blob: a728df3546778a8e1461df2e82a4e7a13e2486a3 [file] [log] [blame]
//===- CodeGen/MachineValueType.h - Machine-Level types ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the set of machine-level target independent types which
// legal values in the code generator use.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_MACHINEVALUETYPE_H
#define LLVM_CODEGEN_MACHINEVALUETYPE_H
#include "llvm/ADT/iterator_range.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
namespace llvm {
class Type;
/// MVT - Machine Value Type. Every type that is supported natively by some
/// processor targeted by LLVM occurs here. This means that any legal value
/// type can be represented by an MVT.
class MVT {
public:
enum SimpleValueType {
// INVALID_SIMPLE_VALUE_TYPE - Simple value types less than zero are
// considered extended value types.
INVALID_SIMPLE_VALUE_TYPE = -1,
// If you change this numbering, you must change the values in
// ValueTypes.td as well!
Other = 0, // This is a non-standard value
i1 = 1, // This is a 1 bit integer value
i8 = 2, // This is an 8 bit integer value
i16 = 3, // This is a 16 bit integer value
i32 = 4, // This is a 32 bit integer value
i64 = 5, // This is a 64 bit integer value
i128 = 6, // This is a 128 bit integer value
FIRST_INTEGER_VALUETYPE = i1,
LAST_INTEGER_VALUETYPE = i128,
f16 = 7, // This is a 16 bit floating point value
f32 = 8, // This is a 32 bit floating point value
f64 = 9, // This is a 64 bit floating point value
f80 = 10, // This is a 80 bit floating point value
f128 = 11, // This is a 128 bit floating point value
ppcf128 = 12, // This is a PPC 128-bit floating point value
FIRST_FP_VALUETYPE = f16,
LAST_FP_VALUETYPE = ppcf128,
v2i1 = 13, // 2 x i1
v4i1 = 14, // 4 x i1
v8i1 = 15, // 8 x i1
v16i1 = 16, // 16 x i1
v32i1 = 17, // 32 x i1
v64i1 = 18, // 64 x i1
v1i8 = 19, // 1 x i8
v2i8 = 20, // 2 x i8
v4i8 = 21, // 4 x i8
v8i8 = 22, // 8 x i8
v16i8 = 23, // 16 x i8
v32i8 = 24, // 32 x i8
v64i8 = 25, // 64 x i8
v1i16 = 26, // 1 x i16
v2i16 = 27, // 2 x i16
v4i16 = 28, // 4 x i16
v8i16 = 29, // 8 x i16
v16i16 = 30, // 16 x i16
v32i16 = 31, // 32 x i16
v1i32 = 32, // 1 x i32
v2i32 = 33, // 2 x i32
v4i32 = 34, // 4 x i32
v8i32 = 35, // 8 x i32
v16i32 = 36, // 16 x i32
v1i64 = 37, // 1 x i64
v2i64 = 38, // 2 x i64
v4i64 = 39, // 4 x i64
v8i64 = 40, // 8 x i64
v16i64 = 41, // 16 x i64
v1i128 = 42, // 1 x i128
FIRST_INTEGER_VECTOR_VALUETYPE = v2i1,
LAST_INTEGER_VECTOR_VALUETYPE = v1i128,
v2f16 = 43, // 2 x f16
v4f16 = 44, // 4 x f16
v8f16 = 45, // 8 x f16
v1f32 = 46, // 1 x f32
v2f32 = 47, // 2 x f32
v4f32 = 48, // 4 x f32
v8f32 = 49, // 8 x f32
v16f32 = 50, // 16 x f32
v1f64 = 51, // 1 x f64
v2f64 = 52, // 2 x f64
v4f64 = 53, // 4 x f64
v8f64 = 54, // 8 x f64
FIRST_FP_VECTOR_VALUETYPE = v2f16,
LAST_FP_VECTOR_VALUETYPE = v8f64,
FIRST_VECTOR_VALUETYPE = v2i1,
LAST_VECTOR_VALUETYPE = v8f64,
x86mmx = 55, // This is an X86 MMX value
Glue = 56, // This glues nodes together during pre-RA sched
isVoid = 57, // This has no value
Untyped = 58, // This value takes a register, but has
// unspecified type. The register class
// will be determined by the opcode.
FIRST_VALUETYPE = 0, // This is always the beginning of the list.
