blob: b791ded0e1942f2d99004df23c59ecd08c209f2b [file] [log] [blame]
//===-- llvm/InstrTypes.h - Important Instruction subclasses ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines various meta classes of instructions that exist in the VM
// representation. Specific concrete subclasses of these may be found in the
// i*.h files...
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_INSTRTYPES_H
#define LLVM_IR_INSTRTYPES_H
#include "llvm/ADT/Twine.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/OperandTraits.h"
namespace llvm {
class LLVMContext;
//===----------------------------------------------------------------------===//
// TerminatorInst Class
//===----------------------------------------------------------------------===//
/// Subclasses of this class are all able to terminate a basic
/// block. Thus, these are all the flow control type of operations.
///
class TerminatorInst : public Instruction {
protected:
TerminatorInst(Type *Ty, Instruction::TermOps iType,
Use *Ops, unsigned NumOps,
Instruction *InsertBefore = nullptr)
: Instruction(Ty, iType, Ops, NumOps, InsertBefore) {}
TerminatorInst(Type *Ty, Instruction::TermOps iType,
Use *Ops, unsigned NumOps, BasicBlock *InsertAtEnd)
: Instruction(Ty, iType, Ops, NumOps, InsertAtEnd) {}
// Out of line virtual method, so the vtable, etc has a home.
~TerminatorInst() override;
/// Virtual methods - Terminators should overload these and provide inline
/// overrides of non-V methods.
virtual BasicBlock *getSuccessorV(unsigned idx) const = 0;
virtual unsigned getNumSuccessorsV() const = 0;
virtual void setSuccessorV(unsigned idx, BasicBlock *B) = 0;
public:
/// Return the number of successors that this terminator has.
unsigned getNumSuccessors() const {
return getNumSuccessorsV();
}
/// Return the specified successor.
BasicBlock *getSuccessor(unsigned idx) const {
return getSuccessorV(idx);
}
/// Update the specified successor to point at the provided block.
void setSuccessor(unsigned idx, BasicBlock *B) {
setSuccessorV(idx, B);
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return I->isTerminator();
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// UnaryInstruction Class
//===----------------------------------------------------------------------===//
class UnaryInstruction : public Instruction {
void *operator new(size_t, unsigned) = delete;
protected:
UnaryInstruction(Type *Ty, unsigned iType, Value *V,
Instruction *IB = nullptr)
: Instruction(Ty, iType, &Op<0>(), 1, IB) {
Op<0>() = V;
}
UnaryInstruction(Type *Ty, unsigned iType, Value *V, BasicBlock *IAE)
: Instruction(Ty, iType, &Op<0>(), 1, IAE) {
Op<0>() = V;
}
public:
// allocate space for exactly one operand
void *operator new(size_t s) {
return User::operator new(s, 1);
}
// Out of line virtual method, so the vtable, etc has a home.
~UnaryInstruction() override;
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Alloca ||
I->getOpcode() == Instruction::Load ||
I->getOpcode() == Instruction::VAArg ||
I->getOpcode() == Instruction::ExtractValue ||
(I->getOpcode() >= CastOpsBegin && I->getOpcode() < CastOpsEnd);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template <>
struct OperandTraits<UnaryInstruction> :
public FixedNumOperandTraits<UnaryInstruction, 1> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryInstruction, Value)
//===----------------------------------------------------------------------===//
// BinaryOperator Class
//===----------------------------------------------------------------------===//
class BinaryOperator : public Instruction {
void *operator new(size_t, unsigned) = delete;
protected:
void init(BinaryOps iType);
BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
const Twine &Name, Instruction *InsertBefore);
BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
const Twine &Name, BasicBlock *InsertAtEnd);
// Note: Instruction needs to be a friend here to call cloneImpl.
friend class Instruction;
BinaryOperator *cloneImpl() const;
public:
// allocate space for exactly two operands
void *operator new(size_t s) {
return User::operator new(s, 2);
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// Construct a binary instruction, given the opcode and the two
/// operands. Optionally (if InstBefore is specified) insert the instruction
/// into a BasicBlock right before the specified instruction. The specified
/// Instruction is allowed to be a dereferenced end iterator.
