| =================== |
| Debugging with XRay |
| =================== |
| |
| This document shows an example of how you would go about analyzing applications |
| built with XRay instrumentation. Here we will attempt to debug ``llc`` |
| compiling some sample LLVM IR generated by Clang. |
| |
| .. contents:: |
| :local: |
| |
| Building with XRay |
| ------------------ |
| |
| To debug an application with XRay instrumentation, we need to build it with a |
| Clang that supports the ``-fxray-instrument`` option. See `XRay <XRay.html>`_ |
| for more technical details of how XRay works for background information. |
| |
| In our example, we need to add ``-fxray-instrument`` to the list of flags |
| passed to Clang when building a binary. Note that we need to link with Clang as |
| well to get the XRay runtime linked in appropriately. For building ``llc`` with |
| XRay, we do something similar below for our LLVM build: |
| |
| :: |
| |
| $ mkdir -p llvm-build && cd llvm-build |
| # Assume that the LLVM sources are at ../llvm |
| $ cmake -GNinja ../llvm -DCMAKE_BUILD_TYPE=Release \ |
| -DCMAKE_C_FLAGS_RELEASE="-fxray-instrument" -DCMAKE_CXX_FLAGS="-fxray-instrument" \ |
| # Once this finishes, we should build llc |
| $ ninja llc |
| |
| |
| To verify that we have an XRay instrumented binary, we can use ``objdump`` to |
| look for the ``xray_instr_map`` section. |
| |
| :: |
| |
| $ objdump -h -j xray_instr_map ./bin/llc |
| ./bin/llc: file format elf64-x86-64 |
| |
| Sections: |
| Idx Name Size VMA LMA File off Algn |
| 14 xray_instr_map 00002fc0 00000000041516c6 00000000041516c6 03d516c6 2**0 |
| CONTENTS, ALLOC, LOAD, READONLY, DATA |
| |
| Getting Traces |
| -------------- |
| |
| By default, XRay does not write out the trace files or patch the application |
| before main starts. If we run ``llc`` it should work like a normally built |
| binary. If we want to get a full trace of the application's operations (of the |
| functions we do end up instrumenting with XRay) then we need to enable XRay |
| at application start. To do this, XRay checks the ``XRAY_OPTIONS`` environment |
| variable. |
| |
| :: |
| |
| # The following doesn't create an XRay trace by default. |
| $ ./bin/llc input.ll |
| |
| # We need to set the XRAY_OPTIONS to enable some features. |
| $ XRAY_OPTIONS="patch_premain=true xray_mode=xray-basic verbosity=1" ./bin/llc input.ll |
| ==69819==XRay: Log file in 'xray-log.llc.m35qPB' |
| |
| At this point we now have an XRay trace we can start analysing. |
| |
| The ``llvm-xray`` Tool |
| ---------------------- |
| |
| Having a trace then allows us to do basic accounting of the functions that were |
| instrumented, and how much time we're spending in parts of the code. To make |
| sense of this data, we use the ``llvm-xray`` tool which has a few subcommands |
| to help us understand our trace. |
| |
| One of the things we can do is to get an accounting of the functions that have |
| been instrumented. We can see an example accounting with ``llvm-xray account``: |
| |
| :: |
| |
| $ llvm-xray account xray-log.llc.m35qPB -top=10 -sort=sum -sortorder=dsc -instr_map ./bin/llc |
| Functions with latencies: 29 |
| funcid count [ min, med, 90p, 99p, max] sum function |
| 187 360 [ 0.000000, 0.000001, 0.000014, 0.000032, 0.000075] 0.001596 LLLexer.cpp:446:0: llvm::LLLexer::LexIdentifier() |
| 85 130 [ 0.000000, 0.000000, 0.000018, 0.000023, 0.000156] 0.000799 X86ISelDAGToDAG.cpp:1984:0: (anonymous namespace)::X86DAGToDAGISel::Select(llvm::SDNode*) |
| 138 130 [ 0.000000, 0.000000, 0.000017, 0.000155, 0.000155] 0.000774 SelectionDAGISel.cpp:2963:0: llvm::SelectionDAGISel::SelectCodeCommon(llvm::SDNode*, unsigned char const*, unsigned int) |
| 188 103 [ 0.000000, 0.000000, 0.000003, 0.000123, 0.000214] 0.000737 LLParser.cpp:2692:0: llvm::LLParser::ParseValID(llvm::ValID&, llvm::LLParser::PerFunctionState*) |
| 88 1 [ 0.000562, 0.000562, 0.000562, 0.000562, 0.000562] 0.000562 X86ISelLowering.cpp:83:0: llvm::X86TargetLowering::X86TargetLowering(llvm::X86TargetMachine const&, llvm::X86Subtarget const&) |
| 125 102 [ 0.000001, 0.000003, 0.000010, 0.000017, 0.000049] 0.000471 Verifier.cpp:3714:0: (anonymous namespace)::Verifier::visitInstruction(llvm::Instruction&) |