LAST_VALUETYPE = 59, // This always remains at the end of the list.
// This is the current maximum for LAST_VALUETYPE.
// MVT::MAX_ALLOWED_VALUETYPE is used for asserts and to size bit vectors
// This value must be a multiple of 32.
MAX_ALLOWED_VALUETYPE = 64,
// Metadata - This is MDNode or MDString.
Metadata = 250,
// iPTRAny - An int value the size of the pointer of the current
// target to any address space. This must only be used internal to
// tblgen. Other than for overloading, we treat iPTRAny the same as iPTR.
iPTRAny = 251,
// vAny - A vector with any length and element size. This is used
// for intrinsics that have overloadings based on vector types.
// This is only for tblgen's consumption!
vAny = 252,
// fAny - Any floating-point or vector floating-point value. This is used
// for intrinsics that have overloadings based on floating-point types.
// This is only for tblgen's consumption!
fAny = 253,
// iAny - An integer or vector integer value of any bit width. This is
// used for intrinsics that have overloadings based on integer bit widths.
// This is only for tblgen's consumption!
iAny = 254,
// iPTR - An int value the size of the pointer of the current
// target. This should only be used internal to tblgen!
iPTR = 255,
// Any - Any type. This is used for intrinsics that have overloadings.
// This is only for tblgen's consumption!
Any = 256
};
SimpleValueType SimpleTy;
LLVM_CONSTEXPR MVT() : SimpleTy(INVALID_SIMPLE_VALUE_TYPE) {}
LLVM_CONSTEXPR MVT(SimpleValueType SVT) : SimpleTy(SVT) { }
bool operator>(const MVT& S) const { return SimpleTy > S.SimpleTy; }
bool operator<(const MVT& S) const { return SimpleTy < S.SimpleTy; }
bool operator==(const MVT& S) const { return SimpleTy == S.SimpleTy; }
bool operator!=(const MVT& S) const { return SimpleTy != S.SimpleTy; }
bool operator>=(const MVT& S) const { return SimpleTy >= S.SimpleTy; }
bool operator<=(const MVT& S) const { return SimpleTy <= S.SimpleTy; }
/// isValid - Return true if this is a valid simple valuetype.
bool isValid() const {
return (SimpleTy >= MVT::FIRST_VALUETYPE &&
SimpleTy < MVT::LAST_VALUETYPE);
}
/// isFloatingPoint - Return true if this is a FP, or a vector FP type.
bool isFloatingPoint() const {
return ((SimpleTy >= MVT::FIRST_FP_VALUETYPE &&
SimpleTy <= MVT::LAST_FP_VALUETYPE) ||
(SimpleTy >= MVT::FIRST_FP_VECTOR_VALUETYPE &&
SimpleTy <= MVT::LAST_FP_VECTOR_VALUETYPE));
}
/// isInteger - Return true if this is an integer, or a vector integer type.
bool isInteger() const {
return ((SimpleTy >= MVT::FIRST_INTEGER_VALUETYPE &&
SimpleTy <= MVT::LAST_INTEGER_VALUETYPE) ||
(SimpleTy >= MVT::FIRST_INTEGER_VECTOR_VALUETYPE &&
SimpleTy <= MVT::LAST_INTEGER_VECTOR_VALUETYPE));
}
/// isVector - Return true if this is a vector value type.
bool isVector() const {
return (SimpleTy >= MVT::FIRST_VECTOR_VALUETYPE &&
SimpleTy <= MVT::LAST_VECTOR_VALUETYPE);
}
/// is16BitVector - Return true if this is a 16-bit vector type.
bool is16BitVector() const {
return (SimpleTy == MVT::v2i8 || SimpleTy == MVT::v1i16 ||
SimpleTy == MVT::v16i1);
}
/// is32BitVector - Return true if this is a 32-bit vector type.
bool is32BitVector() const {
return (SimpleTy == MVT::v4i8 || SimpleTy == MVT::v2i16 ||
SimpleTy == MVT::v1i32 || SimpleTy == MVT::v2f16 ||
SimpleTy == MVT::v1f32);
}
/// is64BitVector - Return true if this is a 64-bit vector type.
