| //===- LiveRangeCalc.cpp - Calculate live ranges --------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Implementation of the LiveRangeCalc class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "LiveRangeCalc.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/CodeGen/LiveInterval.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SlotIndexes.h" |
| #include "llvm/CodeGen/TargetRegisterInfo.h" |
| #include "llvm/MC/LaneBitmask.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <iterator> |
| #include <tuple> |
| #include <utility> |
| |
| using namespace llvm; |
| |
| #define DEBUG_TYPE "regalloc" |
| |
| // Reserve an address that indicates a value that is known to be "undef". |
| static VNInfo UndefVNI(0xbad, SlotIndex()); |
| |
| void LiveRangeCalc::resetLiveOutMap() { |
| unsigned NumBlocks = MF->getNumBlockIDs(); |
| Seen.clear(); |
| Seen.resize(NumBlocks); |
| EntryInfos.clear(); |
| Map.resize(NumBlocks); |
| } |
| |
| void LiveRangeCalc::reset(const MachineFunction *mf, |
| SlotIndexes *SI, |
| MachineDominatorTree *MDT, |
| VNInfo::Allocator *VNIA) { |
| MF = mf; |
| MRI = &MF->getRegInfo(); |
| Indexes = SI; |
| DomTree = MDT; |
| Alloc = VNIA; |
| resetLiveOutMap(); |
| LiveIn.clear(); |
| } |
| |
| static void createDeadDef(SlotIndexes &Indexes, VNInfo::Allocator &Alloc, |
| LiveRange &LR, const MachineOperand &MO) { |
| const MachineInstr &MI = *MO.getParent(); |
| SlotIndex DefIdx = |
| Indexes.getInstructionIndex(MI).getRegSlot(MO.isEarlyClobber()); |
| |
| // Create the def in LR. This may find an existing def. |
| LR.createDeadDef(DefIdx, Alloc); |
| } |
| |
| void LiveRangeCalc::calculate(LiveInterval &LI, bool TrackSubRegs) { |
| assert(MRI && Indexes && "call reset() first"); |
| |
| // Step 1: Create minimal live segments for every definition of Reg. |
| // Visit all def operands. If the same instruction has multiple defs of Reg, |
| // createDeadDef() will deduplicate. |
| const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); |
| unsigned Reg = LI.reg; |
| for (const MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { |
| if (!MO.isDef() && !MO.readsReg()) |
| continue; |
| |
| unsigned SubReg = MO.getSubReg(); |
| if (LI.hasSubRanges() || (SubReg != 0 && TrackSubRegs)) { |
| LaneBitmask SubMask = SubReg != 0 ? TRI.getSubRegIndexLaneMask(SubReg) |
| : MRI->getMaxLaneMaskForVReg(Reg); |
| // If this is the first time we see a subregister def, initialize |
| // subranges by creating a copy of the main range. |
| if (!LI.hasSubRanges() && !LI.empty()) { |
| LaneBitmask ClassMask = MRI->getMaxLaneMaskForVReg(Reg); |
| LI.createSubRangeFrom(*Alloc, ClassMask, LI); |
| } |
| |
| LI.refineSubRanges(*Alloc, SubMask, |
| [&MO, this](LiveInterval::SubRange &SR) { |
| if (MO.isDef()) |
| createDeadDef(*Indexes, *Alloc, SR, MO); |
| }); |
| } |
| |
| // Create the def in the main liverange. We do not have to do this if |
| // subranges are tracked as we recreate the main range later in this case. |
| if (MO.isDef() && !LI.hasSubRanges()) |
| createDeadDef(*Indexes, *Alloc, LI, MO); |
| } |
| |
| // We may have created empty live ranges for partially undefined uses, we |
| // can't keep them because we won't find defs in them later. |
| LI.removeEmptySubRanges(); |
| |
| // Step 2: Extend live segments to all uses, constructing SSA form as |
| // necessary. |
| if (LI.hasSubRanges()) { |
| for (LiveInterval::SubRange &S : LI.subranges()) { |