///
static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
const Twine &Name = Twine(),
Instruction *InsertBefore = nullptr);
/// Construct a binary instruction, given the opcode and the two
/// operands. Also automatically insert this instruction to the end of the
/// BasicBlock specified.
///
static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
const Twine &Name, BasicBlock *InsertAtEnd);
/// These methods just forward to Create, and are useful when you
/// statically know what type of instruction you're going to create. These
/// helpers just save some typing.
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
const Twine &Name = "") {\
return Create(Instruction::OPC, V1, V2, Name);\
}
#include "llvm/IR/Instruction.def"
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
const Twine &Name, BasicBlock *BB) {\
return Create(Instruction::OPC, V1, V2, Name, BB);\
}
#include "llvm/IR/Instruction.def"
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
const Twine &Name, Instruction *I) {\
return Create(Instruction::OPC, V1, V2, Name, I);\
}
#include "llvm/IR/Instruction.def"
static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
const Twine &Name = "") {
BinaryOperator *BO = Create(Opc, V1, V2, Name);
BO->setHasNoSignedWrap(true);
return BO;
}
static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
const Twine &Name, BasicBlock *BB) {
BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
BO->setHasNoSignedWrap(true);
return BO;
}
static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
const Twine &Name, Instruction *I) {
BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
BO->setHasNoSignedWrap(true);
return BO;
}
static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
const Twine &Name = "") {
BinaryOperator *BO = Create(Opc, V1, V2, Name);
BO->setHasNoUnsignedWrap(true);
return BO;
}
static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
const Twine &Name, BasicBlock *BB) {
BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
BO->setHasNoUnsignedWrap(true);
return BO;
}
static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
const Twine &Name, Instruction *I) {
BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
BO->setHasNoUnsignedWrap(true);
return BO;
}
static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
const Twine &Name = "") {
BinaryOperator *BO = Create(Opc, V1, V2, Name);
BO->setIsExact(true);
return BO;
}
static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
const Twine &Name, BasicBlock *BB) {
BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
BO->setIsExact(true);
return BO;
}
static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
const Twine &Name, Instruction *I) {
BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
BO->setIsExact(true);
return BO;
}
#define DEFINE_HELPERS(OPC, NUWNSWEXACT) \
static BinaryOperator *Create ## NUWNSWEXACT ## OPC \
(Value *V1, Value *V2, const Twine &Name = "") { \
return Create ## NUWNSWEXACT(Instruction::OPC, V1, V2, Name); \
} \
static BinaryOperator *Create ## NUWNSWEXACT ## OPC \
(Value *V1, Value *V2, const Twine &Name, BasicBlock *BB) { \
return Create ## NUWNSWEXACT(Instruction::OPC, V1, V2, Name, BB); \
} \
static BinaryOperator *Create ## NUWNSWEXACT ## OPC \
(Value *V1, Value *V2, const Twine &Name, Instruction *I) { \
return Create ## NUWNSWEXACT(Instruction::OPC, V1, V2, Name, I); \
}
DEFINE_HELPERS(Add, NSW) // CreateNSWAdd
DEFINE_HELPERS(Add, NUW) // CreateNUWAdd
DEFINE_HELPERS(Sub, NSW) // CreateNSWSub
DEFINE_HELPERS(Sub, NUW) // CreateNUWSub
DEFINE_HELPERS(Mul, NSW) // CreateNSWMul
DEFINE_HELPERS(Mul, NUW) // CreateNUWMul
DEFINE_HELPERS(Shl, NSW) // CreateNSWShl
DEFINE_HELPERS(Shl, NUW) // CreateNUWShl
DEFINE_HELPERS(SDiv, Exact) // CreateExactSDiv
DEFINE_HELPERS(UDiv, Exact) // CreateExactUDiv
DEFINE_HELPERS(AShr, Exact) // CreateExactAShr
DEFINE_HELPERS(LShr, Exact) // CreateExactLShr
#undef DEFINE_HELPERS
/// Helper functions to construct and inspect unary operations (NEG and NOT)
/// via binary operators SUB and XOR:
///
/// Create the NEG and NOT instructions out of SUB and XOR instructions.