bool is64BitVector() const {
return (SimpleTy == MVT::v8i8 || SimpleTy == MVT::v4i16 ||
SimpleTy == MVT::v2i32 || SimpleTy == MVT::v1i64 ||
SimpleTy == MVT::v4f16 || SimpleTy == MVT::v2f32 ||
SimpleTy == MVT::v1f64);
}
/// is128BitVector - Return true if this is a 128-bit vector type.
bool is128BitVector() const {
return (SimpleTy == MVT::v16i8 || SimpleTy == MVT::v8i16 ||
SimpleTy == MVT::v4i32 || SimpleTy == MVT::v2i64 ||
SimpleTy == MVT::v1i128 || SimpleTy == MVT::v8f16 ||
SimpleTy == MVT::v4f32 || SimpleTy == MVT::v2f64);
}
/// is256BitVector - Return true if this is a 256-bit vector type.
bool is256BitVector() const {
return (SimpleTy == MVT::v8f32 || SimpleTy == MVT::v4f64 ||
SimpleTy == MVT::v32i8 || SimpleTy == MVT::v16i16 ||
SimpleTy == MVT::v8i32 || SimpleTy == MVT::v4i64);
}
/// is512BitVector - Return true if this is a 512-bit vector type.
bool is512BitVector() const {
return (SimpleTy == MVT::v8f64 || SimpleTy == MVT::v16f32 ||
SimpleTy == MVT::v64i8 || SimpleTy == MVT::v32i16 ||
SimpleTy == MVT::v8i64 || SimpleTy == MVT::v16i32);
}
/// is1024BitVector - Return true if this is a 1024-bit vector type.
bool is1024BitVector() const {
return (SimpleTy == MVT::v16i64);
}
/// isOverloaded - Return true if this is an overloaded type for TableGen.
bool isOverloaded() const {
return (SimpleTy==MVT::Any ||
SimpleTy==MVT::iAny || SimpleTy==MVT::fAny ||
SimpleTy==MVT::vAny || SimpleTy==MVT::iPTRAny);
}
/// isPow2VectorType - Returns true if the given vector is a power of 2.
bool isPow2VectorType() const {
unsigned NElts = getVectorNumElements();
return !(NElts & (NElts - 1));
}
/// getPow2VectorType - Widens the length of the given vector MVT up to
/// the nearest power of 2 and returns that type.
MVT getPow2VectorType() const {
if (isPow2VectorType())
return *this;
unsigned NElts = getVectorNumElements();
unsigned Pow2NElts = 1 << Log2_32_Ceil(NElts);
return MVT::getVectorVT(getVectorElementType(), Pow2NElts);
}
/// getScalarType - If this is a vector type, return the element type,
/// otherwise return this.
MVT getScalarType() const {
return isVector() ? getVectorElementType() : *this;
}
MVT getVectorElementType() const {
switch (SimpleTy) {
default:
llvm_unreachable("Not a vector MVT!");
case v2i1 :
case v4i1 :
case v8i1 :
case v16i1 :
case v32i1 :
case v64i1: return i1;
case v1i8 :
case v2i8 :
case v4i8 :
case v8i8 :
case v16i8:
case v32i8:
case v64i8: return i8;
case v1i16:
case v2i16:
case v4i16:
case v8i16:
case v16i16:
case v32i16: return i16;
case v1i32:
case v2i32:
case v4i32:
case v8i32:
case v16i32: return i32;
case v1i64:
case v2i64:
case v4i64:
case v8i64:
case v16i64: return i64;
case v1i128: return i128;
case v2f16:
case v4f16:
case v8f16: return f16;
case v1f32:
case v2f32:
case v4f32:
case v8f32:
case v16f32: return f32;
case v1f64:
case v2f64:
case v4f64:
case v8f64: return f64;
}
}
unsigned getVectorNumElements() const {
switch (SimpleTy) {
default:
llvm_unreachable("Not a vector MVT!");
case v32i1:
case v32i8:
case v32i16: return 32;
case v64i1:
case v64i8: return 64;
case v16i1:
case v16i8:
case v16i16:
case v16i32:
case v16i64:
case v16f32: return 16;
case v8i1 :
case v8i8 :
case v8i16:
case v8i32:
case v8i64:
case v8f16:
case v8f32:
case v8f64: return 8;
case v4i1:
case v4i8:
case v4i16:
case v4i32:
case v4i64:
case v4f16:
case v4f32:
case v4f64: return 4;