| LiveRangeCalc SubLRC; |
| SubLRC.reset(MF, Indexes, DomTree, Alloc); |
| SubLRC.extendToUses(S, Reg, S.LaneMask, &LI); |
| } |
| LI.clear(); |
| constructMainRangeFromSubranges(LI); |
| } else { |
| resetLiveOutMap(); |
| extendToUses(LI, Reg, LaneBitmask::getAll()); |
| } |
| } |
| |
| void LiveRangeCalc::constructMainRangeFromSubranges(LiveInterval &LI) { |
| // First create dead defs at all defs found in subranges. |
| LiveRange &MainRange = LI; |
| assert(MainRange.segments.empty() && MainRange.valnos.empty() && |
| "Expect empty main liverange"); |
| |
| for (const LiveInterval::SubRange &SR : LI.subranges()) { |
| for (const VNInfo *VNI : SR.valnos) { |
| if (!VNI->isUnused() && !VNI->isPHIDef()) |
| MainRange.createDeadDef(VNI->def, *Alloc); |
| } |
| } |
| resetLiveOutMap(); |
| extendToUses(MainRange, LI.reg, LaneBitmask::getAll(), &LI); |
| } |
| |
| void LiveRangeCalc::createDeadDefs(LiveRange &LR, unsigned Reg) { |
| assert(MRI && Indexes && "call reset() first"); |
| |
| // Visit all def operands. If the same instruction has multiple defs of Reg, |
| // LR.createDeadDef() will deduplicate. |
| for (MachineOperand &MO : MRI->def_operands(Reg)) |
| createDeadDef(*Indexes, *Alloc, LR, MO); |
| } |
| |
| void LiveRangeCalc::extendToUses(LiveRange &LR, unsigned Reg, LaneBitmask Mask, |
| LiveInterval *LI) { |
| SmallVector<SlotIndex, 4> Undefs; |
| if (LI != nullptr) |
| LI->computeSubRangeUndefs(Undefs, Mask, *MRI, *Indexes); |
| |
| // Visit all operands that read Reg. This may include partial defs. |
| bool IsSubRange = !Mask.all(); |
| const TargetRegisterInfo &TRI = *MRI->getTargetRegisterInfo(); |
| for (MachineOperand &MO : MRI->reg_nodbg_operands(Reg)) { |
| // Clear all kill flags. They will be reinserted after register allocation |
| // by LiveIntervals::addKillFlags(). |
| if (MO.isUse()) |
| MO.setIsKill(false); |
| // MO::readsReg returns "true" for subregister defs. This is for keeping |
| // liveness of the entire register (i.e. for the main range of the live |
| // interval). For subranges, definitions of non-overlapping subregisters |
| // do not count as uses. |
| if (!MO.readsReg() || (IsSubRange && MO.isDef())) |
| continue; |
| |
| unsigned SubReg = MO.getSubReg(); |
| if (SubReg != 0) { |
| LaneBitmask SLM = TRI.getSubRegIndexLaneMask(SubReg); |
| if (MO.isDef()) |
| SLM = ~SLM; |
| // Ignore uses not reading the current (sub)range. |
| if ((SLM & Mask).none()) |
| continue; |
| } |
| |
| // Determine the actual place of the use. |
| const MachineInstr *MI = MO.getParent(); |
| unsigned OpNo = (&MO - &MI->getOperand(0)); |
| SlotIndex UseIdx; |
| if (MI->isPHI()) { |
| assert(!MO.isDef() && "Cannot handle PHI def of partial register."); |
| // The actual place where a phi operand is used is the end of the pred |
| // MBB. PHI operands are paired: (Reg, PredMBB). |
| UseIdx = Indexes->getMBBEndIdx(MI->getOperand(OpNo+1).getMBB()); |
| } else { |
| // Check for early-clobber redefs. |
| bool isEarlyClobber = false; |
| unsigned DefIdx; |
| if (MO.isDef()) |
| isEarlyClobber = MO.isEarlyClobber(); |
| else if (MI->isRegTiedToDefOperand(OpNo, &DefIdx)) { |
| // FIXME: This would be a lot easier if tied early-clobber uses also |
| // had an early-clobber flag. |
| isEarlyClobber = MI->getOperand(DefIdx).isEarlyClobber(); |
| } |
| UseIdx = Indexes->getInstructionIndex(*MI).getRegSlot(isEarlyClobber); |
| } |
| |
| // MI is reading Reg. We may have visited MI before if it happens to be |
