| //===-- SystemZInstrInfo.td - General SystemZ instructions ----*- tblgen-*-===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| |
| //===----------------------------------------------------------------------===// |
| // Stack allocation |
| //===----------------------------------------------------------------------===// |
| |
| // The callseq_start node requires the hasSideEffects flag, even though these |
| // instructions are noops on SystemZ. |
| let hasNoSchedulingInfo = 1, hasSideEffects = 1 in { |
| def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2), |
| [(callseq_start timm:$amt1, timm:$amt2)]>; |
| def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2), |
| [(callseq_end timm:$amt1, timm:$amt2)]>; |
| } |
| |
| // Takes as input the value of the stack pointer after a dynamic allocation |
| // has been made. Sets the output to the address of the dynamically- |
| // allocated area itself, skipping the outgoing arguments. |
| // |
| // This expands to an LA or LAY instruction. We restrict the offset |
| // to the range of LA and keep the LAY range in reserve for when |
| // the size of the outgoing arguments is added. |
| def ADJDYNALLOC : Pseudo<(outs GR64:$dst), (ins dynalloc12only:$src), |
| [(set GR64:$dst, dynalloc12only:$src)]>; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Branch instructions |
| //===----------------------------------------------------------------------===// |
| |
| // Conditional branches. |
| let isBranch = 1, isTerminator = 1, Uses = [CC] in { |
| // It's easier for LLVM to handle these branches in their raw BRC/BRCL form |
| // with the condition-code mask being the first operand. It seems friendlier |
| // to use mnemonic forms like JE and JLH when writing out the assembly though. |
| let isCodeGenOnly = 1 in { |
| // An assembler extended mnemonic for BRC. |
| def BRC : CondBranchRI <"j#", 0xA74, z_br_ccmask>; |
| // An assembler extended mnemonic for BRCL. (The extension is "G" |
| // rather than "L" because "JL" is "Jump if Less".) |
| def BRCL : CondBranchRIL<"jg#", 0xC04>; |
| let isIndirectBranch = 1 in { |
| def BC : CondBranchRX<"b#", 0x47>; |
| def BCR : CondBranchRR<"b#r", 0x07>; |
| def BIC : CondBranchRXY<"bi#", 0xe347>, |
| Requires<[FeatureMiscellaneousExtensions2]>; |
| } |
| } |
| |
| // Allow using the raw forms directly from the assembler (and occasional |
| // special code generation needs) as well. |
| def BRCAsm : AsmCondBranchRI <"brc", 0xA74>; |
| def BRCLAsm : AsmCondBranchRIL<"brcl", 0xC04>; |
| let isIndirectBranch = 1 in { |
| def BCAsm : AsmCondBranchRX<"bc", 0x47>; |
| def BCRAsm : AsmCondBranchRR<"bcr", 0x07>; |
| def BICAsm : AsmCondBranchRXY<"bic", 0xe347>, |
| Requires<[FeatureMiscellaneousExtensions2]>; |
| } |
| |
| // Define AsmParser extended mnemonics for each general condition-code mask |
| // (integer or floating-point) |
| foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE", |
| "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in { |
| def JAsm#V : FixedCondBranchRI <CV<V>, "j#", 0xA74>; |
| def JGAsm#V : FixedCondBranchRIL<CV<V>, "jg#", 0xC04>; |
| let isIndirectBranch = 1 in { |
| def BAsm#V : FixedCondBranchRX <CV<V>, "b#", 0x47>; |
| def BRAsm#V : FixedCondBranchRR <CV<V>, "b#r", 0x07>; |
| def BIAsm#V : FixedCondBranchRXY<CV<V>, "bi#", 0xe347>, |
| Requires<[FeatureMiscellaneousExtensions2]>; |
| } |
| } |
| } |
| |
| // Unconditional branches. These are in fact simply variants of the |
| // conditional branches with the condition mask set to "always". |
| let isBranch = 1, isTerminator = 1, isBarrier = 1 in { |
| def J : FixedCondBranchRI <CondAlways, "j", 0xA74, br>; |
| def JG : FixedCondBranchRIL<CondAlways, "jg", 0xC04>; |
| let isIndirectBranch = 1 in { |
| def B : FixedCondBranchRX<CondAlways, "b", 0x47>; |
| def BR : FixedCondBranchRR<CondAlways, "br", 0x07, brind>; |
| def BI : FixedCondBranchRXY<CondAlways, "bi", 0xe347, brind>, |
| Requires<[FeatureMiscellaneousExtensions2]>; |
| } |
| } |
| |
| // NOPs. These are again variants of the conditional branches, |
| // with the condition mask set to "never". |
| def NOP : InstAlias<"nop\t$XBD", (BCAsm 0, bdxaddr12only:$XBD), 0>; |
| def NOPR : InstAlias<"nopr\t$R", (BCRAsm 0, GR64:$R), 0>; |
| |
| // Fused compare-and-branch instructions. |
| // |
| // These instructions do not use or clobber the condition codes. |
| // We nevertheless pretend that the relative compare-and-branch |
| // instructions clobber CC, so that we can lower them to separate |
| // comparisons and BRCLs if the branch ends up being out of range. |
| let isBranch = 1, isTerminator = 1 in { |
| // As for normal branches, we handle these instructions internally in |
| // their raw CRJ-like form, but use assembly macros like CRJE when writing |
| // them out. Using the *Pair multiclasses, we also create the raw forms. |
| let Defs = [CC] in { |
| defm CRJ : CmpBranchRIEbPair<"crj", 0xEC76, GR32>; |
| defm CGRJ : CmpBranchRIEbPair<"cgrj", 0xEC64, GR64>; |
| defm CIJ : CmpBranchRIEcPair<"cij", 0xEC7E, GR32, imm32sx8>; |
| defm CGIJ : CmpBranchRIEcPair<"cgij", 0xEC7C, GR64, imm64sx8>; |
| defm CLRJ : CmpBranchRIEbPair<"clrj", 0xEC77, GR32>; |
| defm CLGRJ : CmpBranchRIEbPair<"clgrj", 0xEC65, GR64>; |
| defm CLIJ : CmpBranchRIEcPair<"clij", 0xEC7F, GR32, imm32zx8>; |
| defm CLGIJ : CmpBranchRIEcPair<"clgij", 0xEC7D, GR64, imm64zx8>; |
| } |
| let isIndirectBranch = 1 in { |
| defm CRB : CmpBranchRRSPair<"crb", 0xECF6, GR32>; |
| defm CGRB : CmpBranchRRSPair<"cgrb", 0xECE4, GR64>; |
| defm CIB : CmpBranchRISPair<"cib", 0xECFE, GR32, imm32sx8>; |
| defm CGIB : CmpBranchRISPair<"cgib", 0xECFC, GR64, imm64sx8>; |
| defm CLRB : CmpBranchRRSPair<"clrb", 0xECF7, GR32>; |
| defm CLGRB : CmpBranchRRSPair<"clgrb", 0xECE5, GR64>; |
| defm CLIB : CmpBranchRISPair<"clib", 0xECFF, GR32, imm32zx8>; |
| defm CLGIB : CmpBranchRISPair<"clgib", 0xECFD, GR64, imm64zx8>; |
| } |
| |
| // Define AsmParser mnemonics for each integer condition-code mask. |
| foreach V = [ "E", "H", "L", "HE", "LE", "LH", |
| "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in { |
| let Defs = [CC] in { |
| def CRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "crj", 0xEC76, GR32>; |
| def CGRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "cgrj", 0xEC64, GR64>; |
| def CIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "cij", 0xEC7E, GR32, |
| imm32sx8>; |
| def CGIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "cgij", 0xEC7C, GR64, |
| imm64sx8>; |
| def CLRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "clrj", 0xEC77, GR32>; |
| def CLGRJAsm#V : FixedCmpBranchRIEb<ICV<V>, "clgrj", 0xEC65, GR64>; |
| def CLIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "clij", 0xEC7F, GR32, |
| imm32zx8>; |
| def CLGIJAsm#V : FixedCmpBranchRIEc<ICV<V>, "clgij", 0xEC7D, GR64, |
| imm64zx8>; |
| } |
| let isIndirectBranch = 1 in { |
| def CRBAsm#V : FixedCmpBranchRRS<ICV<V>, "crb", 0xECF6, GR32>; |
| def CGRBAsm#V : FixedCmpBranchRRS<ICV<V>, "cgrb", 0xECE4, GR64>; |
| def CIBAsm#V : FixedCmpBranchRIS<ICV<V>, "cib", 0xECFE, GR32, |
| imm32sx8>; |
| def CGIBAsm#V : FixedCmpBranchRIS<ICV<V>, "cgib", 0xECFC, GR64, |
| imm64sx8>; |
| def CLRBAsm#V : FixedCmpBranchRRS<ICV<V>, "clrb", 0xECF7, GR32>; |
| def CLGRBAsm#V : FixedCmpBranchRRS<ICV<V>, "clgrb", 0xECE5, GR64>; |
| def CLIBAsm#V : FixedCmpBranchRIS<ICV<V>, "clib", 0xECFF, GR32, |
| imm32zx8>; |
| def CLGIBAsm#V : FixedCmpBranchRIS<ICV<V>, "clgib", 0xECFD, GR64, |
| imm64zx8>; |
| } |
| } |
| } |
| |
| // Decrement a register and branch if it is nonzero. These don't clobber CC, |
| // but we might need to split long relative branches into sequences that do. |
| let isBranch = 1, isTerminator = 1 in { |
| let Defs = [CC] in { |
| def BRCT : BranchUnaryRI<"brct", 0xA76, GR32>; |
| def BRCTG : BranchUnaryRI<"brctg", 0xA77, GR64>; |
| } |
| // This doesn't need to clobber CC since we never need to split it. |
| def BRCTH : BranchUnaryRIL<"brcth", 0xCC6, GRH32>, |
| Requires<[FeatureHighWord]>; |
| |
| def BCT : BranchUnaryRX<"bct", 0x46,GR32>; |
| def BCTR : BranchUnaryRR<"bctr", 0x06, GR32>; |
| def BCTG : BranchUnaryRXY<"bctg", 0xE346, GR64>; |
| def BCTGR : BranchUnaryRRE<"bctgr", 0xB946, GR64>; |
| } |
| |
| let isBranch = 1, isTerminator = 1 in { |
| let Defs = [CC] in { |
| def BRXH : BranchBinaryRSI<"brxh", 0x84, GR32>; |
| def BRXLE : BranchBinaryRSI<"brxle", 0x85, GR32>; |
| def BRXHG : BranchBinaryRIEe<"brxhg", 0xEC44, GR64>; |
| def BRXLG : BranchBinaryRIEe<"brxlg", 0xEC45, GR64>; |
| } |
| def BXH : BranchBinaryRS<"bxh", 0x86, GR32>; |
| def BXLE : BranchBinaryRS<"bxle", 0x87, GR32>; |
| def BXHG : BranchBinaryRSY<"bxhg", 0xEB44, GR64>; |
| def BXLEG : BranchBinaryRSY<"bxleg", 0xEB45, GR64>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Trap instructions |
| //===----------------------------------------------------------------------===// |
| |
| // Unconditional trap. |
| let hasCtrlDep = 1, hasSideEffects = 1 in |
| def Trap : Alias<4, (outs), (ins), [(trap)]>; |
| |
| // Conditional trap. |
| let hasCtrlDep = 1, Uses = [CC], hasSideEffects = 1 in |
| def CondTrap : Alias<4, (outs), (ins cond4:$valid, cond4:$R1), []>; |
| |
| // Fused compare-and-trap instructions. |
| let hasCtrlDep = 1, hasSideEffects = 1 in { |
| // These patterns work the same way as for compare-and-branch. |
| defm CRT : CmpBranchRRFcPair<"crt", 0xB972, GR32>; |
| defm CGRT : CmpBranchRRFcPair<"cgrt", 0xB960, GR64>; |
| defm CLRT : CmpBranchRRFcPair<"clrt", 0xB973, GR32>; |
| defm CLGRT : CmpBranchRRFcPair<"clgrt", 0xB961, GR64>; |
| defm CIT : CmpBranchRIEaPair<"cit", 0xEC72, GR32, imm32sx16>; |
| defm CGIT : CmpBranchRIEaPair<"cgit", 0xEC70, GR64, imm64sx16>; |
| defm CLFIT : CmpBranchRIEaPair<"clfit", 0xEC73, GR32, imm32zx16>; |
| defm CLGIT : CmpBranchRIEaPair<"clgit", 0xEC71, GR64, imm64zx16>; |
| let Predicates = [FeatureMiscellaneousExtensions] in { |
| defm CLT : CmpBranchRSYbPair<"clt", 0xEB23, GR32>; |
| defm CLGT : CmpBranchRSYbPair<"clgt", 0xEB2B, GR64>; |
| } |
| |
| foreach V = [ "E", "H", "L", "HE", "LE", "LH", |
| "NE", "NH", "NL", "NHE", "NLE", "NLH" ] in { |
| def CRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "crt", 0xB972, GR32>; |
| def CGRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "cgrt", 0xB960, GR64>; |
| def CLRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "clrt", 0xB973, GR32>; |
| def CLGRTAsm#V : FixedCmpBranchRRFc<ICV<V>, "clgrt", 0xB961, GR64>; |
| def CITAsm#V : FixedCmpBranchRIEa<ICV<V>, "cit", 0xEC72, GR32, |
| imm32sx16>; |
| def CGITAsm#V : FixedCmpBranchRIEa<ICV<V>, "cgit", 0xEC70, GR64, |
| imm64sx16>; |
| def CLFITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clfit", 0xEC73, GR32, |
| imm32zx16>; |
| def CLGITAsm#V : FixedCmpBranchRIEa<ICV<V>, "clgit", 0xEC71, GR64, |
| imm64zx16>; |
| let Predicates = [FeatureMiscellaneousExtensions] in { |
| def CLTAsm#V : FixedCmpBranchRSYb<ICV<V>, "clt", 0xEB23, GR32>; |
| def CLGTAsm#V : FixedCmpBranchRSYb<ICV<V>, "clgt", 0xEB2B, GR64>; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Call and return instructions |
| //===----------------------------------------------------------------------===// |
| |
| // Define the general form of the call instructions for the asm parser. |
| // These instructions don't hard-code %r14 as the return address register. |
| let isCall = 1, Defs = [CC] in { |
| def BRAS : CallRI <"bras", 0xA75>; |
| def BRASL : CallRIL<"brasl", 0xC05>; |
| def BAS : CallRX <"bas", 0x4D>; |
| def BASR : CallRR <"basr", 0x0D>; |
| } |
| |
| // Regular calls. |
| let isCall = 1, Defs = [R14D, CC] in { |
| def CallBRASL : Alias<6, (outs), (ins pcrel32:$I2, variable_ops), |
| [(z_call pcrel32:$I2)]>; |
| def CallBASR : Alias<2, (outs), (ins ADDR64:$R2, variable_ops), |
| [(z_call ADDR64:$R2)]>; |
| } |
| |
| // TLS calls. These will be lowered into a call to __tls_get_offset, |
| // with an extra relocation specifying the TLS symbol. |
| let isCall = 1, Defs = [R14D, CC] in { |
| def TLS_GDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops), |
| [(z_tls_gdcall tglobaltlsaddr:$I2)]>; |
| def TLS_LDCALL : Alias<6, (outs), (ins tlssym:$I2, variable_ops), |
| [(z_tls_ldcall tglobaltlsaddr:$I2)]>; |
| } |
| |
| // Sibling calls. Indirect sibling calls must be via R1, since R2 upwards |
| // are argument registers and since branching to R0 is a no-op. |
