ChildMeta;
uint32_t ChildAI;
if (IsPreserveDIAccessIndexCall(CI, CIKind, ChildMeta, ChildAI) &&
IsValidAIChain(ParentMeta, ParentAI, ChildMeta)) {
AIChain[CI] = std::make_pair(Parent, Kind);
traceAICall(CI, CIKind, ChildMeta, ChildAI);
} else {
BaseAICalls[Parent] = Kind;
}
} else if (auto *GI = dyn_cast<GetElementPtrInst>(Inst)) {
if (GI->hasAllZeroIndices())
traceGEP(GI, Parent, Kind, ParentMeta, ParentAI);
else
BaseAICalls[Parent] = Kind;
}
}
}
void BPFAbstractMemberAccess::collectAICallChains(Module &M, Function &F) {
AIChain.clear();
BaseAICalls.clear();
for (auto &BB : F)
for (auto &I : BB) {
uint32_t Kind;
const MDNode *TypeMeta;
uint32_t AccessIndex;
auto *Call = dyn_cast<CallInst>(&I);
if (!IsPreserveDIAccessIndexCall(Call, Kind, TypeMeta, AccessIndex) ||
AIChain.find(Call) != AIChain.end())
continue;
traceAICall(Call, Kind, TypeMeta, AccessIndex);
}
}
/// Get access index from the preserve_*_access_index intrinsic calls.
bool BPFAbstractMemberAccess::getAccessIndex(const Value *IndexValue,
uint64_t &AccessIndex) {
const ConstantInt *CV = dyn_cast<ConstantInt>(IndexValue);
if (!CV)
return false;
AccessIndex = CV->getValue().getZExtValue();
return true;
}
/// Compute the base of the whole preserve_*_access_index chains, i.e., the base
/// pointer of the first preserve_*_access_index call, and construct the access
/// string, which will be the name of a global variable.
Value *BPFAbstractMemberAccess::computeBaseAndAccessKey(CallInst *Call,
std::string &AccessKey,
uint32_t Kind,
MDNode *&TypeMeta) {
Value *Base = nullptr;
std::string TypeName;
std::stack<std::pair<CallInst *, uint32_t>> CallStack;
// Put the access chain into a stack with the top as the head of the chain.
while (Call) {
CallStack.push(std::make_pair(Call, Kind));
Kind = AIChain[Call].second;
Call = AIChain[Call].first;
}
// The access offset from the base of the head of chain is also
// calculated here as all debuginfo types are available.
// Get type name and calculate the first index.
// We only want to get type name from structure or union.
// If user wants a relocation like
// int *p; ... __builtin_preserve_access_index(&p[4]) ...
// or
// int a[10][20]; ... __builtin_preserve_access_index(&a[2][3]) ...
// we will skip them.
uint32_t FirstIndex = 0;
uint32_t AccessOffset = 0;
while (CallStack.size()) {
auto StackElem = CallStack.top();
Call = StackElem.first;
Kind = StackElem.second;
if (!Base)
Base = Call->getArgOperand(0);
MDNode *MDN = Call->getMetadata(LLVMContext::MD_preserve_access_index);
DIType *Ty = stripQualifiers(cast<DIType>(MDN));
if (Kind == BPFPreserveUnionAI || Kind == BPFPreserveStructAI) {
// struct or union type
TypeName = Ty->getName();
TypeMeta = Ty;
AccessOffset += FirstIndex * Ty->getSizeInBits() >> 3;
break;
}
// Array entries will always be consumed for accumulative initial index.
CallStack.pop();
// BPFPreserveArrayAI
uint64_t AccessIndex;
if (!getAccessIndex(Call->getArgOperand(2), AccessIndex))
return nullptr;
DIType *BaseTy = nullptr;
bool CheckElemType = false;
if (const auto *CTy = dyn_cast<DICompositeType>(Ty)) {
// array type
assert(CTy->getTag() == dwarf::DW_TAG_array_type);
FirstIndex += AccessIndex * calcArraySize(CTy, 1);
BaseTy = stripQualifiers(CTy->getBaseType());
CheckElemType = CTy->getElements().size() == 1;
} else {
// pointer type
auto *DTy = cast<DIDerivedType>(Ty);
assert(DTy->getTag() == dwarf::DW_TAG_pointer_type);
BaseTy = stripQualifiers(DTy->getBaseType());
CTy = dyn_cast<DICompositeType>(BaseTy);
if (!CTy) {
CheckElemType = true;
} else if (CTy->getTag() != dwarf::DW_TAG_array_type) {
FirstIndex += AccessIndex;
CheckElemType = true;
} else {
FirstIndex += AccessIndex * calcArraySize(CTy, 0);
}
}
if (CheckElemType) {
auto *CTy = dyn_cast<DICompositeType>(BaseTy);
if (!CTy)
return nullptr;
unsigned CTag = CTy->getTag();
if (CTag != dwarf::DW_TAG_structure_type && CTag != dwarf::DW_TAG_union_type)
return nullptr;
else
TypeName = CTy->getName();
TypeMeta = CTy;
AccessOffset += FirstIndex * CTy->getSizeInBits() >> 3;
break;
}
}
assert(TypeName.size());
AccessKey += std::to_string(FirstIndex);
// Traverse the rest of access chain to complete offset calculation
// and access key construction.