| // reading Reg multiple times. That is OK, extend() is idempotent. |
| extend(LR, UseIdx, Reg, Undefs); |
| } |
| } |
| |
| void LiveRangeCalc::updateFromLiveIns() { |
| LiveRangeUpdater Updater; |
| for (const LiveInBlock &I : LiveIn) { |
| if (!I.DomNode) |
| continue; |
| MachineBasicBlock *MBB = I.DomNode->getBlock(); |
| assert(I.Value && "No live-in value found"); |
| SlotIndex Start, End; |
| std::tie(Start, End) = Indexes->getMBBRange(MBB); |
| |
| if (I.Kill.isValid()) |
| // Value is killed inside this block. |
| End = I.Kill; |
| else { |
| // The value is live-through, update LiveOut as well. |
| // Defer the Domtree lookup until it is needed. |
| assert(Seen.test(MBB->getNumber())); |
| Map[MBB] = LiveOutPair(I.Value, nullptr); |
| } |
| Updater.setDest(&I.LR); |
| Updater.add(Start, End, I.Value); |
| } |
| LiveIn.clear(); |
| } |
| |
| void LiveRangeCalc::extend(LiveRange &LR, SlotIndex Use, unsigned PhysReg, |
| ArrayRef<SlotIndex> Undefs) { |
| assert(Use.isValid() && "Invalid SlotIndex"); |
| assert(Indexes && "Missing SlotIndexes"); |
| assert(DomTree && "Missing dominator tree"); |
| |
| MachineBasicBlock *UseMBB = Indexes->getMBBFromIndex(Use.getPrevSlot()); |
| assert(UseMBB && "No MBB at Use"); |
| |
| // Is there a def in the same MBB we can extend? |
| auto EP = LR.extendInBlock(Undefs, Indexes->getMBBStartIdx(UseMBB), Use); |
| if (EP.first != nullptr || EP.second) |
| return; |
| |
| // Find the single reaching def, or determine if Use is jointly dominated by |
| // multiple values, and we may need to create even more phi-defs to preserve |
| // VNInfo SSA form. Perform a search for all predecessor blocks where we |
| // know the dominating VNInfo. |
| if (findReachingDefs(LR, *UseMBB, Use, PhysReg, Undefs)) |
| return; |
| |
| // When there were multiple different values, we may need new PHIs. |
| calculateValues(); |
| } |
| |
| // This function is called by a client after using the low-level API to add |
| // live-out and live-in blocks. The unique value optimization is not |
| // available, SplitEditor::transferValues handles that case directly anyway. |
| void LiveRangeCalc::calculateValues() { |
| assert(Indexes && "Missing SlotIndexes"); |
| assert(DomTree && "Missing dominator tree"); |
| updateSSA(); |
| updateFromLiveIns(); |
| } |
| |
| bool LiveRangeCalc::isDefOnEntry(LiveRange &LR, ArrayRef<SlotIndex> Undefs, |
| MachineBasicBlock &MBB, BitVector &DefOnEntry, |
| BitVector &UndefOnEntry) { |
| unsigned BN = MBB.getNumber(); |
| if (DefOnEntry[BN]) |
| return true; |
| if (UndefOnEntry[BN]) |
| return false; |
| |
| auto MarkDefined = [BN, &DefOnEntry](MachineBasicBlock &B) -> bool { |
| for (MachineBasicBlock *S : B.successors()) |
| DefOnEntry[S->getNumber()] = true; |
| DefOnEntry[BN] = true; |
| return true; |
| }; |
| |
| SetVector<unsigned> WorkList; |
| // Checking if the entry of MBB is reached by some def: add all predecessors |
| // that are potentially defined-on-exit to the work list. |
| for (MachineBasicBlock *P : MBB.predecessors()) |
| WorkList.insert(P->getNumber()); |
| |
| for (unsigned i = 0; i != WorkList.size(); ++i) { |
| // Determine if the exit from the block is reached by some def. |
| unsigned N = WorkList[i]; |
| MachineBasicBlock &B = *MF->getBlockNumbered(N); |
| if (Seen[N]) { |
| const LiveOutPair &LOB = Map[&B]; |
| if (LOB.first != nullptr && LOB.first != &UndefVNI) |