case v2i1:
case v2i8:
case v2i16:
case v2i32:
case v2i64:
case v2f16:
case v2f32:
case v2f64: return 2;
case v1i8:
case v1i16:
case v1i32:
case v1i64:
case v1i128:
case v1f32:
case v1f64: return 1;
}
}
unsigned getSizeInBits() const {
switch (SimpleTy) {
default:
llvm_unreachable("getSizeInBits called on extended MVT.");
case Other:
llvm_unreachable("Value type is non-standard value, Other.");
case iPTR:
llvm_unreachable("Value type size is target-dependent. Ask TLI.");
case iPTRAny:
case iAny:
case fAny:
case vAny:
case Any:
llvm_unreachable("Value type is overloaded.");
case Metadata:
llvm_unreachable("Value type is metadata.");
case i1 : return 1;
case v2i1: return 2;
case v4i1: return 4;
case i8 :
case v1i8:
case v8i1: return 8;
case i16 :
case f16:
case v16i1:
case v2i8:
case v1i16: return 16;
case f32 :
case i32 :
case v32i1:
case v4i8:
case v2i16:
case v2f16:
case v1f32:
case v1i32: return 32;
case x86mmx:
case f64 :
case i64 :
case v64i1:
case v8i8:
case v4i16:
case v2i32:
case v1i64:
case v4f16:
case v2f32:
case v1f64: return 64;
case f80 : return 80;
case f128:
case ppcf128:
case i128:
case v16i8:
case v8i16:
case v4i32:
case v2i64:
case v1i128:
case v8f16:
case v4f32:
case v2f64: return 128;
case v32i8:
case v16i16:
case v8i32:
case v4i64:
case v8f32:
case v4f64: return 256;
case v64i8:
case v32i16:
case v16i32:
case v8i64:
case v16f32:
case v8f64: return 512;
case v16i64:return 1024;
}
}
unsigned getScalarSizeInBits() const {
return getScalarType().getSizeInBits();
}
/// getStoreSize - Return the number of bytes overwritten by a store
/// of the specified value type.
unsigned getStoreSize() const {
return (getSizeInBits() + 7) / 8;
}
/// getStoreSizeInBits - Return the number of bits overwritten by a store
/// of the specified value type.
unsigned getStoreSizeInBits() const {
return getStoreSize() * 8;
}
/// Return true if this has more bits than VT.
bool bitsGT(MVT VT) const {
return getSizeInBits() > VT.getSizeInBits();
}
/// Return true if this has no less bits than VT.
bool bitsGE(MVT VT) const {
return getSizeInBits() >= VT.getSizeInBits();
}
/// Return true if this has less bits than VT.
bool bitsLT(MVT VT) const {
return getSizeInBits() < VT.getSizeInBits();
}
/// Return true if this has no more bits than VT.
bool bitsLE(MVT VT) const {
return getSizeInBits() <= VT.getSizeInBits();
}
static MVT getFloatingPointVT(unsigned BitWidth) {
switch (BitWidth) {
default:
llvm_unreachable("Bad bit width!");
case 16:
return MVT::f16;
case 32:
return MVT::f32;
case 64:
return MVT::f64;
case 80:
return MVT::f80;
case 128:
return MVT::f128;
}
}
static MVT getIntegerVT(unsigned BitWidth) {
switch (BitWidth) {
default:
return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE);
case 1:
return MVT::i1;
case 8:
return MVT::i8;
case 16:
return MVT::i16;
case 32:
return MVT::i32;
case 64:
return MVT::i64;
case 128:
return MVT::i128;
}
}
static MVT getVectorVT(MVT VT, unsigned NumElements) {
switch (VT.SimpleTy) {
default:
break;
case MVT::i1:
if (NumElements == 2) return MVT::v2i1;
if (NumElements == 4) return MVT::v4i1;
if (NumElements == 8) return MVT::v8i1;
if (NumElements == 16) return MVT::v16i1;
if (NumElements == 32) return MVT::v32i1;
if (NumElements == 64) return MVT::v64i1;
break;
case MVT::i8:
if (NumElements == 1) return MVT::v1i8;
if (NumElements == 2) return MVT::v2i8;