///
static BinaryOperator *CreateNeg(Value *Op, const Twine &Name = "",
Instruction *InsertBefore = nullptr);
static BinaryOperator *CreateNeg(Value *Op, const Twine &Name,
BasicBlock *InsertAtEnd);
static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name = "",
Instruction *InsertBefore = nullptr);
static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name,
BasicBlock *InsertAtEnd);
static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name = "",
Instruction *InsertBefore = nullptr);
static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name,
BasicBlock *InsertAtEnd);
static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name = "",
Instruction *InsertBefore = nullptr);
static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name,
BasicBlock *InsertAtEnd);
static BinaryOperator *CreateNot(Value *Op, const Twine &Name = "",
Instruction *InsertBefore = nullptr);
static BinaryOperator *CreateNot(Value *Op, const Twine &Name,
BasicBlock *InsertAtEnd);
/// Check if the given Value is a NEG, FNeg, or NOT instruction.
///
static bool isNeg(const Value *V);
static bool isFNeg(const Value *V, bool IgnoreZeroSign=false);
static bool isNot(const Value *V);
/// Helper functions to extract the unary argument of a NEG, FNEG or NOT
/// operation implemented via Sub, FSub, or Xor.
///
static const Value *getNegArgument(const Value *BinOp);
static Value *getNegArgument( Value *BinOp);
static const Value *getFNegArgument(const Value *BinOp);
static Value *getFNegArgument( Value *BinOp);
static const Value *getNotArgument(const Value *BinOp);
static Value *getNotArgument( Value *BinOp);
BinaryOps getOpcode() const {
return static_cast<BinaryOps>(Instruction::getOpcode());
}
/// Exchange the two operands to this instruction.
/// This instruction is safe to use on any binary instruction and
/// does not modify the semantics of the instruction. If the instruction
/// cannot be reversed (ie, it's a Div), then return true.
///
bool swapOperands();
/// Set or clear the nsw flag on this instruction, which must be an operator
/// which supports this flag. See LangRef.html for the meaning of this flag.
void setHasNoUnsignedWrap(bool b = true);
/// Set or clear the nsw flag on this instruction, which must be an operator
/// which supports this flag. See LangRef.html for the meaning of this flag.
void setHasNoSignedWrap(bool b = true);
/// Set or clear the exact flag on this instruction, which must be an operator
/// which supports this flag. See LangRef.html for the meaning of this flag.
void setIsExact(bool b = true);
/// Determine whether the no unsigned wrap flag is set.
bool hasNoUnsignedWrap() const;
/// Determine whether the no signed wrap flag is set.
bool hasNoSignedWrap() const;
/// Determine whether the exact flag is set.
bool isExact() const;
/// Convenience method to copy supported wrapping, exact, and fast-math flags
/// from V to this instruction.
void copyIRFlags(const Value *V);
/// Logical 'and' of any supported wrapping, exact, and fast-math flags of
/// V and this instruction.
void andIRFlags(const Value *V);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return I->isBinaryOp();
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template <>
struct OperandTraits<BinaryOperator> :
public FixedNumOperandTraits<BinaryOperator, 2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryOperator, Value)
//===----------------------------------------------------------------------===//
// CastInst Class
//===----------------------------------------------------------------------===//
/// This is the base class for all instructions that perform data
/// casts. It is simply provided so that instruction category testing
/// can be performed with code like:
///
/// if (isa<CastInst>(Instr)) { ... }
/// @brief Base class of casting instructions.
