| //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| /// \file |
| /// This is the parent TargetLowering class for hardware code gen |
| /// targets. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AMDGPUISelLowering.h" |
| #include "AMDGPU.h" |
| #include "AMDGPUCallLowering.h" |
| #include "AMDGPUFrameLowering.h" |
| #include "AMDGPURegisterInfo.h" |
| #include "AMDGPUSubtarget.h" |
| #include "AMDGPUTargetMachine.h" |
| #include "Utils/AMDGPUBaseInfo.h" |
| #include "R600MachineFunctionInfo.h" |
| #include "SIInstrInfo.h" |
| #include "SIMachineFunctionInfo.h" |
| #include "MCTargetDesc/AMDGPUMCTargetDesc.h" |
| #include "llvm/CodeGen/Analysis.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/Support/KnownBits.h" |
| #include "llvm/Support/MathExtras.h" |
| using namespace llvm; |
| |
| #include "AMDGPUGenCallingConv.inc" |
| |
| // Find a larger type to do a load / store of a vector with. |
| EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { |
| unsigned StoreSize = VT.getStoreSizeInBits(); |
| if (StoreSize <= 32) |
| return EVT::getIntegerVT(Ctx, StoreSize); |
| |
| assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); |
| return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); |
| } |
| |
| unsigned AMDGPUTargetLowering::numBitsUnsigned(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| KnownBits Known = DAG.computeKnownBits(Op); |
| return VT.getSizeInBits() - Known.countMinLeadingZeros(); |
| } |
| |
| unsigned AMDGPUTargetLowering::numBitsSigned(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| |
| // In order for this to be a signed 24-bit value, bit 23, must |
| // be a sign bit. |
| return VT.getSizeInBits() - DAG.ComputeNumSignBits(Op); |
| } |
| |
| AMDGPUTargetLowering::AMDGPUTargetLowering(const TargetMachine &TM, |
| const AMDGPUSubtarget &STI) |
| : TargetLowering(TM), Subtarget(&STI) { |
| // Lower floating point store/load to integer store/load to reduce the number |
| // of patterns in tablegen. |
| setOperationAction(ISD::LOAD, MVT::f32, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v2f32, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v3f32, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v3f32, MVT::v3i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v4f32, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v5f32, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v5f32, MVT::v5i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v8f32, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v16f32, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v32f32, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v32f32, MVT::v32i32); |
| |
| setOperationAction(ISD::LOAD, MVT::i64, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v2i64, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32); |
| |
| setOperationAction(ISD::LOAD, MVT::f64, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::f64, MVT::v2i32); |
| |
| setOperationAction(ISD::LOAD, MVT::v2f64, Promote); |
| AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v4i32); |
| |
| // There are no 64-bit extloads. These should be done as a 32-bit extload and |
| // an extension to 64-bit. |
| for (MVT VT : MVT::integer_valuetypes()) { |
| setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); |
| } |
| |
| for (MVT VT : MVT::integer_valuetypes()) { |
| if (VT == MVT::i64) |
| continue; |
| |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); |
| |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); |
| |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); |
| } |
| |
| for (MVT VT : MVT::integer_fixedlen_vector_valuetypes()) { |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::v3i16, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v3i16, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v3i16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); |
| setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); |
| setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); |
| } |
| |
| setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v3f32, MVT::v3f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v16f32, MVT::v16f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v32f32, MVT::v32f16, Expand); |
| |
| setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f32, Expand); |
| |
| setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); |
| setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); |
| |
| setOperationAction(ISD::STORE, MVT::f32, Promote); |
| AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); |
| |
| setOperationAction(ISD::STORE, MVT::v2f32, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); |
| |
| setOperationAction(ISD::STORE, MVT::v3f32, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v3f32, MVT::v3i32); |
| |
| setOperationAction(ISD::STORE, MVT::v4f32, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); |
| |
| setOperationAction(ISD::STORE, MVT::v5f32, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v5f32, MVT::v5i32); |
| |
| setOperationAction(ISD::STORE, MVT::v8f32, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); |
| |
| setOperationAction(ISD::STORE, MVT::v16f32, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); |
| |
| setOperationAction(ISD::STORE, MVT::v32f32, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v32f32, MVT::v32i32); |
| |
| setOperationAction(ISD::STORE, MVT::i64, Promote); |
| AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32); |
| |
| setOperationAction(ISD::STORE, MVT::v2i64, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32); |
| |
| setOperationAction(ISD::STORE, MVT::f64, Promote); |
| AddPromotedToType(ISD::STORE, MVT::f64, MVT::v2i32); |
| |
| setOperationAction(ISD::STORE, MVT::v2f64, Promote); |
| AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v4i32); |
| |
| setTruncStoreAction(MVT::i64, MVT::i1, Expand); |
| setTruncStoreAction(MVT::i64, MVT::i8, Expand); |
| setTruncStoreAction(MVT::i64, MVT::i16, Expand); |
| setTruncStoreAction(MVT::i64, MVT::i32, Expand); |
| |
| setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); |
| setTruncStoreAction(MVT::v2i64, MVT::v2i8, Expand); |
| setTruncStoreAction(MVT::v2i64, MVT::v2i16, Expand); |
| setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand); |
| |
| setTruncStoreAction(MVT::f32, MVT::f16, Expand); |
| setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); |
| setTruncStoreAction(MVT::v3f32, MVT::v3f16, Expand); |
| setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); |
| setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); |
| setTruncStoreAction(MVT::v16f32, MVT::v16f16, Expand); |
| setTruncStoreAction(MVT::v32f32, MVT::v32f16, Expand); |
| |
| setTruncStoreAction(MVT::f64, MVT::f16, Expand); |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| |
| setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand); |
| setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand); |
| |
| setTruncStoreAction(MVT::v4f64, MVT::v4f32, Expand); |
| setTruncStoreAction(MVT::v4f64, MVT::v4f16, Expand); |
| |
| setTruncStoreAction(MVT::v8f64, MVT::v8f32, Expand); |
| setTruncStoreAction(MVT::v8f64, MVT::v8f16, Expand); |
| |
| |
| setOperationAction(ISD::Constant, MVT::i32, Legal); |
| setOperationAction(ISD::Constant, MVT::i64, Legal); |
| setOperationAction(ISD::ConstantFP, MVT::f32, Legal); |
| setOperationAction(ISD::ConstantFP, MVT::f64, Legal); |
| |
| setOperationAction(ISD::BR_JT, MVT::Other, Expand); |
| setOperationAction(ISD::BRIND, MVT::Other, Expand); |
| |
| // This is totally unsupported, just custom lower to produce an error. |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); |
| |
| // Library functions. These default to Expand, but we have instructions |
| // for them. |
| setOperationAction(ISD::FCEIL, MVT::f32, Legal); |
| setOperationAction(ISD::FEXP2, MVT::f32, Legal); |
| setOperationAction(ISD::FPOW, MVT::f32, Legal); |
| setOperationAction(ISD::FLOG2, MVT::f32, Legal); |
| setOperationAction(ISD::FABS, MVT::f32, Legal); |
| setOperationAction(ISD::FFLOOR, MVT::f32, Legal); |
| setOperationAction(ISD::FRINT, MVT::f32, Legal); |
| setOperationAction(ISD::FTRUNC, MVT::f32, Legal); |
| setOperationAction(ISD::FMINNUM, MVT::f32, Legal); |
| setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); |
| |
| setOperationAction(ISD::FROUND, MVT::f32, Custom); |
| setOperationAction(ISD::FROUND, MVT::f64, Custom); |
| |
| setOperationAction(ISD::FLOG, MVT::f32, Custom); |
| setOperationAction(ISD::FLOG10, MVT::f32, Custom); |
| setOperationAction(ISD::FEXP, MVT::f32, Custom); |
| |
| |
| setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); |
| setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); |
| |
| setOperationAction(ISD::FREM, MVT::f32, Custom); |
| setOperationAction(ISD::FREM, MVT::f64, Custom); |
| |
| // Expand to fneg + fadd. |
| setOperationAction(ISD::FSUB, MVT::f64, Expand); |
| |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v3i32, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v3f32, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v5i32, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v5f32, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); |
| setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3f32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v3i32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5f32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v5i32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16f32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v16i32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32f32, Custom); |
| setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v32i32, Custom); |
| |
| setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); |
| setOperationAction(ISD::FP_TO_FP16, MVT::f64, Custom); |
| setOperationAction(ISD::FP_TO_FP16, MVT::f32, Custom); |
| |
| const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; |
| for (MVT VT : ScalarIntVTs) { |
| // These should use [SU]DIVREM, so set them to expand |
| setOperationAction(ISD::SDIV, VT, Expand); |
| setOperationAction(ISD::UDIV, VT, Expand); |
| setOperationAction(ISD::SREM, VT, Expand); |
| setOperationAction(ISD::UREM, VT, Expand); |
| |
| // GPU does not have divrem function for signed or unsigned. |
| setOperationAction(ISD::SDIVREM, VT, Custom); |
| setOperationAction(ISD::UDIVREM, VT, Custom); |
| |
| // GPU does not have [S|U]MUL_LOHI functions as a single instruction. |
| setOperationAction(ISD::SMUL_LOHI, VT, Expand); |
| setOperationAction(ISD::UMUL_LOHI, VT, Expand); |
| |
| setOperationAction(ISD::BSWAP, VT, Expand); |
| setOperationAction(ISD::CTTZ, VT, Expand); |
| setOperationAction(ISD::CTLZ, VT, Expand); |
| |
| // AMDGPU uses ADDC/SUBC/ADDE/SUBE |
| setOperationAction(ISD::ADDC, VT, Legal); |
| setOperationAction(ISD::SUBC, VT, Legal); |
| setOperationAction(ISD::ADDE, VT, Legal); |
| setOperationAction(ISD::SUBE, VT, Legal); |
| } |
| |
| // The hardware supports 32-bit ROTR, but not ROTL. |
| setOperationAction(ISD::ROTL, MVT::i32, Expand); |
| setOperationAction(ISD::ROTL, MVT::i64, Expand); |
| setOperationAction(ISD::ROTR, MVT::i64, Expand); |
| |
| setOperationAction(ISD::MUL, MVT::i64, Expand); |
| setOperationAction(ISD::MULHU, MVT::i64, Expand); |
| setOperationAction(ISD::MULHS, MVT::i64, Expand); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); |
| |
| setOperationAction(ISD::SMIN, MVT::i32, Legal); |
| setOperationAction(ISD::UMIN, MVT::i32, Legal); |
| setOperationAction(ISD::SMAX, MVT::i32, Legal); |
| setOperationAction(ISD::UMAX, MVT::i32, Legal); |
| |
| setOperationAction(ISD::CTTZ, MVT::i64, Custom); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Custom); |
| setOperationAction(ISD::CTLZ, MVT::i64, Custom); |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Custom); |
| |
| static const MVT::SimpleValueType VectorIntTypes[] = { |
| MVT::v2i32, MVT::v3i32, MVT::v4i32, MVT::v5i32 |
| }; |
| |
| for (MVT VT : VectorIntTypes) { |
| // Expand the following operations for the current type by default. |
| setOperationAction(ISD::ADD, VT, Expand); |
| setOperationAction(ISD::AND, VT, Expand); |
| setOperationAction(ISD::FP_TO_SINT, VT, Expand); |
| setOperationAction(ISD::FP_TO_UINT, VT, Expand); |
| setOperationAction(ISD::MUL, VT, Expand); |
| setOperationAction(ISD::MULHU, VT, Expand); |
| setOperationAction(ISD::MULHS, VT, Expand); |
| setOperationAction(ISD::OR, VT, Expand); |
| setOperationAction(ISD::SHL, VT, Expand); |
| setOperationAction(ISD::SRA, VT, Expand); |
| setOperationAction(ISD::SRL, VT, Expand); |
| setOperationAction(ISD::ROTL, VT, Expand); |
| setOperationAction(ISD::ROTR, VT, Expand); |
| setOperationAction(ISD::SUB, VT, Expand); |
| setOperationAction(ISD::SINT_TO_FP, VT, Expand); |
| setOperationAction(ISD::UINT_TO_FP, VT, Expand); |
| setOperationAction(ISD::SDIV, VT, Expand); |
| setOperationAction(ISD::UDIV, VT, Expand); |
| setOperationAction(ISD::SREM, VT, Expand); |
| setOperationAction(ISD::UREM, VT, Expand); |
| setOperationAction(ISD::SMUL_LOHI, VT, Expand); |
| setOperationAction(ISD::UMUL_LOHI, VT, Expand); |
| setOperationAction(ISD::SDIVREM, VT, Custom); |
| setOperationAction(ISD::UDIVREM, VT, Expand); |
| setOperationAction(ISD::SELECT, VT, Expand); |
| setOperationAction(ISD::VSELECT, VT, Expand); |
| setOperationAction(ISD::SELECT_CC, VT, Expand); |
| setOperationAction(ISD::XOR, VT, Expand); |
| setOperationAction(ISD::BSWAP, VT, Expand); |
| setOperationAction(ISD::CTPOP, VT, Expand); |
| setOperationAction(ISD::CTTZ, VT, Expand); |
| setOperationAction(ISD::CTLZ, VT, Expand); |
| setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); |
| setOperationAction(ISD::SETCC, VT, Expand); |
| } |
| |
| static const MVT::SimpleValueType FloatVectorTypes[] = { |
| MVT::v2f32, MVT::v3f32, MVT::v4f32, MVT::v5f32 |
| }; |
| |
| for (MVT VT : FloatVectorTypes) { |
| setOperationAction(ISD::FABS, VT, Expand); |
| setOperationAction(ISD::FMINNUM, VT, Expand); |
| setOperationAction(ISD::FMAXNUM, VT, Expand); |
| setOperationAction(ISD::FADD, VT, Expand); |
| setOperationAction(ISD::FCEIL, VT, Expand); |
| setOperationAction(ISD::FCOS, VT, Expand); |
| setOperationAction(ISD::FDIV, VT, Expand); |
| setOperationAction(ISD::FEXP2, VT, Expand); |
| setOperationAction(ISD::FEXP, VT, Expand); |
| setOperationAction(ISD::FLOG2, VT, Expand); |
| setOperationAction(ISD::FREM, VT, Expand); |
| setOperationAction(ISD::FLOG, VT, Expand); |
| setOperationAction(ISD::FLOG10, VT, Expand); |
| setOperationAction(ISD::FPOW, VT, Expand); |
| setOperationAction(ISD::FFLOOR, VT, Expand); |
| setOperationAction(ISD::FTRUNC, VT, Expand); |
| setOperationAction(ISD::FMUL, VT, Expand); |
| setOperationAction(ISD::FMA, VT, Expand); |
| setOperationAction(ISD::FRINT, VT, Expand); |
| setOperationAction(ISD::FNEARBYINT, VT, Expand); |
| setOperationAction(ISD::FSQRT, VT, Expand); |
| setOperationAction(ISD::FSIN, VT, Expand); |
| setOperationAction(ISD::FSUB, VT, Expand); |
| setOperationAction(ISD::FNEG, VT, Expand); |
| setOperationAction(ISD::VSELECT, VT, Expand); |
| setOperationAction(ISD::SELECT_CC, VT, Expand); |
| setOperationAction(ISD::FCOPYSIGN, VT, Expand); |
| setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); |
| setOperationAction(ISD::SETCC, VT, Expand); |
| setOperationAction(ISD::FCANONICALIZE, VT, Expand); |
| } |
| |
| // This causes using an unrolled select operation rather than expansion with |
| // bit operations. This is in general better, but the alternative using BFI |
| // instructions may be better if the select sources are SGPRs. |
| setOperationAction(ISD::SELECT, MVT::v2f32, Promote); |
| AddPromotedToType(ISD::SELECT, MVT::v2f32, MVT::v2i32); |
| |
| setOperationAction(ISD::SELECT, MVT::v3f32, Promote); |
| AddPromotedToType(ISD::SELECT, MVT::v3f32, MVT::v3i32); |
| |
| setOperationAction(ISD::SELECT, MVT::v4f32, Promote); |
| AddPromotedToType(ISD::SELECT, MVT::v4f32, MVT::v4i32); |
| |
| setOperationAction(ISD::SELECT, MVT::v5f32, Promote); |
| AddPromotedToType(ISD::SELECT, MVT::v5f32, MVT::v5i32); |
| |
| // There are no libcalls of any kind. |
| for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) |
| setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr); |
| |
| setBooleanContents(ZeroOrNegativeOneBooleanContent); |
| setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); |
| |
| setSchedulingPreference(Sched::RegPressure); |
| setJumpIsExpensive(true); |
| |
| // FIXME: This is only partially true. If we have to do vector compares, any |
| // SGPR pair can be a condition register. If we have a uniform condition, we |
| // are better off doing SALU operations, where there is only one SCC. For now, |
| // we don't have a way of knowing during instruction selection if a condition |
| // will be uniform and we always use vector compares. Assume we are using |
| // vector compares until that is fixed. |
| setHasMultipleConditionRegisters(true); |
| |
| setMinCmpXchgSizeInBits(32); |
| setSupportsUnalignedAtomics(false); |
| |
| PredictableSelectIsExpensive = false; |
| |
| // We want to find all load dependencies for long chains of stores to enable |
| // merging into very wide vectors. The problem is with vectors with > 4 |
| // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 |
| // vectors are a legal type, even though we have to split the loads |
| // usually. When we can more precisely specify load legality per address |
| // space, we should be able to make FindBetterChain/MergeConsecutiveStores |
| // smarter so that they can figure out what to do in 2 iterations without all |
| // N > 4 stores on the same chain. |
| GatherAllAliasesMaxDepth = 16; |
| |
| // memcpy/memmove/memset are expanded in the IR, so we shouldn't need to worry |
| // about these during lowering. |
| MaxStoresPerMemcpy = 0xffffffff; |
| MaxStoresPerMemmove = 0xffffffff; |
| MaxStoresPerMemset = 0xffffffff; |
| |
| setTargetDAGCombine(ISD::BITCAST); |
| setTargetDAGCombine(ISD::SHL); |
| setTargetDAGCombine(ISD::SRA); |
| setTargetDAGCombine(ISD::SRL); |
| setTargetDAGCombine(ISD::TRUNCATE); |
| setTargetDAGCombine(ISD::MUL); |
| setTargetDAGCombine(ISD::MULHU); |
| setTargetDAGCombine(ISD::MULHS); |
| setTargetDAGCombine(ISD::SELECT); |
| setTargetDAGCombine(ISD::SELECT_CC); |
| setTargetDAGCombine(ISD::STORE); |
| setTargetDAGCombine(ISD::FADD); |
| setTargetDAGCombine(ISD::FSUB); |
| setTargetDAGCombine(ISD::FNEG); |
| setTargetDAGCombine(ISD::FABS); |
| setTargetDAGCombine(ISD::AssertZext); |
| setTargetDAGCombine(ISD::AssertSext); |
| setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Target Information |
| //===----------------------------------------------------------------------===// |
| |
| LLVM_READNONE |
| static bool fnegFoldsIntoOp(unsigned Opc) { |
| switch (Opc) { |
| case ISD::FADD: |
| case ISD::FSUB: |
| case ISD::FMUL: |
| case ISD::FMA: |
| case ISD::FMAD: |
| case ISD::FMINNUM: |
| case ISD::FMAXNUM: |
| case ISD::FMINNUM_IEEE: |
| case ISD::FMAXNUM_IEEE: |
| case ISD::FSIN: |
| case ISD::FTRUNC: |
| case ISD::FRINT: |
| case ISD::FNEARBYINT: |
| case ISD::FCANONICALIZE: |
| case AMDGPUISD::RCP: |
| case AMDGPUISD::RCP_LEGACY: |
| case AMDGPUISD::RCP_IFLAG: |
| case AMDGPUISD::SIN_HW: |
| case AMDGPUISD::FMUL_LEGACY: |
| case AMDGPUISD::FMIN_LEGACY: |
| case AMDGPUISD::FMAX_LEGACY: |
| case AMDGPUISD::FMED3: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| /// \p returns true if the operation will definitely need to use a 64-bit |
| /// encoding, and thus will use a VOP3 encoding regardless of the source |
| /// modifiers. |
| LLVM_READONLY |
| static bool opMustUseVOP3Encoding(const SDNode *N, MVT VT) { |
| return N->getNumOperands() > 2 || VT == MVT::f64; |
| } |
| |
| // Most FP instructions support source modifiers, but this could be refined |
| // slightly. |
| LLVM_READONLY |
| static bool hasSourceMods(const SDNode *N) { |
| if (isa<MemSDNode>(N)) |
| return false; |
| |
| switch (N->getOpcode()) { |
| case ISD::CopyToReg: |
| case ISD::SELECT: |