while (CallStack.size()) {
auto StackElem = CallStack.top();
Call = StackElem.first;
Kind = StackElem.second;
CallStack.pop();
// Access Index
uint64_t AccessIndex;
uint32_t ArgIndex = (Kind == BPFPreserveUnionAI) ? 1 : 2;
if (!getAccessIndex(Call->getArgOperand(ArgIndex), AccessIndex))
return nullptr;
AccessKey += ":" + std::to_string(AccessIndex);
MDNode *MDN = Call->getMetadata(LLVMContext::MD_preserve_access_index);
// At this stage, it cannot be pointer type.
auto *CTy = cast<DICompositeType>(stripQualifiers(cast<DIType>(MDN)));
uint32_t Tag = CTy->getTag();
if (Tag == dwarf::DW_TAG_structure_type) {
auto *MemberTy = cast<DIDerivedType>(CTy->getElements()[AccessIndex]);
AccessOffset += MemberTy->getOffsetInBits() >> 3;
} else if (Tag == dwarf::DW_TAG_array_type) {
auto *EltTy = stripQualifiers(CTy->getBaseType());
AccessOffset += AccessIndex * calcArraySize(CTy, 1) *
EltTy->getSizeInBits() >> 3;
}
}
// Access key is the type name + access string, uniquely identifying
// one kernel memory access.
AccessKey = TypeName + ":" + std::to_string(AccessOffset) + "$" + AccessKey;
return Base;
}
/// Call/Kind is the base preserve_*_access_index() call. Attempts to do
/// transformation to a chain of relocable GEPs.
bool BPFAbstractMemberAccess::transformGEPChain(Module &M, CallInst *Call,
uint32_t Kind) {
std::string AccessKey;
MDNode *TypeMeta;
Value *Base =
computeBaseAndAccessKey(Call, AccessKey, Kind, TypeMeta);
if (!Base)
return false;
// Do the transformation
// For any original GEP Call and Base %2 like
// %4 = bitcast %struct.net_device** %dev1 to i64*
// it is transformed to:
// %6 = load sk_buff:50:$0:0:0:2:0
// %7 = bitcast %struct.sk_buff* %2 to i8*
// %8 = getelementptr i8, i8* %7, %6
// %9 = bitcast i8* %8 to i64*
// using %9 instead of %4
// The original Call inst is removed.
BasicBlock *BB = Call->getParent();
GlobalVariable *GV;
if (GEPGlobals.find(AccessKey) == GEPGlobals.end()) {
GV = new GlobalVariable(M, Type::getInt64Ty(BB->getContext()), false,
GlobalVariable::ExternalLinkage, NULL, AccessKey);
GV->addAttribute(BPFCoreSharedInfo::AmaAttr);
GV->setMetadata(LLVMContext::MD_preserve_access_index, TypeMeta);
GEPGlobals[AccessKey] = GV;
} else {
GV = GEPGlobals[AccessKey];
}
// Load the global variable.
auto *LDInst = new LoadInst(Type::getInt64Ty(BB->getContext()), GV);
BB->getInstList().insert(Call->getIterator(), LDInst);
// Generate a BitCast
auto *BCInst = new BitCastInst(Base, Type::getInt8PtrTy(BB->getContext()));
BB->getInstList().insert(Call->getIterator(), BCInst);
// Generate a GetElementPtr
auto *GEP = GetElementPtrInst::Create(Type::getInt8Ty(BB->getContext()),
BCInst, LDInst);
BB->getInstList().insert(Call->getIterator(), GEP);
// Generate a BitCast
auto *BCInst2 = new BitCastInst(GEP, Call->getType());
BB->getInstList().insert(Call->getIterator(), BCInst2);
Call->replaceAllUsesWith(BCInst2);
Call->eraseFromParent();
return true;
}
bool BPFAbstractMemberAccess::doTransformation(Module &M) {
bool Transformed = false;
for (Function &F : M) {
// Collect PreserveDIAccessIndex Intrinsic call chains.
// The call chains will be used to generate the access
// patterns similar to GEP.
collectAICallChains(M, F);
for (auto &C : BaseAICalls)
Transformed = transformGEPChain(M, C.first, C.second) || Transformed;
}
return removePreserveAccessIndexIntrinsic(M) || Transformed;
}