blob: 15747bc7f1ac57a55ad897a5b3a62951b2205820 [file] [log] [blame]
//===- llvm/Transforms/Utils/LoopUtils.h - Loop utilities -*- C++ -*-=========//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines some loop transformation utilities.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
#define LLVM_TRANSFORMS_UTILS_LOOPUTILS_H
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
namespace llvm {
class AliasAnalysis;
class AliasSet;
class AliasSetTracker;
class AssumptionCache;
class BasicBlock;
class DataLayout;
class DominatorTree;
class Loop;
class LoopInfo;
class Pass;
class PredIteratorCache;
class ScalarEvolution;
class TargetLibraryInfo;
/// \brief Captures loop safety information.
/// It keep information for loop & its header may throw exception.
struct LICMSafetyInfo {
bool MayThrow; // The current loop contains an instruction which
// may throw.
bool HeaderMayThrow; // Same as previous, but specific to loop header
LICMSafetyInfo() : MayThrow(false), HeaderMayThrow(false)
{}
};
/// The RecurrenceDescriptor is used to identify recurrences variables in a
/// loop. Reduction is a special case of recurrence that has uses of the
/// recurrence variable outside the loop. The method isReductionPHI identifies
/// reductions that are basic recurrences.
///
/// Basic recurrences are defined as the summation, product, OR, AND, XOR, min,
/// or max of a set of terms. For example: for(i=0; i<n; i++) { total +=
/// array[i]; } is a summation of array elements. Basic recurrences are a
/// special case of chains of recurrences (CR). See ScalarEvolution for CR
/// references.
/// This struct holds information about recurrence variables.
class RecurrenceDescriptor {
public:
/// This enum represents the kinds of recurrences that we support.
enum RecurrenceKind {
RK_NoRecurrence, ///< Not a recurrence.
RK_IntegerAdd, ///< Sum of integers.
RK_IntegerMult, ///< Product of integers.
RK_IntegerOr, ///< Bitwise or logical OR of numbers.
RK_IntegerAnd, ///< Bitwise or logical AND of numbers.
RK_IntegerXor, ///< Bitwise or logical XOR of numbers.
RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
RK_FloatAdd, ///< Sum of floats.
RK_FloatMult, ///< Product of floats.
RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()).
};
// This enum represents the kind of minmax recurrence.
enum MinMaxRecurrenceKind {
MRK_Invalid,
MRK_UIntMin,
MRK_UIntMax,
MRK_SIntMin,
MRK_SIntMax,
MRK_FloatMin,
MRK_FloatMax
};
RecurrenceDescriptor()
: StartValue(nullptr), LoopExitInstr(nullptr), Kind(RK_NoRecurrence),
MinMaxKind(MRK_Invalid) {}
RecurrenceDescriptor(Value *Start, Instruction *Exit, RecurrenceKind K,
MinMaxRecurrenceKind MK)
: StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
/// This POD struct holds information about a potential recurrence operation.
class InstDesc {
public:
InstDesc(bool IsRecur, Instruction *I)
: IsRecurrence(IsRecur), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
InstDesc(Instruction *I, MinMaxRecurrenceKind K)
: IsRecurrence(true), PatternLastInst(I), MinMaxKind(K) {}
bool isRecurrence() { return IsRecurrence; }
MinMaxRecurrenceKind getMinMaxKind() { return MinMaxKind; }
Instruction *getPatternInst() { return PatternLastInst; }
private:
// Is this instruction a recurrence candidate.
bool IsRecurrence;
// The last instruction in a min/max pattern (select of the select(icmp())
// pattern), or the current recurrence instruction otherwise.
Instruction *PatternLastInst;
// If this is a min/max pattern the comparison predicate.
MinMaxRecurrenceKind MinMaxKind;
};
/// Returns a struct describing if the instruction 'I' can be a recurrence
/// variable of type 'Kind'. If the recurrence is a min/max pattern of
/// select(icmp()) this function advances the instruction pointer 'I' from the
/// compare instruction to the select instruction and stores this pointer in
/// 'PatternLastInst' member of the returned struct.
static InstDesc isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
InstDesc &Prev, bool HasFunNoNaNAttr);
/// Returns true if instuction I has multiple uses in Insts
static bool hasMultipleUsesOf(Instruction *I,
SmallPtrSetImpl<Instruction *> &Insts);
/// Returns true if all uses of the instruction I is within the Set.
static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set);
/// Returns a struct describing if the instruction if the instruction is a
/// Select(ICmp(X, Y), X, Y) instruction pattern corresponding to a min(X, Y)
/// or max(X, Y).
static InstDesc isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev);
/// Returns identity corresponding to the RecurrenceKind.
static Constant *getRecurrenceIdentity(RecurrenceKind K, Type *Tp);
/// Returns the opcode of binary operation corresponding to the
/// RecurrenceKind.
static unsigned getRecurrenceBinOp(RecurrenceKind Kind);
/// Returns a Min/Max operation corresponding to MinMaxRecurrenceKind.
static Value *createMinMaxOp(IRBuilder<> &Builder, MinMaxRecurrenceKind RK,
Value *Left, Value *Right);
/// Returns true if Phi is a reduction of type Kind and adds it to the
/// RecurrenceDescriptor.
static bool AddReductionVar(PHINode *Phi, RecurrenceKind Kind, Loop *TheLoop,
bool HasFunNoNaNAttr,
RecurrenceDescriptor &RedDes);
/// Returns true if Phi is a reduction in TheLoop. The RecurrenceDescriptor is
/// returned in RedDes.
static bool isReductionPHI(PHINode *Phi, Loop *TheLoop,
RecurrenceDescriptor &RedDes);
RecurrenceKind getRecurrenceKind() { return Kind; }
MinMaxRecurrenceKind getMinMaxRecurrenceKind() { return MinMaxKind; }
TrackingVH<Value> getRecurrenceStartValue() { return StartValue; }
Instruction *getLoopExitInstr() { return LoopExitInstr; }
private:
// The starting value of the recurrence.