| case ISD::FDIV: |
| case ISD::FREM: |
| case ISD::INLINEASM: |
| case ISD::INLINEASM_BR: |
| case AMDGPUISD::INTERP_P1: |
| case AMDGPUISD::INTERP_P2: |
| case AMDGPUISD::DIV_SCALE: |
| |
| // TODO: Should really be looking at the users of the bitcast. These are |
| // problematic because bitcasts are used to legalize all stores to integer |
| // types. |
| case ISD::BITCAST: |
| return false; |
| default: |
| return true; |
| } |
| } |
| |
| bool AMDGPUTargetLowering::allUsesHaveSourceMods(const SDNode *N, |
| unsigned CostThreshold) { |
| // Some users (such as 3-operand FMA/MAD) must use a VOP3 encoding, and thus |
| // it is truly free to use a source modifier in all cases. If there are |
| // multiple users but for each one will necessitate using VOP3, there will be |
| // a code size increase. Try to avoid increasing code size unless we know it |
| // will save on the instruction count. |
| unsigned NumMayIncreaseSize = 0; |
| MVT VT = N->getValueType(0).getScalarType().getSimpleVT(); |
| |
| // XXX - Should this limit number of uses to check? |
| for (const SDNode *U : N->uses()) { |
| if (!hasSourceMods(U)) |
| return false; |
| |
| if (!opMustUseVOP3Encoding(U, VT)) { |
| if (++NumMayIncreaseSize > CostThreshold) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { |
| return MVT::i32; |
| } |
| |
| bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { |
| return true; |
| } |
| |
| // The backend supports 32 and 64 bit floating point immediates. |
| // FIXME: Why are we reporting vectors of FP immediates as legal? |
| bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT, |
| bool ForCodeSize) const { |
| EVT ScalarVT = VT.getScalarType(); |
| return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64 || |
| (ScalarVT == MVT::f16 && Subtarget->has16BitInsts())); |
| } |
| |
| // We don't want to shrink f64 / f32 constants. |
| bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { |
| EVT ScalarVT = VT.getScalarType(); |
| return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); |
| } |
| |
| bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, |
| ISD::LoadExtType ExtTy, |
| EVT NewVT) const { |
| // TODO: This may be worth removing. Check regression tests for diffs. |
| if (!TargetLoweringBase::shouldReduceLoadWidth(N, ExtTy, NewVT)) |
| return false; |
| |
| unsigned NewSize = NewVT.getStoreSizeInBits(); |
| |
| // If we are reducing to a 32-bit load, this is always better. |
| if (NewSize == 32) |
| return true; |
| |
| EVT OldVT = N->getValueType(0); |
| unsigned OldSize = OldVT.getStoreSizeInBits(); |
| |
| MemSDNode *MN = cast<MemSDNode>(N); |
| unsigned AS = MN->getAddressSpace(); |
| // Do not shrink an aligned scalar load to sub-dword. |
| // Scalar engine cannot do sub-dword loads. |
| if (OldSize >= 32 && NewSize < 32 && MN->getAlignment() >= 4 && |
| (AS == AMDGPUAS::CONSTANT_ADDRESS || |
| AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT || |
| (isa<LoadSDNode>(N) && |
| AS == AMDGPUAS::GLOBAL_ADDRESS && MN->isInvariant())) && |
| AMDGPUInstrInfo::isUniformMMO(MN->getMemOperand())) |
| return false; |
| |
| // Don't produce extloads from sub 32-bit types. SI doesn't have scalar |
| // extloads, so doing one requires using a buffer_load. In cases where we |
| // still couldn't use a scalar load, using the wider load shouldn't really |
| // hurt anything. |
| |
| // If the old size already had to be an extload, there's no harm in continuing |
| // to reduce the width. |
| return (OldSize < 32); |
| } |
| |
| bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, EVT CastTy, |
| const SelectionDAG &DAG, |
| const MachineMemOperand &MMO) const { |
| |
| assert(LoadTy.getSizeInBits() == CastTy.getSizeInBits()); |
| |
| if (LoadTy.getScalarType() == MVT::i32) |
| return false; |
| |
| unsigned LScalarSize = LoadTy.getScalarSizeInBits(); |
| unsigned CastScalarSize = CastTy.getScalarSizeInBits(); |
| |
| if ((LScalarSize >= CastScalarSize) && (CastScalarSize < 32)) |
| return false; |
| |
| bool Fast = false; |
| return allowsMemoryAccessForAlignment(*DAG.getContext(), DAG.getDataLayout(), |
| CastTy, MMO, &Fast) && |
| Fast; |
| } |
| |
| // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also |
| // profitable with the expansion for 64-bit since it's generally good to |
| // speculate things. |
| // FIXME: These should really have the size as a parameter. |
| bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { |
| return true; |
| } |
| |
| bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { |
| return true; |
| } |
| |
| bool AMDGPUTargetLowering::isSDNodeAlwaysUniform(const SDNode * N) const { |
| switch (N->getOpcode()) { |
| default: |
| return false; |
| case ISD::EntryToken: |
| case ISD::TokenFactor: |
| return true; |
| case ISD::INTRINSIC_WO_CHAIN: |
| { |
| unsigned IntrID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); |
| switch (IntrID) { |
| default: |
| return false; |
| case Intrinsic::amdgcn_readfirstlane: |
| case Intrinsic::amdgcn_readlane: |
| return true; |
| } |
| } |
| break; |
| case ISD::LOAD: |
| { |
| if (cast<LoadSDNode>(N)->getMemOperand()->getAddrSpace() == |
| AMDGPUAS::CONSTANT_ADDRESS_32BIT) |
| return true; |
| return false; |
| } |
| break; |
| } |
| } |
| |
| //===---------------------------------------------------------------------===// |
| // Target Properties |
| //===---------------------------------------------------------------------===// |
| |
| bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { |
| assert(VT.isFloatingPoint()); |
| |
| // Packed operations do not have a fabs modifier. |
| return VT == MVT::f32 || VT == MVT::f64 || |
| (Subtarget->has16BitInsts() && VT == MVT::f16); |
| } |
| |
| bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { |
| assert(VT.isFloatingPoint()); |
| return VT == MVT::f32 || VT == MVT::f64 || |
| (Subtarget->has16BitInsts() && VT == MVT::f16) || |
| (Subtarget->hasVOP3PInsts() && VT == MVT::v2f16); |
| } |
| |
| bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, |
| unsigned NumElem, |
| unsigned AS) const { |
| return true; |
| } |
| |
| bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { |
| // There are few operations which truly have vector input operands. Any vector |
| // operation is going to involve operations on each component, and a |
| // build_vector will be a copy per element, so it always makes sense to use a |
| // build_vector input in place of the extracted element to avoid a copy into a |
| // super register. |
| // |
| // We should probably only do this if all users are extracts only, but this |
| // should be the common case. |
| return true; |
| } |
| |
| bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { |
| // Truncate is just accessing a subregister. |
| |
| unsigned SrcSize = Source.getSizeInBits(); |
| unsigned DestSize = Dest.getSizeInBits(); |
| |
| return DestSize < SrcSize && DestSize % 32 == 0 ; |
| } |
| |
| bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { |
| // Truncate is just accessing a subregister. |
| |
| unsigned SrcSize = Source->getScalarSizeInBits(); |
| unsigned DestSize = Dest->getScalarSizeInBits(); |
| |
| if (DestSize== 16 && Subtarget->has16BitInsts()) |
| return SrcSize >= 32; |
| |
| return DestSize < SrcSize && DestSize % 32 == 0; |
| } |
| |
| bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { |
| unsigned SrcSize = Src->getScalarSizeInBits(); |
| unsigned DestSize = Dest->getScalarSizeInBits(); |
| |
| if (SrcSize == 16 && Subtarget->has16BitInsts()) |
| return DestSize >= 32; |
| |
| return SrcSize == 32 && DestSize == 64; |
| } |
| |
| bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { |
| // Any register load of a 64-bit value really requires 2 32-bit moves. For all |
| // practical purposes, the extra mov 0 to load a 64-bit is free. As used, |
| // this will enable reducing 64-bit operations the 32-bit, which is always |
| // good. |
| |
| if (Src == MVT::i16) |
| return Dest == MVT::i32 ||Dest == MVT::i64 ; |
| |
| return Src == MVT::i32 && Dest == MVT::i64; |
| } |
| |
| bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { |
| return isZExtFree(Val.getValueType(), VT2); |
| } |
| |
| bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { |
| // There aren't really 64-bit registers, but pairs of 32-bit ones and only a |
| // limited number of native 64-bit operations. Shrinking an operation to fit |
| // in a single 32-bit register should always be helpful. As currently used, |
| // this is much less general than the name suggests, and is only used in |
| // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is |
| // not profitable, and may actually be harmful. |
| return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; |
| } |
| |
| //===---------------------------------------------------------------------===// |
| // TargetLowering Callbacks |
| //===---------------------------------------------------------------------===// |
| |
| CCAssignFn *AMDGPUCallLowering::CCAssignFnForCall(CallingConv::ID CC, |
| bool IsVarArg) { |
| switch (CC) { |
| case CallingConv::AMDGPU_VS: |
| case CallingConv::AMDGPU_GS: |
| case CallingConv::AMDGPU_PS: |
| case CallingConv::AMDGPU_CS: |
| case CallingConv::AMDGPU_HS: |
| case CallingConv::AMDGPU_ES: |
| case CallingConv::AMDGPU_LS: |
| return CC_AMDGPU; |
| case CallingConv::C: |
| case CallingConv::Fast: |
| case CallingConv::Cold: |
| return CC_AMDGPU_Func; |
| case CallingConv::AMDGPU_KERNEL: |
| case CallingConv::SPIR_KERNEL: |
| default: |
| report_fatal_error("Unsupported calling convention for call"); |
| } |
| } |
| |
| CCAssignFn *AMDGPUCallLowering::CCAssignFnForReturn(CallingConv::ID CC, |
| bool IsVarArg) { |
| switch (CC) { |
| case CallingConv::AMDGPU_KERNEL: |
| case CallingConv::SPIR_KERNEL: |
| llvm_unreachable("kernels should not be handled here"); |
| case CallingConv::AMDGPU_VS: |
| case CallingConv::AMDGPU_GS: |
| case CallingConv::AMDGPU_PS: |
| case CallingConv::AMDGPU_CS: |
| case CallingConv::AMDGPU_HS: |
| case CallingConv::AMDGPU_ES: |
| case CallingConv::AMDGPU_LS: |
| return RetCC_SI_Shader; |
| case CallingConv::C: |
| case CallingConv::Fast: |
| case CallingConv::Cold: |
| return RetCC_AMDGPU_Func; |
| default: |
| report_fatal_error("Unsupported calling convention."); |
| } |
| } |
| |
| /// The SelectionDAGBuilder will automatically promote function arguments |
| /// with illegal types. However, this does not work for the AMDGPU targets |
| /// since the function arguments are stored in memory as these illegal types. |
| /// In order to handle this properly we need to get the original types sizes |
| /// from the LLVM IR Function and fixup the ISD:InputArg values before |
| /// passing them to AnalyzeFormalArguments() |
| |
| /// When the SelectionDAGBuilder computes the Ins, it takes care of splitting |
| /// input values across multiple registers. Each item in the Ins array |
| /// represents a single value that will be stored in registers. Ins[x].VT is |
| /// the value type of the value that will be stored in the register, so |
| /// whatever SDNode we lower the argument to needs to be this type. |
| /// |
| /// In order to correctly lower the arguments we need to know the size of each |
| /// argument. Since Ins[x].VT gives us the size of the register that will |
| /// hold the value, we need to look at Ins[x].ArgVT to see the 'real' type |
| /// for the orignal function argument so that we can deduce the correct memory |
| /// type to use for Ins[x]. In most cases the correct memory type will be |
| /// Ins[x].ArgVT. However, this will not always be the case. If, for example, |
| /// we have a kernel argument of type v8i8, this argument will be split into |
| /// 8 parts and each part will be represented by its own item in the Ins array. |
| /// For each part the Ins[x].ArgVT will be the v8i8, which is the full type of |
| /// the argument before it was split. From this, we deduce that the memory type |
| /// for each individual part is i8. We pass the memory type as LocVT to the |
| /// calling convention analysis function and the register type (Ins[x].VT) as |
| /// the ValVT. |
| void AMDGPUTargetLowering::analyzeFormalArgumentsCompute( |
| CCState &State, |
| const SmallVectorImpl<ISD::InputArg> &Ins) const { |
| const MachineFunction &MF = State.getMachineFunction(); |
| const Function &Fn = MF.getFunction(); |
| LLVMContext &Ctx = Fn.getParent()->getContext(); |
| const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(MF); |
| const unsigned ExplicitOffset = ST.getExplicitKernelArgOffset(Fn); |
| CallingConv::ID CC = Fn.getCallingConv(); |
| |
| unsigned MaxAlign = 1; |
| uint64_t ExplicitArgOffset = 0; |
| const DataLayout &DL = Fn.getParent()->getDataLayout(); |
| |
| unsigned InIndex = 0; |
| |
| for (const Argument &Arg : Fn.args()) { |
| Type *BaseArgTy = Arg.getType(); |
| unsigned Align = DL.getABITypeAlignment(BaseArgTy); |
| MaxAlign = std::max(Align, MaxAlign); |
| unsigned AllocSize = DL.getTypeAllocSize(BaseArgTy); |
| |
| uint64_t ArgOffset = alignTo(ExplicitArgOffset, Align) + ExplicitOffset; |
| ExplicitArgOffset = alignTo(ExplicitArgOffset, Align) + AllocSize; |
| |
| // We're basically throwing away everything passed into us and starting over |
| // to get accurate in-memory offsets. The "PartOffset" is completely useless |
| // to us as computed in Ins. |
| // |
| // We also need to figure out what type legalization is trying to do to get |
| // the correct memory offsets. |
| |
| SmallVector<EVT, 16> ValueVTs; |
| SmallVector<uint64_t, 16> Offsets; |
| ComputeValueVTs(*this, DL, BaseArgTy, ValueVTs, &Offsets, ArgOffset); |
| |
| for (unsigned Value = 0, NumValues = ValueVTs.size(); |
| Value != NumValues; ++Value) { |
| uint64_t BasePartOffset = Offsets[Value]; |
| |
| EVT ArgVT = ValueVTs[Value]; |
| EVT MemVT = ArgVT; |
| MVT RegisterVT = getRegisterTypeForCallingConv(Ctx, CC, ArgVT); |
| unsigned NumRegs = getNumRegistersForCallingConv(Ctx, CC, ArgVT); |
| |
| if (NumRegs == 1) { |
| // This argument is not split, so the IR type is the memory type. |
| if (ArgVT.isExtended()) { |
| // We have an extended type, like i24, so we should just use the |
| // register type. |
| MemVT = RegisterVT; |
| } else { |
| MemVT = ArgVT; |
| } |
| } else if (ArgVT.isVector() && RegisterVT.isVector() && |
| ArgVT.getScalarType() == RegisterVT.getScalarType()) { |
| assert(ArgVT.getVectorNumElements() > RegisterVT.getVectorNumElements()); |
| // We have a vector value which has been split into a vector with |
| // the same scalar type, but fewer elements. This should handle |
| // all the floating-point vector types. |
| MemVT = RegisterVT; |
| } else if (ArgVT.isVector() && |
| ArgVT.getVectorNumElements() == NumRegs) { |
| // This arg has been split so that each element is stored in a separate |
| // register. |
| MemVT = ArgVT.getScalarType(); |
| } else if (ArgVT.isExtended()) { |
| // We have an extended type, like i65. |
| MemVT = RegisterVT; |
| } else { |
| unsigned MemoryBits = ArgVT.getStoreSizeInBits() / NumRegs; |
| assert(ArgVT.getStoreSizeInBits() % NumRegs == 0); |
| if (RegisterVT.isInteger()) { |
| MemVT = EVT::getIntegerVT(State.getContext(), MemoryBits); |
| } else if (RegisterVT.isVector()) { |
| assert(!RegisterVT.getScalarType().isFloatingPoint()); |
| unsigned NumElements = RegisterVT.getVectorNumElements(); |
| assert(MemoryBits % NumElements == 0); |
| // This vector type has been split into another vector type with |
| // a different elements size. |
| EVT ScalarVT = EVT::getIntegerVT(State.getContext(), |
| MemoryBits / NumElements); |
| MemVT = EVT::getVectorVT(State.getContext(), ScalarVT, NumElements); |
| } else { |
| llvm_unreachable("cannot deduce memory type."); |
| } |
| } |
| |
| // Convert one element vectors to scalar. |
| if (MemVT.isVector() && MemVT.getVectorNumElements() == 1) |
| MemVT = MemVT.getScalarType(); |
| |
| // Round up vec3/vec5 argument. |
| if (MemVT.isVector() && !MemVT.isPow2VectorType()) { |
| assert(MemVT.getVectorNumElements() == 3 || |
| MemVT.getVectorNumElements() == 5); |
| MemVT = MemVT.getPow2VectorType(State.getContext()); |
| } |
| |
| unsigned PartOffset = 0; |
| for (unsigned i = 0; i != NumRegs; ++i) { |
| State.addLoc(CCValAssign::getCustomMem(InIndex++, RegisterVT, |
| BasePartOffset + PartOffset, |
| MemVT.getSimpleVT(), |
| CCValAssign::Full)); |
| PartOffset += MemVT.getStoreSize(); |
| } |
| } |
| } |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerReturn( |
| SDValue Chain, CallingConv::ID CallConv, |
| bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SDLoc &DL, SelectionDAG &DAG) const { |
| // FIXME: Fails for r600 tests |
| //assert(!isVarArg && Outs.empty() && OutVals.empty() && |
| // "wave terminate should not have return values"); |
| return DAG.getNode(AMDGPUISD::ENDPGM, DL, MVT::Other, Chain); |
| } |
| |
| //===---------------------------------------------------------------------===// |
| // Target specific lowering |
| //===---------------------------------------------------------------------===// |
| |
| /// Selects the correct CCAssignFn for a given CallingConvention value. |
| CCAssignFn *AMDGPUTargetLowering::CCAssignFnForCall(CallingConv::ID CC, |
| bool IsVarArg) { |
| return AMDGPUCallLowering::CCAssignFnForCall(CC, IsVarArg); |
| } |
| |
| CCAssignFn *AMDGPUTargetLowering::CCAssignFnForReturn(CallingConv::ID CC, |
| bool IsVarArg) { |
| return AMDGPUCallLowering::CCAssignFnForReturn(CC, IsVarArg); |
| } |
| |
| SDValue AMDGPUTargetLowering::addTokenForArgument(SDValue Chain, |
| SelectionDAG &DAG, |
| MachineFrameInfo &MFI, |
| int ClobberedFI) const { |
| SmallVector<SDValue, 8> ArgChains; |
| int64_t FirstByte = MFI.getObjectOffset(ClobberedFI); |
| int64_t LastByte = FirstByte + MFI.getObjectSize(ClobberedFI) - 1; |
| |
| // Include the original chain at the beginning of the list. When this is |
| // used by target LowerCall hooks, this helps legalize find the |
| // CALLSEQ_BEGIN node. |
| ArgChains.push_back(Chain); |
| |
| // Add a chain value for each stack argument corresponding |
| for (SDNode::use_iterator U = DAG.getEntryNode().getNode()->use_begin(), |
| UE = DAG.getEntryNode().getNode()->use_end(); |
| U != UE; ++U) { |
| if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U)) { |
| if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr())) { |
| if (FI->getIndex() < 0) { |
| int64_t InFirstByte = MFI.getObjectOffset(FI->getIndex()); |
| int64_t InLastByte = InFirstByte; |
| InLastByte += MFI.getObjectSize(FI->getIndex()) - 1; |
| |
| if ((InFirstByte <= FirstByte && FirstByte <= InLastByte) || |
| (FirstByte <= InFirstByte && InFirstByte <= LastByte)) |
| ArgChains.push_back(SDValue(L, 1)); |
| } |
| } |
| } |
| } |
| |
| // Build a tokenfactor for all the chains. |
| return DAG.getNode(ISD::TokenFactor, SDLoc(Chain), MVT::Other, ArgChains); |
| } |
| |
| SDValue AMDGPUTargetLowering::lowerUnhandledCall(CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals, |
| StringRef Reason) const { |
| SDValue Callee = CLI.Callee; |
| SelectionDAG &DAG = CLI.DAG; |
| |
| const Function &Fn = DAG.getMachineFunction().getFunction(); |
| |
| StringRef FuncName("<unknown>"); |
| |
| if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) |
| FuncName = G->getSymbol(); |
| else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) |
| FuncName = G->getGlobal()->getName(); |
| |
| DiagnosticInfoUnsupported NoCalls( |
| Fn, Reason + FuncName, CLI.DL.getDebugLoc()); |
| DAG.getContext()->diagnose(NoCalls); |
| |
| if (!CLI.IsTailCall) { |
| for (unsigned I = 0, E = CLI.Ins.size(); I != E; ++I) |
| InVals.push_back(DAG.getUNDEF(CLI.Ins[I].VT)); |
| } |
| |
| return DAG.getEntryNode(); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| return lowerUnhandledCall(CLI, InVals, "unsupported call to function "); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, |
| SelectionDAG &DAG) const { |
| const Function &Fn = DAG.getMachineFunction().getFunction(); |
| |
| DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "unsupported dynamic alloca", |
