blob: 397e907a8e99d306c45b2dbf3eaea0a54b28a36c [file] [log] [blame]
; RUN: opt < %s -loop-unroll -unroll-runtime=true -unroll-runtime-epilog=true -unroll-runtime-multi-exit=true -verify-loop-lcssa -verify-dom-info -verify-loop-info -S | FileCheck %s -check-prefix=EPILOG-NO-IC
; RUN: opt < %s -loop-unroll -unroll-runtime=true -unroll-runtime-epilog=true -unroll-runtime-multi-exit=true -verify-loop-lcssa -verify-dom-info -verify-loop-info -instcombine -S | FileCheck %s -check-prefix=EPILOG
; RUN: opt < %s -loop-unroll -unroll-runtime -unroll-count=2 -unroll-runtime-epilog=true -unroll-runtime-multi-exit=true -verify-loop-lcssa -verify-dom-info -verify-loop-info -instcombine
; RUN: opt < %s -loop-unroll -unroll-runtime=true -unroll-runtime-epilog=false -unroll-runtime-multi-exit=true -verify-loop-lcssa -verify-dom-info -verify-loop-info -instcombine -S | FileCheck %s -check-prefix=PROLOG
; RUN: opt < %s -loop-unroll -unroll-runtime -unroll-runtime-epilog=false -unroll-count=2 -unroll-runtime-multi-exit=true -verify-loop-lcssa -verify-dom-info -verify-loop-info -instcombine
; REQUIRES: asserts
; the third and fifth RUNs generate an epilog/prolog remainder block for all the test
; cases below (it does not generate a loop).
; test with three exiting and three exit blocks.
; none of the exit blocks have successors
define void @test1(i64 %trip, i1 %cond) {
; EPILOG: test1(
; EPILOG-NEXT: entry:
; EPILOG-NEXT: [[TMP0:%.*]] = add i64 [[TRIP:%.*]], -1
; EPILOG-NEXT: [[XTRAITER:%.*]] = and i64 [[TRIP]], 7
; EPILOG-NEXT: [[TMP1:%.*]] = icmp ult i64 [[TMP0]], 7
; EPILOG-NEXT: br i1 [[TMP1]], label %exit2.loopexit.unr-lcssa, label [[ENTRY_NEW:%.*]]
; EPILOG: entry.new:
; EPILOG-NEXT: [[UNROLL_ITER:%.*]] = sub i64 [[TRIP]], [[XTRAITER]]
; EPILOG-NEXT: br label [[LOOP_HEADER:%.*]]
; EPILOG: loop_latch.epil:
; EPILOG-NEXT: %epil.iter.sub = add i64 %epil.iter, -1
; EPILOG-NEXT: %epil.iter.cmp = icmp eq i64 %epil.iter.sub, 0
; EPILOG-NEXT: br i1 %epil.iter.cmp, label %exit2.loopexit.epilog-lcssa, label %loop_header.epil
; EPILOG: loop_latch.7:
; EPILOG-NEXT: %niter.nsub.7 = add i64 %niter, -8
; EPILOG-NEXT: %niter.ncmp.7 = icmp eq i64 %niter.nsub.7, 0
; EPILOG-NEXT: br i1 %niter.ncmp.7, label %exit2.loopexit.unr-lcssa.loopexit, label %loop_header
; PROLOG: test1(
; PROLOG-NEXT: entry:
; PROLOG-NEXT: [[TMP0:%.*]] = add i64 [[TRIP:%.*]], -1
; PROLOG-NEXT: [[XTRAITER:%.*]] = and i64 [[TRIP]], 7
; PROLOG-NEXT: [[TMP1:%.*]] = icmp eq i64 [[XTRAITER]], 0
; PROLOG-NEXT: br i1 [[TMP1]], label %loop_header.prol.loopexit, label %loop_header.prol.preheader
; PROLOG: loop_header.prol:
; PROLOG-NEXT: %iv.prol = phi i64 [ 0, %loop_header.prol.preheader ], [ %iv_next.prol, %loop_latch.prol ]
; PROLOG-NEXT: %prol.iter = phi i64 [ [[XTRAITER]], %loop_header.prol.preheader ], [ %prol.iter.sub, %loop_latch.prol ]
; PROLOG-NEXT: br i1 %cond, label %loop_latch.prol, label %loop_exiting_bb1.prol
; PROLOG: loop_latch.prol:
; PROLOG-NEXT: %iv_next.prol = add i64 %iv.prol, 1
; PROLOG-NEXT: %prol.iter.sub = add i64 %prol.iter, -1
; PROLOG-NEXT: %prol.iter.cmp = icmp eq i64 %prol.iter.sub, 0
; PROLOG-NEXT: br i1 %prol.iter.cmp, label %loop_header.prol.loopexit.unr-lcssa, label %loop_header.prol