class CastInst : public UnaryInstruction {
void anchor() override;
protected:
/// @brief Constructor with insert-before-instruction semantics for subclasses
CastInst(Type *Ty, unsigned iType, Value *S,
const Twine &NameStr = "", Instruction *InsertBefore = nullptr)
: UnaryInstruction(Ty, iType, S, InsertBefore) {
setName(NameStr);
}
/// @brief Constructor with insert-at-end-of-block semantics for subclasses
CastInst(Type *Ty, unsigned iType, Value *S,
const Twine &NameStr, BasicBlock *InsertAtEnd)
: UnaryInstruction(Ty, iType, S, InsertAtEnd) {
setName(NameStr);
}
public:
/// Provides a way to construct any of the CastInst subclasses using an
/// opcode instead of the subclass's constructor. The opcode must be in the
/// CastOps category (Instruction::isCast(opcode) returns true). This
/// constructor has insert-before-instruction semantics to automatically
/// insert the new CastInst before InsertBefore (if it is non-null).
/// @brief Construct any of the CastInst subclasses
static CastInst *Create(
Instruction::CastOps, ///< The opcode of the cast instruction
Value *S, ///< The value to be casted (operand 0)
Type *Ty, ///< The type to which cast should be made
const Twine &Name = "", ///< Name for the instruction
Instruction *InsertBefore = nullptr ///< Place to insert the instruction
);
/// Provides a way to construct any of the CastInst subclasses using an
/// opcode instead of the subclass's constructor. The opcode must be in the
/// CastOps category. This constructor has insert-at-end-of-block semantics
/// to automatically insert the new CastInst at the end of InsertAtEnd (if
/// its non-null).
/// @brief Construct any of the CastInst subclasses
static CastInst *Create(
Instruction::CastOps, ///< The opcode for the cast instruction
Value *S, ///< The value to be casted (operand 0)
Type *Ty, ///< The type to which operand is casted
const Twine &Name, ///< The name for the instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// @brief Create a ZExt or BitCast cast instruction
static CastInst *CreateZExtOrBitCast(
Value *S, ///< The value to be casted (operand 0)
Type *Ty, ///< The type to which cast should be made
const Twine &Name = "", ///< Name for the instruction
Instruction *InsertBefore = nullptr ///< Place to insert the instruction
);
/// @brief Create a ZExt or BitCast cast instruction
static CastInst *CreateZExtOrBitCast(
Value *S, ///< The value to be casted (operand 0)
Type *Ty, ///< The type to which operand is casted
const Twine &Name, ///< The name for the instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// @brief Create a SExt or BitCast cast instruction
static CastInst *CreateSExtOrBitCast(
Value *S, ///< The value to be casted (operand 0)
Type *Ty, ///< The type to which cast should be made
const Twine &Name = "", ///< Name for the instruction
Instruction *InsertBefore = nullptr ///< Place to insert the instruction
);
/// @brief Create a SExt or BitCast cast instruction
static CastInst *CreateSExtOrBitCast(
Value *S, ///< The value to be casted (operand 0)
Type *Ty, ///< The type to which operand is casted
const Twine &Name, ///< The name for the instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// @brief Create a BitCast AddrSpaceCast, or a PtrToInt cast instruction.
static CastInst *CreatePointerCast(
Value *S, ///< The pointer value to be casted (operand 0)
Type *Ty, ///< The type to which operand is casted
const Twine &Name, ///< The name for the instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// @brief Create a BitCast, AddrSpaceCast or a PtrToInt cast instruction.
static CastInst *CreatePointerCast(
Value *S, ///< The pointer value to be casted (operand 0)
Type *Ty, ///< The type to which cast should be made
const Twine &Name = "", ///< Name for the instruction
Instruction *InsertBefore = nullptr ///< Place to insert the instruction
);
/// @brief Create a BitCast or an AddrSpaceCast cast instruction.
static CastInst *CreatePointerBitCastOrAddrSpaceCast(
Value *S, ///< The pointer value to be casted (operand 0)
Type *Ty, ///< The type to which operand is casted
const Twine &Name, ///< The name for the instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// @brief Create a BitCast or an AddrSpaceCast cast instruction.