| let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1 in { |
| def CallJG : Alias<6, (outs), (ins pcrel32:$I2), |
| [(z_sibcall pcrel32:$I2)]>; |
| let Uses = [R1D] in |
| def CallBR : Alias<2, (outs), (ins), [(z_sibcall R1D)]>; |
| } |
| |
| // Conditional sibling calls. |
| let CCMaskFirst = 1, isCall = 1, isTerminator = 1, isReturn = 1 in { |
| def CallBRCL : Alias<6, (outs), (ins cond4:$valid, cond4:$R1, |
| pcrel32:$I2), []>; |
| let Uses = [R1D] in |
| def CallBCR : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>; |
| } |
| |
| // Fused compare and conditional sibling calls. |
| let isCall = 1, isTerminator = 1, isReturn = 1, Uses = [R1D] in { |
| def CRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>; |
| def CGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>; |
| def CIBCall : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>; |
| def CGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>; |
| def CLRBCall : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>; |
| def CLGRBCall : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>; |
| def CLIBCall : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>; |
| def CLGIBCall : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>; |
| } |
| |
| // A return instruction (br %r14). |
| let isReturn = 1, isTerminator = 1, isBarrier = 1, hasCtrlDep = 1 in |
| def Return : Alias<2, (outs), (ins), [(z_retflag)]>; |
| |
| // A conditional return instruction (bcr <cond>, %r14). |
| let isReturn = 1, isTerminator = 1, hasCtrlDep = 1, CCMaskFirst = 1, Uses = [CC] in |
| def CondReturn : Alias<2, (outs), (ins cond4:$valid, cond4:$R1), []>; |
| |
| // Fused compare and conditional returns. |
| let isReturn = 1, isTerminator = 1, hasCtrlDep = 1 in { |
| def CRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>; |
| def CGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>; |
| def CIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32sx8:$I2, cond4:$M3), []>; |
| def CGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64sx8:$I2, cond4:$M3), []>; |
| def CLRBReturn : Alias<6, (outs), (ins GR32:$R1, GR32:$R2, cond4:$M3), []>; |
| def CLGRBReturn : Alias<6, (outs), (ins GR64:$R1, GR64:$R2, cond4:$M3), []>; |
| def CLIBReturn : Alias<6, (outs), (ins GR32:$R1, imm32zx8:$I2, cond4:$M3), []>; |
| def CLGIBReturn : Alias<6, (outs), (ins GR64:$R1, imm64zx8:$I2, cond4:$M3), []>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Select instructions |
| //===----------------------------------------------------------------------===// |
| |
| def Select32 : SelectWrapper<i32, GR32>, |
| Requires<[FeatureNoLoadStoreOnCond]>; |
| def Select64 : SelectWrapper<i64, GR64>, |
| Requires<[FeatureNoLoadStoreOnCond]>; |
| |
| // We don't define 32-bit Mux stores if we don't have STOCFH, because the |
| // low-only STOC should then always be used if possible. |
| defm CondStore8Mux : CondStores<GRX32, nonvolatile_truncstorei8, |
| nonvolatile_anyextloadi8, bdxaddr20only>, |
| Requires<[FeatureHighWord]>; |
| defm CondStore16Mux : CondStores<GRX32, nonvolatile_truncstorei16, |
| nonvolatile_anyextloadi16, bdxaddr20only>, |
| Requires<[FeatureHighWord]>; |
| defm CondStore32Mux : CondStores<GRX32, nonvolatile_store, |
| nonvolatile_load, bdxaddr20only>, |
| Requires<[FeatureLoadStoreOnCond2]>; |
| defm CondStore8 : CondStores<GR32, nonvolatile_truncstorei8, |
| nonvolatile_anyextloadi8, bdxaddr20only>; |
| defm CondStore16 : CondStores<GR32, nonvolatile_truncstorei16, |
| nonvolatile_anyextloadi16, bdxaddr20only>; |
| defm CondStore32 : CondStores<GR32, nonvolatile_store, |
| nonvolatile_load, bdxaddr20only>; |
| |
| defm : CondStores64<CondStore8, CondStore8Inv, nonvolatile_truncstorei8, |
| nonvolatile_anyextloadi8, bdxaddr20only>; |
| defm : CondStores64<CondStore16, CondStore16Inv, nonvolatile_truncstorei16, |
| nonvolatile_anyextloadi16, bdxaddr20only>; |
| defm : CondStores64<CondStore32, CondStore32Inv, nonvolatile_truncstorei32, |
| nonvolatile_anyextloadi32, bdxaddr20only>; |
| defm CondStore64 : CondStores<GR64, nonvolatile_store, |
| nonvolatile_load, bdxaddr20only>; |
| |
| //===----------------------------------------------------------------------===// |
| // Move instructions |
| //===----------------------------------------------------------------------===// |
| |
| // Register moves. |
| def LR : UnaryRR <"lr", 0x18, null_frag, GR32, GR32>; |
| def LGR : UnaryRRE<"lgr", 0xB904, null_frag, GR64, GR64>; |
| |
| let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in { |
| def LTR : UnaryRR <"ltr", 0x12, null_frag, GR32, GR32>; |
| def LTGR : UnaryRRE<"ltgr", 0xB902, null_frag, GR64, GR64>; |
| } |
| |
| let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in |
| def PAIR128 : Pseudo<(outs GR128:$dst), (ins GR64:$hi, GR64:$lo), []>; |
| |
| // Immediate moves. |
| let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in { |
| // 16-bit sign-extended immediates. LHIMux expands to LHI or IIHF, |
| // deopending on the choice of register. |
| def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>, |
| Requires<[FeatureHighWord]>; |
| def LHI : UnaryRI<"lhi", 0xA78, bitconvert, GR32, imm32sx16>; |
| def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>; |
| |
| // Other 16-bit immediates. |
| def LLILL : UnaryRI<"llill", 0xA5F, bitconvert, GR64, imm64ll16>; |
| def LLILH : UnaryRI<"llilh", 0xA5E, bitconvert, GR64, imm64lh16>; |
| def LLIHL : UnaryRI<"llihl", 0xA5D, bitconvert, GR64, imm64hl16>; |
| def LLIHH : UnaryRI<"llihh", 0xA5C, bitconvert, GR64, imm64hh16>; |
| |
| // 32-bit immediates. |
| def LGFI : UnaryRIL<"lgfi", 0xC01, bitconvert, GR64, imm64sx32>; |
| def LLILF : UnaryRIL<"llilf", 0xC0F, bitconvert, GR64, imm64lf32>; |
| def LLIHF : UnaryRIL<"llihf", 0xC0E, bitconvert, GR64, imm64hf32>; |
| } |
| |
| // Register loads. |
| let canFoldAsLoad = 1, SimpleBDXLoad = 1, mayLoad = 1 in { |
| // Expands to L, LY or LFH, depending on the choice of register. |
| def LMux : UnaryRXYPseudo<"l", load, GRX32, 4>, |
| Requires<[FeatureHighWord]>; |
| defm L : UnaryRXPair<"l", 0x58, 0xE358, load, GR32, 4>; |
| def LFH : UnaryRXY<"lfh", 0xE3CA, load, GRH32, 4>, |
| Requires<[FeatureHighWord]>; |
| def LG : UnaryRXY<"lg", 0xE304, load, GR64, 8>; |
| |
| // These instructions are split after register allocation, so we don't |
| // want a custom inserter. |
| let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in { |
| def L128 : Pseudo<(outs GR128:$dst), (ins bdxaddr20only128:$src), |
| [(set GR128:$dst, (load bdxaddr20only128:$src))]>; |
| } |
| } |
| let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in { |
| def LT : UnaryRXY<"lt", 0xE312, load, GR32, 4>; |
| def LTG : UnaryRXY<"ltg", 0xE302, load, GR64, 8>; |
| } |
| |
| let canFoldAsLoad = 1 in { |
| def LRL : UnaryRILPC<"lrl", 0xC4D, aligned_load, GR32>; |
| def LGRL : UnaryRILPC<"lgrl", 0xC48, aligned_load, GR64>; |
| } |
| |
| // Load and zero rightmost byte. |
| let Predicates = [FeatureLoadAndZeroRightmostByte] in { |
| def LZRF : UnaryRXY<"lzrf", 0xE33B, null_frag, GR32, 4>; |
| def LZRG : UnaryRXY<"lzrg", 0xE32A, null_frag, GR64, 8>; |
| def : Pat<(and (i32 (load bdxaddr20only:$src)), 0xffffff00), |
| (LZRF bdxaddr20only:$src)>; |
| def : Pat<(and (i64 (load bdxaddr20only:$src)), 0xffffffffffffff00), |
| (LZRG bdxaddr20only:$src)>; |
| } |
| |
| // Load and trap. |
| let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in { |
| def LAT : UnaryRXY<"lat", 0xE39F, null_frag, GR32, 4>; |
| def LFHAT : UnaryRXY<"lfhat", 0xE3C8, null_frag, GRH32, 4>; |
| def LGAT : UnaryRXY<"lgat", 0xE385, null_frag, GR64, 8>; |
| } |
| |
| // Register stores. |
| let SimpleBDXStore = 1, mayStore = 1 in { |
| // Expands to ST, STY or STFH, depending on the choice of register. |
| def STMux : StoreRXYPseudo<store, GRX32, 4>, |
| Requires<[FeatureHighWord]>; |
| defm ST : StoreRXPair<"st", 0x50, 0xE350, store, GR32, 4>; |
| def STFH : StoreRXY<"stfh", 0xE3CB, store, GRH32, 4>, |
| Requires<[FeatureHighWord]>; |
| def STG : StoreRXY<"stg", 0xE324, store, GR64, 8>; |
| |
| // These instructions are split after register allocation, so we don't |
| // want a custom inserter. |
| let Has20BitOffset = 1, HasIndex = 1, Is128Bit = 1 in { |
| def ST128 : Pseudo<(outs), (ins GR128:$src, bdxaddr20only128:$dst), |
| [(store GR128:$src, bdxaddr20only128:$dst)]>; |
| } |
| } |
| def STRL : StoreRILPC<"strl", 0xC4F, aligned_store, GR32>; |
| def STGRL : StoreRILPC<"stgrl", 0xC4B, aligned_store, GR64>; |
| |
| // 8-bit immediate stores to 8-bit fields. |
| defm MVI : StoreSIPair<"mvi", 0x92, 0xEB52, truncstorei8, imm32zx8trunc>; |
| |
| // 16-bit immediate stores to 16-, 32- or 64-bit fields. |
| def MVHHI : StoreSIL<"mvhhi", 0xE544, truncstorei16, imm32sx16trunc>; |
| def MVHI : StoreSIL<"mvhi", 0xE54C, store, imm32sx16>; |
| def MVGHI : StoreSIL<"mvghi", 0xE548, store, imm64sx16>; |
| |
| // Memory-to-memory moves. |
| let mayLoad = 1, mayStore = 1 in |
| defm MVC : MemorySS<"mvc", 0xD2, z_mvc, z_mvc_loop>; |
| let mayLoad = 1, mayStore = 1, Defs = [CC] in { |
| def MVCL : SideEffectBinaryMemMemRR<"mvcl", 0x0E, GR128, GR128>; |
| def MVCLE : SideEffectTernaryMemMemRS<"mvcle", 0xA8, GR128, GR128>; |
| def MVCLU : SideEffectTernaryMemMemRSY<"mvclu", 0xEB8E, GR128, GR128>; |
| } |
| |
| // String moves. |
| let mayLoad = 1, mayStore = 1, Defs = [CC] in |
| defm MVST : StringRRE<"mvst", 0xB255, z_stpcpy>; |
| |
| //===----------------------------------------------------------------------===// |
| // Conditional move instructions |
| //===----------------------------------------------------------------------===// |
| |
| let Predicates = [FeatureLoadStoreOnCond2], Uses = [CC] in { |
| // Load immediate on condition. Matched via DAG pattern and created |
| // by the PeepholeOptimizer via FoldImmediate. |
| |
| // Expands to LOCHI or LOCHHI, depending on the choice of register. |
| def LOCHIMux : CondBinaryRIEPseudo<GRX32, imm32sx16>; |
| defm LOCHHI : CondBinaryRIEPair<"lochhi", 0xEC4E, GRH32, imm32sx16>; |
| defm LOCHI : CondBinaryRIEPair<"lochi", 0xEC42, GR32, imm32sx16>; |
| defm LOCGHI : CondBinaryRIEPair<"locghi", 0xEC46, GR64, imm64sx16>; |
| |
| // Move register on condition. Matched via DAG pattern and |
| // created by early if-conversion. |
| let isCommutable = 1 in { |
| // Expands to LOCR or LOCFHR or a branch-and-move sequence, |
| // depending on the choice of registers. |
| def LOCRMux : CondBinaryRRFPseudo<GRX32, GRX32>; |
| defm LOCFHR : CondBinaryRRFPair<"locfhr", 0xB9E0, GRH32, GRH32>; |
| } |
| |
| // Load on condition. Matched via DAG pattern. |
| // Expands to LOC or LOCFH, depending on the choice of register. |
| def LOCMux : CondUnaryRSYPseudo<nonvolatile_load, GRX32, 4>; |
| defm LOCFH : CondUnaryRSYPair<"locfh", 0xEBE0, nonvolatile_load, GRH32, 4>; |
| |
| // Store on condition. Expanded from CondStore* pseudos. |
| // Expands to STOC or STOCFH, depending on the choice of register. |
| def STOCMux : CondStoreRSYPseudo<GRX32, 4>; |
| defm STOCFH : CondStoreRSYPair<"stocfh", 0xEBE1, GRH32, 4>; |
| |
| // Define AsmParser extended mnemonics for each general condition-code mask. |
| foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE", |
| "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in { |
| def LOCHIAsm#V : FixedCondBinaryRIE<CV<V>, "lochi", 0xEC42, GR32, |
| imm32sx16>; |
| def LOCGHIAsm#V : FixedCondBinaryRIE<CV<V>, "locghi", 0xEC46, GR64, |
| imm64sx16>; |
| def LOCHHIAsm#V : FixedCondBinaryRIE<CV<V>, "lochhi", 0xEC4E, GRH32, |
| imm32sx16>; |
| def LOCFHRAsm#V : FixedCondBinaryRRF<CV<V>, "locfhr", 0xB9E0, GRH32, GRH32>; |
| def LOCFHAsm#V : FixedCondUnaryRSY<CV<V>, "locfh", 0xEBE0, GRH32, 4>; |
| def STOCFHAsm#V : FixedCondStoreRSY<CV<V>, "stocfh", 0xEBE1, GRH32, 4>; |
| } |
| } |
| |
| let Predicates = [FeatureLoadStoreOnCond], Uses = [CC] in { |
| // Move register on condition. Matched via DAG pattern and |
| // created by early if-conversion. |
| let isCommutable = 1 in { |
| defm LOCR : CondBinaryRRFPair<"locr", 0xB9F2, GR32, GR32>; |
| defm LOCGR : CondBinaryRRFPair<"locgr", 0xB9E2, GR64, GR64>; |
| } |
| |
| // Load on condition. Matched via DAG pattern. |
| defm LOC : CondUnaryRSYPair<"loc", 0xEBF2, nonvolatile_load, GR32, 4>; |
| defm LOCG : CondUnaryRSYPair<"locg", 0xEBE2, nonvolatile_load, GR64, 8>; |
| |
| // Store on condition. Expanded from CondStore* pseudos. |
| defm STOC : CondStoreRSYPair<"stoc", 0xEBF3, GR32, 4>; |