| 90 8 [ 0.000023, 0.000035, 0.000106, 0.000106, 0.000106] 0.000342 X86ISelLowering.cpp:3363:0: llvm::X86TargetLowering::LowerCall(llvm::TargetLowering::CallLoweringInfo&, llvm::SmallVectorImpl<llvm::SDValue>&) const |
| 124 32 [ 0.000003, 0.000007, 0.000016, 0.000041, 0.000041] 0.000310 Verifier.cpp:1967:0: (anonymous namespace)::Verifier::visitFunction(llvm::Function const&) |
| 123 1 [ 0.000302, 0.000302, 0.000302, 0.000302, 0.000302] 0.000302 LLVMContextImpl.cpp:54:0: llvm::LLVMContextImpl::~LLVMContextImpl() |
| 139 46 [ 0.000000, 0.000002, 0.000006, 0.000008, 0.000019] 0.000138 TargetLowering.cpp:506:0: llvm::TargetLowering::SimplifyDemandedBits(llvm::SDValue, llvm::APInt const&, llvm::APInt&, llvm::APInt&, llvm::TargetLowering::TargetLoweringOpt&, unsigned int, bool) const |
| |
| This shows us that for our input file, ``llc`` spent the most cumulative time |
| in the lexer (a total of 1 millisecond). If we wanted for example to work with |
| this data in a spreadsheet, we can output the results as CSV using the |
| ``-format=csv`` option to the command for further analysis. |
| |
| If we want to get a textual representation of the raw trace we can use the |
| ``llvm-xray convert`` tool to get YAML output. The first few lines of that |
| output for an example trace would look like the following: |
| |
| :: |
| |
| $ llvm-xray convert -f yaml -symbolize -instr_map=./bin/llc xray-log.llc.m35qPB |
| --- |
| header: |
| version: 1 |
| type: 0 |
| constant-tsc: true |
| nonstop-tsc: true |
| cycle-frequency: 2601000000 |
| records: |
| - { type: 0, func-id: 110, function: __cxx_global_var_init.8, cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426023268520 } |
| - { type: 0, func-id: 110, function: __cxx_global_var_init.8, cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426023523052 } |
| - { type: 0, func-id: 164, function: __cxx_global_var_init, cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426029925386 } |
| - { type: 0, func-id: 164, function: __cxx_global_var_init, cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426030031128 } |
| - { type: 0, func-id: 142, function: '(anonymous namespace)::CommandLineParser::ParseCommandLineOptions(int, char const* const*, llvm::StringRef, llvm::raw_ostream*)', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426046951388 } |
| - { type: 0, func-id: 142, function: '(anonymous namespace)::CommandLineParser::ParseCommandLineOptions(int, char const* const*, llvm::StringRef, llvm::raw_ostream*)', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426047282020 } |
| - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426047857332 } |
| - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426047984152 } |
| - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426048036584 } |
| - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426048042292 } |
| - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-enter, tsc: 5434426048055056 } |
| - { type: 0, func-id: 187, function: 'llvm::LLLexer::LexIdentifier()', cpu: 37, thread: 69819, kind: function-exit, tsc: 5434426048067316 } |
| |
| Controlling Fidelity |
| -------------------- |
| |
| So far in our examples, we haven't been getting full coverage of the functions |
| we have in the binary. To get that, we need to modify the compiler flags so |
| that we can instrument more (if not all) the functions we have in the binary. |
| We have two options for doing that, and we explore both of these below. |
| |
| Instruction Threshold |
| ````````````````````` |
| |
| The first "blunt" way of doing this is by setting the minimum threshold for |
| function bodies to 1. We can do that with the |
| ``-fxray-instruction-threshold=N`` flag when building our binary. We rebuild |
| ``llc`` with this option and observe the results: |
| |
| :: |
| |
| $ rm CMakeCache.txt |
| $ cmake -GNinja ../llvm -DCMAKE_BUILD_TYPE=Release \ |
| -DCMAKE_C_FLAGS_RELEASE="-fxray-instrument -fxray-instruction-threshold=1" \ |
| -DCMAKE_CXX_FLAGS="-fxray-instrument -fxray-instruction-threshold=1" |
| $ ninja llc |
| $ XRAY_OPTIONS="patch_premain=true" ./bin/llc input.ll |
| ==69819==XRay: Log file in 'xray-log.llc.5rqxkU' |