; PROLOG: loop_latch.7:
; PROLOG-NEXT: %iv_next.7 = add i64 %iv, 8
; PROLOG-NEXT: %cmp.7 = icmp eq i64 %iv_next.7, %trip
; PROLOG-NEXT: br i1 %cmp.7, label %exit2.loopexit.unr-lcssa, label %loop_header
entry:
br label %loop_header
loop_header:
%iv = phi i64 [ 0, %entry ], [ %iv_next, %loop_latch ]
br i1 %cond, label %loop_latch, label %loop_exiting_bb1
loop_exiting_bb1:
br i1 false, label %loop_exiting_bb2, label %exit1
loop_exiting_bb2:
br i1 false, label %loop_latch, label %exit3
exit3:
ret void
loop_latch:
%iv_next = add i64 %iv, 1
%cmp = icmp ne i64 %iv_next, %trip
br i1 %cmp, label %loop_header, label %exit2.loopexit
exit1:
ret void
exit2.loopexit:
ret void
}
; test with three exiting and two exit blocks.
; The non-latch exit block has 2 unique predecessors.
; There are 2 values passed to the exit blocks that are calculated at every iteration.
; %sum.02 and %add. Both of these are incoming values for phi from every exiting
; unrolled block.
define i32 @test2(i32* nocapture %a, i64 %n) {
; EPILOG: test2(
; EPILOG: for.exit2.loopexit:
; EPILOG-NEXT: %retval.ph = phi i32 [ 42, %for.exiting_block ], [ %sum.02, %header ], [ %add, %for.body ], [ 42, %for.exiting_block.1 ], [ %add.1, %for.body.1 ], [ 42, %for.exiting_block.2 ], [ %add.2, %for.body.2 ], [ 42, %for.exiting_block.3 ],
; EPILOG-NEXT: br label %for.exit2
; EPILOG: for.exit2.loopexit2:
; EPILOG-NEXT: %retval.ph3 = phi i32 [ 42, %for.exiting_block.epil ], [ %sum.02.epil, %header.epil ]
; EPILOG-NEXT: br label %for.exit2
; EPILOG: for.exit2:
; EPILOG-NEXT: %retval = phi i32 [ %retval.ph, %for.exit2.loopexit ], [ %retval.ph3, %for.exit2.loopexit2 ]
; EPILOG-NEXT: ret i32 %retval
; EPILOG: %niter.nsub.7 = add i64 %niter, -8
; PROLOG: test2(
; PROLOG: for.exit2.loopexit:
; PROLOG-NEXT: %retval.ph = phi i32 [ 42, %for.exiting_block ], [ %sum.02, %header ], [ %add, %for.body ], [ 42, %for.exiting_block.1 ], [ %add.1, %for.body.1 ], [ 42, %for.exiting_block.2 ], [ %add.2, %for.body.2 ], [ 42, %for.exiting_block.3 ],
; PROLOG-NEXT: br label %for.exit2
; PROLOG: for.exit2.loopexit1:
; PROLOG-NEXT: %retval.ph2 = phi i32 [ 42, %for.exiting_block.prol ], [ %sum.02.prol, %header.prol ]
; PROLOG-NEXT: br label %for.exit2
; PROLOG: for.exit2:
; PROLOG-NEXT: %retval = phi i32 [ %retval.ph, %for.exit2.loopexit ], [ %retval.ph2, %for.exit2.loopexit1 ]
; PROLOG-NEXT: ret i32 %retval
; PROLOG: %indvars.iv.next.7 = add i64 %indvars.iv, 8
entry:
br label %header
header:
%indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %entry ]
%sum.02 = phi i32 [ %add, %for.body ], [ 0, %entry ]
br i1 false, label %for.exit2, label %for.exiting_block
for.exiting_block:
%cmp = icmp eq i64 %n, 42
br i1 %cmp, label %for.exit2, label %for.body
for.body:
%arrayidx = getelementptr inbounds i32, i32* %a, i64 %indvars.iv
%0 = load i32, i32* %arrayidx, align 4
%add = add nsw i32 %0, %sum.02
%indvars.iv.next = add i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, %n
br i1 %exitcond, label %for.end, label %header
for.end: ; preds = %for.body
%sum.0.lcssa = phi i32 [ %add, %for.body ]
ret i32 %sum.0.lcssa
for.exit2:
%retval = phi i32 [ %sum.02, %header ], [ 42, %for.exiting_block ]
ret i32 %retval
}
; test with two exiting and three exit blocks.