| return MarkDefined(B); |
| } |
| SlotIndex Begin, End; |
| std::tie(Begin, End) = Indexes->getMBBRange(&B); |
| // Treat End as not belonging to B. |
| // If LR has a segment S that starts at the next block, i.e. [End, ...), |
| // std::upper_bound will return the segment following S. Instead, |
| // S should be treated as the first segment that does not overlap B. |
| LiveRange::iterator UB = std::upper_bound(LR.begin(), LR.end(), |
| End.getPrevSlot()); |
| if (UB != LR.begin()) { |
| LiveRange::Segment &Seg = *std::prev(UB); |
| if (Seg.end > Begin) { |
| // There is a segment that overlaps B. If the range is not explicitly |
| // undefined between the end of the segment and the end of the block, |
| // treat the block as defined on exit. If it is, go to the next block |
| // on the work list. |
| if (LR.isUndefIn(Undefs, Seg.end, End)) |
| continue; |
| return MarkDefined(B); |
| } |
| } |
| |
| // No segment overlaps with this block. If this block is not defined on |
| // entry, or it undefines the range, do not process its predecessors. |
| if (UndefOnEntry[N] || LR.isUndefIn(Undefs, Begin, End)) { |
| UndefOnEntry[N] = true; |
| continue; |
| } |
| if (DefOnEntry[N]) |
| return MarkDefined(B); |
| |
| // Still don't know: add all predecessors to the work list. |
| for (MachineBasicBlock *P : B.predecessors()) |
| WorkList.insert(P->getNumber()); |
| } |
| |
| UndefOnEntry[BN] = true; |
| return false; |
| } |
| |
| bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB, |
| SlotIndex Use, unsigned PhysReg, |
| ArrayRef<SlotIndex> Undefs) { |
| unsigned UseMBBNum = UseMBB.getNumber(); |
| |
| // Block numbers where LR should be live-in. |
| SmallVector<unsigned, 16> WorkList(1, UseMBBNum); |
| |
| // Remember if we have seen more than one value. |
| bool UniqueVNI = true; |
| VNInfo *TheVNI = nullptr; |
| |
| bool FoundUndef = false; |
| |
| // Using Seen as a visited set, perform a BFS for all reaching defs. |
| for (unsigned i = 0; i != WorkList.size(); ++i) { |
| MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]); |
| |
| #ifndef NDEBUG |
| if (MBB->pred_empty()) { |
| MBB->getParent()->verify(); |
| errs() << "Use of " << printReg(PhysReg, MRI->getTargetRegisterInfo()) |
| << " does not have a corresponding definition on every path:\n"; |
| const MachineInstr *MI = Indexes->getInstructionFromIndex(Use); |
| if (MI != nullptr) |
| errs() << Use << " " << *MI; |
| report_fatal_error("Use not jointly dominated by defs."); |
| } |
| |
| if (TargetRegisterInfo::isPhysicalRegister(PhysReg) && |
| !MBB->isLiveIn(PhysReg)) { |
| MBB->getParent()->verify(); |
| const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo(); |
| errs() << "The register " << printReg(PhysReg, TRI) |
| << " needs to be live in to " << printMBBReference(*MBB) |
| << ", but is missing from the live-in list.\n"; |
| report_fatal_error("Invalid global physical register"); |
| } |
| #endif |
| FoundUndef |= MBB->pred_empty(); |
| |
| for (MachineBasicBlock *Pred : MBB->predecessors()) { |
| // Is this a known live-out block? |
| if (Seen.test(Pred->getNumber())) { |
| if (VNInfo *VNI = Map[Pred].first) { |
| if (TheVNI && TheVNI != VNI) |
| UniqueVNI = false; |
| TheVNI = VNI; |
| } |
| continue; |
| } |
| |
| SlotIndex Start, End; |
| std::tie(Start, End) = Indexes->getMBBRange(Pred); |
| |
| // First time we see Pred. Try to determine the live-out value, but set |
| // it as null if Pred is live-through with an unknown value. |