| defm STOCG : CondStoreRSYPair<"stocg", 0xEBE3, GR64, 8>; |
| |
| // Define AsmParser extended mnemonics for each general condition-code mask. |
| foreach V = [ "E", "NE", "H", "NH", "L", "NL", "HE", "NHE", "LE", "NLE", |
| "Z", "NZ", "P", "NP", "M", "NM", "LH", "NLH", "O", "NO" ] in { |
| def LOCRAsm#V : FixedCondBinaryRRF<CV<V>, "locr", 0xB9F2, GR32, GR32>; |
| def LOCGRAsm#V : FixedCondBinaryRRF<CV<V>, "locgr", 0xB9E2, GR64, GR64>; |
| def LOCAsm#V : FixedCondUnaryRSY<CV<V>, "loc", 0xEBF2, GR32, 4>; |
| def LOCGAsm#V : FixedCondUnaryRSY<CV<V>, "locg", 0xEBE2, GR64, 8>; |
| def STOCAsm#V : FixedCondStoreRSY<CV<V>, "stoc", 0xEBF3, GR32, 4>; |
| def STOCGAsm#V : FixedCondStoreRSY<CV<V>, "stocg", 0xEBE3, GR64, 8>; |
| } |
| } |
| //===----------------------------------------------------------------------===// |
| // Sign extensions |
| //===----------------------------------------------------------------------===// |
| // |
| // Note that putting these before zero extensions mean that we will prefer |
| // them for anyextload*. There's not really much to choose between the two |
| // either way, but signed-extending loads have a short LH and a long LHY, |
| // while zero-extending loads have only the long LLH. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| // 32-bit extensions from registers. |
| def LBR : UnaryRRE<"lbr", 0xB926, sext8, GR32, GR32>; |
| def LHR : UnaryRRE<"lhr", 0xB927, sext16, GR32, GR32>; |
| |
| // 64-bit extensions from registers. |
| def LGBR : UnaryRRE<"lgbr", 0xB906, sext8, GR64, GR64>; |
| def LGHR : UnaryRRE<"lghr", 0xB907, sext16, GR64, GR64>; |
| def LGFR : UnaryRRE<"lgfr", 0xB914, sext32, GR64, GR32>; |
| |
| let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in |
| def LTGFR : UnaryRRE<"ltgfr", 0xB912, null_frag, GR64, GR32>; |
| |
| // Match 32-to-64-bit sign extensions in which the source is already |
| // in a 64-bit register. |
| def : Pat<(sext_inreg GR64:$src, i32), |
| (LGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>; |
| |
| // 32-bit extensions from 8-bit memory. LBMux expands to LB or LBH, |
| // depending on the choice of register. |
| def LBMux : UnaryRXYPseudo<"lb", asextloadi8, GRX32, 1>, |
| Requires<[FeatureHighWord]>; |
| def LB : UnaryRXY<"lb", 0xE376, asextloadi8, GR32, 1>; |
| def LBH : UnaryRXY<"lbh", 0xE3C0, asextloadi8, GRH32, 1>, |
| Requires<[FeatureHighWord]>; |
| |
| // 32-bit extensions from 16-bit memory. LHMux expands to LH or LHH, |
| // depending on the choice of register. |
| def LHMux : UnaryRXYPseudo<"lh", asextloadi16, GRX32, 2>, |
| Requires<[FeatureHighWord]>; |
| defm LH : UnaryRXPair<"lh", 0x48, 0xE378, asextloadi16, GR32, 2>; |
| def LHH : UnaryRXY<"lhh", 0xE3C4, asextloadi16, GRH32, 2>, |
| Requires<[FeatureHighWord]>; |
| def LHRL : UnaryRILPC<"lhrl", 0xC45, aligned_asextloadi16, GR32>; |
| |
| // 64-bit extensions from memory. |
| def LGB : UnaryRXY<"lgb", 0xE377, asextloadi8, GR64, 1>; |
| def LGH : UnaryRXY<"lgh", 0xE315, asextloadi16, GR64, 2>; |
| def LGF : UnaryRXY<"lgf", 0xE314, asextloadi32, GR64, 4>; |
| def LGHRL : UnaryRILPC<"lghrl", 0xC44, aligned_asextloadi16, GR64>; |
| def LGFRL : UnaryRILPC<"lgfrl", 0xC4C, aligned_asextloadi32, GR64>; |
| let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in |
| def LTGF : UnaryRXY<"ltgf", 0xE332, asextloadi32, GR64, 4>; |
| |
| //===----------------------------------------------------------------------===// |
| // Zero extensions |
| //===----------------------------------------------------------------------===// |
| |
| // 32-bit extensions from registers. |
| |
| // Expands to LLCR or RISB[LH]G, depending on the choice of registers. |
| def LLCRMux : UnaryRRPseudo<"llcr", zext8, GRX32, GRX32>, |
| Requires<[FeatureHighWord]>; |
| def LLCR : UnaryRRE<"llcr", 0xB994, zext8, GR32, GR32>; |
| // Expands to LLHR or RISB[LH]G, depending on the choice of registers. |
| def LLHRMux : UnaryRRPseudo<"llhr", zext16, GRX32, GRX32>, |
| Requires<[FeatureHighWord]>; |
| def LLHR : UnaryRRE<"llhr", 0xB995, zext16, GR32, GR32>; |
| |
| // 64-bit extensions from registers. |
| def LLGCR : UnaryRRE<"llgcr", 0xB984, zext8, GR64, GR64>; |
| def LLGHR : UnaryRRE<"llghr", 0xB985, zext16, GR64, GR64>; |
| def LLGFR : UnaryRRE<"llgfr", 0xB916, zext32, GR64, GR32>; |
| |
| // Match 32-to-64-bit zero extensions in which the source is already |
| // in a 64-bit register. |
| def : Pat<(and GR64:$src, 0xffffffff), |
| (LLGFR (EXTRACT_SUBREG GR64:$src, subreg_l32))>; |
| |
| // 32-bit extensions from 8-bit memory. LLCMux expands to LLC or LLCH, |
| // depending on the choice of register. |
| def LLCMux : UnaryRXYPseudo<"llc", azextloadi8, GRX32, 1>, |
| Requires<[FeatureHighWord]>; |
| def LLC : UnaryRXY<"llc", 0xE394, azextloadi8, GR32, 1>; |
| def LLCH : UnaryRXY<"llch", 0xE3C2, azextloadi8, GRH32, 1>, |
| Requires<[FeatureHighWord]>; |
| |
| // 32-bit extensions from 16-bit memory. LLHMux expands to LLH or LLHH, |
| // depending on the choice of register. |
| def LLHMux : UnaryRXYPseudo<"llh", azextloadi16, GRX32, 2>, |
| Requires<[FeatureHighWord]>; |
| def LLH : UnaryRXY<"llh", 0xE395, azextloadi16, GR32, 2>; |
| def LLHH : UnaryRXY<"llhh", 0xE3C6, azextloadi16, GRH32, 2>, |
| Requires<[FeatureHighWord]>; |
| def LLHRL : UnaryRILPC<"llhrl", 0xC42, aligned_azextloadi16, GR32>; |
| |
| // 64-bit extensions from memory. |
| def LLGC : UnaryRXY<"llgc", 0xE390, azextloadi8, GR64, 1>; |
| def LLGH : UnaryRXY<"llgh", 0xE391, azextloadi16, GR64, 2>; |
| def LLGF : UnaryRXY<"llgf", 0xE316, azextloadi32, GR64, 4>; |
| def LLGHRL : UnaryRILPC<"llghrl", 0xC46, aligned_azextloadi16, GR64>; |
| def LLGFRL : UnaryRILPC<"llgfrl", 0xC4E, aligned_azextloadi32, GR64>; |
| |
| // 31-to-64-bit zero extensions. |
| def LLGTR : UnaryRRE<"llgtr", 0xB917, null_frag, GR64, GR64>; |
| def LLGT : UnaryRXY<"llgt", 0xE317, null_frag, GR64, 4>; |
| def : Pat<(and GR64:$src, 0x7fffffff), |
| (LLGTR GR64:$src)>; |
| def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0x7fffffff), |
| (LLGT bdxaddr20only:$src)>; |
| |
| // Load and zero rightmost byte. |
| let Predicates = [FeatureLoadAndZeroRightmostByte] in { |
| def LLZRGF : UnaryRXY<"llzrgf", 0xE33A, null_frag, GR64, 4>; |
| def : Pat<(and (i64 (azextloadi32 bdxaddr20only:$src)), 0xffffff00), |
| (LLZRGF bdxaddr20only:$src)>; |
| } |
| |
| // Load and trap. |
| let Predicates = [FeatureLoadAndTrap], hasSideEffects = 1 in { |
| def LLGFAT : UnaryRXY<"llgfat", 0xE39D, null_frag, GR64, 4>; |
| def LLGTAT : UnaryRXY<"llgtat", 0xE39C, null_frag, GR64, 4>; |
| } |
| |
| // Extend GR64s to GR128s. |
| let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in |
| def ZEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>; |
| |
| //===----------------------------------------------------------------------===// |
| // "Any" extensions |
| //===----------------------------------------------------------------------===// |
| |
| // Use subregs to populate the "don't care" bits in a 32-bit to 64-bit anyext. |
| def : Pat<(i64 (anyext GR32:$src)), |
| (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32)>; |
| |
| // Extend GR64s to GR128s. |
| let usesCustomInserter = 1, hasNoSchedulingInfo = 1 in |
| def AEXT128 : Pseudo<(outs GR128:$dst), (ins GR64:$src), []>; |
| |
| //===----------------------------------------------------------------------===// |
| // Truncations |
| //===----------------------------------------------------------------------===// |
| |
| // Truncations of 64-bit registers to 32-bit registers. |
| def : Pat<(i32 (trunc GR64:$src)), |
| (EXTRACT_SUBREG GR64:$src, subreg_l32)>; |
| |
| // Truncations of 32-bit registers to 8-bit memory. STCMux expands to |
| // STC, STCY or STCH, depending on the choice of register. |
| def STCMux : StoreRXYPseudo<truncstorei8, GRX32, 1>, |
| Requires<[FeatureHighWord]>; |
| defm STC : StoreRXPair<"stc", 0x42, 0xE372, truncstorei8, GR32, 1>; |
| def STCH : StoreRXY<"stch", 0xE3C3, truncstorei8, GRH32, 1>, |
| Requires<[FeatureHighWord]>; |
| |
| // Truncations of 32-bit registers to 16-bit memory. STHMux expands to |
| // STH, STHY or STHH, depending on the choice of register. |
| def STHMux : StoreRXYPseudo<truncstorei16, GRX32, 1>, |
| Requires<[FeatureHighWord]>; |
| defm STH : StoreRXPair<"sth", 0x40, 0xE370, truncstorei16, GR32, 2>; |
| def STHH : StoreRXY<"sthh", 0xE3C7, truncstorei16, GRH32, 2>, |
| Requires<[FeatureHighWord]>; |
| def STHRL : StoreRILPC<"sthrl", 0xC47, aligned_truncstorei16, GR32>; |
| |
| // Truncations of 64-bit registers to memory. |
| defm : StoreGR64Pair<STC, STCY, truncstorei8>; |
| defm : StoreGR64Pair<STH, STHY, truncstorei16>; |
| def : StoreGR64PC<STHRL, aligned_truncstorei16>; |
| defm : StoreGR64Pair<ST, STY, truncstorei32>; |
| def : StoreGR64PC<STRL, aligned_truncstorei32>; |
| |
| // Store characters under mask -- not (yet) used for codegen. |
| defm STCM : StoreBinaryRSPair<"stcm", 0xBE, 0xEB2D, GR32, 0>; |
| def STCMH : StoreBinaryRSY<"stcmh", 0xEB2C, GRH32, 0>; |
| |
| //===----------------------------------------------------------------------===// |
| // Multi-register moves |
| //===----------------------------------------------------------------------===// |
| |
| // Multi-register loads. |
| defm LM : LoadMultipleRSPair<"lm", 0x98, 0xEB98, GR32>; |
| def LMG : LoadMultipleRSY<"lmg", 0xEB04, GR64>; |
| def LMH : LoadMultipleRSY<"lmh", 0xEB96, GRH32>; |
| def LMD : LoadMultipleSSe<"lmd", 0xEF, GR64>; |
| |
| // Multi-register stores. |
| defm STM : StoreMultipleRSPair<"stm", 0x90, 0xEB90, GR32>; |
| def STMG : StoreMultipleRSY<"stmg", 0xEB24, GR64>; |
| def STMH : StoreMultipleRSY<"stmh", 0xEB26, GRH32>; |
| |
| //===----------------------------------------------------------------------===// |
| // Byte swaps |
| //===----------------------------------------------------------------------===// |
| |
| // Byte-swapping register moves. |
| def LRVR : UnaryRRE<"lrvr", 0xB91F, bswap, GR32, GR32>; |
| def LRVGR : UnaryRRE<"lrvgr", 0xB90F, bswap, GR64, GR64>; |
| |
| // Byte-swapping loads. |
| def LRVH : UnaryRXY<"lrvh", 0xE31F, z_loadbswap16, GR32, 2>; |
| def LRV : UnaryRXY<"lrv", 0xE31E, z_loadbswap32, GR32, 4>; |
| def LRVG : UnaryRXY<"lrvg", 0xE30F, z_loadbswap64, GR64, 8>; |
| |
| // Byte-swapping stores. |
| def STRVH : StoreRXY<"strvh", 0xE33F, z_storebswap16, GR32, 2>; |
| def STRV : StoreRXY<"strv", 0xE33E, z_storebswap32, GR32, 4>; |
| def STRVG : StoreRXY<"strvg", 0xE32F, z_storebswap64, GR64, 8>; |
| |
| // Byte-swapping memory-to-memory moves. |
| let mayLoad = 1, mayStore = 1 in |
| def MVCIN : SideEffectBinarySSa<"mvcin", 0xE8>; |
| |
| //===----------------------------------------------------------------------===// |
| // Load address instructions |
| //===----------------------------------------------------------------------===// |
| |
| // Load BDX-style addresses. |
| let isAsCheapAsAMove = 1, isReMaterializable = 1 in |
| defm LA : LoadAddressRXPair<"la", 0x41, 0xE371, bitconvert>; |
| |
| // Load a PC-relative address. There's no version of this instruction |
| // with a 16-bit offset, so there's no relaxation. |
| let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in |
| def LARL : LoadAddressRIL<"larl", 0xC00, bitconvert>; |
| |
| // Load the Global Offset Table address. This will be lowered into a |
| // larl $R1, _GLOBAL_OFFSET_TABLE_ |
| // instruction. |
| def GOT : Alias<6, (outs GR64:$R1), (ins), |
| [(set GR64:$R1, (global_offset_table))]>; |
| |
| //===----------------------------------------------------------------------===// |
| // Absolute and Negation |
| //===----------------------------------------------------------------------===// |
| |
| let Defs = [CC] in { |
| let CCValues = 0xF, CompareZeroCCMask = 0x8 in { |
| def LPR : UnaryRR <"lpr", 0x10, z_iabs, GR32, GR32>; |
| def LPGR : UnaryRRE<"lpgr", 0xB900, z_iabs, GR64, GR64>; |
| } |
| let CCValues = 0xE, CompareZeroCCMask = 0xE in |
| def LPGFR : UnaryRRE<"lpgfr", 0xB910, null_frag, GR64, GR32>; |
| } |
| def : Pat<(z_iabs32 GR32:$src), (LPR GR32:$src)>; |
| def : Pat<(z_iabs64 GR64:$src), (LPGR GR64:$src)>; |
| defm : SXU<z_iabs, LPGFR>; |
| defm : SXU<z_iabs64, LPGFR>; |
| |
| let Defs = [CC] in { |
| let CCValues = 0xF, CompareZeroCCMask = 0x8 in { |
| def LNR : UnaryRR <"lnr", 0x11, z_inegabs, GR32, GR32>; |
| def LNGR : UnaryRRE<"lngr", 0xB901, z_inegabs, GR64, GR64>; |
| } |
| let CCValues = 0xE, CompareZeroCCMask = 0xE in |