static CastInst *CreatePointerBitCastOrAddrSpaceCast(
Value *S, ///< The pointer value to be casted (operand 0)
Type *Ty, ///< The type to which cast should be made
const Twine &Name = "", ///< Name for the instruction
Instruction *InsertBefore = 0 ///< Place to insert the instruction
);
/// @brief Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
///
/// If the value is a pointer type and the destination an integer type,
/// creates a PtrToInt cast. If the value is an integer type and the
/// destination a pointer type, creates an IntToPtr cast. Otherwise, creates
/// a bitcast.
static CastInst *CreateBitOrPointerCast(
Value *S, ///< The pointer value to be casted (operand 0)
Type *Ty, ///< The type to which cast should be made
const Twine &Name = "", ///< Name for the instruction
Instruction *InsertBefore = 0 ///< Place to insert the instruction
);
/// @brief Create a ZExt, BitCast, or Trunc for int -> int casts.
static CastInst *CreateIntegerCast(
Value *S, ///< The pointer value to be casted (operand 0)
Type *Ty, ///< The type to which cast should be made
bool isSigned, ///< Whether to regard S as signed or not
const Twine &Name = "", ///< Name for the instruction
Instruction *InsertBefore = nullptr ///< Place to insert the instruction
);
/// @brief Create a ZExt, BitCast, or Trunc for int -> int casts.
static CastInst *CreateIntegerCast(
Value *S, ///< The integer value to be casted (operand 0)
Type *Ty, ///< The integer type to which operand is casted
bool isSigned, ///< Whether to regard S as signed or not
const Twine &Name, ///< The name for the instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
static CastInst *CreateFPCast(
Value *S, ///< The floating point value to be casted
Type *Ty, ///< The floating point type to cast to
const Twine &Name = "", ///< Name for the instruction
Instruction *InsertBefore = nullptr ///< Place to insert the instruction
);
/// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
static CastInst *CreateFPCast(
Value *S, ///< The floating point value to be casted
Type *Ty, ///< The floating point type to cast to
const Twine &Name, ///< The name for the instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// @brief Create a Trunc or BitCast cast instruction
static CastInst *CreateTruncOrBitCast(
Value *S, ///< The value to be casted (operand 0)
Type *Ty, ///< The type to which cast should be made
const Twine &Name = "", ///< Name for the instruction
Instruction *InsertBefore = nullptr ///< Place to insert the instruction
);
/// @brief Create a Trunc or BitCast cast instruction
static CastInst *CreateTruncOrBitCast(
Value *S, ///< The value to be casted (operand 0)
Type *Ty, ///< The type to which operand is casted
const Twine &Name, ///< The name for the instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// @brief Check whether it is valid to call getCastOpcode for these types.
static bool isCastable(
Type *SrcTy, ///< The Type from which the value should be cast.
Type *DestTy ///< The Type to which the value should be cast.
);
/// @brief Check whether a bitcast between these types is valid
static bool isBitCastable(
Type *SrcTy, ///< The Type from which the value should be cast.
Type *DestTy ///< The Type to which the value should be cast.
);
/// @brief Check whether a bitcast, inttoptr, or ptrtoint cast between these
/// types is valid and a no-op.
///
/// This ensures that any pointer<->integer cast has enough bits in the
/// integer and any other cast is a bitcast.
static bool isBitOrNoopPointerCastable(
Type *SrcTy, ///< The Type from which the value should be cast.
Type *DestTy, ///< The Type to which the value should be cast.
const DataLayout &DL);
/// Returns the opcode necessary to cast Val into Ty using usual casting
/// rules.
/// @brief Infer the opcode for cast operand and type
static Instruction::CastOps getCastOpcode(
const Value *Val, ///< The value to cast
bool SrcIsSigned, ///< Whether to treat the source as signed
Type *Ty, ///< The Type to which the value should be casted
bool DstIsSigned ///< Whether to treate the dest. as signed
);
/// There are several places where we need to know if a cast instruction
/// only deals with integer source and destination types. To simplify that
/// logic, this method is provided.
/// @returns true iff the cast has only integral typed operand and dest type.