; the non-latch exiting block has a switch.
define void @test3(i64 %trip, i64 %add) {
; EPILOG: test3(
; EPILOG-NEXT: entry:
; EPILOG-NEXT: [[TMP0:%.*]] = add i64 [[TRIP:%.*]], -1
; EPILOG-NEXT: [[XTRAITER:%.*]] = and i64 [[TRIP]], 7
; EPILOG-NEXT: [[TMP1:%.*]] = icmp ult i64 [[TMP0]], 7
; EPILOG-NEXT: br i1 [[TMP1]], label %exit2.loopexit.unr-lcssa, label [[ENTRY_NEW:%.*]]
; EPILOG: entry.new:
; EPILOG-NEXT: %unroll_iter = sub i64 [[TRIP]], [[XTRAITER]]
; EPILOG-NEXT: br label [[LOOP_HEADER:%.*]]
; EPILOG: loop_header:
; EPILOG-NEXT: %sum = phi i64 [ 0, %entry.new ], [ %sum.next.7, %loop_latch.7 ]
; EPILOG-NEXT: %niter = phi i64 [ %unroll_iter, %entry.new ], [ %niter.nsub.7, %loop_latch.7 ]
; EPILOG: loop_exiting_bb1.7:
; EPILOG-NEXT: switch i64 %sum.next.6, label %loop_latch.7
; EPILOG: loop_latch.7:
; EPILOG-NEXT: %sum.next.7 = add i64 %sum.next.6, %add
; EPILOG-NEXT: %niter.nsub.7 = add i64 %niter, -8
; EPILOG-NEXT: %niter.ncmp.7 = icmp eq i64 %niter.nsub.7, 0
; EPILOG-NEXT: br i1 %niter.ncmp.7, label %exit2.loopexit.unr-lcssa.loopexit, label %loop_header
; PROLOG: test3(
; PROLOG-NEXT: entry:
; PROLOG-NEXT: [[TMP0:%.*]] = add i64 [[TRIP:%.*]], -1
; PROLOG-NEXT: [[XTRAITER:%.*]] = and i64 [[TRIP]], 7
; PROLOG-NEXT: [[TMP1:%.*]] = icmp eq i64 [[XTRAITER]], 0
; PROLOG-NEXT: br i1 [[TMP1]], label %loop_header.prol.loopexit, label %loop_header.prol.preheader
; PROLOG: loop_header:
; PROLOG-NEXT: %iv = phi i64 [ %iv.unr, %entry.new ], [ %iv_next.7, %loop_latch.7 ]
; PROLOG-NEXT: %sum = phi i64 [ %sum.unr, %entry.new ], [ %sum.next.7, %loop_latch.7 ]
; PROLOG: loop_exiting_bb1.7:
; PROLOG-NEXT: switch i64 %sum.next.6, label %loop_latch.7
; PROLOG: loop_latch.7:
; PROLOG-NEXT: %iv_next.7 = add nsw i64 %iv, 8
; PROLOG-NEXT: %sum.next.7 = add i64 %sum.next.6, %add
; PROLOG-NEXT: %cmp.7 = icmp eq i64 %iv_next.7, %trip
; PROLOG-NEXT: br i1 %cmp.7, label %exit2.loopexit.unr-lcssa, label %loop_header
entry:
br label %loop_header
loop_header:
%iv = phi i64 [ 0, %entry ], [ %iv_next, %loop_latch ]
%sum = phi i64 [ 0, %entry ], [ %sum.next, %loop_latch ]
br i1 undef, label %loop_latch, label %loop_exiting_bb1
loop_exiting_bb1:
switch i64 %sum, label %loop_latch [
i64 24, label %exit1
i64 42, label %exit3
]
exit3:
ret void
loop_latch:
%iv_next = add nuw nsw i64 %iv, 1
%sum.next = add i64 %sum, %add
%cmp = icmp ne i64 %iv_next, %trip
br i1 %cmp, label %loop_header, label %exit2.loopexit
exit1:
ret void
exit2.loopexit:
ret void
}
; FIXME: Support multiple exiting blocks to the same latch exit block.