| |
| $ llvm-xray account xray-log.llc.5rqxkU -top=10 -sort=sum -sortorder=dsc -instr_map ./bin/llc |
| Functions with latencies: 36652 |
| funcid count [ min, med, 90p, 99p, max] sum function |
| 75 1 [ 0.672368, 0.672368, 0.672368, 0.672368, 0.672368] 0.672368 llc.cpp:271:0: main |
| 78 1 [ 0.626455, 0.626455, 0.626455, 0.626455, 0.626455] 0.626455 llc.cpp:381:0: compileModule(char**, llvm::LLVMContext&) |
| 139617 1 [ 0.472618, 0.472618, 0.472618, 0.472618, 0.472618] 0.472618 LegacyPassManager.cpp:1723:0: llvm::legacy::PassManager::run(llvm::Module&) |
| 139610 1 [ 0.472618, 0.472618, 0.472618, 0.472618, 0.472618] 0.472618 LegacyPassManager.cpp:1681:0: llvm::legacy::PassManagerImpl::run(llvm::Module&) |
| 139612 1 [ 0.470948, 0.470948, 0.470948, 0.470948, 0.470948] 0.470948 LegacyPassManager.cpp:1564:0: (anonymous namespace)::MPPassManager::runOnModule(llvm::Module&) |
| 139607 2 [ 0.147345, 0.315994, 0.315994, 0.315994, 0.315994] 0.463340 LegacyPassManager.cpp:1530:0: llvm::FPPassManager::runOnModule(llvm::Module&) |
| 139605 21 [ 0.000002, 0.000002, 0.102593, 0.213336, 0.213336] 0.463331 LegacyPassManager.cpp:1491:0: llvm::FPPassManager::runOnFunction(llvm::Function&) |
| 139563 26096 [ 0.000002, 0.000002, 0.000037, 0.000063, 0.000215] 0.225708 LegacyPassManager.cpp:1083:0: llvm::PMDataManager::findAnalysisPass(void const*, bool) |
| 108055 188 [ 0.000002, 0.000120, 0.001375, 0.004523, 0.062624] 0.159279 MachineFunctionPass.cpp:38:0: llvm::MachineFunctionPass::runOnFunction(llvm::Function&) |
| 62635 22 [ 0.000041, 0.000046, 0.000050, 0.126744, 0.126744] 0.127715 X86TargetMachine.cpp:242:0: llvm::X86TargetMachine::getSubtargetImpl(llvm::Function const&) const |
| |
| |
| Instrumentation Attributes |
| `````````````````````````` |
| |
| The other way is to use configuration files for selecting which functions |
| should always be instrumented by the compiler. This gives us a way of ensuring |
| that certain functions are either always or never instrumented by not having to |
| add the attribute to the source. |
| |
| To use this feature, you can define one file for the functions to always |
| instrument, and another for functions to never instrument. The format of these |
| files are exactly the same as the SanitizerLists files that control similar |
| things for the sanitizer implementations. For example: |
| |
| :: |
| |
| # xray-attr-list.txt |
| # always instrument functions that match the following filters: |
| [always] |
| fun:main |
| |
| # never instrument functions that match the following filters: |
| [never] |
| fun:__cxx_* |
| |
| Given the file above we can re-build by providing it to the |
| ``-fxray-attr-list=`` flag to clang. You can have multiple files, each defining |
| different sets of attribute sets, to be combined into a single list by clang. |
| |
| The XRay stack tool |
| ------------------- |
| |
| Given a trace, and optionally an instrumentation map, the ``llvm-xray stack`` |
| command can be used to analyze a call stack graph constructed from the function |
| call timeline. |
| |
| The way to use the command is to output the top stacks by call count and time spent. |
| |
| :: |
| |
| $ llvm-xray stack xray-log.llc.5rqxkU -instr_map ./bin/llc |
| |
| Unique Stacks: 3069 |
| Top 10 Stacks by leaf sum: |
| |
| Sum: 9633790 |
| lvl function count sum |
| #0 main 1 58421550 |
| #1 compileModule(char**, llvm::LLVMContext&) 1 51440360 |
| #2 llvm::legacy::PassManagerImpl::run(llvm::Module&) 1 40535375 |
| #3 llvm::FPPassManager::runOnModule(llvm::Module&) 2 39337525 |
| #4 llvm::FPPassManager::runOnFunction(llvm::Function&) 6 39331465 |
| #5 llvm::PMDataManager::verifyPreservedAnalysis(llvm::Pass*) 399 16628590 |
| #6 llvm::PMTopLevelManager::findAnalysisPass(void const*) 4584 15155600 |
| #7 llvm::PMDataManager::findAnalysisPass(void const*, bool) 32088 9633790 |
| |
| ..etc.. |
| |
| In the default mode, identical stacks on different threads are independently |
| aggregated. In a multithreaded program, you may end up having identical call |
| stacks fill your list of top calls. |
| |
| To address this, you may specify the ``-aggregate-threads`` or |
| ``-per-thread-stacks`` flags. ``-per-thread-stacks`` treats the thread id as an |