/// @brief Determine if this is an integer-only cast.
bool isIntegerCast() const;
/// A lossless cast is one that does not alter the basic value. It implies
/// a no-op cast but is more stringent, preventing things like int->float,
/// long->double, or int->ptr.
/// @returns true iff the cast is lossless.
/// @brief Determine if this is a lossless cast.
bool isLosslessCast() const;
/// A no-op cast is one that can be effected without changing any bits.
/// It implies that the source and destination types are the same size. The
/// IntPtrTy argument is used to make accurate determinations for casts
/// involving Integer and Pointer types. They are no-op casts if the integer
/// is the same size as the pointer. However, pointer size varies with
/// platform. Generally, the result of DataLayout::getIntPtrType() should be
/// passed in. If that's not available, use Type::Int64Ty, which will make
/// the isNoopCast call conservative.
/// @brief Determine if the described cast is a no-op cast.
static bool isNoopCast(
Instruction::CastOps Opcode, ///< Opcode of cast
Type *SrcTy, ///< SrcTy of cast
Type *DstTy, ///< DstTy of cast
Type *IntPtrTy ///< Integer type corresponding to Ptr types
);
/// @brief Determine if this cast is a no-op cast.
bool isNoopCast(
Type *IntPtrTy ///< Integer type corresponding to pointer
) const;
/// @brief Determine if this cast is a no-op cast.
///
/// \param DL is the DataLayout to get the Int Ptr type from.
bool isNoopCast(const DataLayout &DL) const;
/// Determine how a pair of casts can be eliminated, if they can be at all.
/// This is a helper function for both CastInst and ConstantExpr.
/// @returns 0 if the CastInst pair can't be eliminated, otherwise
/// returns Instruction::CastOps value for a cast that can replace
/// the pair, casting SrcTy to DstTy.
/// @brief Determine if a cast pair is eliminable
static unsigned isEliminableCastPair(
Instruction::CastOps firstOpcode, ///< Opcode of first cast
Instruction::CastOps secondOpcode, ///< Opcode of second cast
Type *SrcTy, ///< SrcTy of 1st cast
Type *MidTy, ///< DstTy of 1st cast & SrcTy of 2nd cast
Type *DstTy, ///< DstTy of 2nd cast
Type *SrcIntPtrTy, ///< Integer type corresponding to Ptr SrcTy, or null
Type *MidIntPtrTy, ///< Integer type corresponding to Ptr MidTy, or null
Type *DstIntPtrTy ///< Integer type corresponding to Ptr DstTy, or null
);
/// @brief Return the opcode of this CastInst
Instruction::CastOps getOpcode() const {
return Instruction::CastOps(Instruction::getOpcode());
}
/// @brief Return the source type, as a convenience
Type* getSrcTy() const { return getOperand(0)->getType(); }
/// @brief Return the destination type, as a convenience
Type* getDestTy() const { return getType(); }
/// This method can be used to determine if a cast from S to DstTy using
/// Opcode op is valid or not.
/// @returns true iff the proposed cast is valid.
/// @brief Determine if a cast is valid without creating one.
static bool castIsValid(Instruction::CastOps op, Value *S, Type *DstTy);
/// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return I->isCast();
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// CmpInst Class
//===----------------------------------------------------------------------===//
/// This class is the base class for the comparison instructions.
/// @brief Abstract base class of comparison instructions.
class CmpInst : public Instruction {
void *operator new(size_t, unsigned) = delete;
CmpInst() = delete;
protected:
CmpInst(Type *ty, Instruction::OtherOps op, unsigned short pred,
Value *LHS, Value *RHS, const Twine &Name = "",
Instruction *InsertBefore = nullptr);
CmpInst(Type *ty, Instruction::OtherOps op, unsigned short pred,
Value *LHS, Value *RHS, const Twine &Name,
BasicBlock *InsertAtEnd);
void anchor() override; // Out of line virtual method.
public:
/// This enumeration lists the possible predicates for CmpInst subclasses.