; Three exiting blocks where header and latch exit to same LatchExit.
define i32 @hdr_latch_same_exit(i32* nocapture %a, i64 %n, i1 %cond) {
; EPILOG: hdr_latch_same_exit(
; EPILOG-NOT: .unr
; EPILOG-NOT: .epil
; PROLOG: hdr_latch_same_exit(
; PROLOG-NOT: .unr
; PROLOG-NOT: .prol
entry:
br label %header
header:
%indvars.iv = phi i64 [ %indvars.iv.next, %latch ], [ 0, %entry ]
%sum.02 = phi i32 [ %add, %latch ], [ 0, %entry ]
br i1 %cond, label %latchExit, label %for.exiting_block
for.exiting_block:
%cmp = icmp eq i64 %n, 42
br i1 %cmp, label %for.exit2, label %latch
latch: ; preds = %latch, %entry
%arrayidx = getelementptr inbounds i32, i32* %a, i64 %indvars.iv
%0 = load i32, i32* %arrayidx, align 4
%add = add nsw i32 %0, %sum.02
%indvars.iv.next = add i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, %n
br i1 %exitcond, label %latchExit, label %header
latchExit: ; preds = %latch, %entry
%result = phi i32 [ 0, %header ], [ %add, %latch ]
ret i32 %result
for.exit2:
ret i32 42
}
; Two exiting blocks to latch where the exiting blocks are Latch and a
; non-header
; FIXME: We should unroll this loop.
define i32 @otherblock_latch_same_exit(i32* nocapture %a, i64 %n, i1 %cond) {
; EPILOG: otherblock_latch_same_exit(
; EPILOG-NOT: .unr
; EPILOG-NOT: .epil
; PROLOG: otherblock_latch_same_exit(
; PROLOG-NOT: .unr
; PROLOG-NOT: .prol
entry:
br label %header
header:
%indvars.iv = phi i64 [ %indvars.iv.next, %latch ], [ 0, %entry ]
%sum.02 = phi i32 [ %add, %latch ], [ 0, %entry ]
br i1 %cond, label %for.exit2, label %for.exiting_block
for.exiting_block:
%cmp = icmp eq i64 %n, 42
br i1 %cmp, label %latchExit, label %latch
latch: ; preds = %latch, %entry
%arrayidx = getelementptr inbounds i32, i32* %a, i64 %indvars.iv
%0 = load i32, i32* %arrayidx, align 4
%add = add nsw i32 %0, %sum.02
%indvars.iv.next = add i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, %n
br i1 %exitcond, label %latchExit, label %header
latchExit: ; preds = %latch, %entry
%result = phi i32 [ 2, %for.exiting_block ], [ %add, %latch ]
ret i32 %result
for.exit2:
ret i32 42
}
; Two exiting blocks to latch where the exiting blocks are Latch and a
; non-header
; Same as above test except the incoming value for latch Phi is from the header
; FIXME: We should be able to runtime unroll.