| implicit root in each call stack tree, while ``-aggregate-threads`` combines |
| identical stacks from all threads. |
| |
| Flame Graph Generation |
| ---------------------- |
| |
| The ``llvm-xray stack`` tool may also be used to generate flamegraphs for |
| visualizing your instrumented invocations. The tool does not generate the graphs |
| themselves, but instead generates a format that can be used with Brendan Gregg's |
| FlameGraph tool, currently available on `github |
| <https://github.com/brendangregg/FlameGraph>`_. |
| |
| To generate output for a flamegraph, a few more options are necessary. |
| |
| - ``-all-stacks`` - Emits all of the stacks. |
| - ``-stack-format`` - Choose the flamegraph output format 'flame'. |
| - ``-aggregation-type`` - Choose the metric to graph. |
| |
| You may pipe the command output directly to the flamegraph tool to obtain an |
| svg file. |
| |
| :: |
| |
| $llvm-xray stack xray-log.llc.5rqxkU -instr_map ./bin/llc -stack-format=flame -aggregation-type=time -all-stacks | \ |
| /path/to/FlameGraph/flamegraph.pl > flamegraph.svg |
| |
| If you open the svg in a browser, mouse events allow exploring the call stacks. |
| |
| Chrome Trace Viewer Visualization |
| --------------------------------- |
| |
| We can also generate a trace which can be loaded by the Chrome Trace Viewer |
| from the same generated trace: |
| |
| :: |
| |
| $ llvm-xray convert -symbolize -instr_map=./bin/llc \ |
| -output-format=trace_event xray-log.llc.5rqxkU \ |
| | gzip > llc-trace.txt.gz |
| |
| From a Chrome browser, navigating to ``chrome:///tracing`` allows us to load |
| the ``sample-trace.txt.gz`` file to visualize the execution trace. |
| |
| Further Exploration |
| ------------------- |
| |
| The ``llvm-xray`` tool has a few other subcommands that are in various stages |
| of being developed. One interesting subcommand that can highlight a few |
| interesting things is the ``graph`` subcommand. Given for example the following |
| toy program that we build with XRay instrumentation, we can see how the |
| generated graph may be a helpful indicator of where time is being spent for the |
| application. |
| |
| .. code-block:: c++ |
| |
| // sample.cc |
| #include <iostream> |
| #include <thread> |
| |
| [[clang::xray_always_instrument]] void f() { |
| std::cerr << '.'; |
| } |
| |
| [[clang::xray_always_instrument]] void g() { |
| for (int i = 0; i < 1 << 10; ++i) { |
| std::cerr << '-'; |
| } |
| } |
| |
| int main(int argc, char* argv[]) { |
| std::thread t1([] { |
| for (int i = 0; i < 1 << 10; ++i) |
| f(); |
| }); |
| std::thread t2([] { |
| g(); |
| }); |
| t1.join(); |
| t2.join(); |
| std::cerr << '\n'; |
| } |
| |
| We then build the above with XRay instrumentation: |
| |
| :: |
| |
| $ clang++ -o sample -O3 sample.cc -std=c++11 -fxray-instrument -fxray-instruction-threshold=1 |
| $ XRAY_OPTIONS="patch_premain=true xray_mode=xray-basic" ./sample |
| |
| We can then explore the graph rendering of the trace generated by this sample |
| application. We assume you have the graphviz toosl available in your system, |
| including both ``unflatten`` and ``dot``. If you prefer rendering or exploring |
| the graph using another tool, then that should be feasible as well. ``llvm-xray |
| graph`` will create DOT format graphs which should be usable in most graph |
| rendering applications. One example invocation of the ``llvm-xray graph`` |
| command should yield some interesting insights to the workings of C++ |
| applications: |
| |
| :: |
| |
| $ llvm-xray graph xray-log.sample.* -m sample -color-edges=sum -edge-label=sum \ |
| | unflatten -f -l10 | dot -Tsvg -o sample.svg |
| |
| |
| Next Steps |
| ---------- |
| |
| If you have some interesting analyses you'd like to implement as part of the |
| llvm-xray tool, please feel free to propose them on the llvm-dev@ mailing list. |
| The following are some ideas to inspire you in getting involved and potentially |
| making things better. |
| |
| - Implement a query/filtering library that allows for finding patterns in the |
| XRay traces. |
| - Collecting function call stacks and how often they're encountered in the |
| XRay trace. |
| |
| |