| SDLoc(Op).getDebugLoc()); |
| DAG.getContext()->diagnose(NoDynamicAlloca); |
| auto Ops = {DAG.getConstant(0, SDLoc(), Op.getValueType()), Op.getOperand(0)}; |
| return DAG.getMergeValues(Ops, SDLoc()); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, |
| SelectionDAG &DAG) const { |
| switch (Op.getOpcode()) { |
| default: |
| Op->print(errs(), &DAG); |
| llvm_unreachable("Custom lowering code for this" |
| "instruction is not implemented yet!"); |
| break; |
| case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); |
| case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); |
| case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); |
| case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); |
| case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); |
| case ISD::FREM: return LowerFREM(Op, DAG); |
| case ISD::FCEIL: return LowerFCEIL(Op, DAG); |
| case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); |
| case ISD::FRINT: return LowerFRINT(Op, DAG); |
| case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); |
| case ISD::FROUND: return LowerFROUND(Op, DAG); |
| case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); |
| case ISD::FLOG: |
| return LowerFLOG(Op, DAG, 1.0F / numbers::log2ef); |
| case ISD::FLOG10: |
| return LowerFLOG(Op, DAG, numbers::ln2f / numbers::ln10f); |
| case ISD::FEXP: |
| return lowerFEXP(Op, DAG); |
| case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); |
| case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); |
| case ISD::FP_TO_FP16: return LowerFP_TO_FP16(Op, DAG); |
| case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); |
| case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); |
| case ISD::CTTZ: |
| case ISD::CTTZ_ZERO_UNDEF: |
| case ISD::CTLZ: |
| case ISD::CTLZ_ZERO_UNDEF: |
| return LowerCTLZ_CTTZ(Op, DAG); |
| case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); |
| } |
| return Op; |
| } |
| |
| void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, |
| SmallVectorImpl<SDValue> &Results, |
| SelectionDAG &DAG) const { |
| switch (N->getOpcode()) { |
| case ISD::SIGN_EXTEND_INREG: |
| // Different parts of legalization seem to interpret which type of |
| // sign_extend_inreg is the one to check for custom lowering. The extended |
| // from type is what really matters, but some places check for custom |
| // lowering of the result type. This results in trying to use |
| // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do |
| // nothing here and let the illegal result integer be handled normally. |
| return; |
| default: |
| return; |
| } |
| } |
| |
| bool AMDGPUTargetLowering::hasDefinedInitializer(const GlobalValue *GV) { |
| const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); |
| if (!GVar || !GVar->hasInitializer()) |
| return false; |
| |
| return !isa<UndefValue>(GVar->getInitializer()); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, |
| SDValue Op, |
| SelectionDAG &DAG) const { |
| |
| const DataLayout &DL = DAG.getDataLayout(); |
| GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); |
| const GlobalValue *GV = G->getGlobal(); |
| |
| if (G->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || |
| G->getAddressSpace() == AMDGPUAS::REGION_ADDRESS) { |
| if (!MFI->isEntryFunction()) { |
| const Function &Fn = DAG.getMachineFunction().getFunction(); |
| DiagnosticInfoUnsupported BadLDSDecl( |
| Fn, "local memory global used by non-kernel function", SDLoc(Op).getDebugLoc()); |
| DAG.getContext()->diagnose(BadLDSDecl); |
| } |
| |
| // XXX: What does the value of G->getOffset() mean? |
| assert(G->getOffset() == 0 && |
| "Do not know what to do with an non-zero offset"); |
| |
| // TODO: We could emit code to handle the initialization somewhere. |
| if (!hasDefinedInitializer(GV)) { |
| unsigned Offset = MFI->allocateLDSGlobal(DL, *GV); |
| return DAG.getConstant(Offset, SDLoc(Op), Op.getValueType()); |
| } |
| } |
| |
| const Function &Fn = DAG.getMachineFunction().getFunction(); |
| DiagnosticInfoUnsupported BadInit( |
| Fn, "unsupported initializer for address space", SDLoc(Op).getDebugLoc()); |
| DAG.getContext()->diagnose(BadInit); |
| return SDValue(); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, |
| SelectionDAG &DAG) const { |
| SmallVector<SDValue, 8> Args; |
| |
| EVT VT = Op.getValueType(); |
| if (VT == MVT::v4i16 || VT == MVT::v4f16) { |
| SDLoc SL(Op); |
| SDValue Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(0)); |
| SDValue Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Op.getOperand(1)); |
| |
| SDValue BV = DAG.getBuildVector(MVT::v2i32, SL, { Lo, Hi }); |
| return DAG.getNode(ISD::BITCAST, SL, VT, BV); |
| } |
| |
| for (const SDUse &U : Op->ops()) |
| DAG.ExtractVectorElements(U.get(), Args); |
| |
| return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, |
| SelectionDAG &DAG) const { |
| |
| SmallVector<SDValue, 8> Args; |
| unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); |
| EVT VT = Op.getValueType(); |
| DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, |
| VT.getVectorNumElements()); |
| |
| return DAG.getBuildVector(Op.getValueType(), SDLoc(Op), Args); |
| } |
| |
| /// Generate Min/Max node |
| SDValue AMDGPUTargetLowering::combineFMinMaxLegacy(const SDLoc &DL, EVT VT, |
| SDValue LHS, SDValue RHS, |
| SDValue True, SDValue False, |
| SDValue CC, |
| DAGCombinerInfo &DCI) const { |
| if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); |
| switch (CCOpcode) { |
| case ISD::SETOEQ: |
| case ISD::SETONE: |
| case ISD::SETUNE: |
| case ISD::SETNE: |
| case ISD::SETUEQ: |
| case ISD::SETEQ: |
| case ISD::SETFALSE: |
| case ISD::SETFALSE2: |
| case ISD::SETTRUE: |
| case ISD::SETTRUE2: |
| case ISD::SETUO: |
| case ISD::SETO: |
| break; |
| case ISD::SETULE: |
| case ISD::SETULT: { |
| if (LHS == True) |
| return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); |
| return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); |
| } |
| case ISD::SETOLE: |
| case ISD::SETOLT: |
| case ISD::SETLE: |
| case ISD::SETLT: { |
| // Ordered. Assume ordered for undefined. |
| |
| // Only do this after legalization to avoid interfering with other combines |
| // which might occur. |
| if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && |
| !DCI.isCalledByLegalizer()) |
| return SDValue(); |
| |
| // We need to permute the operands to get the correct NaN behavior. The |
| // selected operand is the second one based on the failing compare with NaN, |
| // so permute it based on the compare type the hardware uses. |
| if (LHS == True) |
| return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); |
| return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); |
| } |
| case ISD::SETUGE: |
| case ISD::SETUGT: { |
| if (LHS == True) |
| return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); |
| return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); |
| } |
| case ISD::SETGT: |
| case ISD::SETGE: |
| case ISD::SETOGE: |
| case ISD::SETOGT: { |
| if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && |
| !DCI.isCalledByLegalizer()) |
| return SDValue(); |
| |
| if (LHS == True) |
| return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); |
| return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); |
| } |
| case ISD::SETCC_INVALID: |
| llvm_unreachable("Invalid setcc condcode!"); |
| } |
| return SDValue(); |
| } |
| |
| std::pair<SDValue, SDValue> |
| AMDGPUTargetLowering::split64BitValue(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| |
| SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); |
| |
| const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); |
| const SDValue One = DAG.getConstant(1, SL, MVT::i32); |
| |
| SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); |
| |
| return std::make_pair(Lo, Hi); |
| } |
| |
| SDValue AMDGPUTargetLowering::getLoHalf64(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| |
| SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); |
| const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); |
| } |
| |
| SDValue AMDGPUTargetLowering::getHiHalf64(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| |
| SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Op); |
| const SDValue One = DAG.getConstant(1, SL, MVT::i32); |
| return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); |
| } |
| |
| // Split a vector type into two parts. The first part is a power of two vector. |
| // The second part is whatever is left over, and is a scalar if it would |
| // otherwise be a 1-vector. |
| std::pair<EVT, EVT> |
| AMDGPUTargetLowering::getSplitDestVTs(const EVT &VT, SelectionDAG &DAG) const { |
| EVT LoVT, HiVT; |
| EVT EltVT = VT.getVectorElementType(); |
| unsigned NumElts = VT.getVectorNumElements(); |
| unsigned LoNumElts = PowerOf2Ceil((NumElts + 1) / 2); |
| LoVT = EVT::getVectorVT(*DAG.getContext(), EltVT, LoNumElts); |
| HiVT = NumElts - LoNumElts == 1 |
| ? EltVT |
| : EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts - LoNumElts); |
| return std::make_pair(LoVT, HiVT); |
| } |
| |
| // Split a vector value into two parts of types LoVT and HiVT. HiVT could be |
| // scalar. |
| std::pair<SDValue, SDValue> |
| AMDGPUTargetLowering::splitVector(const SDValue &N, const SDLoc &DL, |
| const EVT &LoVT, const EVT &HiVT, |
| SelectionDAG &DAG) const { |
| assert(LoVT.getVectorNumElements() + |
| (HiVT.isVector() ? HiVT.getVectorNumElements() : 1) <= |
| N.getValueType().getVectorNumElements() && |
| "More vector elements requested than available!"); |
| auto IdxTy = getVectorIdxTy(DAG.getDataLayout()); |
| SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, LoVT, N, |
| DAG.getConstant(0, DL, IdxTy)); |
| SDValue Hi = DAG.getNode( |
| HiVT.isVector() ? ISD::EXTRACT_SUBVECTOR : ISD::EXTRACT_VECTOR_ELT, DL, |
| HiVT, N, DAG.getConstant(LoVT.getVectorNumElements(), DL, IdxTy)); |
| return std::make_pair(Lo, Hi); |
| } |
| |
| SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, |
| SelectionDAG &DAG) const { |
| LoadSDNode *Load = cast<LoadSDNode>(Op); |
| EVT VT = Op.getValueType(); |
| |
| |
| // If this is a 2 element vector, we really want to scalarize and not create |
| // weird 1 element vectors. |
| if (VT.getVectorNumElements() == 2) |
| return scalarizeVectorLoad(Load, DAG); |
| |
| SDValue BasePtr = Load->getBasePtr(); |
| EVT MemVT = Load->getMemoryVT(); |
| SDLoc SL(Op); |
| |
| const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); |
| |
| EVT LoVT, HiVT; |
| EVT LoMemVT, HiMemVT; |
| SDValue Lo, Hi; |
| |
| std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); |
| std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); |
| std::tie(Lo, Hi) = splitVector(Op, SL, LoVT, HiVT, DAG); |
| |
| unsigned Size = LoMemVT.getStoreSize(); |
| unsigned BaseAlign = Load->getAlignment(); |
| unsigned HiAlign = MinAlign(BaseAlign, Size); |
| |
| SDValue LoLoad = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, |
| Load->getChain(), BasePtr, SrcValue, LoMemVT, |
| BaseAlign, Load->getMemOperand()->getFlags()); |
| SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, Size); |
| SDValue HiLoad = |
| DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, Load->getChain(), |
| HiPtr, SrcValue.getWithOffset(LoMemVT.getStoreSize()), |
| HiMemVT, HiAlign, Load->getMemOperand()->getFlags()); |
| |
| auto IdxTy = getVectorIdxTy(DAG.getDataLayout()); |
| SDValue Join; |
| if (LoVT == HiVT) { |
| // This is the case that the vector is power of two so was evenly split. |
| Join = DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad); |
| } else { |
| Join = DAG.getNode(ISD::INSERT_SUBVECTOR, SL, VT, DAG.getUNDEF(VT), LoLoad, |
| DAG.getConstant(0, SL, IdxTy)); |
| Join = DAG.getNode(HiVT.isVector() ? ISD::INSERT_SUBVECTOR |
| : ISD::INSERT_VECTOR_ELT, |
| SL, VT, Join, HiLoad, |
| DAG.getConstant(LoVT.getVectorNumElements(), SL, IdxTy)); |
| } |
| |
| SDValue Ops[] = {Join, DAG.getNode(ISD::TokenFactor, SL, MVT::Other, |
| LoLoad.getValue(1), HiLoad.getValue(1))}; |
| |
| return DAG.getMergeValues(Ops, SL); |
| } |
| |
| // Widen a vector load from vec3 to vec4. |
| SDValue AMDGPUTargetLowering::WidenVectorLoad(SDValue Op, |
| SelectionDAG &DAG) const { |
| LoadSDNode *Load = cast<LoadSDNode>(Op); |
| EVT VT = Op.getValueType(); |
| assert(VT.getVectorNumElements() == 3); |
| SDValue BasePtr = Load->getBasePtr(); |
| EVT MemVT = Load->getMemoryVT(); |
| SDLoc SL(Op); |
| const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); |
| unsigned BaseAlign = Load->getAlignment(); |
| |
| EVT WideVT = |
| EVT::getVectorVT(*DAG.getContext(), VT.getVectorElementType(), 4); |
| EVT WideMemVT = |
| EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(), 4); |
| SDValue WideLoad = DAG.getExtLoad( |
| Load->getExtensionType(), SL, WideVT, Load->getChain(), BasePtr, SrcValue, |
| WideMemVT, BaseAlign, Load->getMemOperand()->getFlags()); |
| return DAG.getMergeValues( |
| {DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, VT, WideLoad, |
| DAG.getConstant(0, SL, getVectorIdxTy(DAG.getDataLayout()))), |
| WideLoad.getValue(1)}, |
| SL); |
| } |
| |
| SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, |
| SelectionDAG &DAG) const { |
| StoreSDNode *Store = cast<StoreSDNode>(Op); |
| SDValue Val = Store->getValue(); |
| EVT VT = Val.getValueType(); |
| |
| // If this is a 2 element vector, we really want to scalarize and not create |
| // weird 1 element vectors. |
| if (VT.getVectorNumElements() == 2) |
| return scalarizeVectorStore(Store, DAG); |
| |
| EVT MemVT = Store->getMemoryVT(); |
| SDValue Chain = Store->getChain(); |
| SDValue BasePtr = Store->getBasePtr(); |
| SDLoc SL(Op); |
| |
| EVT LoVT, HiVT; |
| EVT LoMemVT, HiMemVT; |
| SDValue Lo, Hi; |
| |
| std::tie(LoVT, HiVT) = getSplitDestVTs(VT, DAG); |
| std::tie(LoMemVT, HiMemVT) = getSplitDestVTs(MemVT, DAG); |
| std::tie(Lo, Hi) = splitVector(Val, SL, LoVT, HiVT, DAG); |
| |
| SDValue HiPtr = DAG.getObjectPtrOffset(SL, BasePtr, LoMemVT.getStoreSize()); |
| |
| const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); |
| unsigned BaseAlign = Store->getAlignment(); |
| unsigned Size = LoMemVT.getStoreSize(); |
| unsigned HiAlign = MinAlign(BaseAlign, Size); |
| |
| SDValue LoStore = |
| DAG.getTruncStore(Chain, SL, Lo, BasePtr, SrcValue, LoMemVT, BaseAlign, |
| Store->getMemOperand()->getFlags()); |
| SDValue HiStore = |
| DAG.getTruncStore(Chain, SL, Hi, HiPtr, SrcValue.getWithOffset(Size), |
| HiMemVT, HiAlign, Store->getMemOperand()->getFlags()); |
| |
| return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); |
| } |
| |
| // This is a shortcut for integer division because we have fast i32<->f32 |
| // conversions, and fast f32 reciprocal instructions. The fractional part of a |
| // float is enough to accurately represent up to a 24-bit signed integer. |
| SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, |
| bool Sign) const { |
| SDLoc DL(Op); |
| EVT VT = Op.getValueType(); |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| MVT IntVT = MVT::i32; |
| MVT FltVT = MVT::f32; |
| |
| unsigned LHSSignBits = DAG.ComputeNumSignBits(LHS); |
| if (LHSSignBits < 9) |
| return SDValue(); |
| |
| unsigned RHSSignBits = DAG.ComputeNumSignBits(RHS); |
| if (RHSSignBits < 9) |
| return SDValue(); |
| |
| unsigned BitSize = VT.getSizeInBits(); |
| unsigned SignBits = std::min(LHSSignBits, RHSSignBits); |
| unsigned DivBits = BitSize - SignBits; |
| if (Sign) |
| ++DivBits; |
| |
| ISD::NodeType ToFp = Sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; |
| ISD::NodeType ToInt = Sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; |
| |
| SDValue jq = DAG.getConstant(1, DL, IntVT); |
| |
| if (Sign) { |
| // char|short jq = ia ^ ib; |
| jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); |
| |
| // jq = jq >> (bitsize - 2) |
| jq = DAG.getNode(ISD::SRA, DL, VT, jq, |
| DAG.getConstant(BitSize - 2, DL, VT)); |
| |
| // jq = jq | 0x1 |
| jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); |
| } |
| |
| // int ia = (int)LHS; |
| SDValue ia = LHS; |
| |
| // int ib, (int)RHS; |
| SDValue ib = RHS; |
| |
| // float fa = (float)ia; |
| SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); |
| |
| // float fb = (float)ib; |
| SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); |
| |
| SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, |
| fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); |
| |
| // fq = trunc(fq); |
| fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); |
| |
| // float fqneg = -fq; |
| SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); |
| |
| // float fr = mad(fqneg, fb, fa); |
| unsigned OpCode = Subtarget->hasFP32Denormals() ? |
| (unsigned)AMDGPUISD::FMAD_FTZ : |
| (unsigned)ISD::FMAD; |
| SDValue fr = DAG.getNode(OpCode, DL, FltVT, fqneg, fb, fa); |
| |
| // int iq = (int)fq; |
| SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); |
| |
| // fr = fabs(fr); |
| fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); |
| |
| // fb = fabs(fb); |
| fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); |
| |
| EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); |
| |
| // int cv = fr >= fb; |
| SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); |
| |
| // jq = (cv ? jq : 0); |
| jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); |
| |
| // dst = iq + jq; |
| SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); |
| |
| // Rem needs compensation, it's easier to recompute it |
| SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); |
| Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); |
| |
| // Truncate to number of bits this divide really is. |
| if (Sign) { |
| SDValue InRegSize |
| = DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), DivBits)); |
| Div = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Div, InRegSize); |
| Rem = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, VT, Rem, InRegSize); |
| } else { |
| SDValue TruncMask = DAG.getConstant((UINT64_C(1) << DivBits) - 1, DL, VT); |
| Div = DAG.getNode(ISD::AND, DL, VT, Div, TruncMask); |
| Rem = DAG.getNode(ISD::AND, DL, VT, Rem, TruncMask); |
| } |
| |
| return DAG.getMergeValues({ Div, Rem }, DL); |
| } |
| |
| void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, |
| SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &Results) const { |
| SDLoc DL(Op); |
| EVT VT = Op.getValueType(); |
| |
| assert(VT == MVT::i64 && "LowerUDIVREM64 expects an i64"); |
| |
| EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); |
| |
| SDValue One = DAG.getConstant(1, DL, HalfVT); |
| SDValue Zero = DAG.getConstant(0, DL, HalfVT); |
| |
| //HiLo split |
| SDValue LHS = Op.getOperand(0); |
| SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); |
| SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, One); |
| |
| SDValue RHS = Op.getOperand(1); |
| SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); |
| SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, One); |
| |
| if (DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && |
| DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { |
| |
| SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), |
| LHS_Lo, RHS_Lo); |
| |
| SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(0), Zero}); |
| SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {Res.getValue(1), Zero}); |
| |
| Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV)); |
| Results.push_back(DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM)); |
| return; |
| } |
| |
| if (isTypeLegal(MVT::i64)) { |
| // Compute denominator reciprocal. |
| unsigned FMAD = Subtarget->hasFP32Denormals() ? |
| (unsigned)AMDGPUISD::FMAD_FTZ : |
| (unsigned)ISD::FMAD; |
| |
| SDValue Cvt_Lo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Lo); |
| SDValue Cvt_Hi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, RHS_Hi); |
| SDValue Mad1 = DAG.getNode(FMAD, DL, MVT::f32, Cvt_Hi, |
| DAG.getConstantFP(APInt(32, 0x4f800000).bitsToFloat(), DL, MVT::f32), |
| Cvt_Lo); |
| SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, DL, MVT::f32, Mad1); |