if (NumElements == 4) return MVT::v4i8;
if (NumElements == 8) return MVT::v8i8;
if (NumElements == 16) return MVT::v16i8;
if (NumElements == 32) return MVT::v32i8;
if (NumElements == 64) return MVT::v64i8;
break;
case MVT::i16:
if (NumElements == 1) return MVT::v1i16;
if (NumElements == 2) return MVT::v2i16;
if (NumElements == 4) return MVT::v4i16;
if (NumElements == 8) return MVT::v8i16;
if (NumElements == 16) return MVT::v16i16;
if (NumElements == 32) return MVT::v32i16;
break;
case MVT::i32:
if (NumElements == 1) return MVT::v1i32;
if (NumElements == 2) return MVT::v2i32;
if (NumElements == 4) return MVT::v4i32;
if (NumElements == 8) return MVT::v8i32;
if (NumElements == 16) return MVT::v16i32;
break;
case MVT::i64:
if (NumElements == 1) return MVT::v1i64;
if (NumElements == 2) return MVT::v2i64;
if (NumElements == 4) return MVT::v4i64;
if (NumElements == 8) return MVT::v8i64;
if (NumElements == 16) return MVT::v16i64;
break;
case MVT::i128:
if (NumElements == 1) return MVT::v1i128;
break;
case MVT::f16:
if (NumElements == 2) return MVT::v2f16;
if (NumElements == 4) return MVT::v4f16;
if (NumElements == 8) return MVT::v8f16;
break;
case MVT::f32:
if (NumElements == 1) return MVT::v1f32;
if (NumElements == 2) return MVT::v2f32;
if (NumElements == 4) return MVT::v4f32;
if (NumElements == 8) return MVT::v8f32;
if (NumElements == 16) return MVT::v16f32;
break;
case MVT::f64:
if (NumElements == 1) return MVT::v1f64;
if (NumElements == 2) return MVT::v2f64;
if (NumElements == 4) return MVT::v4f64;
if (NumElements == 8) return MVT::v8f64;
break;
}
return (MVT::SimpleValueType)(MVT::INVALID_SIMPLE_VALUE_TYPE);
}
/// Return the value type corresponding to the specified type. This returns
/// all pointers as iPTR. If HandleUnknown is true, unknown types are
/// returned as Other, otherwise they are invalid.
static MVT getVT(Type *Ty, bool HandleUnknown = false);
private:
/// A simple iterator over the MVT::SimpleValueType enum.
struct mvt_iterator {
SimpleValueType VT;
mvt_iterator(SimpleValueType VT) : VT(VT) {}
MVT operator*() const { return VT; }
bool operator!=(const mvt_iterator &LHS) const { return VT != LHS.VT; }
mvt_iterator& operator++() {
VT = (MVT::SimpleValueType)((int)VT + 1);
assert((int)VT <= MVT::MAX_ALLOWED_VALUETYPE &&
"MVT iterator overflowed.");
return *this;
}
};
/// A range of the MVT::SimpleValueType enum.
typedef iterator_range<mvt_iterator> mvt_range;
public:
/// SimpleValueType Iteration
/// @{
static mvt_range all_valuetypes() {
return mvt_range(MVT::FIRST_VALUETYPE, MVT::LAST_VALUETYPE);
}
static mvt_range integer_valuetypes() {
return mvt_range(MVT::FIRST_INTEGER_VALUETYPE,
(MVT::SimpleValueType)(MVT::LAST_INTEGER_VALUETYPE + 1));
}
static mvt_range fp_valuetypes() {
return mvt_range(MVT::FIRST_FP_VALUETYPE,
(MVT::SimpleValueType)(MVT::LAST_FP_VALUETYPE + 1));
}
static mvt_range vector_valuetypes() {
return mvt_range(MVT::FIRST_VECTOR_VALUETYPE,
(MVT::SimpleValueType)(MVT::LAST_VECTOR_VALUETYPE + 1));
}
static mvt_range integer_vector_valuetypes() {
return mvt_range(
MVT::FIRST_INTEGER_VECTOR_VALUETYPE,
(MVT::SimpleValueType)(MVT::LAST_INTEGER_VECTOR_VALUETYPE + 1));
}
static mvt_range fp_vector_valuetypes() {
return mvt_range(
MVT::FIRST_FP_VECTOR_VALUETYPE,
(MVT::SimpleValueType)(MVT::LAST_FP_VECTOR_VALUETYPE + 1));
}
/// @}
};
} // End llvm namespace
#endif