/// Values in the range 0-31 are reserved for FCmpInst, while values in the
/// range 32-64 are reserved for ICmpInst. This is necessary to ensure the
/// predicate values are not overlapping between the classes.
enum Predicate {
// Opcode U L G E Intuitive operation
FCMP_FALSE = 0, ///< 0 0 0 0 Always false (always folded)
FCMP_OEQ = 1, ///< 0 0 0 1 True if ordered and equal
FCMP_OGT = 2, ///< 0 0 1 0 True if ordered and greater than
FCMP_OGE = 3, ///< 0 0 1 1 True if ordered and greater than or equal
FCMP_OLT = 4, ///< 0 1 0 0 True if ordered and less than
FCMP_OLE = 5, ///< 0 1 0 1 True if ordered and less than or equal
FCMP_ONE = 6, ///< 0 1 1 0 True if ordered and operands are unequal
FCMP_ORD = 7, ///< 0 1 1 1 True if ordered (no nans)
FCMP_UNO = 8, ///< 1 0 0 0 True if unordered: isnan(X) | isnan(Y)
FCMP_UEQ = 9, ///< 1 0 0 1 True if unordered or equal
FCMP_UGT = 10, ///< 1 0 1 0 True if unordered or greater than
FCMP_UGE = 11, ///< 1 0 1 1 True if unordered, greater than, or equal
FCMP_ULT = 12, ///< 1 1 0 0 True if unordered or less than
FCMP_ULE = 13, ///< 1 1 0 1 True if unordered, less than, or equal
FCMP_UNE = 14, ///< 1 1 1 0 True if unordered or not equal
FCMP_TRUE = 15, ///< 1 1 1 1 Always true (always folded)
FIRST_FCMP_PREDICATE = FCMP_FALSE,
LAST_FCMP_PREDICATE = FCMP_TRUE,
BAD_FCMP_PREDICATE = FCMP_TRUE + 1,
ICMP_EQ = 32, ///< equal
ICMP_NE = 33, ///< not equal
ICMP_UGT = 34, ///< unsigned greater than
ICMP_UGE = 35, ///< unsigned greater or equal
ICMP_ULT = 36, ///< unsigned less than
ICMP_ULE = 37, ///< unsigned less or equal
ICMP_SGT = 38, ///< signed greater than
ICMP_SGE = 39, ///< signed greater or equal
ICMP_SLT = 40, ///< signed less than
ICMP_SLE = 41, ///< signed less or equal
FIRST_ICMP_PREDICATE = ICMP_EQ,
LAST_ICMP_PREDICATE = ICMP_SLE,
BAD_ICMP_PREDICATE = ICMP_SLE + 1
};
// allocate space for exactly two operands
void *operator new(size_t s) {
return User::operator new(s, 2);
}
/// Construct a compare instruction, given the opcode, the predicate and
/// the two operands. Optionally (if InstBefore is specified) insert the
/// instruction into a BasicBlock right before the specified instruction.
/// The specified Instruction is allowed to be a dereferenced end iterator.
/// @brief Create a CmpInst
static CmpInst *Create(OtherOps Op,
unsigned short predicate, Value *S1,
Value *S2, const Twine &Name = "",
Instruction *InsertBefore = nullptr);
/// Construct a compare instruction, given the opcode, the predicate and the
/// two operands. Also automatically insert this instruction to the end of
/// the BasicBlock specified.
/// @brief Create a CmpInst
static CmpInst *Create(OtherOps Op, unsigned short predicate, Value *S1,
Value *S2, const Twine &Name, BasicBlock *InsertAtEnd);
/// @brief Get the opcode casted to the right type
OtherOps getOpcode() const {
return static_cast<OtherOps>(Instruction::getOpcode());
}
/// @brief Return the predicate for this instruction.
Predicate getPredicate() const {
return Predicate(getSubclassDataFromInstruction());
}
/// @brief Set the predicate for this instruction to the specified value.
void setPredicate(Predicate P) { setInstructionSubclassData(P); }
static bool isFPPredicate(Predicate P) {
return P >= FIRST_FCMP_PREDICATE && P <= LAST_FCMP_PREDICATE;
}
static bool isIntPredicate(Predicate P) {
return P >= FIRST_ICMP_PREDICATE && P <= LAST_ICMP_PREDICATE;
}
bool isFPPredicate() const { return isFPPredicate(getPredicate()); }
bool isIntPredicate() const { return isIntPredicate(getPredicate()); }
/// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
/// OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
/// @returns the inverse predicate for the instruction's current predicate.