| SDValue Mul1 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Rcp, |
| DAG.getConstantFP(APInt(32, 0x5f7ffffc).bitsToFloat(), DL, MVT::f32)); |
| SDValue Mul2 = DAG.getNode(ISD::FMUL, DL, MVT::f32, Mul1, |
| DAG.getConstantFP(APInt(32, 0x2f800000).bitsToFloat(), DL, MVT::f32)); |
| SDValue Trunc = DAG.getNode(ISD::FTRUNC, DL, MVT::f32, Mul2); |
| SDValue Mad2 = DAG.getNode(FMAD, DL, MVT::f32, Trunc, |
| DAG.getConstantFP(APInt(32, 0xcf800000).bitsToFloat(), DL, MVT::f32), |
| Mul1); |
| SDValue Rcp_Lo = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Mad2); |
| SDValue Rcp_Hi = DAG.getNode(ISD::FP_TO_UINT, DL, HalfVT, Trunc); |
| SDValue Rcp64 = DAG.getBitcast(VT, |
| DAG.getBuildVector(MVT::v2i32, DL, {Rcp_Lo, Rcp_Hi})); |
| |
| SDValue Zero64 = DAG.getConstant(0, DL, VT); |
| SDValue One64 = DAG.getConstant(1, DL, VT); |
| SDValue Zero1 = DAG.getConstant(0, DL, MVT::i1); |
| SDVTList HalfCarryVT = DAG.getVTList(HalfVT, MVT::i1); |
| |
| SDValue Neg_RHS = DAG.getNode(ISD::SUB, DL, VT, Zero64, RHS); |
| SDValue Mullo1 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Rcp64); |
| SDValue Mulhi1 = DAG.getNode(ISD::MULHU, DL, VT, Rcp64, Mullo1); |
| SDValue Mulhi1_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, |
| Zero); |
| SDValue Mulhi1_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi1, |
| One); |
| |
| SDValue Add1_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Lo, |
| Mulhi1_Lo, Zero1); |
| SDValue Add1_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Rcp_Hi, |
| Mulhi1_Hi, Add1_Lo.getValue(1)); |
| SDValue Add1_HiNc = DAG.getNode(ISD::ADD, DL, HalfVT, Rcp_Hi, Mulhi1_Hi); |
| SDValue Add1 = DAG.getBitcast(VT, |
| DAG.getBuildVector(MVT::v2i32, DL, {Add1_Lo, Add1_Hi})); |
| |
| SDValue Mullo2 = DAG.getNode(ISD::MUL, DL, VT, Neg_RHS, Add1); |
| SDValue Mulhi2 = DAG.getNode(ISD::MULHU, DL, VT, Add1, Mullo2); |
| SDValue Mulhi2_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, |
| Zero); |
| SDValue Mulhi2_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mulhi2, |
| One); |
| |
| SDValue Add2_Lo = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_Lo, |
| Mulhi2_Lo, Zero1); |
| SDValue Add2_HiC = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add1_HiNc, |
| Mulhi2_Hi, Add1_Lo.getValue(1)); |
| SDValue Add2_Hi = DAG.getNode(ISD::ADDCARRY, DL, HalfCarryVT, Add2_HiC, |
| Zero, Add2_Lo.getValue(1)); |
| SDValue Add2 = DAG.getBitcast(VT, |
| DAG.getBuildVector(MVT::v2i32, DL, {Add2_Lo, Add2_Hi})); |
| SDValue Mulhi3 = DAG.getNode(ISD::MULHU, DL, VT, LHS, Add2); |
| |
| SDValue Mul3 = DAG.getNode(ISD::MUL, DL, VT, RHS, Mulhi3); |
| |
| SDValue Mul3_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, Zero); |
| SDValue Mul3_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, Mul3, One); |
| SDValue Sub1_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Lo, |
| Mul3_Lo, Zero1); |
| SDValue Sub1_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, LHS_Hi, |
| Mul3_Hi, Sub1_Lo.getValue(1)); |
| SDValue Sub1_Mi = DAG.getNode(ISD::SUB, DL, HalfVT, LHS_Hi, Mul3_Hi); |
| SDValue Sub1 = DAG.getBitcast(VT, |
| DAG.getBuildVector(MVT::v2i32, DL, {Sub1_Lo, Sub1_Hi})); |
| |
| SDValue MinusOne = DAG.getConstant(0xffffffffu, DL, HalfVT); |
| SDValue C1 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, MinusOne, Zero, |
| ISD::SETUGE); |
| SDValue C2 = DAG.getSelectCC(DL, Sub1_Lo, RHS_Lo, MinusOne, Zero, |
| ISD::SETUGE); |
| SDValue C3 = DAG.getSelectCC(DL, Sub1_Hi, RHS_Hi, C2, C1, ISD::SETEQ); |
| |
| // TODO: Here and below portions of the code can be enclosed into if/endif. |
| // Currently control flow is unconditional and we have 4 selects after |
| // potential endif to substitute PHIs. |
| |
| // if C3 != 0 ... |
| SDValue Sub2_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Lo, |
| RHS_Lo, Zero1); |
| SDValue Sub2_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub1_Mi, |
| RHS_Hi, Sub1_Lo.getValue(1)); |
| SDValue Sub2_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, |
| Zero, Sub2_Lo.getValue(1)); |
| SDValue Sub2 = DAG.getBitcast(VT, |
| DAG.getBuildVector(MVT::v2i32, DL, {Sub2_Lo, Sub2_Hi})); |
| |
| SDValue Add3 = DAG.getNode(ISD::ADD, DL, VT, Mulhi3, One64); |
| |
| SDValue C4 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, MinusOne, Zero, |
| ISD::SETUGE); |
| SDValue C5 = DAG.getSelectCC(DL, Sub2_Lo, RHS_Lo, MinusOne, Zero, |
| ISD::SETUGE); |
| SDValue C6 = DAG.getSelectCC(DL, Sub2_Hi, RHS_Hi, C5, C4, ISD::SETEQ); |
| |
| // if (C6 != 0) |
| SDValue Add4 = DAG.getNode(ISD::ADD, DL, VT, Add3, One64); |
| |
| SDValue Sub3_Lo = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Lo, |
| RHS_Lo, Zero1); |
| SDValue Sub3_Mi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub2_Mi, |
| RHS_Hi, Sub2_Lo.getValue(1)); |
| SDValue Sub3_Hi = DAG.getNode(ISD::SUBCARRY, DL, HalfCarryVT, Sub3_Mi, |
| Zero, Sub3_Lo.getValue(1)); |
| SDValue Sub3 = DAG.getBitcast(VT, |
| DAG.getBuildVector(MVT::v2i32, DL, {Sub3_Lo, Sub3_Hi})); |
| |
| // endif C6 |
| // endif C3 |
| |
| SDValue Sel1 = DAG.getSelectCC(DL, C6, Zero, Add4, Add3, ISD::SETNE); |
| SDValue Div = DAG.getSelectCC(DL, C3, Zero, Sel1, Mulhi3, ISD::SETNE); |
| |
| SDValue Sel2 = DAG.getSelectCC(DL, C6, Zero, Sub3, Sub2, ISD::SETNE); |
| SDValue Rem = DAG.getSelectCC(DL, C3, Zero, Sel2, Sub1, ISD::SETNE); |
| |
| Results.push_back(Div); |
| Results.push_back(Rem); |
| |
| return; |
| } |
| |
| // r600 expandion. |
| // Get Speculative values |
| SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); |
| SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); |
| |
| SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, Zero, REM_Part, LHS_Hi, ISD::SETEQ); |
| SDValue REM = DAG.getBuildVector(MVT::v2i32, DL, {REM_Lo, Zero}); |
| REM = DAG.getNode(ISD::BITCAST, DL, MVT::i64, REM); |
| |
| SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, Zero, DIV_Part, Zero, ISD::SETEQ); |
| SDValue DIV_Lo = Zero; |
| |
| const unsigned halfBitWidth = HalfVT.getSizeInBits(); |
| |
| for (unsigned i = 0; i < halfBitWidth; ++i) { |
| const unsigned bitPos = halfBitWidth - i - 1; |
| SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); |
| // Get value of high bit |
| SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); |
| HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, One); |
| HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); |
| |
| // Shift |
| REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); |
| // Add LHS high bit |
| REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); |
| |
| SDValue BIT = DAG.getConstant(1ULL << bitPos, DL, HalfVT); |
| SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, Zero, ISD::SETUGE); |
| |
| DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); |
| |
| // Update REM |
| SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); |
| REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); |
| } |
| |
| SDValue DIV = DAG.getBuildVector(MVT::v2i32, DL, {DIV_Lo, DIV_Hi}); |
| DIV = DAG.getNode(ISD::BITCAST, DL, MVT::i64, DIV); |
| Results.push_back(DIV); |
| Results.push_back(REM); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| EVT VT = Op.getValueType(); |
| |
| if (VT == MVT::i64) { |
| SmallVector<SDValue, 2> Results; |
| LowerUDIVREM64(Op, DAG, Results); |
| return DAG.getMergeValues(Results, DL); |
| } |
| |
| if (VT == MVT::i32) { |
| if (SDValue Res = LowerDIVREM24(Op, DAG, false)) |
| return Res; |
| } |
| |
| SDValue Num = Op.getOperand(0); |
| SDValue Den = Op.getOperand(1); |
| |
| // RCP = URECIP(Den) = 2^32 / Den + e |
| // e is rounding error. |
| SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); |
| |
| // RCP_LO = mul(RCP, Den) */ |
| SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); |
| |
| // RCP_HI = mulhu (RCP, Den) */ |
| SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); |
| |
| // NEG_RCP_LO = -RCP_LO |
| SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), |
| RCP_LO); |
| |
| // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) |
| SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), |
| NEG_RCP_LO, RCP_LO, |
| ISD::SETEQ); |
| // Calculate the rounding error from the URECIP instruction |
| // E = mulhu(ABS_RCP_LO, RCP) |
| SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); |
| |
| // RCP_A_E = RCP + E |
| SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); |
| |
| // RCP_S_E = RCP - E |
| SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); |
| |
| // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) |
| SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), |
| RCP_A_E, RCP_S_E, |
| ISD::SETEQ); |
| // Quotient = mulhu(Tmp0, Num) |
| SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); |
| |
| // Num_S_Remainder = Quotient * Den |
| SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); |
| |
| // Remainder = Num - Num_S_Remainder |
| SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); |
| |
| // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) |
| SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, |
| DAG.getConstant(-1, DL, VT), |
| DAG.getConstant(0, DL, VT), |
| ISD::SETUGE); |
| // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) |
| SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, |
| Num_S_Remainder, |
| DAG.getConstant(-1, DL, VT), |
| DAG.getConstant(0, DL, VT), |
| ISD::SETUGE); |
| // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero |
| SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, |
| Remainder_GE_Zero); |
| |
| // Calculate Division result: |
| |
| // Quotient_A_One = Quotient + 1 |
| SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, |
| DAG.getConstant(1, DL, VT)); |
| |
| // Quotient_S_One = Quotient - 1 |
| SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, |
| DAG.getConstant(1, DL, VT)); |
| |
| // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) |
| SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), |
| Quotient, Quotient_A_One, ISD::SETEQ); |
| |
| // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) |
| Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), |
| Quotient_S_One, Div, ISD::SETEQ); |
| |
| // Calculate Rem result: |
| |
| // Remainder_S_Den = Remainder - Den |
| SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); |
| |
| // Remainder_A_Den = Remainder + Den |
| SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); |
| |
| // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) |
| SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), |
| Remainder, Remainder_S_Den, ISD::SETEQ); |
| |
| // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) |
| Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), |
| Remainder_A_Den, Rem, ISD::SETEQ); |
| SDValue Ops[2] = { |
| Div, |
| Rem |
| }; |
| return DAG.getMergeValues(Ops, DL); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| EVT VT = Op.getValueType(); |
| |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| |
| SDValue Zero = DAG.getConstant(0, DL, VT); |
| SDValue NegOne = DAG.getConstant(-1, DL, VT); |
| |
| if (VT == MVT::i32) { |
| if (SDValue Res = LowerDIVREM24(Op, DAG, true)) |
| return Res; |
| } |
| |
| if (VT == MVT::i64 && |
| DAG.ComputeNumSignBits(LHS) > 32 && |
| DAG.ComputeNumSignBits(RHS) > 32) { |
| EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); |
| |
| //HiLo split |
| SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); |
| SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); |
| SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), |
| LHS_Lo, RHS_Lo); |
| SDValue Res[2] = { |
| DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), |
| DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) |
| }; |
| return DAG.getMergeValues(Res, DL); |
| } |
| |
| SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); |
| SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); |
| SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); |
| SDValue RSign = LHSign; // Remainder sign is the same as LHS |
| |
| LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); |
| RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); |
| |
| LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); |
| RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); |
| |
| SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); |
| SDValue Rem = Div.getValue(1); |
| |
| Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); |
| Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); |
| |
| Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); |
| Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); |
| |
| SDValue Res[2] = { |
| Div, |
| Rem |
| }; |
| return DAG.getMergeValues(Res, DL); |
| } |
| |
| // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) |
| SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| EVT VT = Op.getValueType(); |
| SDValue X = Op.getOperand(0); |
| SDValue Y = Op.getOperand(1); |
| |
| // TODO: Should this propagate fast-math-flags? |
| |
| SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); |
| SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); |
| SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); |
| |
| return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue Src = Op.getOperand(0); |
| |
| // result = trunc(src) |
| // if (src > 0.0 && src != result) |
| // result += 1.0 |
| |
| SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); |
| |
| const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); |
| const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); |
| |
| EVT SetCCVT = |
| getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); |
| |
| SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); |
| SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); |
| SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); |
| |
| SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); |
| // TODO: Should this propagate fast-math-flags? |
| return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); |
| } |
| |
| static SDValue extractF64Exponent(SDValue Hi, const SDLoc &SL, |
| SelectionDAG &DAG) { |
| const unsigned FractBits = 52; |
| const unsigned ExpBits = 11; |
| |
| SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, |
| Hi, |
| DAG.getConstant(FractBits - 32, SL, MVT::i32), |
| DAG.getConstant(ExpBits, SL, MVT::i32)); |
| SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, |
| DAG.getConstant(1023, SL, MVT::i32)); |
| |
| return Exp; |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue Src = Op.getOperand(0); |
| |
| assert(Op.getValueType() == MVT::f64); |
| |
| const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); |
| const SDValue One = DAG.getConstant(1, SL, MVT::i32); |
| |
| SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); |
| |
| // Extract the upper half, since this is where we will find the sign and |
| // exponent. |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); |
| |
| SDValue Exp = extractF64Exponent(Hi, SL, DAG); |
| |
| const unsigned FractBits = 52; |
| |
| // Extract the sign bit. |
| const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); |
| SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); |
| |
| // Extend back to 64-bits. |
| SDValue SignBit64 = DAG.getBuildVector(MVT::v2i32, SL, {Zero, SignBit}); |
| SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); |
| |
| SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); |
| const SDValue FractMask |
| = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); |
| |
| SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); |
| SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); |
| SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); |
| |
| EVT SetCCVT = |
| getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); |
| |
| const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); |
| |
| SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); |
| SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); |
| |
| SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); |
| SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); |
| |
| return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue Src = Op.getOperand(0); |
| |
| assert(Op.getValueType() == MVT::f64); |
| |
| APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52"); |
| SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); |
| SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); |
| |
| // TODO: Should this propagate fast-math-flags? |
| |
| SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); |
| SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); |
| |
| SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); |
| |
| APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51"); |
| SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); |
| |
| EVT SetCCVT = |
| getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); |
| SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); |
| |
| return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { |
| // FNEARBYINT and FRINT are the same, except in their handling of FP |
| // exceptions. Those aren't really meaningful for us, and OpenCL only has |
| // rint, so just treat them as equivalent. |
| return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); |
| } |
| |
| // XXX - May require not supporting f32 denormals? |
| |
| // Don't handle v2f16. The extra instructions to scalarize and repack around the |
| // compare and vselect end up producing worse code than scalarizing the whole |
| // operation. |
| SDValue AMDGPUTargetLowering::LowerFROUND32_16(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue X = Op.getOperand(0); |
| EVT VT = Op.getValueType(); |
| |
| SDValue T = DAG.getNode(ISD::FTRUNC, SL, VT, X); |
| |
| // TODO: Should this propagate fast-math-flags? |
| |
| SDValue Diff = DAG.getNode(ISD::FSUB, SL, VT, X, T); |
| |
| SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, VT, Diff); |
| |
| const SDValue Zero = DAG.getConstantFP(0.0, SL, VT); |
| const SDValue One = DAG.getConstantFP(1.0, SL, VT); |
| const SDValue Half = DAG.getConstantFP(0.5, SL, VT); |
| |
| SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, VT, One, X); |
| |
| EVT SetCCVT = |
| getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); |
| |
| SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); |
| |
| SDValue Sel = DAG.getNode(ISD::SELECT, SL, VT, Cmp, SignOne, Zero); |
| |
| return DAG.getNode(ISD::FADD, SL, VT, T, Sel); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue X = Op.getOperand(0); |
| |
| SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); |
| |
| const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); |
| const SDValue One = DAG.getConstant(1, SL, MVT::i32); |
| const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); |
| const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); |
| EVT SetCCVT = |
| getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); |
| |
| SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); |
| |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); |
| |
| SDValue Exp = extractF64Exponent(Hi, SL, DAG); |
| |
| const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, |
| MVT::i64); |
| |
| SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); |
| SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, |
| DAG.getConstant(INT64_C(0x0008000000000000), SL, |
| MVT::i64), |
| Exp); |
| |
| SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); |
| SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, |
| DAG.getConstant(0, SL, MVT::i64), Tmp0, |
| ISD::SETNE); |
| |
| SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, |
| D, DAG.getConstant(0, SL, MVT::i64)); |
| SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); |
| |
| K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); |
| K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); |
| |
| SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); |
| SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); |
| SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); |
| |
| SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, |
| ExpEqNegOne, |
| DAG.getConstantFP(1.0, SL, MVT::f64), |
| DAG.getConstantFP(0.0, SL, MVT::f64)); |
| |
| SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); |
| |
| K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); |
| K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); |
| |
| return K; |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| |
| if (VT == MVT::f32 || VT == MVT::f16) |
| return LowerFROUND32_16(Op, DAG); |
| |
| if (VT == MVT::f64) |
| return LowerFROUND64(Op, DAG); |
| |
| llvm_unreachable("unhandled type"); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue Src = Op.getOperand(0); |
| |
| // result = trunc(src); |
| // if (src < 0.0 && src != result) |
| // result += -1.0. |
| |
| SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); |
| |
| const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); |
| const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); |
| |
| EVT SetCCVT = |
| getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); |
| |
| SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); |
| SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); |
| SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); |
| |
| SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); |
| // TODO: Should this propagate fast-math-flags? |
| return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerFLOG(SDValue Op, SelectionDAG &DAG, |
| double Log2BaseInverted) const { |
| EVT VT = Op.getValueType(); |
| |
| SDLoc SL(Op); |
| SDValue Operand = Op.getOperand(0); |
| SDValue Log2Operand = DAG.getNode(ISD::FLOG2, SL, VT, Operand); |
| SDValue Log2BaseInvertedOperand = DAG.getConstantFP(Log2BaseInverted, SL, VT); |
| |
| return DAG.getNode(ISD::FMUL, SL, VT, Log2Operand, Log2BaseInvertedOperand); |
| } |
| |
| // exp2(M_LOG2E_F * f); |
| SDValue AMDGPUTargetLowering::lowerFEXP(SDValue Op, SelectionDAG &DAG) const { |
| EVT VT = Op.getValueType(); |
| SDLoc SL(Op); |
| SDValue Src = Op.getOperand(0); |
| |
| const SDValue K = DAG.getConstantFP(numbers::log2e, SL, VT); |
| SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Src, K, Op->getFlags()); |
| return DAG.getNode(ISD::FEXP2, SL, VT, Mul, Op->getFlags()); |
| } |
| |
| static bool isCtlzOpc(unsigned Opc) { |
| return Opc == ISD::CTLZ || Opc == ISD::CTLZ_ZERO_UNDEF; |
| } |
| |
| static bool isCttzOpc(unsigned Opc) { |
| return Opc == ISD::CTTZ || Opc == ISD::CTTZ_ZERO_UNDEF; |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerCTLZ_CTTZ(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc SL(Op); |
| SDValue Src = Op.getOperand(0); |
| bool ZeroUndef = Op.getOpcode() == ISD::CTTZ_ZERO_UNDEF || |
| Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF; |
| |
| unsigned ISDOpc, NewOpc; |
| if (isCtlzOpc(Op.getOpcode())) { |
| ISDOpc = ISD::CTLZ_ZERO_UNDEF; |
| NewOpc = AMDGPUISD::FFBH_U32; |
| } else if (isCttzOpc(Op.getOpcode())) { |
| ISDOpc = ISD::CTTZ_ZERO_UNDEF; |
| NewOpc = AMDGPUISD::FFBL_B32; |
| } else |
| llvm_unreachable("Unexpected OPCode!!!"); |
| |
| |
| if (ZeroUndef && Src.getValueType() == MVT::i32) |
| return DAG.getNode(NewOpc, SL, MVT::i32, Src); |
| |
| SDValue Vec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); |
| |
| const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); |
| const SDValue One = DAG.getConstant(1, SL, MVT::i32); |
| |
| SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, Zero); |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Vec, One); |
| |
| EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), |
| *DAG.getContext(), MVT::i32); |
| |
| SDValue HiOrLo = isCtlzOpc(Op.getOpcode()) ? Hi : Lo; |
| SDValue Hi0orLo0 = DAG.getSetCC(SL, SetCCVT, HiOrLo, Zero, ISD::SETEQ); |
| |
| SDValue OprLo = DAG.getNode(ISDOpc, SL, MVT::i32, Lo); |
| SDValue OprHi = DAG.getNode(ISDOpc, SL, MVT::i32, Hi); |
| |
| const SDValue Bits32 = DAG.getConstant(32, SL, MVT::i32); |
| SDValue Add, NewOpr; |
| if (isCtlzOpc(Op.getOpcode())) { |
| Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprLo, Bits32); |
| // ctlz(x) = hi_32(x) == 0 ? ctlz(lo_32(x)) + 32 : ctlz(hi_32(x)) |
| NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprHi); |
| } else { |
| Add = DAG.getNode(ISD::ADD, SL, MVT::i32, OprHi, Bits32); |
| // cttz(x) = lo_32(x) == 0 ? cttz(hi_32(x)) + 32 : cttz(lo_32(x)) |
| NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, Hi0orLo0, Add, OprLo); |
| } |
| |
| if (!ZeroUndef) { |
| // Test if the full 64-bit input is zero. |
| |
| // FIXME: DAG combines turn what should be an s_and_b64 into a v_or_b32, |
| // which we probably don't want. |
| SDValue LoOrHi = isCtlzOpc(Op.getOpcode()) ? Lo : Hi; |
| SDValue Lo0OrHi0 = DAG.getSetCC(SL, SetCCVT, LoOrHi, Zero, ISD::SETEQ); |
| SDValue SrcIsZero = DAG.getNode(ISD::AND, SL, SetCCVT, Lo0OrHi0, Hi0orLo0); |
| |
| // TODO: If i64 setcc is half rate, it can result in 1 fewer instruction |
| // with the same cycles, otherwise it is slower. |
| // SDValue SrcIsZero = DAG.getSetCC(SL, SetCCVT, Src, |
| // DAG.getConstant(0, SL, MVT::i64), ISD::SETEQ); |
| |
| const SDValue Bits32 = DAG.getConstant(64, SL, MVT::i32); |
| |
| // The instruction returns -1 for 0 input, but the defined intrinsic |
| // behavior is to return the number of bits. |
| NewOpr = DAG.getNode(ISD::SELECT, SL, MVT::i32, |
| SrcIsZero, Bits32, NewOpr); |
| } |
| |
| return DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i64, NewOpr); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerINT_TO_FP32(SDValue Op, SelectionDAG &DAG, |
| bool Signed) const { |
| // Unsigned |
| // cul2f(ulong u) |
| //{ |
| // uint lz = clz(u); |
| // uint e = (u != 0) ? 127U + 63U - lz : 0; |
| // u = (u << lz) & 0x7fffffffffffffffUL; |
| // ulong t = u & 0xffffffffffUL; |
| // uint v = (e << 23) | (uint)(u >> 40); |
| // uint r = t > 0x8000000000UL ? 1U : (t == 0x8000000000UL ? v & 1U : 0U); |
| // return as_float(v + r); |
| //} |
| // Signed |
| // cl2f(long l) |
| //{ |
| // long s = l >> 63; |
| // float r = cul2f((l + s) ^ s); |
| // return s ? -r : r; |
| //} |
| |
| SDLoc SL(Op); |
| SDValue Src = Op.getOperand(0); |
| SDValue L = Src; |
| |
| SDValue S; |
| if (Signed) { |
| const SDValue SignBit = DAG.getConstant(63, SL, MVT::i64); |
| S = DAG.getNode(ISD::SRA, SL, MVT::i64, L, SignBit); |
| |
| SDValue LPlusS = DAG.getNode(ISD::ADD, SL, MVT::i64, L, S); |
| L = DAG.getNode(ISD::XOR, SL, MVT::i64, LPlusS, S); |
| } |
| |
| EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), |
| *DAG.getContext(), MVT::f32); |
| |
| |
| SDValue ZeroI32 = DAG.getConstant(0, SL, MVT::i32); |
| SDValue ZeroI64 = DAG.getConstant(0, SL, MVT::i64); |
| SDValue LZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, SL, MVT::i64, L); |
| LZ = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LZ); |
| |
| SDValue K = DAG.getConstant(127U + 63U, SL, MVT::i32); |
| SDValue E = DAG.getSelect(SL, MVT::i32, |
| DAG.getSetCC(SL, SetCCVT, L, ZeroI64, ISD::SETNE), |
| DAG.getNode(ISD::SUB, SL, MVT::i32, K, LZ), |
| ZeroI32); |
| |
| SDValue U = DAG.getNode(ISD::AND, SL, MVT::i64, |
| DAG.getNode(ISD::SHL, SL, MVT::i64, L, LZ), |
| DAG.getConstant((-1ULL) >> 1, SL, MVT::i64)); |
| |
| SDValue T = DAG.getNode(ISD::AND, SL, MVT::i64, U, |
| DAG.getConstant(0xffffffffffULL, SL, MVT::i64)); |
| |
| SDValue UShl = DAG.getNode(ISD::SRL, SL, MVT::i64, |
| U, DAG.getConstant(40, SL, MVT::i64)); |
| |
| SDValue V = DAG.getNode(ISD::OR, SL, MVT::i32, |
| DAG.getNode(ISD::SHL, SL, MVT::i32, E, DAG.getConstant(23, SL, MVT::i32)), |
| DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, UShl)); |
| |
| SDValue C = DAG.getConstant(0x8000000000ULL, SL, MVT::i64); |
| SDValue RCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETUGT); |
| SDValue TCmp = DAG.getSetCC(SL, SetCCVT, T, C, ISD::SETEQ); |
| |
| SDValue One = DAG.getConstant(1, SL, MVT::i32); |
| |
| SDValue VTrunc1 = DAG.getNode(ISD::AND, SL, MVT::i32, V, One); |
| |
| SDValue R = DAG.getSelect(SL, MVT::i32, |
| RCmp, |
| One, |
| DAG.getSelect(SL, MVT::i32, TCmp, VTrunc1, ZeroI32)); |
| R = DAG.getNode(ISD::ADD, SL, MVT::i32, V, R); |
| R = DAG.getNode(ISD::BITCAST, SL, MVT::f32, R); |
| |
| if (!Signed) |
| return R; |
| |
| SDValue RNeg = DAG.getNode(ISD::FNEG, SL, MVT::f32, R); |
| return DAG.getSelect(SL, MVT::f32, DAG.getSExtOrTrunc(S, SL, SetCCVT), RNeg, R); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, |
| bool Signed) const { |
| SDLoc SL(Op); |
| SDValue Src = Op.getOperand(0); |
| |
| SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); |
| |
| SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, |
| DAG.getConstant(0, SL, MVT::i32)); |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, |
| DAG.getConstant(1, SL, MVT::i32)); |
| |
| SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, |
| SL, MVT::f64, Hi); |
| |
| SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); |
| |
| SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, |
| DAG.getConstant(32, SL, MVT::i32)); |
| // TODO: Should this propagate fast-math-flags? |
| return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Op.getOperand(0).getValueType() == MVT::i64 && |
| "operation should be legal"); |
| |
| // TODO: Factor out code common with LowerSINT_TO_FP. |
| |
| EVT DestVT = Op.getValueType(); |
| if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { |
| SDLoc DL(Op); |
| SDValue Src = Op.getOperand(0); |
| |
| SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); |
| SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); |
| SDValue FPRound = |
| DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); |
| |
| return FPRound; |
| } |
| |
| if (DestVT == MVT::f32) |
| return LowerINT_TO_FP32(Op, DAG, false); |
| |
| assert(DestVT == MVT::f64); |
| return LowerINT_TO_FP64(Op, DAG, false); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, |
| SelectionDAG &DAG) const { |
| assert(Op.getOperand(0).getValueType() == MVT::i64 && |
| "operation should be legal"); |
| |
| // TODO: Factor out code common with LowerUINT_TO_FP. |
| |
| EVT DestVT = Op.getValueType(); |
| if (Subtarget->has16BitInsts() && DestVT == MVT::f16) { |
| SDLoc DL(Op); |
| SDValue Src = Op.getOperand(0); |
| |
| SDValue IntToFp32 = DAG.getNode(Op.getOpcode(), DL, MVT::f32, Src); |
| SDValue FPRoundFlag = DAG.getIntPtrConstant(0, SDLoc(Op)); |
| SDValue FPRound = |
| DAG.getNode(ISD::FP_ROUND, DL, MVT::f16, IntToFp32, FPRoundFlag); |
| |
| return FPRound; |
| } |
| |
| if (DestVT == MVT::f32) |
| return LowerINT_TO_FP32(Op, DAG, true); |
| |
| assert(DestVT == MVT::f64); |
| return LowerINT_TO_FP64(Op, DAG, true); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, |
| bool Signed) const { |
| SDLoc SL(Op); |
| |
| SDValue Src = Op.getOperand(0); |
| |
| SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); |
| |
| SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, |
| MVT::f64); |
| SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, |
| MVT::f64); |
| // TODO: Should this propagate fast-math-flags? |
| SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); |
| |
| SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); |
| |
| |
| SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); |
| |
| SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, |
| MVT::i32, FloorMul); |
| SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); |
| |
| SDValue Result = DAG.getBuildVector(MVT::v2i32, SL, {Lo, Hi}); |
| |
| return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerFP_TO_FP16(SDValue Op, SelectionDAG &DAG) const { |
| SDLoc DL(Op); |
| SDValue N0 = Op.getOperand(0); |
| |
| // Convert to target node to get known bits |
| if (N0.getValueType() == MVT::f32) |
| return DAG.getNode(AMDGPUISD::FP_TO_FP16, DL, Op.getValueType(), N0); |
| |
| if (getTargetMachine().Options.UnsafeFPMath) { |
| // There is a generic expand for FP_TO_FP16 with unsafe fast math. |
| return SDValue(); |
| } |
| |
| assert(N0.getSimpleValueType() == MVT::f64); |
| |
| // f64 -> f16 conversion using round-to-nearest-even rounding mode. |
| const unsigned ExpMask = 0x7ff; |
| const unsigned ExpBiasf64 = 1023; |
| const unsigned ExpBiasf16 = 15; |
| SDValue Zero = DAG.getConstant(0, DL, MVT::i32); |
| SDValue One = DAG.getConstant(1, DL, MVT::i32); |
| SDValue U = DAG.getNode(ISD::BITCAST, DL, MVT::i64, N0); |
| SDValue UH = DAG.getNode(ISD::SRL, DL, MVT::i64, U, |
| DAG.getConstant(32, DL, MVT::i64)); |
| UH = DAG.getZExtOrTrunc(UH, DL, MVT::i32); |
| U = DAG.getZExtOrTrunc(U, DL, MVT::i32); |
| SDValue E = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, |
| DAG.getConstant(20, DL, MVT::i64)); |
| E = DAG.getNode(ISD::AND, DL, MVT::i32, E, |
| DAG.getConstant(ExpMask, DL, MVT::i32)); |
| // Subtract the fp64 exponent bias (1023) to get the real exponent and |
| // add the f16 bias (15) to get the biased exponent for the f16 format. |
| E = DAG.getNode(ISD::ADD, DL, MVT::i32, E, |
| DAG.getConstant(-ExpBiasf64 + ExpBiasf16, DL, MVT::i32)); |
| |
| SDValue M = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, |
| DAG.getConstant(8, DL, MVT::i32)); |
| M = DAG.getNode(ISD::AND, DL, MVT::i32, M, |
| DAG.getConstant(0xffe, DL, MVT::i32)); |
| |
| SDValue MaskedSig = DAG.getNode(ISD::AND, DL, MVT::i32, UH, |
| DAG.getConstant(0x1ff, DL, MVT::i32)); |
| MaskedSig = DAG.getNode(ISD::OR, DL, MVT::i32, MaskedSig, U); |
| |
| SDValue Lo40Set = DAG.getSelectCC(DL, MaskedSig, Zero, Zero, One, ISD::SETEQ); |
| M = DAG.getNode(ISD::OR, DL, MVT::i32, M, Lo40Set); |
| |
| // (M != 0 ? 0x0200 : 0) | 0x7c00; |
| SDValue I = DAG.getNode(ISD::OR, DL, MVT::i32, |
| DAG.getSelectCC(DL, M, Zero, DAG.getConstant(0x0200, DL, MVT::i32), |
| Zero, ISD::SETNE), DAG.getConstant(0x7c00, DL, MVT::i32)); |
| |
| // N = M | (E << 12); |
| SDValue N = DAG.getNode(ISD::OR, DL, MVT::i32, M, |
| DAG.getNode(ISD::SHL, DL, MVT::i32, E, |
| DAG.getConstant(12, DL, MVT::i32))); |
| |
| // B = clamp(1-E, 0, 13); |
| SDValue OneSubExp = DAG.getNode(ISD::SUB, DL, MVT::i32, |
| One, E); |
| SDValue B = DAG.getNode(ISD::SMAX, DL, MVT::i32, OneSubExp, Zero); |
| B = DAG.getNode(ISD::SMIN, DL, MVT::i32, B, |
| DAG.getConstant(13, DL, MVT::i32)); |
| |
| SDValue SigSetHigh = DAG.getNode(ISD::OR, DL, MVT::i32, M, |
| DAG.getConstant(0x1000, DL, MVT::i32)); |
| |
| SDValue D = DAG.getNode(ISD::SRL, DL, MVT::i32, SigSetHigh, B); |
| SDValue D0 = DAG.getNode(ISD::SHL, DL, MVT::i32, D, B); |
| SDValue D1 = DAG.getSelectCC(DL, D0, SigSetHigh, One, Zero, ISD::SETNE); |
| D = DAG.getNode(ISD::OR, DL, MVT::i32, D, D1); |
| |
| SDValue V = DAG.getSelectCC(DL, E, One, D, N, ISD::SETLT); |
| SDValue VLow3 = DAG.getNode(ISD::AND, DL, MVT::i32, V, |
| DAG.getConstant(0x7, DL, MVT::i32)); |
| V = DAG.getNode(ISD::SRL, DL, MVT::i32, V, |
| DAG.getConstant(2, DL, MVT::i32)); |
| SDValue V0 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(3, DL, MVT::i32), |
| One, Zero, ISD::SETEQ); |
| SDValue V1 = DAG.getSelectCC(DL, VLow3, DAG.getConstant(5, DL, MVT::i32), |
| One, Zero, ISD::SETGT); |
| V1 = DAG.getNode(ISD::OR, DL, MVT::i32, V0, V1); |
| V = DAG.getNode(ISD::ADD, DL, MVT::i32, V, V1); |
| |
| V = DAG.getSelectCC(DL, E, DAG.getConstant(30, DL, MVT::i32), |
| DAG.getConstant(0x7c00, DL, MVT::i32), V, ISD::SETGT); |
| V = DAG.getSelectCC(DL, E, DAG.getConstant(1039, DL, MVT::i32), |
| I, V, ISD::SETEQ); |
| |
| // Extract the sign bit. |
| SDValue Sign = DAG.getNode(ISD::SRL, DL, MVT::i32, UH, |
| DAG.getConstant(16, DL, MVT::i32)); |
| Sign = DAG.getNode(ISD::AND, DL, MVT::i32, Sign, |
| DAG.getConstant(0x8000, DL, MVT::i32)); |
| |
| V = DAG.getNode(ISD::OR, DL, MVT::i32, Sign, V); |
| return DAG.getZExtOrTrunc(V, DL, Op.getValueType()); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Src = Op.getOperand(0); |
| |
| // TODO: Factor out code common with LowerFP_TO_UINT. |
| |
| EVT SrcVT = Src.getValueType(); |
| if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { |
| SDLoc DL(Op); |
| |
| SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); |
| SDValue FpToInt32 = |
| DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); |
| |
| return FpToInt32; |
| } |
| |
| if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) |
| return LowerFP64_TO_INT(Op, DAG, true); |
| |
| return SDValue(); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Src = Op.getOperand(0); |
| |
| // TODO: Factor out code common with LowerFP_TO_SINT. |
| |
| EVT SrcVT = Src.getValueType(); |
| if (Subtarget->has16BitInsts() && SrcVT == MVT::f16) { |
| SDLoc DL(Op); |
| |
| SDValue FPExtend = DAG.getNode(ISD::FP_EXTEND, DL, MVT::f32, Src); |
| SDValue FpToInt32 = |
| DAG.getNode(Op.getOpcode(), DL, MVT::i64, FPExtend); |
| |
| return FpToInt32; |
| } |
| |
| if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) |
| return LowerFP64_TO_INT(Op, DAG, false); |
| |
| return SDValue(); |
| } |
| |
| SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, |
| SelectionDAG &DAG) const { |
| EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); |
| MVT VT = Op.getSimpleValueType(); |
| MVT ScalarVT = VT.getScalarType(); |
| |
| assert(VT.isVector()); |
| |
| SDValue Src = Op.getOperand(0); |
| SDLoc DL(Op); |
| |
| // TODO: Don't scalarize on Evergreen? |
| unsigned NElts = VT.getVectorNumElements(); |
| SmallVector<SDValue, 8> Args; |
| DAG.ExtractVectorElements(Src, Args, 0, NElts); |
| |
| SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); |
| for (unsigned I = 0; I < NElts; ++I) |
| Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); |
| |
| return DAG.getBuildVector(VT, DL, Args); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Custom DAG optimizations |
| //===----------------------------------------------------------------------===// |
| |
| static bool isU24(SDValue Op, SelectionDAG &DAG) { |
| return AMDGPUTargetLowering::numBitsUnsigned(Op, DAG) <= 24; |
| } |
| |
| static bool isI24(SDValue Op, SelectionDAG &DAG) { |
| EVT VT = Op.getValueType(); |
| return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated |
| // as unsigned 24-bit values. |
| AMDGPUTargetLowering::numBitsSigned(Op, DAG) < 24; |
| } |
| |
| static SDValue simplifyI24(SDNode *Node24, |
| TargetLowering::DAGCombinerInfo &DCI) { |
| SelectionDAG &DAG = DCI.DAG; |
| bool IsIntrin = Node24->getOpcode() == ISD::INTRINSIC_WO_CHAIN; |
| |
| SDValue LHS = IsIntrin ? Node24->getOperand(1) : Node24->getOperand(0); |
| SDValue RHS = IsIntrin ? Node24->getOperand(2) : Node24->getOperand(1); |
| unsigned NewOpcode = Node24->getOpcode(); |
| if (IsIntrin) { |
| unsigned IID = cast<ConstantSDNode>(Node24->getOperand(0))->getZExtValue(); |
| NewOpcode = IID == Intrinsic::amdgcn_mul_i24 ? |
| AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; |
| } |
| |
| APInt Demanded = APInt::getLowBitsSet(LHS.getValueSizeInBits(), 24); |
| |
| // First try to simplify using GetDemandedBits which allows the operands to |
| // have other uses, but will only perform simplifications that involve |
| // bypassing some nodes for this user. |
| SDValue DemandedLHS = DAG.GetDemandedBits(LHS, Demanded); |
| SDValue DemandedRHS = DAG.GetDemandedBits(RHS, Demanded); |
| if (DemandedLHS || DemandedRHS) |
| return DAG.getNode(NewOpcode, SDLoc(Node24), Node24->getVTList(), |
| DemandedLHS ? DemandedLHS : LHS, |
| DemandedRHS ? DemandedRHS : RHS); |
| |
| // Now try SimplifyDemandedBits which can simplify the nodes used by our |
| // operands if this node is the only user. |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (TLI.SimplifyDemandedBits(LHS, Demanded, DCI)) |
| return SDValue(Node24, 0); |
| if (TLI.SimplifyDemandedBits(RHS, Demanded, DCI)) |
| return SDValue(Node24, 0); |
| |
| return SDValue(); |
| } |
| |
| template <typename IntTy> |
| static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, uint32_t Offset, |
| uint32_t Width, const SDLoc &DL) { |
| if (Width + Offset < 32) { |
| uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); |
| IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); |