| def LNGFR : UnaryRRE<"lngfr", 0xB911, null_frag, GR64, GR32>; |
| } |
| def : Pat<(z_inegabs32 GR32:$src), (LNR GR32:$src)>; |
| def : Pat<(z_inegabs64 GR64:$src), (LNGR GR64:$src)>; |
| defm : SXU<z_inegabs, LNGFR>; |
| defm : SXU<z_inegabs64, LNGFR>; |
| |
| let Defs = [CC] in { |
| let CCValues = 0xF, CompareZeroCCMask = 0x8 in { |
| def LCR : UnaryRR <"lcr", 0x13, ineg, GR32, GR32>; |
| def LCGR : UnaryRRE<"lcgr", 0xB903, ineg, GR64, GR64>; |
| } |
| let CCValues = 0xE, CompareZeroCCMask = 0xE in |
| def LCGFR : UnaryRRE<"lcgfr", 0xB913, null_frag, GR64, GR32>; |
| } |
| defm : SXU<ineg, LCGFR>; |
| |
| //===----------------------------------------------------------------------===// |
| // Insertion |
| //===----------------------------------------------------------------------===// |
| |
| let isCodeGenOnly = 1 in |
| defm IC32 : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR32, azextloadi8, 1>; |
| defm IC : BinaryRXPair<"ic", 0x43, 0xE373, inserti8, GR64, azextloadi8, 1>; |
| |
| defm : InsertMem<"inserti8", IC32, GR32, azextloadi8, bdxaddr12pair>; |
| defm : InsertMem<"inserti8", IC32Y, GR32, azextloadi8, bdxaddr20pair>; |
| |
| defm : InsertMem<"inserti8", IC, GR64, azextloadi8, bdxaddr12pair>; |
| defm : InsertMem<"inserti8", ICY, GR64, azextloadi8, bdxaddr20pair>; |
| |
| // Insert characters under mask -- not (yet) used for codegen. |
| let Defs = [CC] in { |
| defm ICM : TernaryRSPair<"icm", 0xBF, 0xEB81, GR32, 0>; |
| def ICMH : TernaryRSY<"icmh", 0xEB80, GRH32, 0>; |
| } |
| |
| // Insertions of a 16-bit immediate, leaving other bits unaffected. |
| // We don't have or_as_insert equivalents of these operations because |
| // OI is available instead. |
| // |
| // IIxMux expands to II[LH]x, depending on the choice of register. |
| def IILMux : BinaryRIPseudo<insertll, GRX32, imm32ll16>, |
| Requires<[FeatureHighWord]>; |
| def IIHMux : BinaryRIPseudo<insertlh, GRX32, imm32lh16>, |
| Requires<[FeatureHighWord]>; |
| def IILL : BinaryRI<"iill", 0xA53, insertll, GR32, imm32ll16>; |
| def IILH : BinaryRI<"iilh", 0xA52, insertlh, GR32, imm32lh16>; |
| def IIHL : BinaryRI<"iihl", 0xA51, insertll, GRH32, imm32ll16>; |
| def IIHH : BinaryRI<"iihh", 0xA50, insertlh, GRH32, imm32lh16>; |
| def IILL64 : BinaryAliasRI<insertll, GR64, imm64ll16>; |
| def IILH64 : BinaryAliasRI<insertlh, GR64, imm64lh16>; |
| def IIHL64 : BinaryAliasRI<inserthl, GR64, imm64hl16>; |
| def IIHH64 : BinaryAliasRI<inserthh, GR64, imm64hh16>; |
| |
| // ...likewise for 32-bit immediates. For GR32s this is a general |
| // full-width move. (We use IILF rather than something like LLILF |
| // for 32-bit moves because IILF leaves the upper 32 bits of the |
| // GR64 unchanged.) |
| let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in { |
| def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>, |
| Requires<[FeatureHighWord]>; |
| def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>; |
| def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>; |
| } |
| def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>; |
| def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>; |
| |
| // An alternative model of inserthf, with the first operand being |
| // a zero-extended value. |
| def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm), |
| (IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32), |
| imm64hf32:$imm)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Addition |
| //===----------------------------------------------------------------------===// |
| |
| // Addition producing a signed overflow flag. |
| let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in { |
| // Addition of a register. |
| let isCommutable = 1 in { |
| defm AR : BinaryRRAndK<"ar", 0x1A, 0xB9F8, z_sadd, GR32, GR32>; |
| defm AGR : BinaryRREAndK<"agr", 0xB908, 0xB9E8, z_sadd, GR64, GR64>; |
| } |
| def AGFR : BinaryRRE<"agfr", 0xB918, null_frag, GR64, GR32>; |
| |
| // Addition to a high register. |
| def AHHHR : BinaryRRFa<"ahhhr", 0xB9C8, null_frag, GRH32, GRH32, GRH32>, |
| Requires<[FeatureHighWord]>; |
| def AHHLR : BinaryRRFa<"ahhlr", 0xB9D8, null_frag, GRH32, GRH32, GR32>, |
| Requires<[FeatureHighWord]>; |
| |
| // Addition of signed 16-bit immediates. |
| defm AHIMux : BinaryRIAndKPseudo<"ahimux", z_sadd, GRX32, imm32sx16>; |
| defm AHI : BinaryRIAndK<"ahi", 0xA7A, 0xECD8, z_sadd, GR32, imm32sx16>; |
| defm AGHI : BinaryRIAndK<"aghi", 0xA7B, 0xECD9, z_sadd, GR64, imm64sx16>; |
| |
| // Addition of signed 32-bit immediates. |
| def AFIMux : BinaryRIPseudo<z_sadd, GRX32, simm32>, |
| Requires<[FeatureHighWord]>; |
| def AFI : BinaryRIL<"afi", 0xC29, z_sadd, GR32, simm32>; |
| def AIH : BinaryRIL<"aih", 0xCC8, z_sadd, GRH32, simm32>, |
| Requires<[FeatureHighWord]>; |
| def AGFI : BinaryRIL<"agfi", 0xC28, z_sadd, GR64, imm64sx32>; |
| |
| // Addition of memory. |
| defm AH : BinaryRXPair<"ah", 0x4A, 0xE37A, z_sadd, GR32, asextloadi16, 2>; |
| defm A : BinaryRXPair<"a", 0x5A, 0xE35A, z_sadd, GR32, load, 4>; |
| def AGH : BinaryRXY<"agh", 0xE338, z_sadd, GR64, asextloadi16, 2>, |
| Requires<[FeatureMiscellaneousExtensions2]>; |
| def AGF : BinaryRXY<"agf", 0xE318, z_sadd, GR64, asextloadi32, 4>; |
| def AG : BinaryRXY<"ag", 0xE308, z_sadd, GR64, load, 8>; |
| |
| // Addition to memory. |
| def ASI : BinarySIY<"asi", 0xEB6A, add, imm32sx8>; |
| def AGSI : BinarySIY<"agsi", 0xEB7A, add, imm64sx8>; |
| } |
| defm : SXB<z_sadd, GR64, AGFR>; |
| |
| // Addition producing a carry. |
| let Defs = [CC] in { |
| // Addition of a register. |
| let isCommutable = 1 in { |
| defm ALR : BinaryRRAndK<"alr", 0x1E, 0xB9FA, z_uadd, GR32, GR32>; |
| defm ALGR : BinaryRREAndK<"algr", 0xB90A, 0xB9EA, z_uadd, GR64, GR64>; |
| } |
| def ALGFR : BinaryRRE<"algfr", 0xB91A, null_frag, GR64, GR32>; |
| |
| // Addition to a high register. |
| def ALHHHR : BinaryRRFa<"alhhhr", 0xB9CA, null_frag, GRH32, GRH32, GRH32>, |
| Requires<[FeatureHighWord]>; |
| def ALHHLR : BinaryRRFa<"alhhlr", 0xB9DA, null_frag, GRH32, GRH32, GR32>, |
| Requires<[FeatureHighWord]>; |
| |
| // Addition of signed 16-bit immediates. |
| def ALHSIK : BinaryRIE<"alhsik", 0xECDA, z_uadd, GR32, imm32sx16>, |
| Requires<[FeatureDistinctOps]>; |
| def ALGHSIK : BinaryRIE<"alghsik", 0xECDB, z_uadd, GR64, imm64sx16>, |
| Requires<[FeatureDistinctOps]>; |
| |
| // Addition of unsigned 32-bit immediates. |
| def ALFI : BinaryRIL<"alfi", 0xC2B, z_uadd, GR32, uimm32>; |
| def ALGFI : BinaryRIL<"algfi", 0xC2A, z_uadd, GR64, imm64zx32>; |
| |
| // Addition of signed 32-bit immediates. |
| def ALSIH : BinaryRIL<"alsih", 0xCCA, null_frag, GRH32, simm32>, |
| Requires<[FeatureHighWord]>; |
| |
| // Addition of memory. |
| defm AL : BinaryRXPair<"al", 0x5E, 0xE35E, z_uadd, GR32, load, 4>; |
| def ALGF : BinaryRXY<"algf", 0xE31A, z_uadd, GR64, azextloadi32, 4>; |
| def ALG : BinaryRXY<"alg", 0xE30A, z_uadd, GR64, load, 8>; |
| |
| // Addition to memory. |
| def ALSI : BinarySIY<"alsi", 0xEB6E, null_frag, imm32sx8>; |
| def ALGSI : BinarySIY<"algsi", 0xEB7E, null_frag, imm64sx8>; |
| } |
| defm : ZXB<z_uadd, GR64, ALGFR>; |
| |
| // Addition producing and using a carry. |
| let Defs = [CC], Uses = [CC] in { |
| // Addition of a register. |
| def ALCR : BinaryRRE<"alcr", 0xB998, z_addcarry, GR32, GR32>; |
| def ALCGR : BinaryRRE<"alcgr", 0xB988, z_addcarry, GR64, GR64>; |
| |
| // Addition of memory. |
| def ALC : BinaryRXY<"alc", 0xE398, z_addcarry, GR32, load, 4>; |
| def ALCG : BinaryRXY<"alcg", 0xE388, z_addcarry, GR64, load, 8>; |
| } |
| |
| // Addition that does not modify the condition code. |
| def ALSIHN : BinaryRIL<"alsihn", 0xCCB, null_frag, GRH32, simm32>, |
| Requires<[FeatureHighWord]>; |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Subtraction |
| //===----------------------------------------------------------------------===// |
| |
| // Subtraction producing a signed overflow flag. |
| let Defs = [CC], CCValues = 0xF, CompareZeroCCMask = 0x8 in { |
| // Subtraction of a register. |
| defm SR : BinaryRRAndK<"sr", 0x1B, 0xB9F9, z_ssub, GR32, GR32>; |
| def SGFR : BinaryRRE<"sgfr", 0xB919, null_frag, GR64, GR32>; |
| defm SGR : BinaryRREAndK<"sgr", 0xB909, 0xB9E9, z_ssub, GR64, GR64>; |
| |
| // Subtraction from a high register. |
| def SHHHR : BinaryRRFa<"shhhr", 0xB9C9, null_frag, GRH32, GRH32, GRH32>, |
| Requires<[FeatureHighWord]>; |
| def SHHLR : BinaryRRFa<"shhlr", 0xB9D9, null_frag, GRH32, GRH32, GR32>, |
| Requires<[FeatureHighWord]>; |
| |
| // Subtraction of memory. |
| defm SH : BinaryRXPair<"sh", 0x4B, 0xE37B, z_ssub, GR32, asextloadi16, 2>; |
| defm S : BinaryRXPair<"s", 0x5B, 0xE35B, z_ssub, GR32, load, 4>; |
| def SGH : BinaryRXY<"sgh", 0xE339, z_ssub, GR64, asextloadi16, 2>, |
| Requires<[FeatureMiscellaneousExtensions2]>; |
| def SGF : BinaryRXY<"sgf", 0xE319, z_ssub, GR64, asextloadi32, 4>; |
| def SG : BinaryRXY<"sg", 0xE309, z_ssub, GR64, load, 8>; |
| } |
| defm : SXB<z_ssub, GR64, SGFR>; |
| |
| // Subtracting an immediate is the same as adding the negated immediate. |
| let AddedComplexity = 1 in { |
| def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2), |
| (AHIMux GR32:$src1, imm32sx16n:$src2)>, |
| Requires<[FeatureHighWord]>; |
| def : Pat<(z_ssub GR32:$src1, simm32n:$src2), |
| (AFIMux GR32:$src1, simm32n:$src2)>, |
| Requires<[FeatureHighWord]>; |
| def : Pat<(z_ssub GR32:$src1, imm32sx16n:$src2), |
| (AHI GR32:$src1, imm32sx16n:$src2)>; |
| def : Pat<(z_ssub GR32:$src1, simm32n:$src2), |
| (AFI GR32:$src1, simm32n:$src2)>; |
| def : Pat<(z_ssub GR64:$src1, imm64sx16n:$src2), |
| (AGHI GR64:$src1, imm64sx16n:$src2)>; |
| def : Pat<(z_ssub GR64:$src1, imm64sx32n:$src2), |
| (AGFI GR64:$src1, imm64sx32n:$src2)>; |
| } |
| |
| // And vice versa in one special case, where we need to load a |
| // constant into a register in any case, but the negated constant |
| // requires fewer instructions to load. |
| def : Pat<(z_saddo GR64:$src1, imm64lh16n:$src2), |
| (SGR GR64:$src1, (LLILH imm64lh16n:$src2))>; |
| def : Pat<(z_saddo GR64:$src1, imm64lf32n:$src2), |
| (SGR GR64:$src1, (LLILF imm64lf32n:$src2))>; |
| |
| // Subtraction producing a carry. |
| let Defs = [CC] in { |
| // Subtraction of a register. |
| defm SLR : BinaryRRAndK<"slr", 0x1F, 0xB9FB, z_usub, GR32, GR32>; |
| def SLGFR : BinaryRRE<"slgfr", 0xB91B, null_frag, GR64, GR32>; |
| defm SLGR : BinaryRREAndK<"slgr", 0xB90B, 0xB9EB, z_usub, GR64, GR64>; |
| |
| // Subtraction from a high register. |
| def SLHHHR : BinaryRRFa<"slhhhr", 0xB9CB, null_frag, GRH32, GRH32, GRH32>, |
| Requires<[FeatureHighWord]>; |
| def SLHHLR : BinaryRRFa<"slhhlr", 0xB9DB, null_frag, GRH32, GRH32, GR32>, |
| Requires<[FeatureHighWord]>; |
| |
| // Subtraction of unsigned 32-bit immediates. |
| def SLFI : BinaryRIL<"slfi", 0xC25, z_usub, GR32, uimm32>; |
| def SLGFI : BinaryRIL<"slgfi", 0xC24, z_usub, GR64, imm64zx32>; |
| |
| // Subtraction of memory. |
| defm SL : BinaryRXPair<"sl", 0x5F, 0xE35F, z_usub, GR32, load, 4>; |
| def SLGF : BinaryRXY<"slgf", 0xE31B, z_usub, GR64, azextloadi32, 4>; |
| def SLG : BinaryRXY<"slg", 0xE30B, z_usub, GR64, load, 8>; |
| } |
| defm : ZXB<z_usub, GR64, SLGFR>; |
| |
| // Subtracting an immediate is the same as adding the negated immediate. |
| let AddedComplexity = 1 in { |
| def : Pat<(z_usub GR32:$src1, imm32sx16n:$src2), |
| (ALHSIK GR32:$src1, imm32sx16n:$src2)>, |
| Requires<[FeatureDistinctOps]>; |
| def : Pat<(z_usub GR64:$src1, imm64sx16n:$src2), |
| (ALGHSIK GR64:$src1, imm64sx16n:$src2)>, |
| Requires<[FeatureDistinctOps]>; |
| } |
| |
| // And vice versa in one special case (but we prefer addition). |
| def : Pat<(add GR64:$src1, imm64zx32n:$src2), |
| (SLGFI GR64:$src1, imm64zx32n:$src2)>; |
| |
| // Subtraction producing and using a carry. |
| let Defs = [CC], Uses = [CC] in { |
| // Subtraction of a register. |
| def SLBR : BinaryRRE<"slbr", 0xB999, z_subcarry, GR32, GR32>; |
| def SLBGR : BinaryRRE<"slbgr", 0xB989, z_subcarry, GR64, GR64>; |
| |
| // Subtraction of memory. |
| def SLB : BinaryRXY<"slb", 0xE399, z_subcarry, GR32, load, 4>; |
| def SLBG : BinaryRXY<"slbg", 0xE389, z_subcarry, GR64, load, 8>; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // AND |
| //===----------------------------------------------------------------------===// |
| |
| let Defs = [CC] in { |
| // ANDs of a register. |
| let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in { |