/// @brief Return the inverse of the instruction's predicate.
Predicate getInversePredicate() const {
return getInversePredicate(getPredicate());
}
/// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
/// OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
/// @returns the inverse predicate for predicate provided in \p pred.
/// @brief Return the inverse of a given predicate
static Predicate getInversePredicate(Predicate pred);
/// For example, EQ->EQ, SLE->SGE, ULT->UGT,
/// OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
/// @returns the predicate that would be the result of exchanging the two
/// operands of the CmpInst instruction without changing the result
/// produced.
/// @brief Return the predicate as if the operands were swapped
Predicate getSwappedPredicate() const {
return getSwappedPredicate(getPredicate());
}
/// This is a static version that you can use without an instruction
/// available.
/// @brief Return the predicate as if the operands were swapped.
static Predicate getSwappedPredicate(Predicate pred);
/// @brief Provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// This is just a convenience that dispatches to the subclasses.
/// @brief Swap the operands and adjust predicate accordingly to retain
/// the same comparison.
void swapOperands();
/// This is just a convenience that dispatches to the subclasses.
/// @brief Determine if this CmpInst is commutative.
bool isCommutative() const;
/// This is just a convenience that dispatches to the subclasses.
/// @brief Determine if this is an equals/not equals predicate.
bool isEquality() const;
/// @returns true if the comparison is signed, false otherwise.
/// @brief Determine if this instruction is using a signed comparison.
bool isSigned() const {
return isSigned(getPredicate());
}
/// @returns true if the comparison is unsigned, false otherwise.
/// @brief Determine if this instruction is using an unsigned comparison.
bool isUnsigned() const {
return isUnsigned(getPredicate());
}
/// This is just a convenience.
/// @brief Determine if this is true when both operands are the same.
bool isTrueWhenEqual() const {
return isTrueWhenEqual(getPredicate());
}
/// This is just a convenience.
/// @brief Determine if this is false when both operands are the same.
bool isFalseWhenEqual() const {
return isFalseWhenEqual(getPredicate());
}
/// @returns true if the predicate is unsigned, false otherwise.
/// @brief Determine if the predicate is an unsigned operation.
static bool isUnsigned(unsigned short predicate);
/// @returns true if the predicate is signed, false otherwise.
/// @brief Determine if the predicate is an signed operation.
static bool isSigned(unsigned short predicate);
/// @brief Determine if the predicate is an ordered operation.
static bool isOrdered(unsigned short predicate);
/// @brief Determine if the predicate is an unordered operation.
static bool isUnordered(unsigned short predicate);
/// Determine if the predicate is true when comparing a value with itself.
static bool isTrueWhenEqual(unsigned short predicate);
/// Determine if the predicate is false when comparing a value with itself.
static bool isFalseWhenEqual(unsigned short predicate);
/// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::ICmp ||
I->getOpcode() == Instruction::FCmp;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
/// @brief Create a result type for fcmp/icmp
static Type* makeCmpResultType(Type* opnd_type) {
if (VectorType* vt = dyn_cast<VectorType>(opnd_type)) {
return VectorType::get(Type::getInt1Ty(opnd_type->getContext()),
vt->getNumElements());
}
return Type::getInt1Ty(opnd_type->getContext());
}
private:
// Shadow Value::setValueSubclassData with a private forwarding method so that
// subclasses cannot accidentally use it.
void setValueSubclassData(unsigned short D) {
Value::setValueSubclassData(D);
}
};
// FIXME: these are redundant if CmpInst < BinaryOperator
template <>
struct OperandTraits<CmpInst> : public FixedNumOperandTraits<CmpInst, 2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CmpInst, Value)
} // End llvm namespace
#endif