| return DAG.getConstant(Result, DL, MVT::i32); |
| } |
| |
| return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); |
| } |
| |
| static bool hasVolatileUser(SDNode *Val) { |
| for (SDNode *U : Val->uses()) { |
| if (MemSDNode *M = dyn_cast<MemSDNode>(U)) { |
| if (M->isVolatile()) |
| return true; |
| } |
| } |
| |
| return false; |
| } |
| |
| bool AMDGPUTargetLowering::shouldCombineMemoryType(EVT VT) const { |
| // i32 vectors are the canonical memory type. |
| if (VT.getScalarType() == MVT::i32 || isTypeLegal(VT)) |
| return false; |
| |
| if (!VT.isByteSized()) |
| return false; |
| |
| unsigned Size = VT.getStoreSize(); |
| |
| if ((Size == 1 || Size == 2 || Size == 4) && !VT.isVector()) |
| return false; |
| |
| if (Size == 3 || (Size > 4 && (Size % 4 != 0))) |
| return false; |
| |
| return true; |
| } |
| |
| // Replace load of an illegal type with a store of a bitcast to a friendlier |
| // type. |
| SDValue AMDGPUTargetLowering::performLoadCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| if (!DCI.isBeforeLegalize()) |
| return SDValue(); |
| |
| LoadSDNode *LN = cast<LoadSDNode>(N); |
| if (LN->isVolatile() || !ISD::isNormalLoad(LN) || hasVolatileUser(LN)) |
| return SDValue(); |
| |
| SDLoc SL(N); |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = LN->getMemoryVT(); |
| |
| unsigned Size = VT.getStoreSize(); |
| unsigned Align = LN->getAlignment(); |
| if (Align < Size && isTypeLegal(VT)) { |
| bool IsFast; |
| unsigned AS = LN->getAddressSpace(); |
| |
| // Expand unaligned loads earlier than legalization. Due to visitation order |
| // problems during legalization, the emitted instructions to pack and unpack |
| // the bytes again are not eliminated in the case of an unaligned copy. |
| if (!allowsMisalignedMemoryAccesses( |
| VT, AS, Align, LN->getMemOperand()->getFlags(), &IsFast)) { |
| if (VT.isVector()) |
| return scalarizeVectorLoad(LN, DAG); |
| |
| SDValue Ops[2]; |
| std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(LN, DAG); |
| return DAG.getMergeValues(Ops, SDLoc(N)); |
| } |
| |
| if (!IsFast) |
| return SDValue(); |
| } |
| |
| if (!shouldCombineMemoryType(VT)) |
| return SDValue(); |
| |
| EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); |
| |
| SDValue NewLoad |
| = DAG.getLoad(NewVT, SL, LN->getChain(), |
| LN->getBasePtr(), LN->getMemOperand()); |
| |
| SDValue BC = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad); |
| DCI.CombineTo(N, BC, NewLoad.getValue(1)); |
| return SDValue(N, 0); |
| } |
| |
| // Replace store of an illegal type with a store of a bitcast to a friendlier |
| // type. |
| SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| if (!DCI.isBeforeLegalize()) |
| return SDValue(); |
| |
| StoreSDNode *SN = cast<StoreSDNode>(N); |
| if (SN->isVolatile() || !ISD::isNormalStore(SN)) |
| return SDValue(); |
| |
| EVT VT = SN->getMemoryVT(); |
| unsigned Size = VT.getStoreSize(); |
| |
| SDLoc SL(N); |
| SelectionDAG &DAG = DCI.DAG; |
| unsigned Align = SN->getAlignment(); |
| if (Align < Size && isTypeLegal(VT)) { |
| bool IsFast; |
| unsigned AS = SN->getAddressSpace(); |
| |
| // Expand unaligned stores earlier than legalization. Due to visitation |
| // order problems during legalization, the emitted instructions to pack and |
| // unpack the bytes again are not eliminated in the case of an unaligned |
| // copy. |
| if (!allowsMisalignedMemoryAccesses( |
| VT, AS, Align, SN->getMemOperand()->getFlags(), &IsFast)) { |
| if (VT.isVector()) |
| return scalarizeVectorStore(SN, DAG); |
| |
| return expandUnalignedStore(SN, DAG); |
| } |
| |
| if (!IsFast) |
| return SDValue(); |
| } |
| |
| if (!shouldCombineMemoryType(VT)) |
| return SDValue(); |
| |
| EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT); |
| SDValue Val = SN->getValue(); |
| |
| //DCI.AddToWorklist(Val.getNode()); |
| |
| bool OtherUses = !Val.hasOneUse(); |
| SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, NewVT, Val); |
| if (OtherUses) { |
| SDValue CastBack = DAG.getNode(ISD::BITCAST, SL, VT, CastVal); |
| DAG.ReplaceAllUsesOfValueWith(Val, CastBack); |
| } |
| |
| return DAG.getStore(SN->getChain(), SL, CastVal, |
| SN->getBasePtr(), SN->getMemOperand()); |
| } |
| |
| // FIXME: This should go in generic DAG combiner with an isTruncateFree check, |
| // but isTruncateFree is inaccurate for i16 now because of SALU vs. VALU |
| // issues. |
| SDValue AMDGPUTargetLowering::performAssertSZExtCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue N0 = N->getOperand(0); |
| |
| // (vt2 (assertzext (truncate vt0:x), vt1)) -> |
| // (vt2 (truncate (assertzext vt0:x, vt1))) |
| if (N0.getOpcode() == ISD::TRUNCATE) { |
| SDValue N1 = N->getOperand(1); |
| EVT ExtVT = cast<VTSDNode>(N1)->getVT(); |
| SDLoc SL(N); |
| |
| SDValue Src = N0.getOperand(0); |
| EVT SrcVT = Src.getValueType(); |
| if (SrcVT.bitsGE(ExtVT)) { |
| SDValue NewInReg = DAG.getNode(N->getOpcode(), SL, SrcVT, Src, N1); |
| return DAG.getNode(ISD::TRUNCATE, SL, N->getValueType(0), NewInReg); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue AMDGPUTargetLowering::performIntrinsicWOChainCombine( |
| SDNode *N, DAGCombinerInfo &DCI) const { |
| unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); |
| switch (IID) { |
| case Intrinsic::amdgcn_mul_i24: |
| case Intrinsic::amdgcn_mul_u24: |
| return simplifyI24(N, DCI); |
| default: |
| return SDValue(); |
| } |
| } |
| |
| /// Split the 64-bit value \p LHS into two 32-bit components, and perform the |
| /// binary operation \p Opc to it with the corresponding constant operands. |
| SDValue AMDGPUTargetLowering::splitBinaryBitConstantOpImpl( |
| DAGCombinerInfo &DCI, const SDLoc &SL, |
| unsigned Opc, SDValue LHS, |
| uint32_t ValLo, uint32_t ValHi) const { |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue Lo, Hi; |
| std::tie(Lo, Hi) = split64BitValue(LHS, DAG); |
| |
| SDValue LoRHS = DAG.getConstant(ValLo, SL, MVT::i32); |
| SDValue HiRHS = DAG.getConstant(ValHi, SL, MVT::i32); |
| |
| SDValue LoAnd = DAG.getNode(Opc, SL, MVT::i32, Lo, LoRHS); |
| SDValue HiAnd = DAG.getNode(Opc, SL, MVT::i32, Hi, HiRHS); |
| |
| // Re-visit the ands. It's possible we eliminated one of them and it could |
| // simplify the vector. |
| DCI.AddToWorklist(Lo.getNode()); |
| DCI.AddToWorklist(Hi.getNode()); |
| |
| SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {LoAnd, HiAnd}); |
| return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); |
| } |
| |
| SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| EVT VT = N->getValueType(0); |
| |
| ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!RHS) |
| return SDValue(); |
| |
| SDValue LHS = N->getOperand(0); |
| unsigned RHSVal = RHS->getZExtValue(); |
| if (!RHSVal) |
| return LHS; |
| |
| SDLoc SL(N); |
| SelectionDAG &DAG = DCI.DAG; |
| |
| switch (LHS->getOpcode()) { |
| default: |
| break; |
| case ISD::ZERO_EXTEND: |
| case ISD::SIGN_EXTEND: |
| case ISD::ANY_EXTEND: { |
| SDValue X = LHS->getOperand(0); |
| |
| if (VT == MVT::i32 && RHSVal == 16 && X.getValueType() == MVT::i16 && |
| isOperationLegal(ISD::BUILD_VECTOR, MVT::v2i16)) { |
| // Prefer build_vector as the canonical form if packed types are legal. |
| // (shl ([asz]ext i16:x), 16 -> build_vector 0, x |
| SDValue Vec = DAG.getBuildVector(MVT::v2i16, SL, |
| { DAG.getConstant(0, SL, MVT::i16), LHS->getOperand(0) }); |
| return DAG.getNode(ISD::BITCAST, SL, MVT::i32, Vec); |
| } |
| |
| // shl (ext x) => zext (shl x), if shift does not overflow int |
| if (VT != MVT::i64) |
| break; |
| KnownBits Known = DAG.computeKnownBits(X); |
| unsigned LZ = Known.countMinLeadingZeros(); |
| if (LZ < RHSVal) |
| break; |
| EVT XVT = X.getValueType(); |
| SDValue Shl = DAG.getNode(ISD::SHL, SL, XVT, X, SDValue(RHS, 0)); |
| return DAG.getZExtOrTrunc(Shl, SL, VT); |
| } |
| } |
| |
| if (VT != MVT::i64) |
| return SDValue(); |
| |
| // i64 (shl x, C) -> (build_pair 0, (shl x, C -32)) |
| |
| // On some subtargets, 64-bit shift is a quarter rate instruction. In the |
| // common case, splitting this into a move and a 32-bit shift is faster and |
| // the same code size. |
| if (RHSVal < 32) |
| return SDValue(); |
| |
| SDValue ShiftAmt = DAG.getConstant(RHSVal - 32, SL, MVT::i32); |
| |
| SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); |
| SDValue NewShift = DAG.getNode(ISD::SHL, SL, MVT::i32, Lo, ShiftAmt); |
| |
| const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); |
| |
| SDValue Vec = DAG.getBuildVector(MVT::v2i32, SL, {Zero, NewShift}); |
| return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec); |
| } |
| |
| SDValue AMDGPUTargetLowering::performSraCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| if (N->getValueType(0) != MVT::i64) |
| return SDValue(); |
| |
| const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!RHS) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc SL(N); |
| unsigned RHSVal = RHS->getZExtValue(); |
| |
| // (sra i64:x, 32) -> build_pair x, (sra hi_32(x), 31) |
| if (RHSVal == 32) { |
| SDValue Hi = getHiHalf64(N->getOperand(0), DAG); |
| SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, |
| DAG.getConstant(31, SL, MVT::i32)); |
| |
| SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {Hi, NewShift}); |
| return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); |
| } |
| |
| // (sra i64:x, 63) -> build_pair (sra hi_32(x), 31), (sra hi_32(x), 31) |
| if (RHSVal == 63) { |
| SDValue Hi = getHiHalf64(N->getOperand(0), DAG); |
| SDValue NewShift = DAG.getNode(ISD::SRA, SL, MVT::i32, Hi, |
| DAG.getConstant(31, SL, MVT::i32)); |
| SDValue BuildVec = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, NewShift}); |
| return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildVec); |
| } |
| |
| return SDValue(); |
| } |
| |
| SDValue AMDGPUTargetLowering::performSrlCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| auto *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!RHS) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| SDValue LHS = N->getOperand(0); |
| unsigned ShiftAmt = RHS->getZExtValue(); |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc SL(N); |
| |
| // fold (srl (and x, c1 << c2), c2) -> (and (srl(x, c2), c1) |
| // this improves the ability to match BFE patterns in isel. |
| if (LHS.getOpcode() == ISD::AND) { |
| if (auto *Mask = dyn_cast<ConstantSDNode>(LHS.getOperand(1))) { |
| if (Mask->getAPIntValue().isShiftedMask() && |
| Mask->getAPIntValue().countTrailingZeros() == ShiftAmt) { |
| return DAG.getNode( |
| ISD::AND, SL, VT, |
| DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(0), N->getOperand(1)), |
| DAG.getNode(ISD::SRL, SL, VT, LHS.getOperand(1), N->getOperand(1))); |
| } |
| } |
| } |
| |
| if (VT != MVT::i64) |
| return SDValue(); |
| |
| if (ShiftAmt < 32) |
| return SDValue(); |
| |
| // srl i64:x, C for C >= 32 |
| // => |
| // build_pair (srl hi_32(x), C - 32), 0 |
| SDValue One = DAG.getConstant(1, SL, MVT::i32); |
| SDValue Zero = DAG.getConstant(0, SL, MVT::i32); |
| |
| SDValue VecOp = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, LHS); |
| SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecOp, One); |
| |
| SDValue NewConst = DAG.getConstant(ShiftAmt - 32, SL, MVT::i32); |
| SDValue NewShift = DAG.getNode(ISD::SRL, SL, MVT::i32, Hi, NewConst); |
| |
| SDValue BuildPair = DAG.getBuildVector(MVT::v2i32, SL, {NewShift, Zero}); |
| |
| return DAG.getNode(ISD::BITCAST, SL, MVT::i64, BuildPair); |
| } |
| |
| SDValue AMDGPUTargetLowering::performTruncateCombine( |
| SDNode *N, DAGCombinerInfo &DCI) const { |
| SDLoc SL(N); |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N->getValueType(0); |
| SDValue Src = N->getOperand(0); |
| |
| // vt1 (truncate (bitcast (build_vector vt0:x, ...))) -> vt1 (bitcast vt0:x) |
| if (Src.getOpcode() == ISD::BITCAST && !VT.isVector()) { |
| SDValue Vec = Src.getOperand(0); |
| if (Vec.getOpcode() == ISD::BUILD_VECTOR) { |
| SDValue Elt0 = Vec.getOperand(0); |
| EVT EltVT = Elt0.getValueType(); |
| if (VT.getSizeInBits() <= EltVT.getSizeInBits()) { |
| if (EltVT.isFloatingPoint()) { |
| Elt0 = DAG.getNode(ISD::BITCAST, SL, |
| EltVT.changeTypeToInteger(), Elt0); |
| } |
| |
| return DAG.getNode(ISD::TRUNCATE, SL, VT, Elt0); |
| } |
| } |
| } |
| |
| // Equivalent of above for accessing the high element of a vector as an |
| // integer operation. |
| // trunc (srl (bitcast (build_vector x, y))), 16 -> trunc (bitcast y) |
| if (Src.getOpcode() == ISD::SRL && !VT.isVector()) { |
| if (auto K = isConstOrConstSplat(Src.getOperand(1))) { |
| if (2 * K->getZExtValue() == Src.getValueType().getScalarSizeInBits()) { |
| SDValue BV = stripBitcast(Src.getOperand(0)); |
| if (BV.getOpcode() == ISD::BUILD_VECTOR && |
| BV.getValueType().getVectorNumElements() == 2) { |
| SDValue SrcElt = BV.getOperand(1); |
| EVT SrcEltVT = SrcElt.getValueType(); |
| if (SrcEltVT.isFloatingPoint()) { |
| SrcElt = DAG.getNode(ISD::BITCAST, SL, |
| SrcEltVT.changeTypeToInteger(), SrcElt); |
| } |
| |
| return DAG.getNode(ISD::TRUNCATE, SL, VT, SrcElt); |
| } |
| } |
| } |
| } |
| |
| // Partially shrink 64-bit shifts to 32-bit if reduced to 16-bit. |
| // |
| // i16 (trunc (srl i64:x, K)), K <= 16 -> |
| // i16 (trunc (srl (i32 (trunc x), K))) |
| if (VT.getScalarSizeInBits() < 32) { |
| EVT SrcVT = Src.getValueType(); |
| if (SrcVT.getScalarSizeInBits() > 32 && |
| (Src.getOpcode() == ISD::SRL || |
| Src.getOpcode() == ISD::SRA || |
| Src.getOpcode() == ISD::SHL)) { |
| SDValue Amt = Src.getOperand(1); |
| KnownBits Known = DAG.computeKnownBits(Amt); |
| unsigned Size = VT.getScalarSizeInBits(); |
| if ((Known.isConstant() && Known.getConstant().ule(Size)) || |
| (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size))) { |
| EVT MidVT = VT.isVector() ? |
| EVT::getVectorVT(*DAG.getContext(), MVT::i32, |
| VT.getVectorNumElements()) : MVT::i32; |
| |
| EVT NewShiftVT = getShiftAmountTy(MidVT, DAG.getDataLayout()); |
| SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MidVT, |
| Src.getOperand(0)); |
| DCI.AddToWorklist(Trunc.getNode()); |
| |
| if (Amt.getValueType() != NewShiftVT) { |
| Amt = DAG.getZExtOrTrunc(Amt, SL, NewShiftVT); |
| DCI.AddToWorklist(Amt.getNode()); |
| } |
| |
| SDValue ShrunkShift = DAG.getNode(Src.getOpcode(), SL, MidVT, |
| Trunc, Amt); |
| return DAG.getNode(ISD::TRUNCATE, SL, VT, ShrunkShift); |
| } |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| // We need to specifically handle i64 mul here to avoid unnecessary conversion |
| // instructions. If we only match on the legalized i64 mul expansion, |
| // SimplifyDemandedBits will be unable to remove them because there will be |
| // multiple uses due to the separate mul + mulh[su]. |
| static SDValue getMul24(SelectionDAG &DAG, const SDLoc &SL, |
| SDValue N0, SDValue N1, unsigned Size, bool Signed) { |
| if (Size <= 32) { |
| unsigned MulOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; |
| return DAG.getNode(MulOpc, SL, MVT::i32, N0, N1); |
| } |
| |
| // Because we want to eliminate extension instructions before the |
| // operation, we need to create a single user here (i.e. not the separate |
| // mul_lo + mul_hi) so that SimplifyDemandedBits will deal with it. |
| |
| unsigned MulOpc = Signed ? AMDGPUISD::MUL_LOHI_I24 : AMDGPUISD::MUL_LOHI_U24; |
| |
| SDValue Mul = DAG.getNode(MulOpc, SL, |
| DAG.getVTList(MVT::i32, MVT::i32), N0, N1); |
| |
| return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, |
| Mul.getValue(0), Mul.getValue(1)); |
| } |
| |
| SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| EVT VT = N->getValueType(0); |
| |
| unsigned Size = VT.getSizeInBits(); |
| if (VT.isVector() || Size > 64) |
| return SDValue(); |
| |
| // There are i16 integer mul/mad. |
| if (Subtarget->has16BitInsts() && VT.getScalarType().bitsLE(MVT::i16)) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc DL(N); |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| // SimplifyDemandedBits has the annoying habit of turning useful zero_extends |
| // in the source into any_extends if the result of the mul is truncated. Since |
| // we can assume the high bits are whatever we want, use the underlying value |
| // to avoid the unknown high bits from interfering. |
| if (N0.getOpcode() == ISD::ANY_EXTEND) |
| N0 = N0.getOperand(0); |
| |
| if (N1.getOpcode() == ISD::ANY_EXTEND) |
| N1 = N1.getOperand(0); |
| |
| SDValue Mul; |
| |
| if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { |
| N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); |
| N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); |
| Mul = getMul24(DAG, DL, N0, N1, Size, false); |
| } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { |
| N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); |
| N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); |
| Mul = getMul24(DAG, DL, N0, N1, Size, true); |
| } else { |
| return SDValue(); |
| } |
| |
| // We need to use sext even for MUL_U24, because MUL_U24 is used |
| // for signed multiply of 8 and 16-bit types. |
| return DAG.getSExtOrTrunc(Mul, DL, VT); |
| } |
| |
| SDValue AMDGPUTargetLowering::performMulhsCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| EVT VT = N->getValueType(0); |
| |
| if (!Subtarget->hasMulI24() || VT.isVector()) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc DL(N); |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| if (!isI24(N0, DAG) || !isI24(N1, DAG)) |
| return SDValue(); |
| |
| N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); |
| N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); |
| |
| SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_I24, DL, MVT::i32, N0, N1); |
| DCI.AddToWorklist(Mulhi.getNode()); |
| return DAG.getSExtOrTrunc(Mulhi, DL, VT); |
| } |
| |
| SDValue AMDGPUTargetLowering::performMulhuCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| EVT VT = N->getValueType(0); |
| |
| if (!Subtarget->hasMulU24() || VT.isVector() || VT.getSizeInBits() > 32) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc DL(N); |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| if (!isU24(N0, DAG) || !isU24(N1, DAG)) |
| return SDValue(); |
| |
| N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); |
| N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); |
| |
| SDValue Mulhi = DAG.getNode(AMDGPUISD::MULHI_U24, DL, MVT::i32, N0, N1); |
| DCI.AddToWorklist(Mulhi.getNode()); |
| return DAG.getZExtOrTrunc(Mulhi, DL, VT); |
| } |
| |
| SDValue AMDGPUTargetLowering::performMulLoHi24Combine( |
| SDNode *N, DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| |
| // Simplify demanded bits before splitting into multiple users. |
| if (SDValue V = simplifyI24(N, DCI)) |
| return V; |
| |
| SDValue N0 = N->getOperand(0); |
| SDValue N1 = N->getOperand(1); |
| |
| bool Signed = (N->getOpcode() == AMDGPUISD::MUL_LOHI_I24); |
| |
| unsigned MulLoOpc = Signed ? AMDGPUISD::MUL_I24 : AMDGPUISD::MUL_U24; |
| unsigned MulHiOpc = Signed ? AMDGPUISD::MULHI_I24 : AMDGPUISD::MULHI_U24; |
| |
| SDLoc SL(N); |
| |
| SDValue MulLo = DAG.getNode(MulLoOpc, SL, MVT::i32, N0, N1); |
| SDValue MulHi = DAG.getNode(MulHiOpc, SL, MVT::i32, N0, N1); |
| return DAG.getMergeValues({ MulLo, MulHi }, SL); |
| } |
| |
| static bool isNegativeOne(SDValue Val) { |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val)) |
| return C->isAllOnesValue(); |
| return false; |
| } |
| |
| SDValue AMDGPUTargetLowering::getFFBX_U32(SelectionDAG &DAG, |
| SDValue Op, |
| const SDLoc &DL, |
| unsigned Opc) const { |
| EVT VT = Op.getValueType(); |
| EVT LegalVT = getTypeToTransformTo(*DAG.getContext(), VT); |
| if (LegalVT != MVT::i32 && (Subtarget->has16BitInsts() && |
| LegalVT != MVT::i16)) |
| return SDValue(); |
| |
| if (VT != MVT::i32) |
| Op = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, Op); |
| |
| SDValue FFBX = DAG.getNode(Opc, DL, MVT::i32, Op); |
| if (VT != MVT::i32) |
| FFBX = DAG.getNode(ISD::TRUNCATE, DL, VT, FFBX); |
| |
| return FFBX; |
| } |
| |
| // The native instructions return -1 on 0 input. Optimize out a select that |
| // produces -1 on 0. |
| // |