| defm NR : BinaryRRAndK<"nr", 0x14, 0xB9F4, and, GR32, GR32>; |
| defm NGR : BinaryRREAndK<"ngr", 0xB980, 0xB9E4, and, GR64, GR64>; |
| } |
| |
| let isConvertibleToThreeAddress = 1 in { |
| // ANDs of a 16-bit immediate, leaving other bits unaffected. |
| // The CC result only reflects the 16-bit field, not the full register. |
| // |
| // NIxMux expands to NI[LH]x, depending on the choice of register. |
| def NILMux : BinaryRIPseudo<and, GRX32, imm32ll16c>, |
| Requires<[FeatureHighWord]>; |
| def NIHMux : BinaryRIPseudo<and, GRX32, imm32lh16c>, |
| Requires<[FeatureHighWord]>; |
| def NILL : BinaryRI<"nill", 0xA57, and, GR32, imm32ll16c>; |
| def NILH : BinaryRI<"nilh", 0xA56, and, GR32, imm32lh16c>; |
| def NIHL : BinaryRI<"nihl", 0xA55, and, GRH32, imm32ll16c>; |
| def NIHH : BinaryRI<"nihh", 0xA54, and, GRH32, imm32lh16c>; |
| def NILL64 : BinaryAliasRI<and, GR64, imm64ll16c>; |
| def NILH64 : BinaryAliasRI<and, GR64, imm64lh16c>; |
| def NIHL64 : BinaryAliasRI<and, GR64, imm64hl16c>; |
| def NIHH64 : BinaryAliasRI<and, GR64, imm64hh16c>; |
| |
| // ANDs of a 32-bit immediate, leaving other bits unaffected. |
| // The CC result only reflects the 32-bit field, which means we can |
| // use it as a zero indicator for i32 operations but not otherwise. |
| let CCValues = 0xC, CompareZeroCCMask = 0x8 in { |
| // Expands to NILF or NIHF, depending on the choice of register. |
| def NIFMux : BinaryRIPseudo<and, GRX32, uimm32>, |
| Requires<[FeatureHighWord]>; |
| def NILF : BinaryRIL<"nilf", 0xC0B, and, GR32, uimm32>; |
| def NIHF : BinaryRIL<"nihf", 0xC0A, and, GRH32, uimm32>; |
| } |
| def NILF64 : BinaryAliasRIL<and, GR64, imm64lf32c>; |
| def NIHF64 : BinaryAliasRIL<and, GR64, imm64hf32c>; |
| } |
| |
| // ANDs of memory. |
| let CCValues = 0xC, CompareZeroCCMask = 0x8 in { |
| defm N : BinaryRXPair<"n", 0x54, 0xE354, and, GR32, load, 4>; |
| def NG : BinaryRXY<"ng", 0xE380, and, GR64, load, 8>; |
| } |
| |
| // AND to memory |
| defm NI : BinarySIPair<"ni", 0x94, 0xEB54, null_frag, imm32zx8>; |
| |
| // Block AND. |
| let mayLoad = 1, mayStore = 1 in |
| defm NC : MemorySS<"nc", 0xD4, z_nc, z_nc_loop>; |
| } |
| defm : RMWIByte<and, bdaddr12pair, NI>; |
| defm : RMWIByte<and, bdaddr20pair, NIY>; |
| |
| //===----------------------------------------------------------------------===// |
| // OR |
| //===----------------------------------------------------------------------===// |
| |
| let Defs = [CC] in { |
| // ORs of a register. |
| let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in { |
| defm OR : BinaryRRAndK<"or", 0x16, 0xB9F6, or, GR32, GR32>; |
| defm OGR : BinaryRREAndK<"ogr", 0xB981, 0xB9E6, or, GR64, GR64>; |
| } |
| |
| // ORs of a 16-bit immediate, leaving other bits unaffected. |
| // The CC result only reflects the 16-bit field, not the full register. |
| // |
| // OIxMux expands to OI[LH]x, depending on the choice of register. |
| def OILMux : BinaryRIPseudo<or, GRX32, imm32ll16>, |
| Requires<[FeatureHighWord]>; |
| def OIHMux : BinaryRIPseudo<or, GRX32, imm32lh16>, |
| Requires<[FeatureHighWord]>; |
| def OILL : BinaryRI<"oill", 0xA5B, or, GR32, imm32ll16>; |
| def OILH : BinaryRI<"oilh", 0xA5A, or, GR32, imm32lh16>; |
| def OIHL : BinaryRI<"oihl", 0xA59, or, GRH32, imm32ll16>; |
| def OIHH : BinaryRI<"oihh", 0xA58, or, GRH32, imm32lh16>; |
| def OILL64 : BinaryAliasRI<or, GR64, imm64ll16>; |
| def OILH64 : BinaryAliasRI<or, GR64, imm64lh16>; |
| def OIHL64 : BinaryAliasRI<or, GR64, imm64hl16>; |
| def OIHH64 : BinaryAliasRI<or, GR64, imm64hh16>; |
| |
| // ORs of a 32-bit immediate, leaving other bits unaffected. |
| // The CC result only reflects the 32-bit field, which means we can |
| // use it as a zero indicator for i32 operations but not otherwise. |
| let CCValues = 0xC, CompareZeroCCMask = 0x8 in { |
| // Expands to OILF or OIHF, depending on the choice of register. |
| def OIFMux : BinaryRIPseudo<or, GRX32, uimm32>, |
| Requires<[FeatureHighWord]>; |
| def OILF : BinaryRIL<"oilf", 0xC0D, or, GR32, uimm32>; |
| def OIHF : BinaryRIL<"oihf", 0xC0C, or, GRH32, uimm32>; |
| } |
| def OILF64 : BinaryAliasRIL<or, GR64, imm64lf32>; |
| def OIHF64 : BinaryAliasRIL<or, GR64, imm64hf32>; |
| |
| // ORs of memory. |
| let CCValues = 0xC, CompareZeroCCMask = 0x8 in { |
| defm O : BinaryRXPair<"o", 0x56, 0xE356, or, GR32, load, 4>; |
| def OG : BinaryRXY<"og", 0xE381, or, GR64, load, 8>; |
| } |
| |
| // OR to memory |
| defm OI : BinarySIPair<"oi", 0x96, 0xEB56, null_frag, imm32zx8>; |
| |
| // Block OR. |
| let mayLoad = 1, mayStore = 1 in |
| defm OC : MemorySS<"oc", 0xD6, z_oc, z_oc_loop>; |
| } |
| defm : RMWIByte<or, bdaddr12pair, OI>; |
| defm : RMWIByte<or, bdaddr20pair, OIY>; |
| |
| //===----------------------------------------------------------------------===// |
| // XOR |
| //===----------------------------------------------------------------------===// |
| |
| let Defs = [CC] in { |
| // XORs of a register. |
| let isCommutable = 1, CCValues = 0xC, CompareZeroCCMask = 0x8 in { |
| defm XR : BinaryRRAndK<"xr", 0x17, 0xB9F7, xor, GR32, GR32>; |
| defm XGR : BinaryRREAndK<"xgr", 0xB982, 0xB9E7, xor, GR64, GR64>; |
| } |
| |
| // XORs of a 32-bit immediate, leaving other bits unaffected. |
| // The CC result only reflects the 32-bit field, which means we can |
| // use it as a zero indicator for i32 operations but not otherwise. |
| let CCValues = 0xC, CompareZeroCCMask = 0x8 in { |
| // Expands to XILF or XIHF, depending on the choice of register. |
| def XIFMux : BinaryRIPseudo<xor, GRX32, uimm32>, |
| Requires<[FeatureHighWord]>; |
| def XILF : BinaryRIL<"xilf", 0xC07, xor, GR32, uimm32>; |
| def XIHF : BinaryRIL<"xihf", 0xC06, xor, GRH32, uimm32>; |
| } |
| def XILF64 : BinaryAliasRIL<xor, GR64, imm64lf32>; |
| def XIHF64 : BinaryAliasRIL<xor, GR64, imm64hf32>; |
| |
| // XORs of memory. |
| let CCValues = 0xC, CompareZeroCCMask = 0x8 in { |
| defm X : BinaryRXPair<"x",0x57, 0xE357, xor, GR32, load, 4>; |
| def XG : BinaryRXY<"xg", 0xE382, xor, GR64, load, 8>; |
| } |
| |
| // XOR to memory |
| defm XI : BinarySIPair<"xi", 0x97, 0xEB57, null_frag, imm32zx8>; |
| |
| // Block XOR. |
| let mayLoad = 1, mayStore = 1 in |
| defm XC : MemorySS<"xc", 0xD7, z_xc, z_xc_loop>; |
| } |
| defm : RMWIByte<xor, bdaddr12pair, XI>; |
| defm : RMWIByte<xor, bdaddr20pair, XIY>; |
| |
| //===----------------------------------------------------------------------===// |
| // Multiplication |
| //===----------------------------------------------------------------------===// |
| |
| // Multiplication of a register, setting the condition code. We prefer these |
| // over MS(G)R if available, even though we cannot use the condition code, |
| // since they are three-operand instructions. |
| let Predicates = [FeatureMiscellaneousExtensions2], |
| Defs = [CC], isCommutable = 1 in { |
| def MSRKC : BinaryRRFa<"msrkc", 0xB9FD, mul, GR32, GR32, GR32>; |
| def MSGRKC : BinaryRRFa<"msgrkc", 0xB9ED, mul, GR64, GR64, GR64>; |
| } |
| |
| // Multiplication of a register. |
| let isCommutable = 1 in { |
| def MSR : BinaryRRE<"msr", 0xB252, mul, GR32, GR32>; |
| def MSGR : BinaryRRE<"msgr", 0xB90C, mul, GR64, GR64>; |
| } |
| def MSGFR : BinaryRRE<"msgfr", 0xB91C, null_frag, GR64, GR32>; |
| defm : SXB<mul, GR64, MSGFR>; |
| |
| // Multiplication of a signed 16-bit immediate. |
| def MHI : BinaryRI<"mhi", 0xA7C, mul, GR32, imm32sx16>; |
| def MGHI : BinaryRI<"mghi", 0xA7D, mul, GR64, imm64sx16>; |
| |
| // Multiplication of a signed 32-bit immediate. |
| def MSFI : BinaryRIL<"msfi", 0xC21, mul, GR32, simm32>; |
| def MSGFI : BinaryRIL<"msgfi", 0xC20, mul, GR64, imm64sx32>; |
| |
| // Multiplication of memory. |
| defm MH : BinaryRXPair<"mh", 0x4C, 0xE37C, mul, GR32, asextloadi16, 2>; |
| defm MS : BinaryRXPair<"ms", 0x71, 0xE351, mul, GR32, load, 4>; |
| def MGH : BinaryRXY<"mgh", 0xE33C, mul, GR64, asextloadi16, 2>, |
| Requires<[FeatureMiscellaneousExtensions2]>; |
| def MSGF : BinaryRXY<"msgf", 0xE31C, mul, GR64, asextloadi32, 4>; |
| def MSG : BinaryRXY<"msg", 0xE30C, mul, GR64, load, 8>; |
| |
| // Multiplication of memory, setting the condition code. |
| let Predicates = [FeatureMiscellaneousExtensions2], Defs = [CC] in { |
| def MSC : BinaryRXY<"msc", 0xE353, null_frag, GR32, load, 4>; |
| def MSGC : BinaryRXY<"msgc", 0xE383, null_frag, GR64, load, 8>; |
| } |
| |
| // Multiplication of a register, producing two results. |
| def MR : BinaryRR <"mr", 0x1C, null_frag, GR128, GR32>; |
| def MGRK : BinaryRRFa<"mgrk", 0xB9EC, null_frag, GR128, GR64, GR64>, |
| Requires<[FeatureMiscellaneousExtensions2]>; |
| def MLR : BinaryRRE<"mlr", 0xB996, null_frag, GR128, GR32>; |
| def MLGR : BinaryRRE<"mlgr", 0xB986, null_frag, GR128, GR64>; |
| |
| def : Pat<(z_smul_lohi GR64:$src1, GR64:$src2), |
| (MGRK GR64:$src1, GR64:$src2)>; |
| def : Pat<(z_umul_lohi GR64:$src1, GR64:$src2), |
| (MLGR (AEXT128 GR64:$src1), GR64:$src2)>; |
| |
| // Multiplication of memory, producing two results. |
| def M : BinaryRX <"m", 0x5C, null_frag, GR128, load, 4>; |
| def MFY : BinaryRXY<"mfy", 0xE35C, null_frag, GR128, load, 4>; |
| def MG : BinaryRXY<"mg", 0xE384, null_frag, GR128, load, 8>, |
| Requires<[FeatureMiscellaneousExtensions2]>; |
| def ML : BinaryRXY<"ml", 0xE396, null_frag, GR128, load, 4>; |
| def MLG : BinaryRXY<"mlg", 0xE386, null_frag, GR128, load, 8>; |
| |
| def : Pat<(z_smul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))), |
| (MG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>; |
| def : Pat<(z_umul_lohi GR64:$src1, (i64 (load bdxaddr20only:$src2))), |
| (MLG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Division and remainder |
| //===----------------------------------------------------------------------===// |
| |
| let hasSideEffects = 1 in { // Do not speculatively execute. |
| // Division and remainder, from registers. |
| def DR : BinaryRR <"dr", 0x1D, null_frag, GR128, GR32>; |
| def DSGFR : BinaryRRE<"dsgfr", 0xB91D, null_frag, GR128, GR32>; |
| def DSGR : BinaryRRE<"dsgr", 0xB90D, null_frag, GR128, GR64>; |
| def DLR : BinaryRRE<"dlr", 0xB997, null_frag, GR128, GR32>; |
| def DLGR : BinaryRRE<"dlgr", 0xB987, null_frag, GR128, GR64>; |
| |
| // Division and remainder, from memory. |
| def D : BinaryRX <"d", 0x5D, null_frag, GR128, load, 4>; |
| def DSGF : BinaryRXY<"dsgf", 0xE31D, null_frag, GR128, load, 4>; |
| def DSG : BinaryRXY<"dsg", 0xE30D, null_frag, GR128, load, 8>; |
| def DL : BinaryRXY<"dl", 0xE397, null_frag, GR128, load, 4>; |
| def DLG : BinaryRXY<"dlg", 0xE387, null_frag, GR128, load, 8>; |
| } |
| def : Pat<(z_sdivrem GR64:$src1, GR32:$src2), |
| (DSGFR (AEXT128 GR64:$src1), GR32:$src2)>; |
| def : Pat<(z_sdivrem GR64:$src1, (i32 (load bdxaddr20only:$src2))), |
| (DSGF (AEXT128 GR64:$src1), bdxaddr20only:$src2)>; |
| def : Pat<(z_sdivrem GR64:$src1, GR64:$src2), |
| (DSGR (AEXT128 GR64:$src1), GR64:$src2)>; |
| def : Pat<(z_sdivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))), |
| (DSG (AEXT128 GR64:$src1), bdxaddr20only:$src2)>; |
| |
| def : Pat<(z_udivrem GR32:$src1, GR32:$src2), |
| (DLR (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1, |
| subreg_l32)), GR32:$src2)>; |
| def : Pat<(z_udivrem GR32:$src1, (i32 (load bdxaddr20only:$src2))), |
| (DL (ZEXT128 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src1, |
| subreg_l32)), bdxaddr20only:$src2)>; |
| def : Pat<(z_udivrem GR64:$src1, GR64:$src2), |
| (DLGR (ZEXT128 GR64:$src1), GR64:$src2)>; |
| def : Pat<(z_udivrem GR64:$src1, (i64 (load bdxaddr20only:$src2))), |
| (DLG (ZEXT128 GR64:$src1), bdxaddr20only:$src2)>; |
| |
| //===----------------------------------------------------------------------===// |
| // Shifts |
| //===----------------------------------------------------------------------===// |
| |
| // Logical shift left. |
| defm SLL : BinaryRSAndK<"sll", 0x89, 0xEBDF, shiftop<shl>, GR32>; |
| def SLLG : BinaryRSY<"sllg", 0xEB0D, shiftop<shl>, GR64>; |
| def SLDL : BinaryRS<"sldl", 0x8D, null_frag, GR128>; |
| |
| // Arithmetic shift left. |
| let Defs = [CC] in { |
| defm SLA : BinaryRSAndK<"sla", 0x8B, 0xEBDD, null_frag, GR32>; |
| def SLAG : BinaryRSY<"slag", 0xEB0B, null_frag, GR64>; |
| def SLDA : BinaryRS<"slda", 0x8F, null_frag, GR128>; |
| } |
| |
| // Logical shift right. |
| defm SRL : BinaryRSAndK<"srl", 0x88, 0xEBDE, shiftop<srl>, GR32>; |
| def SRLG : BinaryRSY<"srlg", 0xEB0C, shiftop<srl>, GR64>; |