define i32 @otherblock_latch_same_exit2(i32* nocapture %a, i64 %n, i1 %cond) {
; EPILOG: otherblock_latch_same_exit2(
; EPILOG-NOT: .unr
; EPILOG-NOT: .epil
; PROLOG: otherblock_latch_same_exit2(
; PROLOG-NOT: .unr
; PROLOG-NOT: .prol
entry:
br label %header
header:
%indvars.iv = phi i64 [ %indvars.iv.next, %latch ], [ 0, %entry ]
%sum.02 = phi i32 [ %add, %latch ], [ 0, %entry ]
br i1 %cond, label %for.exit2, label %for.exiting_block
for.exiting_block:
%cmp = icmp eq i64 %n, 42
br i1 %cmp, label %latchExit, label %latch
latch: ; preds = %latch, %entry
%arrayidx = getelementptr inbounds i32, i32* %a, i64 %indvars.iv
%0 = load i32, i32* %arrayidx, align 4
%add = add nsw i32 %0, %sum.02
%indvars.iv.next = add i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, %n
br i1 %exitcond, label %latchExit, label %header
latchExit: ; preds = %latch, %entry
%result = phi i32 [ %sum.02, %for.exiting_block ], [ %add, %latch ]
ret i32 %result
for.exit2:
ret i32 42
}
; Two exiting blocks to latch where the exiting blocks are Latch and a
; non-header
; Same as above test except the incoming value for cloned latch Phi is from the
; for.exiting_block.
; FIXME: We should be able to runtime unroll.
define i32 @otherblock_latch_same_exit3(i32* nocapture %a, i64 %n, i1 %cond) {
; EPILOG: otherblock_latch_same_exit3(
; EPILOG-NOT: .unr
; EPILOG-NOT: .epil
; PROLOG: otherblock_latch_same_exit3(
; PROLOG-NOT: .unr
; PROLOG-NOT: .prol
entry:
br label %header
header:
%indvars.iv = phi i64 [ %indvars.iv.next, %latch ], [ 0, %entry ]
%sum.02 = phi i32 [ %add, %latch ], [ 0, %entry ]
br i1 %cond, label %for.exit2, label %for.exiting_block
for.exiting_block:
%arrayidx = getelementptr inbounds i32, i32* %a, i64 %indvars.iv
%0 = load i32, i32* %arrayidx, align 4
%add = add nsw i32 %0, %sum.02
%cmp = icmp eq i64 %n, 42
br i1 %cmp, label %latchExit, label %latch
latch: ; preds = %latch, %entry
%indvars.iv.next = add i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, %n
br i1 %exitcond, label %latchExit, label %header
latchExit: ; preds = %latch, %entry
%result = phi i32 [ %sum.02, %for.exiting_block ], [ %add, %latch ]
ret i32 %result
for.exit2:
ret i32 42
}
; FIXME: Support multiple exiting blocks to the unique exit block (LatchExit).
; Only 2 blocks in loop: header and latch where both exit to same LatchExit.
define void @unique_exit(i32 %arg) {
; EPILOG: unique_exit(
; EPILOG-NOT: .unr
; EPILOG-NOT: .epil
; PROLOG: unique_exit(
; PROLOG-NOT: .unr
; PROLOG-NOT: .prol
entry:
%tmp = icmp sgt i32 undef, %arg
br i1 %tmp, label %preheader, label %returnblock
preheader: ; preds = %entry
br label %header
header: ; preds = %preheader, %latch
%tmp4 = phi i32 [ %inc, %latch ], [ %arg, %preheader ]
%inc = add nsw i32 %tmp4, 1
br i1 true, label %latchExit, label %latch
latch: ; preds = %header
%cmp = icmp slt i32 %inc, undef
br i1 %cmp, label %header, label %latchExit
latchExit: ; preds = %header, %latch
%tmp2.ph = phi i32 [ %tmp4, %header ], [ -1, %latch ]
br label %returnblock
returnblock: ; preds = %latchExit, %entry
%tmp2 = phi i32 [ -1, %entry ], [ %tmp2.ph, %latchExit ]
ret void
}
; two exiting and two exit blocks.