| auto EP = LR.extendInBlock(Undefs, Start, End); |
| VNInfo *VNI = EP.first; |
| FoundUndef |= EP.second; |
| setLiveOutValue(Pred, EP.second ? &UndefVNI : VNI); |
| if (VNI) { |
| if (TheVNI && TheVNI != VNI) |
| UniqueVNI = false; |
| TheVNI = VNI; |
| } |
| if (VNI || EP.second) |
| continue; |
| |
| // No, we need a live-in value for Pred as well |
| if (Pred != &UseMBB) |
| WorkList.push_back(Pred->getNumber()); |
| else |
| // Loopback to UseMBB, so value is really live through. |
| Use = SlotIndex(); |
| } |
| } |
| |
| LiveIn.clear(); |
| FoundUndef |= (TheVNI == nullptr || TheVNI == &UndefVNI); |
| if (!Undefs.empty() && FoundUndef) |
| UniqueVNI = false; |
| |
| // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but |
| // neither require it. Skip the sorting overhead for small updates. |
| if (WorkList.size() > 4) |
| array_pod_sort(WorkList.begin(), WorkList.end()); |
| |
| // If a unique reaching def was found, blit in the live ranges immediately. |
| if (UniqueVNI) { |
| assert(TheVNI != nullptr && TheVNI != &UndefVNI); |
| LiveRangeUpdater Updater(&LR); |
| for (unsigned BN : WorkList) { |
| SlotIndex Start, End; |
| std::tie(Start, End) = Indexes->getMBBRange(BN); |
| // Trim the live range in UseMBB. |
| if (BN == UseMBBNum && Use.isValid()) |
| End = Use; |
| else |
| Map[MF->getBlockNumbered(BN)] = LiveOutPair(TheVNI, nullptr); |
| Updater.add(Start, End, TheVNI); |
| } |
| return true; |
| } |
| |
| // Prepare the defined/undefined bit vectors. |
| EntryInfoMap::iterator Entry; |
| bool DidInsert; |
| std::tie(Entry, DidInsert) = EntryInfos.insert( |
| std::make_pair(&LR, std::make_pair(BitVector(), BitVector()))); |
| if (DidInsert) { |
| // Initialize newly inserted entries. |
| unsigned N = MF->getNumBlockIDs(); |
| Entry->second.first.resize(N); |
| Entry->second.second.resize(N); |
| } |
| BitVector &DefOnEntry = Entry->second.first; |
| BitVector &UndefOnEntry = Entry->second.second; |
| |
| // Multiple values were found, so transfer the work list to the LiveIn array |
| // where UpdateSSA will use it as a work list. |
| LiveIn.reserve(WorkList.size()); |
| for (unsigned BN : WorkList) { |
| MachineBasicBlock *MBB = MF->getBlockNumbered(BN); |
| if (!Undefs.empty() && |
| !isDefOnEntry(LR, Undefs, *MBB, DefOnEntry, UndefOnEntry)) |
| continue; |
| addLiveInBlock(LR, DomTree->getNode(MBB)); |
| if (MBB == &UseMBB) |
| LiveIn.back().Kill = Use; |
| } |
| |
| return false; |
| } |
| |
| // This is essentially the same iterative algorithm that SSAUpdater uses, |
| // except we already have a dominator tree, so we don't have to recompute it. |
| void LiveRangeCalc::updateSSA() { |
| assert(Indexes && "Missing SlotIndexes"); |
| assert(DomTree && "Missing dominator tree"); |
| |
| // Interate until convergence. |
| bool Changed; |
| do { |
| Changed = false; |
| // Propagate live-out values down the dominator tree, inserting phi-defs |
| // when necessary. |
| for (LiveInBlock &I : LiveIn) { |
| MachineDomTreeNode *Node = I.DomNode; |
| // Skip block if the live-in value has already been determined. |
| if (!Node) |
| continue; |
| MachineBasicBlock *MBB = Node->getBlock(); |
| MachineDomTreeNode *IDom = Node->getIDom(); |
| LiveOutPair IDomValue; |
| |
| // We need a live-in value to a block with no immediate dominator? |
| // This is probably an unreachable block that has survived somehow. |
| bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber()); |