// It does not have to be zero!
TrackingVH<Value> StartValue;
// The instruction who's value is used outside the loop.
Instruction *LoopExitInstr;
// The kind of the recurrence.
RecurrenceKind Kind;
// If this a min/max recurrence the kind of recurrence.
MinMaxRecurrenceKind MinMaxKind;
};
BasicBlock *InsertPreheaderForLoop(Loop *L, Pass *P);
/// \brief Simplify each loop in a loop nest recursively.
///
/// This takes a potentially un-simplified loop L (and its children) and turns
/// it into a simplified loop nest with preheaders and single backedges. It
/// will optionally update \c AliasAnalysis and \c ScalarEvolution analyses if
/// passed into it.
bool simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, Pass *PP,
AliasAnalysis *AA = nullptr, ScalarEvolution *SE = nullptr,
AssumptionCache *AC = nullptr);
/// \brief Put loop into LCSSA form.
///
/// Looks at all instructions in the loop which have uses outside of the
/// current loop. For each, an LCSSA PHI node is inserted and the uses outside
/// the loop are rewritten to use this node.
///
/// LoopInfo and DominatorTree are required and preserved.
///
/// If ScalarEvolution is passed in, it will be preserved.
///
/// Returns true if any modifications are made to the loop.
bool formLCSSA(Loop &L, DominatorTree &DT, LoopInfo *LI,
ScalarEvolution *SE = nullptr);
/// \brief Put a loop nest into LCSSA form.
///
/// This recursively forms LCSSA for a loop nest.
///
/// LoopInfo and DominatorTree are required and preserved.
///
/// If ScalarEvolution is passed in, it will be preserved.
///
/// Returns true if any modifications are made to the loop.
bool formLCSSARecursively(Loop &L, DominatorTree &DT, LoopInfo *LI,
ScalarEvolution *SE = nullptr);
/// \brief Walk the specified region of the CFG (defined by all blocks
/// dominated by the specified block, and that are in the current loop) in
/// reverse depth first order w.r.t the DominatorTree. This allows us to visit
/// uses before definitions, allowing us to sink a loop body in one pass without
/// iteration. Takes DomTreeNode, AliasAnalysis, LoopInfo, DominatorTree,
/// DataLayout, TargetLibraryInfo, Loop, AliasSet information for all
/// instructions of the loop and loop safety information as arguments.
/// It returns changed status.
bool sinkRegion(DomTreeNode *, AliasAnalysis *, LoopInfo *, DominatorTree *,
TargetLibraryInfo *, Loop *, AliasSetTracker *,
LICMSafetyInfo *);
/// \brief Walk the specified region of the CFG (defined by all blocks
/// dominated by the specified block, and that are in the current loop) in depth
/// first order w.r.t the DominatorTree. This allows us to visit definitions
/// before uses, allowing us to hoist a loop body in one pass without iteration.
/// Takes DomTreeNode, AliasAnalysis, LoopInfo, DominatorTree, DataLayout,
/// TargetLibraryInfo, Loop, AliasSet information for all instructions of the
/// loop and loop safety information as arguments. It returns changed status.
bool hoistRegion(DomTreeNode *, AliasAnalysis *, LoopInfo *, DominatorTree *,
TargetLibraryInfo *, Loop *, AliasSetTracker *,
LICMSafetyInfo *);
/// \brief Try to promote memory values to scalars by sinking stores out of
/// the loop and moving loads to before the loop. We do this by looping over
/// the stores in the loop, looking for stores to Must pointers which are
/// loop invariant. It takes AliasSet, Loop exit blocks vector, loop exit blocks
/// insertion point vector, PredIteratorCache, LoopInfo, DominatorTree, Loop,
/// AliasSet information for all instructions of the loop and loop safety
/// information as arguments. It returns changed status.
bool promoteLoopAccessesToScalars(AliasSet &, SmallVectorImpl<BasicBlock*> &,
SmallVectorImpl<Instruction*> &,
PredIteratorCache &, LoopInfo *,
DominatorTree *, Loop *, AliasSetTracker *,
LICMSafetyInfo *);
/// \brief Computes safety information for a loop
/// checks loop body & header for the possiblity of may throw
/// exception, it takes LICMSafetyInfo and loop as argument.
/// Updates safety information in LICMSafetyInfo argument.
void computeLICMSafetyInfo(LICMSafetyInfo *, Loop *);
/// \brief Checks if the given PHINode in a loop header is an induction
/// variable. Returns true if this is an induction PHI along with the step
/// value.
bool isInductionPHI(PHINode *, ScalarEvolution *, ConstantInt *&);
}
#endif