; the non-latch exiting block has duplicate edges to the non-latch exit block.
define i64 @test5(i64 %trip, i64 %add, i1 %cond) {
; EPILOG: test5(
; EPILOG: exit1.loopexit:
; EPILOG-NEXT: %result.ph = phi i64 [ %ivy, %loop_exiting ], [ %ivy, %loop_exiting ], [ %ivy.1, %loop_exiting.1 ], [ %ivy.1, %loop_exiting.1 ], [ %ivy.2, %loop_exiting.2 ],
; EPILOG-NEXT: br label %exit1
; EPILOG: exit1.loopexit2:
; EPILOG-NEXT: %ivy.epil = add i64 %iv.epil, %add
; EPILOG-NEXT: br label %exit1
; EPILOG: exit1:
; EPILOG-NEXT: %result = phi i64 [ %result.ph, %exit1.loopexit ], [ %ivy.epil, %exit1.loopexit2 ]
; EPILOG-NEXT: ret i64 %result
; EPILOG: loop_latch.7:
; EPILOG: %niter.nsub.7 = add i64 %niter, -8
; PROLOG: test5(
; PROLOG: exit1.loopexit:
; PROLOG-NEXT: %result.ph = phi i64 [ %ivy, %loop_exiting ], [ %ivy, %loop_exiting ], [ %ivy.1, %loop_exiting.1 ], [ %ivy.1, %loop_exiting.1 ], [ %ivy.2, %loop_exiting.2 ],
; PROLOG-NEXT: br label %exit1
; PROLOG: exit1.loopexit1:
; PROLOG-NEXT: %ivy.prol = add i64 %iv.prol, %add
; PROLOG-NEXT: br label %exit1
; PROLOG: exit1:
; PROLOG-NEXT: %result = phi i64 [ %result.ph, %exit1.loopexit ], [ %ivy.prol, %exit1.loopexit1 ]
; PROLOG-NEXT: ret i64 %result
; PROLOG: loop_latch.7:
; PROLOG: %iv_next.7 = add nsw i64 %iv, 8
entry:
br label %loop_header
loop_header:
%iv = phi i64 [ 0, %entry ], [ %iv_next, %loop_latch ]
%sum = phi i64 [ 0, %entry ], [ %sum.next, %loop_latch ]
br i1 %cond, label %loop_latch, label %loop_exiting
loop_exiting:
%ivy = add i64 %iv, %add
switch i64 %sum, label %loop_latch [
i64 24, label %exit1
i64 42, label %exit1
]
loop_latch:
%iv_next = add nuw nsw i64 %iv, 1
%sum.next = add i64 %sum, %add
%cmp = icmp ne i64 %iv_next, %trip
br i1 %cmp, label %loop_header, label %latchexit
exit1:
%result = phi i64 [ %ivy, %loop_exiting ], [ %ivy, %loop_exiting ]
ret i64 %result
latchexit:
ret i64 %sum.next
}
; test when exit blocks have successors.