| |
| // IDom dominates all of our predecessors, but it may not be their |
| // immediate dominator. Check if any of them have live-out values that are |
| // properly dominated by IDom. If so, we need a phi-def here. |
| if (!needPHI) { |
| IDomValue = Map[IDom->getBlock()]; |
| |
| // Cache the DomTree node that defined the value. |
| if (IDomValue.first && IDomValue.first != &UndefVNI && |
| !IDomValue.second) { |
| Map[IDom->getBlock()].second = IDomValue.second = |
| DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def)); |
| } |
| |
| for (MachineBasicBlock *Pred : MBB->predecessors()) { |
| LiveOutPair &Value = Map[Pred]; |
| if (!Value.first || Value.first == IDomValue.first) |
| continue; |
| if (Value.first == &UndefVNI) { |
| needPHI = true; |
| break; |
| } |
| |
| // Cache the DomTree node that defined the value. |
| if (!Value.second) |
| Value.second = |
| DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def)); |
| |
| // This predecessor is carrying something other than IDomValue. |
| // It could be because IDomValue hasn't propagated yet, or it could be |
| // because MBB is in the dominance frontier of that value. |
| if (DomTree->dominates(IDom, Value.second)) { |
| needPHI = true; |
| break; |
| } |
| } |
| } |
| |
| // The value may be live-through even if Kill is set, as can happen when |
| // we are called from extendRange. In that case LiveOutSeen is true, and |
| // LiveOut indicates a foreign or missing value. |
| LiveOutPair &LOP = Map[MBB]; |
| |
| // Create a phi-def if required. |
| if (needPHI) { |
| Changed = true; |
| assert(Alloc && "Need VNInfo allocator to create PHI-defs"); |
| SlotIndex Start, End; |
| std::tie(Start, End) = Indexes->getMBBRange(MBB); |
| LiveRange &LR = I.LR; |
| VNInfo *VNI = LR.getNextValue(Start, *Alloc); |
| I.Value = VNI; |
| // This block is done, we know the final value. |
| I.DomNode = nullptr; |
| |
| // Add liveness since updateFromLiveIns now skips this node. |
| if (I.Kill.isValid()) { |
| if (VNI) |
| LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI)); |
| } else { |
| if (VNI) |
| LR.addSegment(LiveInterval::Segment(Start, End, VNI)); |
| LOP = LiveOutPair(VNI, Node); |
| } |
| } else if (IDomValue.first && IDomValue.first != &UndefVNI) { |
| // No phi-def here. Remember incoming value. |
| I.Value = IDomValue.first; |
| |
| // If the IDomValue is killed in the block, don't propagate through. |
| if (I.Kill.isValid()) |
| continue; |
| |
| // Propagate IDomValue if it isn't killed: |
| // MBB is live-out and doesn't define its own value. |
| if (LOP.first == IDomValue.first) |
| continue; |
| Changed = true; |
| LOP = IDomValue; |
| } |
| } |
| } while (Changed); |
| } |
| |
| bool LiveRangeCalc::isJointlyDominated(const MachineBasicBlock *MBB, |
| ArrayRef<SlotIndex> Defs, |
| const SlotIndexes &Indexes) { |
| const MachineFunction &MF = *MBB->getParent(); |
| BitVector DefBlocks(MF.getNumBlockIDs()); |
| for (SlotIndex I : Defs) |
| DefBlocks.set(Indexes.getMBBFromIndex(I)->getNumber()); |
| |
| SetVector<unsigned> PredQueue; |
| PredQueue.insert(MBB->getNumber()); |
| for (unsigned i = 0; i != PredQueue.size(); ++i) { |
| unsigned BN = PredQueue[i]; |
| if (DefBlocks[BN]) |
| return true; |
| const MachineBasicBlock *B = MF.getBlockNumbered(BN); |
| for (const MachineBasicBlock *P : B->predecessors()) |
| PredQueue.insert(P->getNumber()); |
| } |
| return false; |
| } |