| // TODO: If zero is not undef, we could also do this if the output is compared |
| // against the bitwidth. |
| // |
| // TODO: Should probably combine against FFBH_U32 instead of ctlz directly. |
| SDValue AMDGPUTargetLowering::performCtlz_CttzCombine(const SDLoc &SL, SDValue Cond, |
| SDValue LHS, SDValue RHS, |
| DAGCombinerInfo &DCI) const { |
| ConstantSDNode *CmpRhs = dyn_cast<ConstantSDNode>(Cond.getOperand(1)); |
| if (!CmpRhs || !CmpRhs->isNullValue()) |
| return SDValue(); |
| |
| SelectionDAG &DAG = DCI.DAG; |
| ISD::CondCode CCOpcode = cast<CondCodeSDNode>(Cond.getOperand(2))->get(); |
| SDValue CmpLHS = Cond.getOperand(0); |
| |
| unsigned Opc = isCttzOpc(RHS.getOpcode()) ? AMDGPUISD::FFBL_B32 : |
| AMDGPUISD::FFBH_U32; |
| |
| // select (setcc x, 0, eq), -1, (ctlz_zero_undef x) -> ffbh_u32 x |
| // select (setcc x, 0, eq), -1, (cttz_zero_undef x) -> ffbl_u32 x |
| if (CCOpcode == ISD::SETEQ && |
| (isCtlzOpc(RHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && |
| RHS.getOperand(0) == CmpLHS && |
| isNegativeOne(LHS)) { |
| return getFFBX_U32(DAG, CmpLHS, SL, Opc); |
| } |
| |
| // select (setcc x, 0, ne), (ctlz_zero_undef x), -1 -> ffbh_u32 x |
| // select (setcc x, 0, ne), (cttz_zero_undef x), -1 -> ffbl_u32 x |
| if (CCOpcode == ISD::SETNE && |
| (isCtlzOpc(LHS.getOpcode()) || isCttzOpc(RHS.getOpcode())) && |
| LHS.getOperand(0) == CmpLHS && |
| isNegativeOne(RHS)) { |
| return getFFBX_U32(DAG, CmpLHS, SL, Opc); |
| } |
| |
| return SDValue(); |
| } |
| |
| static SDValue distributeOpThroughSelect(TargetLowering::DAGCombinerInfo &DCI, |
| unsigned Op, |
| const SDLoc &SL, |
| SDValue Cond, |
| SDValue N1, |
| SDValue N2) { |
| SelectionDAG &DAG = DCI.DAG; |
| EVT VT = N1.getValueType(); |
| |
| SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, Cond, |
| N1.getOperand(0), N2.getOperand(0)); |
| DCI.AddToWorklist(NewSelect.getNode()); |
| return DAG.getNode(Op, SL, VT, NewSelect); |
| } |
| |
| // Pull a free FP operation out of a select so it may fold into uses. |
| // |
| // select c, (fneg x), (fneg y) -> fneg (select c, x, y) |
| // select c, (fneg x), k -> fneg (select c, x, (fneg k)) |
| // |
| // select c, (fabs x), (fabs y) -> fabs (select c, x, y) |
| // select c, (fabs x), +k -> fabs (select c, x, k) |
| static SDValue foldFreeOpFromSelect(TargetLowering::DAGCombinerInfo &DCI, |
| SDValue N) { |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue Cond = N.getOperand(0); |
| SDValue LHS = N.getOperand(1); |
| SDValue RHS = N.getOperand(2); |
| |
| EVT VT = N.getValueType(); |
| if ((LHS.getOpcode() == ISD::FABS && RHS.getOpcode() == ISD::FABS) || |
| (LHS.getOpcode() == ISD::FNEG && RHS.getOpcode() == ISD::FNEG)) { |
| return distributeOpThroughSelect(DCI, LHS.getOpcode(), |
| SDLoc(N), Cond, LHS, RHS); |
| } |
| |
| bool Inv = false; |
| if (RHS.getOpcode() == ISD::FABS || RHS.getOpcode() == ISD::FNEG) { |
| std::swap(LHS, RHS); |
| Inv = true; |
| } |
| |
| // TODO: Support vector constants. |
| ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); |
| if ((LHS.getOpcode() == ISD::FNEG || LHS.getOpcode() == ISD::FABS) && CRHS) { |
| SDLoc SL(N); |
| // If one side is an fneg/fabs and the other is a constant, we can push the |
| // fneg/fabs down. If it's an fabs, the constant needs to be non-negative. |
| SDValue NewLHS = LHS.getOperand(0); |
| SDValue NewRHS = RHS; |
| |
| // Careful: if the neg can be folded up, don't try to pull it back down. |
| bool ShouldFoldNeg = true; |
| |
| if (NewLHS.hasOneUse()) { |
| unsigned Opc = NewLHS.getOpcode(); |
| if (LHS.getOpcode() == ISD::FNEG && fnegFoldsIntoOp(Opc)) |
| ShouldFoldNeg = false; |
| if (LHS.getOpcode() == ISD::FABS && Opc == ISD::FMUL) |
| ShouldFoldNeg = false; |
| } |
| |
| if (ShouldFoldNeg) { |
| if (LHS.getOpcode() == ISD::FNEG) |
| NewRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); |
| else if (CRHS->isNegative()) |
| return SDValue(); |
| |
| if (Inv) |
| std::swap(NewLHS, NewRHS); |
| |
| SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, VT, |
| Cond, NewLHS, NewRHS); |
| DCI.AddToWorklist(NewSelect.getNode()); |
| return DAG.getNode(LHS.getOpcode(), SL, VT, NewSelect); |
| } |
| } |
| |
| return SDValue(); |
| } |
| |
| |
| SDValue AMDGPUTargetLowering::performSelectCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| if (SDValue Folded = foldFreeOpFromSelect(DCI, SDValue(N, 0))) |
| return Folded; |
| |
| SDValue Cond = N->getOperand(0); |
| if (Cond.getOpcode() != ISD::SETCC) |
| return SDValue(); |
| |
| EVT VT = N->getValueType(0); |
| SDValue LHS = Cond.getOperand(0); |
| SDValue RHS = Cond.getOperand(1); |
| SDValue CC = Cond.getOperand(2); |
| |
| SDValue True = N->getOperand(1); |
| SDValue False = N->getOperand(2); |
| |
| if (Cond.hasOneUse()) { // TODO: Look for multiple select uses. |
| SelectionDAG &DAG = DCI.DAG; |
| if (DAG.isConstantValueOfAnyType(True) && |
| !DAG.isConstantValueOfAnyType(False)) { |
| // Swap cmp + select pair to move constant to false input. |
| // This will allow using VOPC cndmasks more often. |
| // select (setcc x, y), k, x -> select (setccinv x, y), x, k |
| |
| SDLoc SL(N); |
| ISD::CondCode NewCC = getSetCCInverse(cast<CondCodeSDNode>(CC)->get(), |
| LHS.getValueType().isInteger()); |
| |
| SDValue NewCond = DAG.getSetCC(SL, Cond.getValueType(), LHS, RHS, NewCC); |
| return DAG.getNode(ISD::SELECT, SL, VT, NewCond, False, True); |
| } |
| |
| if (VT == MVT::f32 && Subtarget->hasFminFmaxLegacy()) { |
| SDValue MinMax |
| = combineFMinMaxLegacy(SDLoc(N), VT, LHS, RHS, True, False, CC, DCI); |
| // Revisit this node so we can catch min3/max3/med3 patterns. |
| //DCI.AddToWorklist(MinMax.getNode()); |
| return MinMax; |
| } |
| } |
| |
| // There's no reason to not do this if the condition has other uses. |
| return performCtlz_CttzCombine(SDLoc(N), Cond, True, False, DCI); |
| } |
| |
| static bool isInv2Pi(const APFloat &APF) { |
| static const APFloat KF16(APFloat::IEEEhalf(), APInt(16, 0x3118)); |
| static const APFloat KF32(APFloat::IEEEsingle(), APInt(32, 0x3e22f983)); |
| static const APFloat KF64(APFloat::IEEEdouble(), APInt(64, 0x3fc45f306dc9c882)); |
| |
| return APF.bitwiseIsEqual(KF16) || |
| APF.bitwiseIsEqual(KF32) || |
| APF.bitwiseIsEqual(KF64); |
| } |
| |
| // 0 and 1.0 / (0.5 * pi) do not have inline immmediates, so there is an |
| // additional cost to negate them. |
| bool AMDGPUTargetLowering::isConstantCostlierToNegate(SDValue N) const { |
| if (const ConstantFPSDNode *C = isConstOrConstSplatFP(N)) { |
| if (C->isZero() && !C->isNegative()) |
| return true; |
| |
| if (Subtarget->hasInv2PiInlineImm() && isInv2Pi(C->getValueAPF())) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static unsigned inverseMinMax(unsigned Opc) { |
| switch (Opc) { |
| case ISD::FMAXNUM: |
| return ISD::FMINNUM; |
| case ISD::FMINNUM: |
| return ISD::FMAXNUM; |
| case ISD::FMAXNUM_IEEE: |
| return ISD::FMINNUM_IEEE; |
| case ISD::FMINNUM_IEEE: |
| return ISD::FMAXNUM_IEEE; |
| case AMDGPUISD::FMAX_LEGACY: |
| return AMDGPUISD::FMIN_LEGACY; |
| case AMDGPUISD::FMIN_LEGACY: |
| return AMDGPUISD::FMAX_LEGACY; |
| default: |
| llvm_unreachable("invalid min/max opcode"); |
| } |
| } |
| |
| SDValue AMDGPUTargetLowering::performFNegCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue N0 = N->getOperand(0); |
| EVT VT = N->getValueType(0); |
| |
| unsigned Opc = N0.getOpcode(); |
| |
| // If the input has multiple uses and we can either fold the negate down, or |
| // the other uses cannot, give up. This both prevents unprofitable |
| // transformations and infinite loops: we won't repeatedly try to fold around |
| // a negate that has no 'good' form. |
| if (N0.hasOneUse()) { |
| // This may be able to fold into the source, but at a code size cost. Don't |
| // fold if the fold into the user is free. |
| if (allUsesHaveSourceMods(N, 0)) |
| return SDValue(); |
| } else { |
| if (fnegFoldsIntoOp(Opc) && |
| (allUsesHaveSourceMods(N) || !allUsesHaveSourceMods(N0.getNode()))) |
| return SDValue(); |
| } |
| |
| SDLoc SL(N); |
| switch (Opc) { |
| case ISD::FADD: { |
| if (!mayIgnoreSignedZero(N0)) |
| return SDValue(); |
| |
| // (fneg (fadd x, y)) -> (fadd (fneg x), (fneg y)) |
| SDValue LHS = N0.getOperand(0); |
| SDValue RHS = N0.getOperand(1); |
| |
| if (LHS.getOpcode() != ISD::FNEG) |
| LHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); |
| else |
| LHS = LHS.getOperand(0); |
| |
| if (RHS.getOpcode() != ISD::FNEG) |
| RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); |
| else |
| RHS = RHS.getOperand(0); |
| |
| SDValue Res = DAG.getNode(ISD::FADD, SL, VT, LHS, RHS, N0->getFlags()); |
| if (Res.getOpcode() != ISD::FADD) |
| return SDValue(); // Op got folded away. |
| if (!N0.hasOneUse()) |
| DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); |
| return Res; |
| } |
| case ISD::FMUL: |
| case AMDGPUISD::FMUL_LEGACY: { |
| // (fneg (fmul x, y)) -> (fmul x, (fneg y)) |
| // (fneg (fmul_legacy x, y)) -> (fmul_legacy x, (fneg y)) |
| SDValue LHS = N0.getOperand(0); |
| SDValue RHS = N0.getOperand(1); |
| |
| if (LHS.getOpcode() == ISD::FNEG) |
| LHS = LHS.getOperand(0); |
| else if (RHS.getOpcode() == ISD::FNEG) |
| RHS = RHS.getOperand(0); |
| else |
| RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); |
| |
| SDValue Res = DAG.getNode(Opc, SL, VT, LHS, RHS, N0->getFlags()); |
| if (Res.getOpcode() != Opc) |
| return SDValue(); // Op got folded away. |
| if (!N0.hasOneUse()) |
| DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); |
| return Res; |
| } |
| case ISD::FMA: |
| case ISD::FMAD: { |
| if (!mayIgnoreSignedZero(N0)) |
| return SDValue(); |
| |
| // (fneg (fma x, y, z)) -> (fma x, (fneg y), (fneg z)) |
| SDValue LHS = N0.getOperand(0); |
| SDValue MHS = N0.getOperand(1); |
| SDValue RHS = N0.getOperand(2); |
| |
| if (LHS.getOpcode() == ISD::FNEG) |
| LHS = LHS.getOperand(0); |
| else if (MHS.getOpcode() == ISD::FNEG) |
| MHS = MHS.getOperand(0); |
| else |
| MHS = DAG.getNode(ISD::FNEG, SL, VT, MHS); |
| |
| if (RHS.getOpcode() != ISD::FNEG) |
| RHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); |
| else |
| RHS = RHS.getOperand(0); |
| |
| SDValue Res = DAG.getNode(Opc, SL, VT, LHS, MHS, RHS); |
| if (Res.getOpcode() != Opc) |
| return SDValue(); // Op got folded away. |
| if (!N0.hasOneUse()) |
| DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); |
| return Res; |
| } |
| case ISD::FMAXNUM: |
| case ISD::FMINNUM: |
| case ISD::FMAXNUM_IEEE: |
| case ISD::FMINNUM_IEEE: |
| case AMDGPUISD::FMAX_LEGACY: |
| case AMDGPUISD::FMIN_LEGACY: { |
| // fneg (fmaxnum x, y) -> fminnum (fneg x), (fneg y) |
| // fneg (fminnum x, y) -> fmaxnum (fneg x), (fneg y) |
| // fneg (fmax_legacy x, y) -> fmin_legacy (fneg x), (fneg y) |
| // fneg (fmin_legacy x, y) -> fmax_legacy (fneg x), (fneg y) |
| |
| SDValue LHS = N0.getOperand(0); |
| SDValue RHS = N0.getOperand(1); |
| |
| // 0 doesn't have a negated inline immediate. |
| // TODO: This constant check should be generalized to other operations. |
| if (isConstantCostlierToNegate(RHS)) |
| return SDValue(); |
| |
| SDValue NegLHS = DAG.getNode(ISD::FNEG, SL, VT, LHS); |
| SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS); |
| unsigned Opposite = inverseMinMax(Opc); |
| |
| SDValue Res = DAG.getNode(Opposite, SL, VT, NegLHS, NegRHS, N0->getFlags()); |
| if (Res.getOpcode() != Opposite) |
| return SDValue(); // Op got folded away. |
| if (!N0.hasOneUse()) |
| DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); |
| return Res; |
| } |
| case AMDGPUISD::FMED3: { |
| SDValue Ops[3]; |
| for (unsigned I = 0; I < 3; ++I) |
| Ops[I] = DAG.getNode(ISD::FNEG, SL, VT, N0->getOperand(I), N0->getFlags()); |
| |
| SDValue Res = DAG.getNode(AMDGPUISD::FMED3, SL, VT, Ops, N0->getFlags()); |
| if (Res.getOpcode() != AMDGPUISD::FMED3) |
| return SDValue(); // Op got folded away. |
| if (!N0.hasOneUse()) |
| DAG.ReplaceAllUsesWith(N0, DAG.getNode(ISD::FNEG, SL, VT, Res)); |
| return Res; |
| } |
| case ISD::FP_EXTEND: |
| case ISD::FTRUNC: |
| case ISD::FRINT: |
| case ISD::FNEARBYINT: // XXX - Should fround be handled? |
| case ISD::FSIN: |
| case ISD::FCANONICALIZE: |
| case AMDGPUISD::RCP: |
| case AMDGPUISD::RCP_LEGACY: |
| case AMDGPUISD::RCP_IFLAG: |
| case AMDGPUISD::SIN_HW: { |
| SDValue CvtSrc = N0.getOperand(0); |
| if (CvtSrc.getOpcode() == ISD::FNEG) { |
| // (fneg (fp_extend (fneg x))) -> (fp_extend x) |
| // (fneg (rcp (fneg x))) -> (rcp x) |
| return DAG.getNode(Opc, SL, VT, CvtSrc.getOperand(0)); |
| } |
| |
| if (!N0.hasOneUse()) |
| return SDValue(); |
| |
| // (fneg (fp_extend x)) -> (fp_extend (fneg x)) |
| // (fneg (rcp x)) -> (rcp (fneg x)) |
| SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); |
| return DAG.getNode(Opc, SL, VT, Neg, N0->getFlags()); |
| } |
| case ISD::FP_ROUND: { |
| SDValue CvtSrc = N0.getOperand(0); |
| |
| if (CvtSrc.getOpcode() == ISD::FNEG) { |
| // (fneg (fp_round (fneg x))) -> (fp_round x) |
| return DAG.getNode(ISD::FP_ROUND, SL, VT, |
| CvtSrc.getOperand(0), N0.getOperand(1)); |
| } |
| |
| if (!N0.hasOneUse()) |
| return SDValue(); |
| |
| // (fneg (fp_round x)) -> (fp_round (fneg x)) |
| SDValue Neg = DAG.getNode(ISD::FNEG, SL, CvtSrc.getValueType(), CvtSrc); |
| return DAG.getNode(ISD::FP_ROUND, SL, VT, Neg, N0.getOperand(1)); |
| } |
| case ISD::FP16_TO_FP: { |
| // v_cvt_f32_f16 supports source modifiers on pre-VI targets without legal |
| // f16, but legalization of f16 fneg ends up pulling it out of the source. |
| // Put the fneg back as a legal source operation that can be matched later. |
| SDLoc SL(N); |
| |
| SDValue Src = N0.getOperand(0); |
| EVT SrcVT = Src.getValueType(); |
| |
| // fneg (fp16_to_fp x) -> fp16_to_fp (xor x, 0x8000) |
| SDValue IntFNeg = DAG.getNode(ISD::XOR, SL, SrcVT, Src, |
| DAG.getConstant(0x8000, SL, SrcVT)); |
| return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFNeg); |
| } |
| default: |
| return SDValue(); |
| } |
| } |
| |
| SDValue AMDGPUTargetLowering::performFAbsCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| SDValue N0 = N->getOperand(0); |
| |
| if (!N0.hasOneUse()) |
| return SDValue(); |
| |
| switch (N0.getOpcode()) { |
| case ISD::FP16_TO_FP: { |
| assert(!Subtarget->has16BitInsts() && "should only see if f16 is illegal"); |
| SDLoc SL(N); |
| SDValue Src = N0.getOperand(0); |
| EVT SrcVT = Src.getValueType(); |
| |
| // fabs (fp16_to_fp x) -> fp16_to_fp (and x, 0x7fff) |
| SDValue IntFAbs = DAG.getNode(ISD::AND, SL, SrcVT, Src, |
| DAG.getConstant(0x7fff, SL, SrcVT)); |
| return DAG.getNode(ISD::FP16_TO_FP, SL, N->getValueType(0), IntFAbs); |
| } |
| default: |
| return SDValue(); |
| } |
| } |
| |
| SDValue AMDGPUTargetLowering::performRcpCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| const auto *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)); |
| if (!CFP) |
| return SDValue(); |
| |
| // XXX - Should this flush denormals? |
| const APFloat &Val = CFP->getValueAPF(); |
| APFloat One(Val.getSemantics(), "1.0"); |
| return DCI.DAG.getConstantFP(One / Val, SDLoc(N), N->getValueType(0)); |
| } |
| |
| SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, |
| DAGCombinerInfo &DCI) const { |
| SelectionDAG &DAG = DCI.DAG; |
| SDLoc DL(N); |
| |
| switch(N->getOpcode()) { |
| default: |
| break; |
| case ISD::BITCAST: { |
| EVT DestVT = N->getValueType(0); |
| |
| // Push casts through vector builds. This helps avoid emitting a large |
| // number of copies when materializing floating point vector constants. |
| // |
| // vNt1 bitcast (vNt0 (build_vector t0:x, t0:y)) => |
| // vnt1 = build_vector (t1 (bitcast t0:x)), (t1 (bitcast t0:y)) |
| if (DestVT.isVector()) { |
| SDValue Src = N->getOperand(0); |
| if (Src.getOpcode() == ISD::BUILD_VECTOR) { |
| EVT SrcVT = Src.getValueType(); |
| unsigned NElts = DestVT.getVectorNumElements(); |
| |
| if (SrcVT.getVectorNumElements() == NElts) { |
| EVT DestEltVT = DestVT.getVectorElementType(); |
| |
| SmallVector<SDValue, 8> CastedElts; |
| SDLoc SL(N); |
| for (unsigned I = 0, E = SrcVT.getVectorNumElements(); I != E; ++I) { |
| SDValue Elt = Src.getOperand(I); |
| CastedElts.push_back(DAG.getNode(ISD::BITCAST, DL, DestEltVT, Elt)); |
| } |
| |
| return DAG.getBuildVector(DestVT, SL, CastedElts); |
| } |
| } |
| } |
| |
| if (DestVT.getSizeInBits() != 64 && !DestVT.isVector()) |
| break; |
| |
| // Fold bitcasts of constants. |
| // |
| // v2i32 (bitcast i64:k) -> build_vector lo_32(k), hi_32(k) |
| // TODO: Generalize and move to DAGCombiner |
| SDValue Src = N->getOperand(0); |
| if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Src)) { |
| if (Src.getValueType() == MVT::i64) { |
| SDLoc SL(N); |
| uint64_t CVal = C->getZExtValue(); |
| SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, |
| DAG.getConstant(Lo_32(CVal), SL, MVT::i32), |
| DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); |
| return DAG.getNode(ISD::BITCAST, SL, DestVT, BV); |
| } |
| } |
| |
| if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Src)) { |
| const APInt &Val = C->getValueAPF().bitcastToAPInt(); |
| SDLoc SL(N); |
| uint64_t CVal = Val.getZExtValue(); |
| SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, |
| DAG.getConstant(Lo_32(CVal), SL, MVT::i32), |
| DAG.getConstant(Hi_32(CVal), SL, MVT::i32)); |
| |
| return DAG.getNode(ISD::BITCAST, SL, DestVT, Vec); |
| } |
| |
| break; |
| } |
| case ISD::SHL: { |
| if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) |
| break; |
| |
| return performShlCombine(N, DCI); |
| } |
| case ISD::SRL: { |
| if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) |
| break; |
| |
| return performSrlCombine(N, DCI); |
| } |
| case ISD::SRA: { |
| if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) |
| break; |
| |
| return performSraCombine(N, DCI); |
| } |
| case ISD::TRUNCATE: |
| return performTruncateCombine(N, DCI); |
| case ISD::MUL: |
| return performMulCombine(N, DCI); |
| case ISD::MULHS: |
| return performMulhsCombine(N, DCI); |
| case ISD::MULHU: |
| return performMulhuCombine(N, DCI); |
| case AMDGPUISD::MUL_I24: |
| case AMDGPUISD::MUL_U24: |
| case AMDGPUISD::MULHI_I24: |
| case AMDGPUISD::MULHI_U24: { |
| if (SDValue V = simplifyI24(N, DCI)) |
| return V; |
| return SDValue(); |
| } |
| case AMDGPUISD::MUL_LOHI_I24: |
| case AMDGPUISD::MUL_LOHI_U24: |
| return performMulLoHi24Combine(N, DCI); |
| case ISD::SELECT: |
| return performSelectCombine(N, DCI); |
| case ISD::FNEG: |
| return performFNegCombine(N, DCI); |
| case ISD::FABS: |
| return performFAbsCombine(N, DCI); |
| case AMDGPUISD::BFE_I32: |
| case AMDGPUISD::BFE_U32: { |
| assert(!N->getValueType(0).isVector() && |
| "Vector handling of BFE not implemented"); |
| ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); |
| if (!Width) |
| break; |
| |
| uint32_t WidthVal = Width->getZExtValue() & 0x1f; |
| if (WidthVal == 0) |
| return DAG.getConstant(0, DL, MVT::i32); |
| |
| ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); |
| if (!Offset) |
| break; |
| |
| SDValue BitsFrom = N->getOperand(0); |
| uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; |
| |
| bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; |
| |
| if (OffsetVal == 0) { |
| // This is already sign / zero extended, so try to fold away extra BFEs. |
| unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); |
| |
| unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); |
| if (OpSignBits >= SignBits) |
| return BitsFrom; |
| |
| EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); |
| if (Signed) { |
| // This is a sign_extend_inreg. Replace it to take advantage of existing |
| // DAG Combines. If not eliminated, we will match back to BFE during |
| // selection. |
| |
| // TODO: The sext_inreg of extended types ends, although we can could |
| // handle them in a single BFE. |
| return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, |
| DAG.getValueType(SmallVT)); |
| } |
| |
| return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); |
| } |
| |
| if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { |
| if (Signed) { |
| return constantFoldBFE<int32_t>(DAG, |