| def SRDL : BinaryRS<"srdl", 0x8C, null_frag, GR128>; |
| |
| // Arithmetic shift right. |
| let Defs = [CC], CCValues = 0xE, CompareZeroCCMask = 0xE in { |
| defm SRA : BinaryRSAndK<"sra", 0x8A, 0xEBDC, shiftop<sra>, GR32>; |
| def SRAG : BinaryRSY<"srag", 0xEB0A, shiftop<sra>, GR64>; |
| def SRDA : BinaryRS<"srda", 0x8E, null_frag, GR128>; |
| } |
| |
| // Rotate left. |
| def RLL : BinaryRSY<"rll", 0xEB1D, shiftop<rotl>, GR32>; |
| def RLLG : BinaryRSY<"rllg", 0xEB1C, shiftop<rotl>, GR64>; |
| |
| // Rotate second operand left and inserted selected bits into first operand. |
| // These can act like 32-bit operands provided that the constant start and |
| // end bits (operands 2 and 3) are in the range [32, 64). |
| let Defs = [CC] in { |
| let isCodeGenOnly = 1 in |
| def RISBG32 : RotateSelectRIEf<"risbg", 0xEC55, GR32, GR32>; |
| let CCValues = 0xE, CompareZeroCCMask = 0xE in |
| def RISBG : RotateSelectRIEf<"risbg", 0xEC55, GR64, GR64>; |
| } |
| |
| // On zEC12 we have a variant of RISBG that does not set CC. |
| let Predicates = [FeatureMiscellaneousExtensions] in |
| def RISBGN : RotateSelectRIEf<"risbgn", 0xEC59, GR64, GR64>; |
| |
| // Forms of RISBG that only affect one word of the destination register. |
| // They do not set CC. |
| let Predicates = [FeatureHighWord] in { |
| def RISBMux : RotateSelectRIEfPseudo<GRX32, GRX32>; |
| def RISBLL : RotateSelectAliasRIEf<GR32, GR32>; |
| def RISBLH : RotateSelectAliasRIEf<GR32, GRH32>; |
| def RISBHL : RotateSelectAliasRIEf<GRH32, GR32>; |
| def RISBHH : RotateSelectAliasRIEf<GRH32, GRH32>; |
| def RISBLG : RotateSelectRIEf<"risblg", 0xEC51, GR32, GR64>; |
| def RISBHG : RotateSelectRIEf<"risbhg", 0xEC5D, GRH32, GR64>; |
| } |
| |
| // Rotate second operand left and perform a logical operation with selected |
| // bits of the first operand. The CC result only describes the selected bits, |
| // so isn't useful for a full comparison against zero. |
| let Defs = [CC] in { |
| def RNSBG : RotateSelectRIEf<"rnsbg", 0xEC54, GR64, GR64>; |
| def ROSBG : RotateSelectRIEf<"rosbg", 0xEC56, GR64, GR64>; |
| def RXSBG : RotateSelectRIEf<"rxsbg", 0xEC57, GR64, GR64>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Comparison |
| //===----------------------------------------------------------------------===// |
| |
| // Signed comparisons. We put these before the unsigned comparisons because |
| // some of the signed forms have COMPARE AND BRANCH equivalents whereas none |
| // of the unsigned forms do. |
| let Defs = [CC], CCValues = 0xE in { |
| // Comparison with a register. |
| def CR : CompareRR <"cr", 0x19, z_scmp, GR32, GR32>; |
| def CGFR : CompareRRE<"cgfr", 0xB930, null_frag, GR64, GR32>; |
| def CGR : CompareRRE<"cgr", 0xB920, z_scmp, GR64, GR64>; |
| |
| // Comparison with a high register. |
| def CHHR : CompareRRE<"chhr", 0xB9CD, null_frag, GRH32, GRH32>, |
| Requires<[FeatureHighWord]>; |
| def CHLR : CompareRRE<"chlr", 0xB9DD, null_frag, GRH32, GR32>, |
| Requires<[FeatureHighWord]>; |
| |
| // Comparison with a signed 16-bit immediate. CHIMux expands to CHI or CIH, |
| // depending on the choice of register. |
| def CHIMux : CompareRIPseudo<z_scmp, GRX32, imm32sx16>, |
| Requires<[FeatureHighWord]>; |
| def CHI : CompareRI<"chi", 0xA7E, z_scmp, GR32, imm32sx16>; |
| def CGHI : CompareRI<"cghi", 0xA7F, z_scmp, GR64, imm64sx16>; |
| |
| // Comparison with a signed 32-bit immediate. CFIMux expands to CFI or CIH, |
| // depending on the choice of register. |
| def CFIMux : CompareRIPseudo<z_scmp, GRX32, simm32>, |
| Requires<[FeatureHighWord]>; |
| def CFI : CompareRIL<"cfi", 0xC2D, z_scmp, GR32, simm32>; |
| def CIH : CompareRIL<"cih", 0xCCD, z_scmp, GRH32, simm32>, |
| Requires<[FeatureHighWord]>; |
| def CGFI : CompareRIL<"cgfi", 0xC2C, z_scmp, GR64, imm64sx32>; |
| |
| // Comparison with memory. |
| defm CH : CompareRXPair<"ch", 0x49, 0xE379, z_scmp, GR32, asextloadi16, 2>; |
| def CMux : CompareRXYPseudo<z_scmp, GRX32, load, 4>, |
| Requires<[FeatureHighWord]>; |
| defm C : CompareRXPair<"c", 0x59, 0xE359, z_scmp, GR32, load, 4>; |
| def CHF : CompareRXY<"chf", 0xE3CD, z_scmp, GRH32, load, 4>, |
| Requires<[FeatureHighWord]>; |
| def CGH : CompareRXY<"cgh", 0xE334, z_scmp, GR64, asextloadi16, 2>; |
| def CGF : CompareRXY<"cgf", 0xE330, z_scmp, GR64, asextloadi32, 4>; |
| def CG : CompareRXY<"cg", 0xE320, z_scmp, GR64, load, 8>; |
| def CHRL : CompareRILPC<"chrl", 0xC65, z_scmp, GR32, aligned_asextloadi16>; |
| def CRL : CompareRILPC<"crl", 0xC6D, z_scmp, GR32, aligned_load>; |
| def CGHRL : CompareRILPC<"cghrl", 0xC64, z_scmp, GR64, aligned_asextloadi16>; |
| def CGFRL : CompareRILPC<"cgfrl", 0xC6C, z_scmp, GR64, aligned_asextloadi32>; |
| def CGRL : CompareRILPC<"cgrl", 0xC68, z_scmp, GR64, aligned_load>; |
| |
| // Comparison between memory and a signed 16-bit immediate. |
| def CHHSI : CompareSIL<"chhsi", 0xE554, z_scmp, asextloadi16, imm32sx16>; |
| def CHSI : CompareSIL<"chsi", 0xE55C, z_scmp, load, imm32sx16>; |
| def CGHSI : CompareSIL<"cghsi", 0xE558, z_scmp, load, imm64sx16>; |
| } |
| defm : SXB<z_scmp, GR64, CGFR>; |
| |
| // Unsigned comparisons. |
| let Defs = [CC], CCValues = 0xE, IsLogical = 1 in { |
| // Comparison with a register. |
| def CLR : CompareRR <"clr", 0x15, z_ucmp, GR32, GR32>; |
| def CLGFR : CompareRRE<"clgfr", 0xB931, null_frag, GR64, GR32>; |
| def CLGR : CompareRRE<"clgr", 0xB921, z_ucmp, GR64, GR64>; |
| |
| // Comparison with a high register. |
| def CLHHR : CompareRRE<"clhhr", 0xB9CF, null_frag, GRH32, GRH32>, |
| Requires<[FeatureHighWord]>; |
| def CLHLR : CompareRRE<"clhlr", 0xB9DF, null_frag, GRH32, GR32>, |
| Requires<[FeatureHighWord]>; |
| |
| // Comparison with an unsigned 32-bit immediate. CLFIMux expands to CLFI |
| // or CLIH, depending on the choice of register. |
| def CLFIMux : CompareRIPseudo<z_ucmp, GRX32, uimm32>, |
| Requires<[FeatureHighWord]>; |
| def CLFI : CompareRIL<"clfi", 0xC2F, z_ucmp, GR32, uimm32>; |
| def CLIH : CompareRIL<"clih", 0xCCF, z_ucmp, GRH32, uimm32>, |
| Requires<[FeatureHighWord]>; |
| def CLGFI : CompareRIL<"clgfi", 0xC2E, z_ucmp, GR64, imm64zx32>; |
| |
| // Comparison with memory. |
| def CLMux : CompareRXYPseudo<z_ucmp, GRX32, load, 4>, |
| Requires<[FeatureHighWord]>; |
| defm CL : CompareRXPair<"cl", 0x55, 0xE355, z_ucmp, GR32, load, 4>; |
| def CLHF : CompareRXY<"clhf", 0xE3CF, z_ucmp, GRH32, load, 4>, |
| Requires<[FeatureHighWord]>; |
| def CLGF : CompareRXY<"clgf", 0xE331, z_ucmp, GR64, azextloadi32, 4>; |
| def CLG : CompareRXY<"clg", 0xE321, z_ucmp, GR64, load, 8>; |
| def CLHRL : CompareRILPC<"clhrl", 0xC67, z_ucmp, GR32, |
| aligned_azextloadi16>; |
| def CLRL : CompareRILPC<"clrl", 0xC6F, z_ucmp, GR32, |
| aligned_load>; |
| def CLGHRL : CompareRILPC<"clghrl", 0xC66, z_ucmp, GR64, |
| aligned_azextloadi16>; |
| def CLGFRL : CompareRILPC<"clgfrl", 0xC6E, z_ucmp, GR64, |
| aligned_azextloadi32>; |
| def CLGRL : CompareRILPC<"clgrl", 0xC6A, z_ucmp, GR64, |
| aligned_load>; |
| |
| // Comparison between memory and an unsigned 8-bit immediate. |
| defm CLI : CompareSIPair<"cli", 0x95, 0xEB55, z_ucmp, azextloadi8, imm32zx8>; |
| |
| // Comparison between memory and an unsigned 16-bit immediate. |
| def CLHHSI : CompareSIL<"clhhsi", 0xE555, z_ucmp, azextloadi16, imm32zx16>; |
| def CLFHSI : CompareSIL<"clfhsi", 0xE55D, z_ucmp, load, imm32zx16>; |
| def CLGHSI : CompareSIL<"clghsi", 0xE559, z_ucmp, load, imm64zx16>; |
| } |
| defm : ZXB<z_ucmp, GR64, CLGFR>; |
| |
| // Memory-to-memory comparison. |
| let mayLoad = 1, Defs = [CC] in { |
| defm CLC : CompareMemorySS<"clc", 0xD5, z_clc, z_clc_loop>; |
| def CLCL : SideEffectBinaryMemMemRR<"clcl", 0x0F, GR128, GR128>; |
| def CLCLE : SideEffectTernaryMemMemRS<"clcle", 0xA9, GR128, GR128>; |
| def CLCLU : SideEffectTernaryMemMemRSY<"clclu", 0xEB8F, GR128, GR128>; |
| } |
| |
| // String comparison. |
| let mayLoad = 1, Defs = [CC] in |
| defm CLST : StringRRE<"clst", 0xB25D, z_strcmp>; |
| |
| // Test under mask. |
| let Defs = [CC] in { |
| // TMxMux expands to TM[LH]x, depending on the choice of register. |
| def TMLMux : CompareRIPseudo<z_tm_reg, GRX32, imm32ll16>, |
| Requires<[FeatureHighWord]>; |
| def TMHMux : CompareRIPseudo<z_tm_reg, GRX32, imm32lh16>, |
| Requires<[FeatureHighWord]>; |
| def TMLL : CompareRI<"tmll", 0xA71, z_tm_reg, GR32, imm32ll16>; |
| def TMLH : CompareRI<"tmlh", 0xA70, z_tm_reg, GR32, imm32lh16>; |
| def TMHL : CompareRI<"tmhl", 0xA73, z_tm_reg, GRH32, imm32ll16>; |
| def TMHH : CompareRI<"tmhh", 0xA72, z_tm_reg, GRH32, imm32lh16>; |
| |
| def TMLL64 : CompareAliasRI<z_tm_reg, GR64, imm64ll16>; |
| def TMLH64 : CompareAliasRI<z_tm_reg, GR64, imm64lh16>; |
| def TMHL64 : CompareAliasRI<z_tm_reg, GR64, imm64hl16>; |
| def TMHH64 : CompareAliasRI<z_tm_reg, GR64, imm64hh16>; |
| |
| defm TM : CompareSIPair<"tm", 0x91, 0xEB51, z_tm_mem, anyextloadi8, imm32zx8>; |
| } |
| |
| def TML : InstAlias<"tml\t$R, $I", (TMLL GR32:$R, imm32ll16:$I), 0>; |
| def TMH : InstAlias<"tmh\t$R, $I", (TMLH GR32:$R, imm32lh16:$I), 0>; |
| |
| // Compare logical characters under mask -- not (yet) used for codegen. |
| let Defs = [CC] in { |
| defm CLM : CompareRSPair<"clm", 0xBD, 0xEB21, GR32, 0>; |
| def CLMH : CompareRSY<"clmh", 0xEB20, GRH32, 0>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Prefetch and execution hint |
| //===----------------------------------------------------------------------===// |
| |
| let mayLoad = 1, mayStore = 1 in { |
| def PFD : PrefetchRXY<"pfd", 0xE336, z_prefetch>; |
| def PFDRL : PrefetchRILPC<"pfdrl", 0xC62, z_prefetch>; |
| } |
| |
| let Predicates = [FeatureExecutionHint], hasSideEffects = 1 in { |
| // Branch Prediction Preload |
| def BPP : BranchPreloadSMI<"bpp", 0xC7>; |
| def BPRP : BranchPreloadMII<"bprp", 0xC5>; |
| |
| // Next Instruction Access Intent |
| def NIAI : SideEffectBinaryIE<"niai", 0xB2FA, imm32zx4, imm32zx4>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Atomic operations |
| //===----------------------------------------------------------------------===// |
| |
| // A serialization instruction that acts as a barrier for all memory |
| // accesses, which expands to "bcr 14, 0". |
| let hasSideEffects = 1 in |
| def Serialize : Alias<2, (outs), (ins), []>; |
| |
| // A pseudo instruction that serves as a compiler barrier. |
| let hasSideEffects = 1, hasNoSchedulingInfo = 1 in |
| def MemBarrier : Pseudo<(outs), (ins), [(z_membarrier)]>; |
| |
| let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in { |
| def LAA : LoadAndOpRSY<"laa", 0xEBF8, atomic_load_add_32, GR32>; |
| def LAAG : LoadAndOpRSY<"laag", 0xEBE8, atomic_load_add_64, GR64>; |
| def LAAL : LoadAndOpRSY<"laal", 0xEBFA, null_frag, GR32>; |
| def LAALG : LoadAndOpRSY<"laalg", 0xEBEA, null_frag, GR64>; |
| def LAN : LoadAndOpRSY<"lan", 0xEBF4, atomic_load_and_32, GR32>; |
| def LANG : LoadAndOpRSY<"lang", 0xEBE4, atomic_load_and_64, GR64>; |
| def LAO : LoadAndOpRSY<"lao", 0xEBF6, atomic_load_or_32, GR32>; |
| def LAOG : LoadAndOpRSY<"laog", 0xEBE6, atomic_load_or_64, GR64>; |
| def LAX : LoadAndOpRSY<"lax", 0xEBF7, atomic_load_xor_32, GR32>; |
| def LAXG : LoadAndOpRSY<"laxg", 0xEBE7, atomic_load_xor_64, GR64>; |
| } |
| |
| def ATOMIC_SWAPW : AtomicLoadWBinaryReg<z_atomic_swapw>; |
| def ATOMIC_SWAP_32 : AtomicLoadBinaryReg32<atomic_swap_32>; |
| def ATOMIC_SWAP_64 : AtomicLoadBinaryReg64<atomic_swap_64>; |
| |
| def ATOMIC_LOADW_AR : AtomicLoadWBinaryReg<z_atomic_loadw_add>; |
| def ATOMIC_LOADW_AFI : AtomicLoadWBinaryImm<z_atomic_loadw_add, simm32>; |
| let Predicates = [FeatureNoInterlockedAccess1] in { |
| def ATOMIC_LOAD_AR : AtomicLoadBinaryReg32<atomic_load_add_32>; |
| def ATOMIC_LOAD_AHI : AtomicLoadBinaryImm32<atomic_load_add_32, imm32sx16>; |
| def ATOMIC_LOAD_AFI : AtomicLoadBinaryImm32<atomic_load_add_32, simm32>; |
| def ATOMIC_LOAD_AGR : AtomicLoadBinaryReg64<atomic_load_add_64>; |
| def ATOMIC_LOAD_AGHI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx16>; |
| def ATOMIC_LOAD_AGFI : AtomicLoadBinaryImm64<atomic_load_add_64, imm64sx32>; |
| } |
| |
| def ATOMIC_LOADW_SR : AtomicLoadWBinaryReg<z_atomic_loadw_sub>; |
| def ATOMIC_LOAD_SR : AtomicLoadBinaryReg32<atomic_load_sub_32>; |
| def ATOMIC_LOAD_SGR : AtomicLoadBinaryReg64<atomic_load_sub_64>; |
| |
| def ATOMIC_LOADW_NR : AtomicLoadWBinaryReg<z_atomic_loadw_and>; |
| def ATOMIC_LOADW_NILH : AtomicLoadWBinaryImm<z_atomic_loadw_and, imm32lh16c>; |
