| ; RUN: opt -S -analyze -scalar-evolution < %s 2>&1 | FileCheck %s |
| |
| ; umin is represented using -1 * umax in scalar evolution. -1 is considered as the |
| ; constant of the multiply expression (-1 * ((-1 + (-1 * %a)) umax (-1 + (-1 * %b)))). |
| ; Returns the greatest power of 2 divisor by evaluating the minimal trailing zeros |
| ; for the trip count expression. |
| ; |
| ; int foo(uint32_t a, uint32_t b, uint32_t *c) { |
| ; for (uint32_t i = 0; i < (uint32_t)(a < b ? a : b) + 1; i++) |
| ; c[i] = i; |
| ; return 0; |
| ; } |
| ; |
| ; CHECK: Loop %for.body: Trip multiple is 1 |
| |
| define i32 @foo(i32 %a, i32 %b, i32* %c) { |
| entry: |
| %cmp = icmp ult i32 %a, %b |
| %cond = select i1 %cmp, i32 %a, i32 %b |
| %add = add i32 %cond, 1 |
| %cmp18 = icmp eq i32 %add, 0 |
| br i1 %cmp18, label %for.cond.cleanup, label %for.body.preheader |
| |
| for.body.preheader: ; preds = %entry |
| br label %for.body |
| |
| for.cond.cleanup.loopexit: ; preds = %for.body |
| br label %for.cond.cleanup |
| |
| for.cond.cleanup: ; preds = %for.cond.cleanup.loopexit, %entry |
| ret i32 0 |
| |
| for.body: ; preds = %for.body.preheader, %for.body |
| %i.09 = phi i32 [ %inc, %for.body ], [ 0, %for.body.preheader ] |
| %arrayidx = getelementptr inbounds i32, i32* %c, i32 %i.09 |
| store i32 %i.09, i32* %arrayidx, align 4 |
| %inc = add nuw i32 %i.09, 1 |
| %cmp1 = icmp ult i32 %inc, %add |
| br i1 %cmp1, label %for.body, label %for.cond.cleanup.loopexit |
| } |
| |
| ; Overflow may happen for the multiply expression n * 3, verify that trip |
| ; multiple is set to 1 if NUW/NSW are not set. |
| ; |
| ; __attribute__((noinline)) void a(unsigned n) { |
| ; #pragma unroll(3) |
| ; for (unsigned i = 0; i != n * 3; ++i) |
| ; printf("TEST%u\n", i); |
| ; } |
| ; int main() { a(2863311531U); } |
| ; |
| ; CHECK: Loop %for.body: Trip multiple is 1 |
| |
| @.str2 = private unnamed_addr constant [8 x i8] c"TEST%u\0A\00", align 1 |
| |
| define void @foo2(i32 %n) { |
| entry: |
| %mul = mul i32 %n, 3 |
| %cmp4 = icmp eq i32 %mul, 0 |
| br i1 %cmp4, label %for.cond.cleanup, label %for.body.preheader |
| |
| for.body.preheader: ; preds = %entry |
| br label %for.body |
| |
| for.cond.cleanup.loopexit: ; preds = %for.body |
| br label %for.cond.cleanup |
| |
| for.cond.cleanup: ; preds = %for.cond.cleanup.loopexit, %entry |
| ret void |
| |
| for.body: ; preds = %for.body.preheader, %for.body |
| %i.05 = phi i32 [ %inc, %for.body ], [ 0, %for.body.preheader ] |
| %call = tail call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([8 x i8], [8 x i8]* @.str2, i32 0, i32 0), i32 %i.05) |
| %inc = add nuw i32 %i.05, 1 |
| %cmp = icmp eq i32 %inc, %mul |
| br i1 %cmp, label %for.cond.cleanup.loopexit, label %for.body |
| } |
| |
| declare i32 @printf(i8* nocapture readonly, ...) |
| |
| |
| ; If we couldn't prove no overflow for the multiply expression 24 * n, |
| ; returns the greatest power of 2 divisor. If overflows happens |
| ; the trip count is still divisible by the greatest power of 2 divisor. |
| ; |
| ; CHECK: Loop %l3: Trip multiple is 8 |
| |
| declare void @f() |
| |
| define i32 @foo3(i32 %n) { |
| entry: |
| %loop_ctl = mul i32 %n, 24 |
| br label %l3 |
| |
| l3: |
| %x.0 = phi i32 [ 0, %entry ], [ %inc, %l3 ] |
| call void @f() |
| %inc = add i32 %x.0, 1 |
| %exitcond = icmp eq i32 %inc, %loop_ctl |
| br i1 %exitcond, label %exit, label %l3 |
| |
| exit: |
| ret i32 0 |
| } |
| |
| ; If the trip count is a constant, verify that we obtained the trip |
| ; count itself. For huge trip counts, or zero, we return 1. |
| ; |
| ; CHECK: Loop %l3: Trip multiple is 3 |
| |
| define i32 @foo4(i32 %n) { |
| entry: |
| br label %l3 |
| |
| l3: |
| %x.0 = phi i32 [ 0, %entry ], [ %inc, %l3 ] |
| call void @f() |
| %inc = add i32 %x.0, 1 |
| %exitcond = icmp eq i32 %inc, 3 |
| br i1 %exitcond, label %exit, label %l3 |
| |
| exit: |
| ret i32 0 |
| } |
| |