define i32 @test6(i32* nocapture %a, i64 %n, i1 %cond, i32 %x) {
; EPILOG: test6(
; EPILOG: for.exit2.loopexit:
; EPILOG-NEXT: %retval.ph = phi i32 [ 42, %for.exiting_block ], [ %sum.02, %header ], [ %add, %latch ], [ 42, %for.exiting_block.1 ], [ %add.1, %latch.1 ], [ 42, %for.exiting_block.2 ], [ %add.2, %latch.2 ],
; EPILOG-NEXT: br label %for.exit2
; EPILOG: for.exit2.loopexit2:
; EPILOG-NEXT: %retval.ph3 = phi i32 [ 42, %for.exiting_block.epil ], [ %sum.02.epil, %header.epil ]
; EPILOG-NEXT: br label %for.exit2
; EPILOG: for.exit2:
; EPILOG-NEXT: %retval = phi i32 [ %retval.ph, %for.exit2.loopexit ], [ %retval.ph3, %for.exit2.loopexit2 ]
; EPILOG-NEXT: br i1 %cond, label %exit_true, label %exit_false
; EPILOG: latch.7:
; EPILOG: %niter.nsub.7 = add i64 %niter, -8
; PROLOG: test6(
; PROLOG: for.exit2.loopexit:
; PROLOG-NEXT: %retval.ph = phi i32 [ 42, %for.exiting_block ], [ %sum.02, %header ], [ %add, %latch ], [ 42, %for.exiting_block.1 ], [ %add.1, %latch.1 ], [ 42, %for.exiting_block.2 ], [ %add.2, %latch.2 ],
; PROLOG-NEXT: br label %for.exit2
; PROLOG: for.exit2.loopexit1:
; PROLOG-NEXT: %retval.ph2 = phi i32 [ 42, %for.exiting_block.prol ], [ %sum.02.prol, %header.prol ]
; PROLOG-NEXT: br label %for.exit2
; PROLOG: for.exit2:
; PROLOG-NEXT: %retval = phi i32 [ %retval.ph, %for.exit2.loopexit ], [ %retval.ph2, %for.exit2.loopexit1 ]
; PROLOG-NEXT: br i1 %cond, label %exit_true, label %exit_false
; PROLOG: latch.7:
; PROLOG: %indvars.iv.next.7 = add i64 %indvars.iv, 8
entry:
br label %header
header:
%indvars.iv = phi i64 [ %indvars.iv.next, %latch ], [ 0, %entry ]
%sum.02 = phi i32 [ %add, %latch ], [ 0, %entry ]
br i1 false, label %for.exit2, label %for.exiting_block
for.exiting_block:
%cmp = icmp eq i64 %n, 42
br i1 %cmp, label %for.exit2, label %latch
latch:
%arrayidx = getelementptr inbounds i32, i32* %a, i64 %indvars.iv
%load = load i32, i32* %arrayidx, align 4
%add = add nsw i32 %load, %sum.02
%indvars.iv.next = add i64 %indvars.iv, 1
%exitcond = icmp eq i64 %indvars.iv.next, %n
br i1 %exitcond, label %latch_exit, label %header
latch_exit:
%sum.0.lcssa = phi i32 [ %add, %latch ]
ret i32 %sum.0.lcssa
for.exit2:
%retval = phi i32 [ %sum.02, %header ], [ 42, %for.exiting_block ]
%addx = add i32 %retval, %x
br i1 %cond, label %exit_true, label %exit_false
exit_true:
ret i32 %retval
exit_false:
ret i32 %addx
}
; test when value in exit block does not have VMap.
define i32 @test7(i32 %arg, i32 %arg1, i32 %arg2) {
; EPILOG-NO-IC: test7(
; EPILOG-NO-IC: loopexit1.loopexit:
; EPILOG-NO-IC-NEXT: %sext3.ph = phi i32 [ %shft, %header ], [ %shft, %latch ], [ %shft, %latch.1 ], [ %shft, %latch.2 ], [ %shft, %latch.3 ], [ %shft, %latch.4 ], [ %shft, %latch.5 ], [ %shft, %latch.6 ]
; EPILOG-NO-IC-NEXT: br label %loopexit1
; EPILOG-NO-IC: loopexit1.loopexit1:
; EPILOG-NO-IC-NEXT: %sext3.ph2 = phi i32 [ %shft, %header.epil ]
; EPILOG-NO-IC-NEXT: br label %loopexit1
; EPILOG-NO-IC: loopexit1:
; EPILOG-NO-IC-NEXT: %sext3 = phi i32 [ %sext3.ph, %loopexit1.loopexit ], [ %sext3.ph2, %loopexit1.loopexit1 ]
bb:
%tmp = icmp slt i32 undef, 2
%sext = sext i32 undef to i64
%shft = ashr exact i32 %arg, 16
br i1 %tmp, label %loopexit2, label %preheader
preheader: ; preds = %bb2
br label %header
header: ; preds = %latch, %preheader
%tmp6 = phi i64 [ 1, %preheader ], [ %add, %latch ]
br i1 false, label %loopexit1, label %latch
latch: ; preds = %header
%add = add nuw nsw i64 %tmp6, 1
%tmp9 = icmp slt i64 %add, %sext
br i1 %tmp9, label %header, label %latchexit
latchexit: ; preds = %latch
unreachable
loopexit2: ; preds = %bb2
ret i32 %shft
loopexit1: ; preds = %header
%sext3 = phi i32 [ %shft, %header ]
ret i32 %sext3
}
; Nested loop and inner loop is unrolled
; FIXME: we cannot unroll with epilog remainder currently, because
; the outer loop does not contain the epilog preheader and epilog exit (while
; infact it should). This causes us to choke up on LCSSA form being incorrect in
; outer loop. However, the exit block where LCSSA fails, is infact still within
; the outer loop. For now, we just bail out in presence of outer loop and epilog
; loop is generated.