| let Predicates = [FeatureNoInterlockedAccess1] in { |
| def ATOMIC_LOAD_NR : AtomicLoadBinaryReg32<atomic_load_and_32>; |
| def ATOMIC_LOAD_NILL : AtomicLoadBinaryImm32<atomic_load_and_32, |
| imm32ll16c>; |
| def ATOMIC_LOAD_NILH : AtomicLoadBinaryImm32<atomic_load_and_32, |
| imm32lh16c>; |
| def ATOMIC_LOAD_NILF : AtomicLoadBinaryImm32<atomic_load_and_32, uimm32>; |
| def ATOMIC_LOAD_NGR : AtomicLoadBinaryReg64<atomic_load_and_64>; |
| def ATOMIC_LOAD_NILL64 : AtomicLoadBinaryImm64<atomic_load_and_64, |
| imm64ll16c>; |
| def ATOMIC_LOAD_NILH64 : AtomicLoadBinaryImm64<atomic_load_and_64, |
| imm64lh16c>; |
| def ATOMIC_LOAD_NIHL64 : AtomicLoadBinaryImm64<atomic_load_and_64, |
| imm64hl16c>; |
| def ATOMIC_LOAD_NIHH64 : AtomicLoadBinaryImm64<atomic_load_and_64, |
| imm64hh16c>; |
| def ATOMIC_LOAD_NILF64 : AtomicLoadBinaryImm64<atomic_load_and_64, |
| imm64lf32c>; |
| def ATOMIC_LOAD_NIHF64 : AtomicLoadBinaryImm64<atomic_load_and_64, |
| imm64hf32c>; |
| } |
| |
| def ATOMIC_LOADW_OR : AtomicLoadWBinaryReg<z_atomic_loadw_or>; |
| def ATOMIC_LOADW_OILH : AtomicLoadWBinaryImm<z_atomic_loadw_or, imm32lh16>; |
| let Predicates = [FeatureNoInterlockedAccess1] in { |
| def ATOMIC_LOAD_OR : AtomicLoadBinaryReg32<atomic_load_or_32>; |
| def ATOMIC_LOAD_OILL : AtomicLoadBinaryImm32<atomic_load_or_32, imm32ll16>; |
| def ATOMIC_LOAD_OILH : AtomicLoadBinaryImm32<atomic_load_or_32, imm32lh16>; |
| def ATOMIC_LOAD_OILF : AtomicLoadBinaryImm32<atomic_load_or_32, uimm32>; |
| def ATOMIC_LOAD_OGR : AtomicLoadBinaryReg64<atomic_load_or_64>; |
| def ATOMIC_LOAD_OILL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64ll16>; |
| def ATOMIC_LOAD_OILH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lh16>; |
| def ATOMIC_LOAD_OIHL64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hl16>; |
| def ATOMIC_LOAD_OIHH64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hh16>; |
| def ATOMIC_LOAD_OILF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64lf32>; |
| def ATOMIC_LOAD_OIHF64 : AtomicLoadBinaryImm64<atomic_load_or_64, imm64hf32>; |
| } |
| |
| def ATOMIC_LOADW_XR : AtomicLoadWBinaryReg<z_atomic_loadw_xor>; |
| def ATOMIC_LOADW_XILF : AtomicLoadWBinaryImm<z_atomic_loadw_xor, uimm32>; |
| let Predicates = [FeatureNoInterlockedAccess1] in { |
| def ATOMIC_LOAD_XR : AtomicLoadBinaryReg32<atomic_load_xor_32>; |
| def ATOMIC_LOAD_XILF : AtomicLoadBinaryImm32<atomic_load_xor_32, uimm32>; |
| def ATOMIC_LOAD_XGR : AtomicLoadBinaryReg64<atomic_load_xor_64>; |
| def ATOMIC_LOAD_XILF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64lf32>; |
| def ATOMIC_LOAD_XIHF64 : AtomicLoadBinaryImm64<atomic_load_xor_64, imm64hf32>; |
| } |
| |
| def ATOMIC_LOADW_NRi : AtomicLoadWBinaryReg<z_atomic_loadw_nand>; |
| def ATOMIC_LOADW_NILHi : AtomicLoadWBinaryImm<z_atomic_loadw_nand, |
| imm32lh16c>; |
| def ATOMIC_LOAD_NRi : AtomicLoadBinaryReg32<atomic_load_nand_32>; |
| def ATOMIC_LOAD_NILLi : AtomicLoadBinaryImm32<atomic_load_nand_32, |
| imm32ll16c>; |
| def ATOMIC_LOAD_NILHi : AtomicLoadBinaryImm32<atomic_load_nand_32, |
| imm32lh16c>; |
| def ATOMIC_LOAD_NILFi : AtomicLoadBinaryImm32<atomic_load_nand_32, uimm32>; |
| def ATOMIC_LOAD_NGRi : AtomicLoadBinaryReg64<atomic_load_nand_64>; |
| def ATOMIC_LOAD_NILL64i : AtomicLoadBinaryImm64<atomic_load_nand_64, |
| imm64ll16c>; |
| def ATOMIC_LOAD_NILH64i : AtomicLoadBinaryImm64<atomic_load_nand_64, |
| imm64lh16c>; |
| def ATOMIC_LOAD_NIHL64i : AtomicLoadBinaryImm64<atomic_load_nand_64, |
| imm64hl16c>; |
| def ATOMIC_LOAD_NIHH64i : AtomicLoadBinaryImm64<atomic_load_nand_64, |
| imm64hh16c>; |
| def ATOMIC_LOAD_NILF64i : AtomicLoadBinaryImm64<atomic_load_nand_64, |
| imm64lf32c>; |
| def ATOMIC_LOAD_NIHF64i : AtomicLoadBinaryImm64<atomic_load_nand_64, |
| imm64hf32c>; |
| |
| def ATOMIC_LOADW_MIN : AtomicLoadWBinaryReg<z_atomic_loadw_min>; |
| def ATOMIC_LOAD_MIN_32 : AtomicLoadBinaryReg32<atomic_load_min_32>; |
| def ATOMIC_LOAD_MIN_64 : AtomicLoadBinaryReg64<atomic_load_min_64>; |
| |
| def ATOMIC_LOADW_MAX : AtomicLoadWBinaryReg<z_atomic_loadw_max>; |
| def ATOMIC_LOAD_MAX_32 : AtomicLoadBinaryReg32<atomic_load_max_32>; |
| def ATOMIC_LOAD_MAX_64 : AtomicLoadBinaryReg64<atomic_load_max_64>; |
| |
| def ATOMIC_LOADW_UMIN : AtomicLoadWBinaryReg<z_atomic_loadw_umin>; |
| def ATOMIC_LOAD_UMIN_32 : AtomicLoadBinaryReg32<atomic_load_umin_32>; |
| def ATOMIC_LOAD_UMIN_64 : AtomicLoadBinaryReg64<atomic_load_umin_64>; |
| |
| def ATOMIC_LOADW_UMAX : AtomicLoadWBinaryReg<z_atomic_loadw_umax>; |
| def ATOMIC_LOAD_UMAX_32 : AtomicLoadBinaryReg32<atomic_load_umax_32>; |
| def ATOMIC_LOAD_UMAX_64 : AtomicLoadBinaryReg64<atomic_load_umax_64>; |
| |
| def ATOMIC_CMP_SWAPW |
| : Pseudo<(outs GR32:$dst), (ins bdaddr20only:$addr, GR32:$cmp, GR32:$swap, |
| ADDR32:$bitshift, ADDR32:$negbitshift, |
| uimm32:$bitsize), |
| [(set GR32:$dst, |
| (z_atomic_cmp_swapw bdaddr20only:$addr, GR32:$cmp, GR32:$swap, |
| ADDR32:$bitshift, ADDR32:$negbitshift, |
| uimm32:$bitsize))]> { |
| let Defs = [CC]; |
| let mayLoad = 1; |
| let mayStore = 1; |
| let usesCustomInserter = 1; |
| let hasNoSchedulingInfo = 1; |
| } |
| |
| // Test and set. |
| let mayLoad = 1, Defs = [CC] in |
| def TS : StoreInherentS<"ts", 0x9300, null_frag, 1>; |
| |
| // Compare and swap. |
| let Defs = [CC] in { |
| defm CS : CmpSwapRSPair<"cs", 0xBA, 0xEB14, z_atomic_cmp_swap, GR32>; |
| def CSG : CmpSwapRSY<"csg", 0xEB30, z_atomic_cmp_swap, GR64>; |
| } |
| |
| // Compare double and swap. |
| let Defs = [CC] in { |
| defm CDS : CmpSwapRSPair<"cds", 0xBB, 0xEB31, null_frag, GR128>; |
| def CDSG : CmpSwapRSY<"cdsg", 0xEB3E, z_atomic_cmp_swap_128, GR128>; |
| } |
| |
| // Compare and swap and store. |
| let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad = 1 in |
| def CSST : SideEffectTernarySSF<"csst", 0xC82, GR64>; |
| |
| // Perform locked operation. |
| let Uses = [R0L, R1D], Defs = [CC], mayStore = 1, mayLoad =1 in |
| def PLO : SideEffectQuaternarySSe<"plo", 0xEE, GR64>; |
| |
| // Load/store pair from/to quadword. |
| def LPQ : UnaryRXY<"lpq", 0xE38F, z_atomic_load_128, GR128, 16>; |
| def STPQ : StoreRXY<"stpq", 0xE38E, z_atomic_store_128, GR128, 16>; |
| |
| // Load pair disjoint. |
| let Predicates = [FeatureInterlockedAccess1], Defs = [CC] in { |
| def LPD : BinarySSF<"lpd", 0xC84, GR128>; |
| def LPDG : BinarySSF<"lpdg", 0xC85, GR128>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Translate and convert |
| //===----------------------------------------------------------------------===// |
| |
| let mayLoad = 1, mayStore = 1 in |
| def TR : SideEffectBinarySSa<"tr", 0xDC>; |
| |
| let mayLoad = 1, Defs = [CC, R0L, R1D] in { |
| def TRT : SideEffectBinarySSa<"trt", 0xDD>; |
| def TRTR : SideEffectBinarySSa<"trtr", 0xD0>; |
| } |
| |
| let mayLoad = 1, mayStore = 1, Uses = [R0L] in |
| def TRE : SideEffectBinaryMemMemRRE<"tre", 0xB2A5, GR128, GR64>; |
| |
| let mayLoad = 1, Uses = [R1D], Defs = [CC] in { |
| defm TRTE : BinaryMemRRFcOpt<"trte", 0xB9BF, GR128, GR64>; |
| defm TRTRE : BinaryMemRRFcOpt<"trtre", 0xB9BD, GR128, GR64>; |
| } |
| |
| let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in { |
| defm TROO : SideEffectTernaryMemMemRRFcOpt<"troo", 0xB993, GR128, GR64>; |
| defm TROT : SideEffectTernaryMemMemRRFcOpt<"trot", 0xB992, GR128, GR64>; |
| defm TRTO : SideEffectTernaryMemMemRRFcOpt<"trto", 0xB991, GR128, GR64>; |
| defm TRTT : SideEffectTernaryMemMemRRFcOpt<"trtt", 0xB990, GR128, GR64>; |
| } |
| |
| let mayLoad = 1, mayStore = 1, Defs = [CC] in { |
| defm CU12 : SideEffectTernaryMemMemRRFcOpt<"cu12", 0xB2A7, GR128, GR128>; |
| defm CU14 : SideEffectTernaryMemMemRRFcOpt<"cu14", 0xB9B0, GR128, GR128>; |
| defm CU21 : SideEffectTernaryMemMemRRFcOpt<"cu21", 0xB2A6, GR128, GR128>; |
| defm CU24 : SideEffectTernaryMemMemRRFcOpt<"cu24", 0xB9B1, GR128, GR128>; |
| def CU41 : SideEffectBinaryMemMemRRE<"cu41", 0xB9B2, GR128, GR128>; |
| def CU42 : SideEffectBinaryMemMemRRE<"cu42", 0xB9B3, GR128, GR128>; |
| |
| let isAsmParserOnly = 1 in { |
| defm CUUTF : SideEffectTernaryMemMemRRFcOpt<"cuutf", 0xB2A6, GR128, GR128>; |
| defm CUTFU : SideEffectTernaryMemMemRRFcOpt<"cutfu", 0xB2A7, GR128, GR128>; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Message-security assist |
| //===----------------------------------------------------------------------===// |
| |
| let mayLoad = 1, mayStore = 1, Uses = [R0L, R1D], Defs = [CC] in { |
| def KM : SideEffectBinaryMemMemRRE<"km", 0xB92E, GR128, GR128>; |
| def KMC : SideEffectBinaryMemMemRRE<"kmc", 0xB92F, GR128, GR128>; |
| |
| def KIMD : SideEffectBinaryMemRRE<"kimd", 0xB93E, GR64, GR128>; |
| def KLMD : SideEffectBinaryMemRRE<"klmd", 0xB93F, GR64, GR128>; |
| def KMAC : SideEffectBinaryMemRRE<"kmac", 0xB91E, GR64, GR128>; |
| |
| let Predicates = [FeatureMessageSecurityAssist4] in { |
| def KMF : SideEffectBinaryMemMemRRE<"kmf", 0xB92A, GR128, GR128>; |
| def KMO : SideEffectBinaryMemMemRRE<"kmo", 0xB92B, GR128, GR128>; |
| def KMCTR : SideEffectTernaryMemMemMemRRFb<"kmctr", 0xB92D, |
| GR128, GR128, GR128>; |
| def PCC : SideEffectInherentRRE<"pcc", 0xB92C>; |
| } |
| |
| let Predicates = [FeatureMessageSecurityAssist5] in |
| def PPNO : SideEffectBinaryMemMemRRE<"ppno", 0xB93C, GR128, GR128>; |
| let Predicates = [FeatureMessageSecurityAssist7], isAsmParserOnly = 1 in |
| def PRNO : SideEffectBinaryMemMemRRE<"prno", 0xB93C, GR128, GR128>; |
| |
| let Predicates = [FeatureMessageSecurityAssist8] in |
| def KMA : SideEffectTernaryMemMemMemRRFb<"kma", 0xB929, |
| GR128, GR128, GR128>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Guarded storage |
| //===----------------------------------------------------------------------===// |
| |
| // These instructions use and/or modify the guarded storage control |
| // registers, which we do not otherwise model, so they should have |
| // hasSideEffects. |
| let Predicates = [FeatureGuardedStorage], hasSideEffects = 1 in { |
| def LGG : UnaryRXY<"lgg", 0xE34C, null_frag, GR64, 8>; |
| def LLGFSG : UnaryRXY<"llgfsg", 0xE348, null_frag, GR64, 4>; |
| |
| let mayLoad = 1 in |
| def LGSC : SideEffectBinaryRXY<"lgsc", 0xE34D, GR64>; |
| let mayStore = 1 in |
| def STGSC : SideEffectBinaryRXY<"stgsc", 0xE349, GR64>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Decimal arithmetic |
| //===----------------------------------------------------------------------===// |
| |
| defm CVB : BinaryRXPair<"cvb",0x4F, 0xE306, null_frag, GR32, load, 4>; |
| def CVBG : BinaryRXY<"cvbg", 0xE30E, null_frag, GR64, load, 8>; |
| |
| defm CVD : StoreRXPair<"cvd", 0x4E, 0xE326, null_frag, GR32, 4>; |
| def CVDG : StoreRXY<"cvdg", 0xE32E, null_frag, GR64, 8>; |
| |
| let mayLoad = 1, mayStore = 1 in { |
| def MVN : SideEffectBinarySSa<"mvn", 0xD1>; |
| def MVZ : SideEffectBinarySSa<"mvz", 0xD3>; |
| def MVO : SideEffectBinarySSb<"mvo", 0xF1>; |
| |
| def PACK : SideEffectBinarySSb<"pack", 0xF2>; |
| def PKA : SideEffectBinarySSf<"pka", 0xE9>; |
| def PKU : SideEffectBinarySSf<"pku", 0xE1>; |
| def UNPK : SideEffectBinarySSb<"unpk", 0xF3>; |
| let Defs = [CC] in { |
| def UNPKA : SideEffectBinarySSa<"unpka", 0xEA>; |
| def UNPKU : SideEffectBinarySSa<"unpku", 0xE2>; |
| } |
| } |
| |
| let mayLoad = 1, mayStore = 1 in { |
| let Defs = [CC] in { |
| def AP : SideEffectBinarySSb<"ap", 0xFA>; |
| def SP : SideEffectBinarySSb<"sp", 0xFB>; |
| def ZAP : SideEffectBinarySSb<"zap", 0xF8>; |
| def SRP : SideEffectTernarySSc<"srp", 0xF0>; |
| } |
| def MP : SideEffectBinarySSb<"mp", 0xFC>; |
| def DP : SideEffectBinarySSb<"dp", 0xFD>; |
| let Defs = [CC] in { |
| def ED : SideEffectBinarySSa<"ed", 0xDE>; |
| def EDMK : SideEffectBinarySSa<"edmk", 0xDF>; |
| } |
| } |
| |
| let Defs = [CC] in { |
| def CP : CompareSSb<"cp", 0xF9>; |
| def TP : TestRSL<"tp", 0xEBC0>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Access registers |
| //===----------------------------------------------------------------------===// |
| |
| // Read a 32-bit access register into a GR32. As with all GR32 operations, |
| // the upper 32 bits of the enclosing GR64 remain unchanged, which is useful |
| // when a 64-bit address is stored in a pair of access registers. |
| def EAR : UnaryRRE<"ear", 0xB24F, null_frag, GR32, AR32>; |
| |
| // Set access register. |
| def SAR : UnaryRRE<"sar", 0xB24E, null_frag, AR32, GR32>; |
| |
| // Copy access register. |
| def CPYA : UnaryRRE<"cpya", 0xB24D, null_frag, AR32, AR32>; |
| |