| CVal->getSExtValue(), |
| OffsetVal, |
| WidthVal, |
| DL); |
| } |
| |
| return constantFoldBFE<uint32_t>(DAG, |
| CVal->getZExtValue(), |
| OffsetVal, |
| WidthVal, |
| DL); |
| } |
| |
| if ((OffsetVal + WidthVal) >= 32 && |
| !(Subtarget->hasSDWA() && OffsetVal == 16 && WidthVal == 16)) { |
| SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); |
| return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, |
| BitsFrom, ShiftVal); |
| } |
| |
| if (BitsFrom.hasOneUse()) { |
| APInt Demanded = APInt::getBitsSet(32, |
| OffsetVal, |
| OffsetVal + WidthVal); |
| |
| KnownBits Known; |
| TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), |
| !DCI.isBeforeLegalizeOps()); |
| const TargetLowering &TLI = DAG.getTargetLoweringInfo(); |
| if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || |
| TLI.SimplifyDemandedBits(BitsFrom, Demanded, Known, TLO)) { |
| DCI.CommitTargetLoweringOpt(TLO); |
| } |
| } |
| |
| break; |
| } |
| case ISD::LOAD: |
| return performLoadCombine(N, DCI); |
| case ISD::STORE: |
| return performStoreCombine(N, DCI); |
| case AMDGPUISD::RCP: |
| case AMDGPUISD::RCP_IFLAG: |
| return performRcpCombine(N, DCI); |
| case ISD::AssertZext: |
| case ISD::AssertSext: |
| return performAssertSZExtCombine(N, DCI); |
| case ISD::INTRINSIC_WO_CHAIN: |
| return performIntrinsicWOChainCombine(N, DCI); |
| } |
| return SDValue(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Helper functions |
| //===----------------------------------------------------------------------===// |
| |
| SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, |
| const TargetRegisterClass *RC, |
| unsigned Reg, EVT VT, |
| const SDLoc &SL, |
| bool RawReg) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineRegisterInfo &MRI = MF.getRegInfo(); |
| unsigned VReg; |
| |
| if (!MRI.isLiveIn(Reg)) { |
| VReg = MRI.createVirtualRegister(RC); |
| MRI.addLiveIn(Reg, VReg); |
| } else { |
| VReg = MRI.getLiveInVirtReg(Reg); |
| } |
| |
| if (RawReg) |
| return DAG.getRegister(VReg, VT); |
| |
| return DAG.getCopyFromReg(DAG.getEntryNode(), SL, VReg, VT); |
| } |
| |
| // This may be called multiple times, and nothing prevents creating multiple |
| // objects at the same offset. See if we already defined this object. |
| static int getOrCreateFixedStackObject(MachineFrameInfo &MFI, unsigned Size, |
| int64_t Offset) { |
| for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) { |
| if (MFI.getObjectOffset(I) == Offset) { |
| assert(MFI.getObjectSize(I) == Size); |
| return I; |
| } |
| } |
| |
| return MFI.CreateFixedObject(Size, Offset, true); |
| } |
| |
| SDValue AMDGPUTargetLowering::loadStackInputValue(SelectionDAG &DAG, |
| EVT VT, |
| const SDLoc &SL, |
| int64_t Offset) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo &MFI = MF.getFrameInfo(); |
| int FI = getOrCreateFixedStackObject(MFI, VT.getStoreSize(), Offset); |
| |
| auto SrcPtrInfo = MachinePointerInfo::getStack(MF, Offset); |
| SDValue Ptr = DAG.getFrameIndex(FI, MVT::i32); |
| |
| return DAG.getLoad(VT, SL, DAG.getEntryNode(), Ptr, SrcPtrInfo, 4, |
| MachineMemOperand::MODereferenceable | |
| MachineMemOperand::MOInvariant); |
| } |
| |
| SDValue AMDGPUTargetLowering::storeStackInputValue(SelectionDAG &DAG, |
| const SDLoc &SL, |
| SDValue Chain, |
| SDValue ArgVal, |
| int64_t Offset) const { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachinePointerInfo DstInfo = MachinePointerInfo::getStack(MF, Offset); |
| |
| SDValue Ptr = DAG.getConstant(Offset, SL, MVT::i32); |
| SDValue Store = DAG.getStore(Chain, SL, ArgVal, Ptr, DstInfo, 4, |
| MachineMemOperand::MODereferenceable); |
| return Store; |
| } |
| |
| SDValue AMDGPUTargetLowering::loadInputValue(SelectionDAG &DAG, |
| const TargetRegisterClass *RC, |
| EVT VT, const SDLoc &SL, |
| const ArgDescriptor &Arg) const { |
| assert(Arg && "Attempting to load missing argument"); |
| |
| SDValue V = Arg.isRegister() ? |
| CreateLiveInRegister(DAG, RC, Arg.getRegister(), VT, SL) : |
| loadStackInputValue(DAG, VT, SL, Arg.getStackOffset()); |
| |
| if (!Arg.isMasked()) |
| return V; |
| |
| unsigned Mask = Arg.getMask(); |
| unsigned Shift = countTrailingZeros<unsigned>(Mask); |
| V = DAG.getNode(ISD::SRL, SL, VT, V, |
| DAG.getShiftAmountConstant(Shift, VT, SL)); |
| return DAG.getNode(ISD::AND, SL, VT, V, |
| DAG.getConstant(Mask >> Shift, SL, VT)); |
| } |
| |
| uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( |
| const MachineFunction &MF, const ImplicitParameter Param) const { |
| const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>(); |
| const AMDGPUSubtarget &ST = |
| AMDGPUSubtarget::get(getTargetMachine(), MF.getFunction()); |
| unsigned ExplicitArgOffset = ST.getExplicitKernelArgOffset(MF.getFunction()); |
| const Align Alignment = ST.getAlignmentForImplicitArgPtr(); |
| uint64_t ArgOffset = alignTo(MFI->getExplicitKernArgSize(), Alignment) + |
| ExplicitArgOffset; |
| switch (Param) { |
| case GRID_DIM: |
| return ArgOffset; |
| case GRID_OFFSET: |
| return ArgOffset + 4; |
| } |
| llvm_unreachable("unexpected implicit parameter type"); |
| } |
| |
| #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; |
| |
| const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch ((AMDGPUISD::NodeType)Opcode) { |
| case AMDGPUISD::FIRST_NUMBER: break; |
| // AMDIL DAG nodes |
| NODE_NAME_CASE(UMUL); |
| NODE_NAME_CASE(BRANCH_COND); |
| |
| // AMDGPU DAG nodes |
| NODE_NAME_CASE(IF) |
| NODE_NAME_CASE(ELSE) |
| NODE_NAME_CASE(LOOP) |
| NODE_NAME_CASE(CALL) |
| NODE_NAME_CASE(TC_RETURN) |
| NODE_NAME_CASE(TRAP) |
| NODE_NAME_CASE(RET_FLAG) |
| NODE_NAME_CASE(RETURN_TO_EPILOG) |
| NODE_NAME_CASE(ENDPGM) |
| NODE_NAME_CASE(DWORDADDR) |
| NODE_NAME_CASE(FRACT) |
| NODE_NAME_CASE(SETCC) |
| NODE_NAME_CASE(SETREG) |
| NODE_NAME_CASE(DENORM_MODE) |
| NODE_NAME_CASE(FMA_W_CHAIN) |
| NODE_NAME_CASE(FMUL_W_CHAIN) |
| NODE_NAME_CASE(CLAMP) |
| NODE_NAME_CASE(COS_HW) |
| NODE_NAME_CASE(SIN_HW) |
| NODE_NAME_CASE(FMAX_LEGACY) |
| NODE_NAME_CASE(FMIN_LEGACY) |
| NODE_NAME_CASE(FMAX3) |
| NODE_NAME_CASE(SMAX3) |
| NODE_NAME_CASE(UMAX3) |
| NODE_NAME_CASE(FMIN3) |
| NODE_NAME_CASE(SMIN3) |
| NODE_NAME_CASE(UMIN3) |
| NODE_NAME_CASE(FMED3) |
| NODE_NAME_CASE(SMED3) |
| NODE_NAME_CASE(UMED3) |
| NODE_NAME_CASE(FDOT2) |
| NODE_NAME_CASE(URECIP) |
| NODE_NAME_CASE(DIV_SCALE) |
| NODE_NAME_CASE(DIV_FMAS) |
| NODE_NAME_CASE(DIV_FIXUP) |
| NODE_NAME_CASE(FMAD_FTZ) |
| NODE_NAME_CASE(TRIG_PREOP) |
| NODE_NAME_CASE(RCP) |
| NODE_NAME_CASE(RSQ) |
| NODE_NAME_CASE(RCP_LEGACY) |
| NODE_NAME_CASE(RSQ_LEGACY) |
| NODE_NAME_CASE(RCP_IFLAG) |
| NODE_NAME_CASE(FMUL_LEGACY) |
| NODE_NAME_CASE(RSQ_CLAMP) |
| NODE_NAME_CASE(LDEXP) |
| NODE_NAME_CASE(FP_CLASS) |
| NODE_NAME_CASE(DOT4) |
| NODE_NAME_CASE(CARRY) |
| NODE_NAME_CASE(BORROW) |
| NODE_NAME_CASE(BFE_U32) |
| NODE_NAME_CASE(BFE_I32) |
| NODE_NAME_CASE(BFI) |
| NODE_NAME_CASE(BFM) |
| NODE_NAME_CASE(FFBH_U32) |
| NODE_NAME_CASE(FFBH_I32) |
| NODE_NAME_CASE(FFBL_B32) |
| NODE_NAME_CASE(MUL_U24) |
| NODE_NAME_CASE(MUL_I24) |
| NODE_NAME_CASE(MULHI_U24) |
| NODE_NAME_CASE(MULHI_I24) |
| NODE_NAME_CASE(MUL_LOHI_U24) |
| NODE_NAME_CASE(MUL_LOHI_I24) |
| NODE_NAME_CASE(MAD_U24) |
| NODE_NAME_CASE(MAD_I24) |
| NODE_NAME_CASE(MAD_I64_I32) |
| NODE_NAME_CASE(MAD_U64_U32) |
| NODE_NAME_CASE(PERM) |
| NODE_NAME_CASE(TEXTURE_FETCH) |
| NODE_NAME_CASE(EXPORT) |
| NODE_NAME_CASE(EXPORT_DONE) |
| NODE_NAME_CASE(R600_EXPORT) |
| NODE_NAME_CASE(CONST_ADDRESS) |
| NODE_NAME_CASE(REGISTER_LOAD) |
| NODE_NAME_CASE(REGISTER_STORE) |
| NODE_NAME_CASE(SAMPLE) |
| NODE_NAME_CASE(SAMPLEB) |
| NODE_NAME_CASE(SAMPLED) |
| NODE_NAME_CASE(SAMPLEL) |
| NODE_NAME_CASE(CVT_F32_UBYTE0) |
| NODE_NAME_CASE(CVT_F32_UBYTE1) |
| NODE_NAME_CASE(CVT_F32_UBYTE2) |
| NODE_NAME_CASE(CVT_F32_UBYTE3) |
| NODE_NAME_CASE(CVT_PKRTZ_F16_F32) |
| NODE_NAME_CASE(CVT_PKNORM_I16_F32) |
| NODE_NAME_CASE(CVT_PKNORM_U16_F32) |
| NODE_NAME_CASE(CVT_PK_I16_I32) |
| NODE_NAME_CASE(CVT_PK_U16_U32) |
| NODE_NAME_CASE(FP_TO_FP16) |
| NODE_NAME_CASE(FP16_ZEXT) |
| NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) |
| NODE_NAME_CASE(CONST_DATA_PTR) |
| NODE_NAME_CASE(PC_ADD_REL_OFFSET) |
| NODE_NAME_CASE(LDS) |
| NODE_NAME_CASE(KILL) |
| NODE_NAME_CASE(DUMMY_CHAIN) |
| case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; |
| NODE_NAME_CASE(INTERP_MOV) |
| NODE_NAME_CASE(INTERP_P1) |
| NODE_NAME_CASE(INTERP_P2) |
| NODE_NAME_CASE(INTERP_P1LL_F16) |
| NODE_NAME_CASE(INTERP_P1LV_F16) |
| NODE_NAME_CASE(INTERP_P2_F16) |
| NODE_NAME_CASE(LOAD_D16_HI) |
| NODE_NAME_CASE(LOAD_D16_LO) |
| NODE_NAME_CASE(LOAD_D16_HI_I8) |
| NODE_NAME_CASE(LOAD_D16_HI_U8) |
| NODE_NAME_CASE(LOAD_D16_LO_I8) |
| NODE_NAME_CASE(LOAD_D16_LO_U8) |
| NODE_NAME_CASE(STORE_MSKOR) |
| NODE_NAME_CASE(LOAD_CONSTANT) |
| NODE_NAME_CASE(TBUFFER_STORE_FORMAT) |
| NODE_NAME_CASE(TBUFFER_STORE_FORMAT_D16) |
| NODE_NAME_CASE(TBUFFER_LOAD_FORMAT) |
| NODE_NAME_CASE(TBUFFER_LOAD_FORMAT_D16) |
| NODE_NAME_CASE(DS_ORDERED_COUNT) |
| NODE_NAME_CASE(ATOMIC_CMP_SWAP) |
| NODE_NAME_CASE(ATOMIC_INC) |
| NODE_NAME_CASE(ATOMIC_DEC) |
| NODE_NAME_CASE(ATOMIC_LOAD_FMIN) |
| NODE_NAME_CASE(ATOMIC_LOAD_FMAX) |
| NODE_NAME_CASE(BUFFER_LOAD) |
| NODE_NAME_CASE(BUFFER_LOAD_UBYTE) |
| NODE_NAME_CASE(BUFFER_LOAD_USHORT) |
| NODE_NAME_CASE(BUFFER_LOAD_BYTE) |
| NODE_NAME_CASE(BUFFER_LOAD_SHORT) |
| NODE_NAME_CASE(BUFFER_LOAD_FORMAT) |
| NODE_NAME_CASE(BUFFER_LOAD_FORMAT_D16) |
| NODE_NAME_CASE(SBUFFER_LOAD) |
| NODE_NAME_CASE(BUFFER_STORE) |
| NODE_NAME_CASE(BUFFER_STORE_BYTE) |
| NODE_NAME_CASE(BUFFER_STORE_SHORT) |
| NODE_NAME_CASE(BUFFER_STORE_FORMAT) |
| NODE_NAME_CASE(BUFFER_STORE_FORMAT_D16) |
| NODE_NAME_CASE(BUFFER_ATOMIC_SWAP) |
| NODE_NAME_CASE(BUFFER_ATOMIC_ADD) |
| NODE_NAME_CASE(BUFFER_ATOMIC_SUB) |
| NODE_NAME_CASE(BUFFER_ATOMIC_SMIN) |
| NODE_NAME_CASE(BUFFER_ATOMIC_UMIN) |
| NODE_NAME_CASE(BUFFER_ATOMIC_SMAX) |
| NODE_NAME_CASE(BUFFER_ATOMIC_UMAX) |
| NODE_NAME_CASE(BUFFER_ATOMIC_AND) |
| NODE_NAME_CASE(BUFFER_ATOMIC_OR) |
| NODE_NAME_CASE(BUFFER_ATOMIC_XOR) |
| NODE_NAME_CASE(BUFFER_ATOMIC_INC) |
| NODE_NAME_CASE(BUFFER_ATOMIC_DEC) |
| NODE_NAME_CASE(BUFFER_ATOMIC_CMPSWAP) |
| NODE_NAME_CASE(BUFFER_ATOMIC_FADD) |
| NODE_NAME_CASE(BUFFER_ATOMIC_PK_FADD) |
| NODE_NAME_CASE(ATOMIC_FADD) |
| NODE_NAME_CASE(ATOMIC_PK_FADD) |
| |
| case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; |
| } |
| return nullptr; |
| } |
| |
| SDValue AMDGPUTargetLowering::getSqrtEstimate(SDValue Operand, |
| SelectionDAG &DAG, int Enabled, |
| int &RefinementSteps, |
| bool &UseOneConstNR, |
| bool Reciprocal) const { |
| EVT VT = Operand.getValueType(); |
| |
| if (VT == MVT::f32) { |
| RefinementSteps = 0; |
| return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); |
| } |
| |
| // TODO: There is also f64 rsq instruction, but the documentation is less |
| // clear on its precision. |
| |
| return SDValue(); |
| } |
| |
| SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, |
| SelectionDAG &DAG, int Enabled, |
| int &RefinementSteps) const { |
| EVT VT = Operand.getValueType(); |
| |
| if (VT == MVT::f32) { |
| // Reciprocal, < 1 ulp error. |
| // |
| // This reciprocal approximation converges to < 0.5 ulp error with one |
| // newton rhapson performed with two fused multiple adds (FMAs). |
| |
| RefinementSteps = 0; |
| return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); |
| } |
| |
| // TODO: There is also f64 rcp instruction, but the documentation is less |
| // clear on its precision. |
| |
| return SDValue(); |
| } |
| |
| void AMDGPUTargetLowering::computeKnownBitsForTargetNode( |
| const SDValue Op, KnownBits &Known, |
| const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth) const { |
| |
| Known.resetAll(); // Don't know anything. |
| |
| unsigned Opc = Op.getOpcode(); |
| |
| switch (Opc) { |
| default: |
| break; |
| case AMDGPUISD::CARRY: |
| case AMDGPUISD::BORROW: { |
| Known.Zero = APInt::getHighBitsSet(32, 31); |
| break; |
| } |
| |
| case AMDGPUISD::BFE_I32: |
| case AMDGPUISD::BFE_U32: { |
| ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); |
| if (!CWidth) |
| return; |
| |
| uint32_t Width = CWidth->getZExtValue() & 0x1f; |
| |
| if (Opc == AMDGPUISD::BFE_U32) |
| Known.Zero = APInt::getHighBitsSet(32, 32 - Width); |
| |
| break; |
| } |
| case AMDGPUISD::FP_TO_FP16: |
| case AMDGPUISD::FP16_ZEXT: { |
| unsigned BitWidth = Known.getBitWidth(); |
| |
| // High bits are zero. |
| Known.Zero = APInt::getHighBitsSet(BitWidth, BitWidth - 16); |
| break; |
| } |
| case AMDGPUISD::MUL_U24: |
| case AMDGPUISD::MUL_I24: { |
| KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); |
| KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); |
| unsigned TrailZ = LHSKnown.countMinTrailingZeros() + |
| RHSKnown.countMinTrailingZeros(); |
| Known.Zero.setLowBits(std::min(TrailZ, 32u)); |
| |
| // Truncate to 24 bits. |
| LHSKnown = LHSKnown.trunc(24); |
| RHSKnown = RHSKnown.trunc(24); |
| |
| bool Negative = false; |
| if (Opc == AMDGPUISD::MUL_I24) { |
| unsigned LHSValBits = 24 - LHSKnown.countMinSignBits(); |
| unsigned RHSValBits = 24 - RHSKnown.countMinSignBits(); |
| unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); |
| if (MaxValBits >= 32) |
| break; |
| bool LHSNegative = LHSKnown.isNegative(); |
| bool LHSPositive = LHSKnown.isNonNegative(); |
| bool RHSNegative = RHSKnown.isNegative(); |
| bool RHSPositive = RHSKnown.isNonNegative(); |
| if ((!LHSNegative && !LHSPositive) || (!RHSNegative && !RHSPositive)) |
| break; |
| Negative = (LHSNegative && RHSPositive) || (LHSPositive && RHSNegative); |
| if (Negative) |
| Known.One.setHighBits(32 - MaxValBits); |
| else |
| Known.Zero.setHighBits(32 - MaxValBits); |
| } else { |
| unsigned LHSValBits = 24 - LHSKnown.countMinLeadingZeros(); |
| unsigned RHSValBits = 24 - RHSKnown.countMinLeadingZeros(); |
| unsigned MaxValBits = std::min(LHSValBits + RHSValBits, 32u); |
| if (MaxValBits >= 32) |
| break; |
| Known.Zero.setHighBits(32 - MaxValBits); |
| } |
| break; |
| } |
| case AMDGPUISD::PERM: { |
| ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Op.getOperand(2)); |
| if (!CMask) |
| return; |
| |
| KnownBits LHSKnown = DAG.computeKnownBits(Op.getOperand(0), Depth + 1); |
| KnownBits RHSKnown = DAG.computeKnownBits(Op.getOperand(1), Depth + 1); |
| unsigned Sel = CMask->getZExtValue(); |
| |
| for (unsigned I = 0; I < 32; I += 8) { |
| unsigned SelBits = Sel & 0xff; |
| if (SelBits < 4) { |
| SelBits *= 8; |
| Known.One |= ((RHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; |
| Known.Zero |= ((RHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; |
| } else if (SelBits < 7) { |
| SelBits = (SelBits & 3) * 8; |
| Known.One |= ((LHSKnown.One.getZExtValue() >> SelBits) & 0xff) << I; |
| Known.Zero |= ((LHSKnown.Zero.getZExtValue() >> SelBits) & 0xff) << I; |
| } else if (SelBits == 0x0c) { |
| Known.Zero |= 0xFFull << I; |
| } else if (SelBits > 0x0c) { |
| Known.One |= 0xFFull << I; |
| } |
| Sel >>= 8; |
| } |
| break; |
| } |
| case AMDGPUISD::BUFFER_LOAD_UBYTE: { |
| Known.Zero.setHighBits(24); |
| break; |
| } |
| case AMDGPUISD::BUFFER_LOAD_USHORT: { |
| Known.Zero.setHighBits(16); |
| break; |
| } |
| case AMDGPUISD::LDS: { |
| auto GA = cast<GlobalAddressSDNode>(Op.getOperand(0).getNode()); |
| unsigned Align = GA->getGlobal()->getAlignment(); |
| |
| Known.Zero.setHighBits(16); |
| if (Align) |
| Known.Zero.setLowBits(Log2_32(Align)); |
| break; |
| } |
| case ISD::INTRINSIC_WO_CHAIN: { |
| unsigned IID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| switch (IID) { |
| case Intrinsic::amdgcn_mbcnt_lo: |
| case Intrinsic::amdgcn_mbcnt_hi: { |
| const GCNSubtarget &ST = |
| DAG.getMachineFunction().getSubtarget<GCNSubtarget>(); |
| // These return at most the wavefront size - 1. |
| unsigned Size = Op.getValueType().getSizeInBits(); |
| Known.Zero.setHighBits(Size - ST.getWavefrontSizeLog2()); |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| } |
| } |
| |
| unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( |
| SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, |
| unsigned Depth) const { |
| switch (Op.getOpcode()) { |
| case AMDGPUISD::BFE_I32: { |
| ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); |
| if (!Width) |
| return 1; |
| |
| unsigned SignBits = 32 - Width->getZExtValue() + 1; |
| if (!isNullConstant(Op.getOperand(1))) |
| return SignBits; |
| |
| // TODO: Could probably figure something out with non-0 offsets. |
| unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); |
| return std::max(SignBits, Op0SignBits); |
| } |
| |
| case AMDGPUISD::BFE_U32: { |
| ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); |
| return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; |
| } |
| |
| case AMDGPUISD::CARRY: |
| case AMDGPUISD::BORROW: |
| return 31; |
| case AMDGPUISD::BUFFER_LOAD_BYTE: |
| return 25; |
| case AMDGPUISD::BUFFER_LOAD_SHORT: |
| return 17; |
| case AMDGPUISD::BUFFER_LOAD_UBYTE: |
| return 24; |
| case AMDGPUISD::BUFFER_LOAD_USHORT: |
| return 16; |
| case AMDGPUISD::FP_TO_FP16: |
| case AMDGPUISD::FP16_ZEXT: |
| return 16; |
| default: |
| return 1; |
| } |
| } |
| |
| bool AMDGPUTargetLowering::isKnownNeverNaNForTargetNode(SDValue Op, |
| const SelectionDAG &DAG, |
| bool SNaN, |
| unsigned Depth) const { |
| unsigned Opcode = Op.getOpcode(); |
| switch (Opcode) { |
| case AMDGPUISD::FMIN_LEGACY: |
| case AMDGPUISD::FMAX_LEGACY: { |
| if (SNaN) |
| return true; |
| |
| // TODO: Can check no nans on one of the operands for each one, but which |
| // one? |
| return false; |
| } |
| case AMDGPUISD::FMUL_LEGACY: |
| case AMDGPUISD::CVT_PKRTZ_F16_F32: { |
| if (SNaN) |
| return true; |
| return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && |
| DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); |
| } |
| case AMDGPUISD::FMED3: |
| case AMDGPUISD::FMIN3: |
| case AMDGPUISD::FMAX3: |
| case AMDGPUISD::FMAD_FTZ: { |
| if (SNaN) |
| return true; |
| return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1) && |
| DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && |
| DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); |
| } |
| case AMDGPUISD::CVT_F32_UBYTE0: |
| case AMDGPUISD::CVT_F32_UBYTE1: |
| case AMDGPUISD::CVT_F32_UBYTE2: |
| case AMDGPUISD::CVT_F32_UBYTE3: |
| return true; |
| |
| case AMDGPUISD::RCP: |
| case AMDGPUISD::RSQ: |
| case AMDGPUISD::RCP_LEGACY: |
| case AMDGPUISD::RSQ_LEGACY: |
| case AMDGPUISD::RSQ_CLAMP: { |
| if (SNaN) |
| return true; |
| |
| // TODO: Need is known positive check. |
| return false; |
| } |
| case AMDGPUISD::LDEXP: |
| case AMDGPUISD::FRACT: { |
| if (SNaN) |
| return true; |
| return DAG.isKnownNeverNaN(Op.getOperand(0), SNaN, Depth + 1); |
| } |
| case AMDGPUISD::DIV_SCALE: |
| case AMDGPUISD::DIV_FMAS: |
| case AMDGPUISD::DIV_FIXUP: |
| case AMDGPUISD::TRIG_PREOP: |
| // TODO: Refine on operands. |
| return SNaN; |
| case AMDGPUISD::SIN_HW: |
| case AMDGPUISD::COS_HW: { |
| // TODO: Need check for infinity |
| return SNaN; |
| } |
| case ISD::INTRINSIC_WO_CHAIN: { |
| unsigned IntrinsicID |
| = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| // TODO: Handle more intrinsics |
| switch (IntrinsicID) { |
| case Intrinsic::amdgcn_cubeid: |
| return true; |
| |
| case Intrinsic::amdgcn_frexp_mant: { |
| if (SNaN) |
| return true; |
| return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1); |
| } |
| case Intrinsic::amdgcn_cvt_pkrtz: { |
| if (SNaN) |
| return true; |
| return DAG.isKnownNeverNaN(Op.getOperand(1), SNaN, Depth + 1) && |
| DAG.isKnownNeverNaN(Op.getOperand(2), SNaN, Depth + 1); |
| } |
| case Intrinsic::amdgcn_fdot2: |
| // TODO: Refine on operand |
| return SNaN; |
| default: |
| return false; |
| } |
| } |
| default: |
| return false; |
| } |
| } |
| |
| TargetLowering::AtomicExpansionKind |
| AMDGPUTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const { |
| switch (RMW->getOperation()) { |
| case AtomicRMWInst::Nand: |
| case AtomicRMWInst::FAdd: |
| case AtomicRMWInst::FSub: |
| return AtomicExpansionKind::CmpXChg; |
| default: |
| return AtomicExpansionKind::None; |
| } |
| } |