; The outer loop header is the preheader for the inner loop and the inner header
; branches back to the outer loop.
define void @test8() {
; EPILOG: test8(
; EPILOG-NOT: niter
; PROLOG: test8(
; PROLOG: outerloop:
; PROLOG-NEXT: phi i64 [ 3, %bb ], [ 0, %outerloop.loopexit ]
; PROLOG: %lcmp.mod = icmp eq i64
; PROLOG-NEXT: br i1 %lcmp.mod, label %innerH.prol.loopexit, label %innerH.prol.preheader
; PROLOG: latch.6:
; PROLOG-NEXT: %tmp4.7 = add nsw i64 %tmp3, 8
; PROLOG-NEXT: br i1 false, label %outerloop.loopexit.loopexit, label %latch.7
; PROLOG: latch.7
; PROLOG-NEXT: %tmp6.7 = icmp ult i64 %tmp4.7, 100
; PROLOG-NEXT: br i1 %tmp6.7, label %innerH, label %exit.unr-lcssa
bb:
br label %outerloop
outerloop: ; preds = %innerH, %bb
%tmp = phi i64 [ 3, %bb ], [ 0, %innerH ]
br label %innerH
innerH: ; preds = %latch, %outerloop
%tmp3 = phi i64 [ %tmp4, %latch ], [ %tmp, %outerloop ]
%tmp4 = add nuw nsw i64 %tmp3, 1
br i1 false, label %outerloop, label %latch
latch: ; preds = %innerH
%tmp6 = icmp ult i64 %tmp4, 100
br i1 %tmp6, label %innerH, label %exit
exit: ; preds = %latch
ret void
}
declare i8 addrspace(1)* @foo(i32)
; inner loop prolog unrolled
; a value from outer loop is used in exit block of inner loop.
; Don't create VMap entries for such values (%trip).
define i8 addrspace(1)* @test9(i8* nocapture readonly %arg, i32 %n) {
; PROLOG: test9(
; PROLOG: header.prol:
; PROLOG-NEXT: %phi.prol = phi i64 [ 0, %header.prol.preheader ], [ %iv.next.prol, %latch.prol ]
; PROLOG: latch.prol:
; PROLOG-NOT: trip
; PROLOG: br i1 %prol.iter.cmp, label %header.prol.loopexit.unr-lcssa, label %header.prol
bb:
br label %outerloopHdr
outerloopHdr: ; preds = %outerLatch, %bb
%trip = add i32 %n, -1
%outercnd = icmp slt i32 0, %trip
br i1 %outercnd, label %preheader, label %outerLatch
preheader: ; preds = %outerloopHdr
%tmp4 = zext i32 0 to i64
br label %header
header: ; preds = %latch, %preheader
%phi = phi i64 [ %tmp4, %preheader ], [ %iv.next, %latch ]
%tmp7 = trunc i64 %phi to i32
br i1 true, label %latch, label %innerexit
innerexit: ; preds = %header
%tmp9 = call i8 addrspace(1)* @foo(i32 %trip)
ret i8 addrspace(1)* %tmp9
latch: ; preds = %header
%tmp11 = add nsw i32 %tmp7, 1
%innercnd = icmp slt i32 %tmp11, %trip
%iv.next = add nuw nsw i64 %phi, 1
br i1 %innercnd, label %header, label %outerLatch
outerLatch: ; preds = %latch, %outerloopHdr
br label %outerloopHdr
}