| // Load address extended. |
| defm LAE : LoadAddressRXPair<"lae", 0x51, 0xE375, null_frag>; |
| |
| // Load access multiple. |
| defm LAM : LoadMultipleRSPair<"lam", 0x9A, 0xEB9A, AR32>; |
| |
| // Store access multiple. |
| defm STAM : StoreMultipleRSPair<"stam", 0x9B, 0xEB9B, AR32>; |
| |
| //===----------------------------------------------------------------------===// |
| // Program mask and addressing mode |
| //===----------------------------------------------------------------------===// |
| |
| // Extract CC and program mask into a register. CC ends up in bits 29 and 28. |
| let Uses = [CC] in |
| def IPM : InherentRRE<"ipm", 0xB222, GR32, z_ipm>; |
| |
| // Set CC and program mask from a register. |
| let hasSideEffects = 1, Defs = [CC] in |
| def SPM : SideEffectUnaryRR<"spm", 0x04, GR32>; |
| |
| // Branch and link - like BAS, but also extracts CC and program mask. |
| let isCall = 1, Uses = [CC], Defs = [CC] in { |
| def BAL : CallRX<"bal", 0x45>; |
| def BALR : CallRR<"balr", 0x05>; |
| } |
| |
| // Test addressing mode. |
| let Defs = [CC] in |
| def TAM : SideEffectInherentE<"tam", 0x010B>; |
| |
| // Set addressing mode. |
| let hasSideEffects = 1 in { |
| def SAM24 : SideEffectInherentE<"sam24", 0x010C>; |
| def SAM31 : SideEffectInherentE<"sam31", 0x010D>; |
| def SAM64 : SideEffectInherentE<"sam64", 0x010E>; |
| } |
| |
| // Branch and set mode. Not really a call, but also sets an output register. |
| let isBranch = 1, isTerminator = 1, isBarrier = 1 in |
| def BSM : CallRR<"bsm", 0x0B>; |
| |
| // Branch and save and set mode. |
| let isCall = 1, Defs = [CC] in |
| def BASSM : CallRR<"bassm", 0x0C>; |
| |
| //===----------------------------------------------------------------------===// |
| // Transactional execution |
| //===----------------------------------------------------------------------===// |
| |
| let hasSideEffects = 1, Predicates = [FeatureTransactionalExecution] in { |
| // Transaction Begin |
| let mayStore = 1, usesCustomInserter = 1, Defs = [CC] in { |
| def TBEGIN : TestBinarySIL<"tbegin", 0xE560, z_tbegin, imm32zx16>; |
| let hasNoSchedulingInfo = 1 in |
| def TBEGIN_nofloat : TestBinarySILPseudo<z_tbegin_nofloat, imm32zx16>; |
| def TBEGINC : SideEffectBinarySIL<"tbeginc", 0xE561, |
| int_s390_tbeginc, imm32zx16>; |
| } |
| |
| // Transaction End |
| let Defs = [CC] in |
| def TEND : TestInherentS<"tend", 0xB2F8, z_tend>; |
| |
| // Transaction Abort |
| let isTerminator = 1, isBarrier = 1, mayStore = 1, |
| hasSideEffects = 1 in |
| def TABORT : SideEffectAddressS<"tabort", 0xB2FC, int_s390_tabort>; |
| |
| // Nontransactional Store |
| def NTSTG : StoreRXY<"ntstg", 0xE325, int_s390_ntstg, GR64, 8>; |
| |
| // Extract Transaction Nesting Depth |
| def ETND : InherentRRE<"etnd", 0xB2EC, GR32, int_s390_etnd>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Processor assist |
| //===----------------------------------------------------------------------===// |
| |
| let Predicates = [FeatureProcessorAssist] in { |
| let hasSideEffects = 1 in |
| def PPA : SideEffectTernaryRRFc<"ppa", 0xB2E8, GR64, GR64, imm32zx4>; |
| def : Pat<(int_s390_ppa_txassist GR32:$src), |
| (PPA (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32), |
| 0, 1)>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Miscellaneous Instructions. |
| //===----------------------------------------------------------------------===// |
| |
| // Find leftmost one, AKA count leading zeros. The instruction actually |
| // returns a pair of GR64s, the first giving the number of leading zeros |
| // and the second giving a copy of the source with the leftmost one bit |
| // cleared. We only use the first result here. |
| let Defs = [CC] in |
| def FLOGR : UnaryRRE<"flogr", 0xB983, null_frag, GR128, GR64>; |
| def : Pat<(ctlz GR64:$src), |
| (EXTRACT_SUBREG (FLOGR GR64:$src), subreg_h64)>; |
| |
| // Population count. Counts bits set per byte. |
| let Predicates = [FeaturePopulationCount], Defs = [CC] in |
| def POPCNT : UnaryRRE<"popcnt", 0xB9E1, z_popcnt, GR64, GR64>; |
| |
| // Search a block of memory for a character. |
| let mayLoad = 1, Defs = [CC] in |
| defm SRST : StringRRE<"srst", 0xB25E, z_search_string>; |
| let mayLoad = 1, Defs = [CC], Uses = [R0L] in |
| def SRSTU : SideEffectBinaryMemMemRRE<"srstu", 0xB9BE, GR64, GR64>; |
| |
| // Compare until substring equal. |
| let mayLoad = 1, Defs = [CC], Uses = [R0L, R1L] in |
| def CUSE : SideEffectBinaryMemMemRRE<"cuse", 0xB257, GR128, GR128>; |
| |
| // Compare and form codeword. |
| let mayLoad = 1, Defs = [CC, R1D, R2D, R3D], Uses = [R1D, R2D, R3D] in |
| def CFC : SideEffectAddressS<"cfc", 0xB21A, null_frag>; |
| |
| // Update tree. |
| let mayLoad = 1, mayStore = 1, Defs = [CC, R0D, R1D, R2D, R3D, R5D], |
| Uses = [R0D, R1D, R2D, R3D, R4D, R5D] in |
| def UPT : SideEffectInherentE<"upt", 0x0102>; |
| |
| // Checksum. |
| let mayLoad = 1, Defs = [CC] in |
| def CKSM : SideEffectBinaryMemMemRRE<"cksm", 0xB241, GR64, GR128>; |
| |
| // Compression call. |
| let mayLoad = 1, mayStore = 1, Defs = [CC, R1D], Uses = [R0L, R1D] in |
| def CMPSC : SideEffectBinaryMemMemRRE<"cmpsc", 0xB263, GR128, GR128>; |
| |
| // Execute. |
| let hasSideEffects = 1 in { |
| def EX : SideEffectBinaryRX<"ex", 0x44, GR64>; |
| def EXRL : SideEffectBinaryRILPC<"exrl", 0xC60, GR64>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // .insn directive instructions |
| //===----------------------------------------------------------------------===// |
| |
| let isCodeGenOnly = 1, hasSideEffects = 1 in { |
| def InsnE : DirectiveInsnE<(outs), (ins imm64zx16:$enc), ".insn e,$enc", []>; |
| def InsnRI : DirectiveInsnRI<(outs), (ins imm64zx32:$enc, AnyReg:$R1, |
| imm32sx16:$I2), |
| ".insn ri,$enc,$R1,$I2", []>; |
| def InsnRIE : DirectiveInsnRIE<(outs), (ins imm64zx48:$enc, AnyReg:$R1, |
| AnyReg:$R3, brtarget16:$I2), |
| ".insn rie,$enc,$R1,$R3,$I2", []>; |
| def InsnRIL : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1, |
| brtarget32:$I2), |
| ".insn ril,$enc,$R1,$I2", []>; |
| def InsnRILU : DirectiveInsnRIL<(outs), (ins imm64zx48:$enc, AnyReg:$R1, |
| uimm32:$I2), |
| ".insn rilu,$enc,$R1,$I2", []>; |
| def InsnRIS : DirectiveInsnRIS<(outs), |
| (ins imm64zx48:$enc, AnyReg:$R1, |
| imm32sx8:$I2, imm32zx4:$M3, |
| bdaddr12only:$BD4), |
| ".insn ris,$enc,$R1,$I2,$M3,$BD4", []>; |
| def InsnRR : DirectiveInsnRR<(outs), |
| (ins imm64zx16:$enc, AnyReg:$R1, AnyReg:$R2), |
| ".insn rr,$enc,$R1,$R2", []>; |
| def InsnRRE : DirectiveInsnRRE<(outs), (ins imm64zx32:$enc, |
| AnyReg:$R1, AnyReg:$R2), |
| ".insn rre,$enc,$R1,$R2", []>; |
| def InsnRRF : DirectiveInsnRRF<(outs), |
| (ins imm64zx32:$enc, AnyReg:$R1, AnyReg:$R2, |
| AnyReg:$R3, imm32zx4:$M4), |
| ".insn rrf,$enc,$R1,$R2,$R3,$M4", []>; |
| def InsnRRS : DirectiveInsnRRS<(outs), |
| (ins imm64zx48:$enc, AnyReg:$R1, |
| AnyReg:$R2, imm32zx4:$M3, |
| bdaddr12only:$BD4), |
| ".insn rrs,$enc,$R1,$R2,$M3,$BD4", []>; |
| def InsnRS : DirectiveInsnRS<(outs), |
| (ins imm64zx32:$enc, AnyReg:$R1, |
| AnyReg:$R3, bdaddr12only:$BD2), |
| ".insn rs,$enc,$R1,$R3,$BD2", []>; |
| def InsnRSE : DirectiveInsnRSE<(outs), |
| (ins imm64zx48:$enc, AnyReg:$R1, |
| AnyReg:$R3, bdaddr12only:$BD2), |
| ".insn rse,$enc,$R1,$R3,$BD2", []>; |
| def InsnRSI : DirectiveInsnRSI<(outs), |
| (ins imm64zx48:$enc, AnyReg:$R1, |
| AnyReg:$R3, brtarget16:$RI2), |
| ".insn rsi,$enc,$R1,$R3,$RI2", []>; |
| def InsnRSY : DirectiveInsnRSY<(outs), |
| (ins imm64zx48:$enc, AnyReg:$R1, |
| AnyReg:$R3, bdaddr20only:$BD2), |
| ".insn rsy,$enc,$R1,$R3,$BD2", []>; |
| def InsnRX : DirectiveInsnRX<(outs), (ins imm64zx32:$enc, AnyReg:$R1, |
| bdxaddr12only:$XBD2), |
| ".insn rx,$enc,$R1,$XBD2", []>; |
| def InsnRXE : DirectiveInsnRXE<(outs), (ins imm64zx48:$enc, AnyReg:$R1, |
| bdxaddr12only:$XBD2), |
| ".insn rxe,$enc,$R1,$XBD2", []>; |
| def InsnRXF : DirectiveInsnRXF<(outs), |
| (ins imm64zx48:$enc, AnyReg:$R1, |
| AnyReg:$R3, bdxaddr12only:$XBD2), |
| ".insn rxf,$enc,$R1,$R3,$XBD2", []>; |
| def InsnRXY : DirectiveInsnRXY<(outs), (ins imm64zx48:$enc, AnyReg:$R1, |
| bdxaddr20only:$XBD2), |
| ".insn rxy,$enc,$R1,$XBD2", []>; |
| def InsnS : DirectiveInsnS<(outs), |
| (ins imm64zx32:$enc, bdaddr12only:$BD2), |
| ".insn s,$enc,$BD2", []>; |
| def InsnSI : DirectiveInsnSI<(outs), |
| (ins imm64zx32:$enc, bdaddr12only:$BD1, |
| imm32sx8:$I2), |
| ".insn si,$enc,$BD1,$I2", []>; |
| def InsnSIY : DirectiveInsnSIY<(outs), |
| (ins imm64zx48:$enc, |
| bdaddr20only:$BD1, imm32zx8:$I2), |
| ".insn siy,$enc,$BD1,$I2", []>; |
| def InsnSIL : DirectiveInsnSIL<(outs), |
| (ins imm64zx48:$enc, bdaddr12only:$BD1, |
| imm32zx16:$I2), |
| ".insn sil,$enc,$BD1,$I2", []>; |
| def InsnSS : DirectiveInsnSS<(outs), |
| (ins imm64zx48:$enc, bdraddr12only:$RBD1, |
| bdaddr12only:$BD2, AnyReg:$R3), |
| ".insn ss,$enc,$RBD1,$BD2,$R3", []>; |
| def InsnSSE : DirectiveInsnSSE<(outs), |
| (ins imm64zx48:$enc, |
| bdaddr12only:$BD1,bdaddr12only:$BD2), |
| ".insn sse,$enc,$BD1,$BD2", []>; |
| def InsnSSF : DirectiveInsnSSF<(outs), |
| (ins imm64zx48:$enc, bdaddr12only:$BD1, |
| bdaddr12only:$BD2, AnyReg:$R3), |
| ".insn ssf,$enc,$BD1,$BD2,$R3", []>; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Peepholes. |
| //===----------------------------------------------------------------------===// |
| |
| // Avoid generating 2 XOR instructions. (xor (and x, y), y) is |
| // equivalent to (and (xor x, -1), y) |
| def : Pat<(and (xor GR64:$x, (i64 -1)), GR64:$y), |
| (XGR GR64:$y, (NGR GR64:$y, GR64:$x))>; |
| |
| // Shift/rotate instructions only use the last 6 bits of the second operand |
| // register, so we can safely use NILL (16 fewer bits than NILF) to only AND the |
| // last 16 bits. |
| // Complexity is added so that we match this before we match NILF on the AND |
| // operation alone. |
| let AddedComplexity = 4 in { |
| def : Pat<(shl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)), |
| (SLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; |
| |
| def : Pat<(sra GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)), |
| (SRA GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; |
| |
| def : Pat<(srl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)), |
| (SRL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; |
| |
| def : Pat<(shl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)), |
| (SLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; |
| |
| def : Pat<(sra GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)), |
| (SRAG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; |
| |
| def : Pat<(srl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)), |
| (SRLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; |
| |
| def : Pat<(rotl GR32:$val, (and GR32:$shift, imm32zx16trunc:$imm)), |
| (RLL GR32:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; |
| |
| def : Pat<(rotl GR64:$val, (and GR32:$shift, imm32zx16trunc:$imm)), |
| (RLLG GR64:$val, (NILL GR32:$shift, imm32zx16trunc:$imm), 0)>; |
| } |
| |
| // Substitute (x*64-s) with (-s), since shift/rotate instructions only |
| // use the last 6 bits of the second operand register (making it modulo 64). |
| let AddedComplexity = 4 in { |
| def : Pat<(shl GR64:$val, (sub imm32mod64, GR32:$shift)), |
| (SLLG GR64:$val, (LCR GR32:$shift), 0)>; |
| |
| def : Pat<(sra GR64:$val, (sub imm32mod64, GR32:$shift)), |
| (SRAG GR64:$val, (LCR GR32:$shift), 0)>; |
| |
| def : Pat<(srl GR64:$val, (sub imm32mod64, GR32:$shift)), |
| (SRLG GR64:$val, (LCR GR32:$shift), 0)>; |
| |
| def : Pat<(rotl GR64:$val, (sub imm32mod64, GR32:$shift)), |
| (RLLG GR64:$val, (LCR GR32:$shift), 0)>; |
| } |
| |
| // Peepholes for turning scalar operations into block operations. |
| defm : BlockLoadStore<anyextloadi8, i32, MVCSequence, NCSequence, OCSequence, |
| XCSequence, 1>; |
| defm : BlockLoadStore<anyextloadi16, i32, MVCSequence, NCSequence, OCSequence, |
| XCSequence, 2>; |
| defm : BlockLoadStore<load, i32, MVCSequence, NCSequence, OCSequence, |
| XCSequence, 4>; |
| defm : BlockLoadStore<anyextloadi8, i64, MVCSequence, NCSequence, |
| OCSequence, XCSequence, 1>; |
| defm : BlockLoadStore<anyextloadi16, i64, MVCSequence, NCSequence, OCSequence, |
| XCSequence, 2>; |
| defm : BlockLoadStore<anyextloadi32, i64, MVCSequence, NCSequence, OCSequence, |
| XCSequence, 4>; |
| defm : BlockLoadStore<load, i64, MVCSequence, NCSequence, OCSequence, |
| XCSequence, 8>; |