| //===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the SampleProfileLoader transformation. This pass |
| // reads a profile file generated by a sampling profiler (e.g. Linux Perf - |
| // http://perf.wiki.kernel.org/) and generates IR metadata to reflect the |
| // profile information in the given profile. |
| // |
| // This pass generates branch weight annotations on the IR: |
| // |
| // - prof: Represents branch weights. This annotation is added to branches |
| // to indicate the weights of each edge coming out of the branch. |
| // The weight of each edge is the weight of the target block for |
| // that edge. The weight of a block B is computed as the maximum |
| // number of samples found in B. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/IPO/SampleProfile.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/None.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/StringRef.h" |
| #include "llvm/ADT/Twine.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/InlineCost.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/OptimizationRemarkEmitter.h" |
| #include "llvm/Analysis/PostDominators.h" |
| #include "llvm/Analysis/ProfileSummaryInfo.h" |
| #include "llvm/Analysis/TargetTransformInfo.h" |
| #include "llvm/IR/BasicBlock.h" |
| #include "llvm/IR/CFG.h" |
| #include "llvm/IR/CallSite.h" |
| #include "llvm/IR/DebugInfoMetadata.h" |
| #include "llvm/IR/DebugLoc.h" |
| #include "llvm/IR/DiagnosticInfo.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/GlobalValue.h" |
| #include "llvm/IR/InstrTypes.h" |
| #include "llvm/IR/Instruction.h" |
| #include "llvm/IR/Instructions.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/MDBuilder.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/PassManager.h" |
| #include "llvm/IR/ValueSymbolTable.h" |
| #include "llvm/Pass.h" |
| #include "llvm/ProfileData/InstrProf.h" |
| #include "llvm/ProfileData/SampleProf.h" |
| #include "llvm/ProfileData/SampleProfReader.h" |
| #include "llvm/Support/Casting.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/ErrorOr.h" |
| #include "llvm/Support/GenericDomTree.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Transforms/IPO.h" |
| #include "llvm/Transforms/Instrumentation.h" |
| #include "llvm/Transforms/Utils/CallPromotionUtils.h" |
| #include "llvm/Transforms/Utils/Cloning.h" |
| #include <algorithm> |
| #include <cassert> |
| #include <cstdint> |
| #include <functional> |
| #include <limits> |
| #include <map> |
| #include <memory> |
| #include <string> |
| #include <system_error> |
| #include <utility> |
| #include <vector> |
| |
| using namespace llvm; |
| using namespace sampleprof; |
| using ProfileCount = Function::ProfileCount; |
| #define DEBUG_TYPE "sample-profile" |
| |
| // Command line option to specify the file to read samples from. This is |
| // mainly used for debugging. |
| static cl::opt<std::string> SampleProfileFile( |
| "sample-profile-file", cl::init(""), cl::value_desc("filename"), |
| cl::desc("Profile file loaded by -sample-profile"), cl::Hidden); |
| |
| // The named file contains a set of transformations that may have been applied |
| // to the symbol names between the program from which the sample data was |
| // collected and the current program's symbols. |
| static cl::opt<std::string> SampleProfileRemappingFile( |
| "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"), |
| cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden); |
| |
| static cl::opt<unsigned> SampleProfileMaxPropagateIterations( |
| "sample-profile-max-propagate-iterations", cl::init(100), |
| cl::desc("Maximum number of iterations to go through when propagating " |
| "sample block/edge weights through the CFG.")); |
| |
| static cl::opt<unsigned> SampleProfileRecordCoverage( |
| "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"), |
| cl::desc("Emit a warning if less than N% of records in the input profile " |
| "are matched to the IR.")); |
| |
| static cl::opt<unsigned> SampleProfileSampleCoverage( |
| "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"), |
| cl::desc("Emit a warning if less than N% of samples in the input profile " |
| "are matched to the IR.")); |
| |
| static cl::opt<bool> NoWarnSampleUnused( |
| "no-warn-sample-unused", cl::init(false), cl::Hidden, |
| cl::desc("Use this option to turn off/on warnings about function with " |
| "samples but without debug information to use those samples. ")); |
| |
| static cl::opt<bool> ProfileSampleAccurate( |
| "profile-sample-accurate", cl::Hidden, cl::init(false), |
| cl::desc("If the sample profile is accurate, we will mark all un-sampled " |
| "callsite and function as having 0 samples. Otherwise, treat " |
| "un-sampled callsites and functions conservatively as unknown. ")); |
| |
| namespace { |
| |
| using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>; |
| using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>; |
| using Edge = std::pair<const BasicBlock *, const BasicBlock *>; |
| using EdgeWeightMap = DenseMap<Edge, uint64_t>; |
| using BlockEdgeMap = |
| DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>; |
| |
| class SampleCoverageTracker { |
| public: |
| SampleCoverageTracker() = default; |
| |
| bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset, |
| uint32_t Discriminator, uint64_t Samples); |
| unsigned computeCoverage(unsigned Used, unsigned Total) const; |
| unsigned countUsedRecords(const FunctionSamples *FS, |
| ProfileSummaryInfo *PSI) const; |
| unsigned countBodyRecords(const FunctionSamples *FS, |
| ProfileSummaryInfo *PSI) const; |
| uint64_t getTotalUsedSamples() const { return TotalUsedSamples; } |
| uint64_t countBodySamples(const FunctionSamples *FS, |
| ProfileSummaryInfo *PSI) const; |
| |
| void clear() { |
| SampleCoverage.clear(); |
| TotalUsedSamples = 0; |
| } |
| |
| private: |
| using BodySampleCoverageMap = std::map<LineLocation, unsigned>; |
| using FunctionSamplesCoverageMap = |
| DenseMap<const FunctionSamples *, BodySampleCoverageMap>; |
| |
| /// Coverage map for sampling records. |
| /// |
| /// This map keeps a record of sampling records that have been matched to |
| /// an IR instruction. This is used to detect some form of staleness in |
| /// profiles (see flag -sample-profile-check-coverage). |
| /// |
| /// Each entry in the map corresponds to a FunctionSamples instance. This is |
| /// another map that counts how many times the sample record at the |
| /// given location has been used. |
| FunctionSamplesCoverageMap SampleCoverage; |
| |
| /// Number of samples used from the profile. |
| /// |
| /// When a sampling record is used for the first time, the samples from |
| /// that record are added to this accumulator. Coverage is later computed |
| /// based on the total number of samples available in this function and |
| /// its callsites. |
| /// |
| /// Note that this accumulator tracks samples used from a single function |
| /// and all the inlined callsites. Strictly, we should have a map of counters |
| /// keyed by FunctionSamples pointers, but these stats are cleared after |
| /// every function, so we just need to keep a single counter. |
| uint64_t TotalUsedSamples = 0; |
| }; |
| |
| /// Sample profile pass. |
| /// |
| /// This pass reads profile data from the file specified by |
| /// -sample-profile-file and annotates every affected function with the |
| /// profile information found in that file. |
| class SampleProfileLoader { |
| public: |
| SampleProfileLoader( |
| StringRef Name, StringRef RemapName, bool IsThinLTOPreLink, |
| std::function<AssumptionCache &(Function &)> GetAssumptionCache, |
| std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo) |
| : GetAC(std::move(GetAssumptionCache)), |
| GetTTI(std::move(GetTargetTransformInfo)), Filename(Name), |
| RemappingFilename(RemapName), IsThinLTOPreLink(IsThinLTOPreLink) {} |
| |
| bool doInitialization(Module &M); |
| bool runOnModule(Module &M, ModuleAnalysisManager *AM, |
| ProfileSummaryInfo *_PSI); |
| |
| void dump() { Reader->dump(); } |
| |
| protected: |
| bool runOnFunction(Function &F, ModuleAnalysisManager *AM); |
| unsigned getFunctionLoc(Function &F); |
| bool emitAnnotations(Function &F); |
| ErrorOr<uint64_t> getInstWeight(const Instruction &I); |
| ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB); |
| const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const; |
| std::vector<const FunctionSamples *> |
| findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const; |
| mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap; |
| const FunctionSamples *findFunctionSamples(const Instruction &I) const; |
| bool inlineCallInstruction(Instruction *I); |
| bool inlineHotFunctions(Function &F, |
| DenseSet<GlobalValue::GUID> &InlinedGUIDs); |
| void printEdgeWeight(raw_ostream &OS, Edge E); |
| void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const; |
| void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB); |
| bool computeBlockWeights(Function &F); |
| void findEquivalenceClasses(Function &F); |
| template <bool IsPostDom> |
| void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, |
| DominatorTreeBase<BasicBlock, IsPostDom> *DomTree); |
| |
| void propagateWeights(Function &F); |
| uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge); |
| void buildEdges(Function &F); |
| bool propagateThroughEdges(Function &F, bool UpdateBlockCount); |
| void computeDominanceAndLoopInfo(Function &F); |
| void clearFunctionData(); |
| |
| /// Map basic blocks to their computed weights. |
| /// |
| /// The weight of a basic block is defined to be the maximum |
| /// of all the instruction weights in that block. |
| BlockWeightMap BlockWeights; |
| |
| /// Map edges to their computed weights. |
| /// |
| /// Edge weights are computed by propagating basic block weights in |
| /// SampleProfile::propagateWeights. |
| EdgeWeightMap EdgeWeights; |
| |
| /// Set of visited blocks during propagation. |
| SmallPtrSet<const BasicBlock *, 32> VisitedBlocks; |
| |
| /// Set of visited edges during propagation. |
| SmallSet<Edge, 32> VisitedEdges; |
| |
| /// Equivalence classes for block weights. |
| /// |
| /// Two blocks BB1 and BB2 are in the same equivalence class if they |
| /// dominate and post-dominate each other, and they are in the same loop |
| /// nest. When this happens, the two blocks are guaranteed to execute |
| /// the same number of times. |
| EquivalenceClassMap EquivalenceClass; |
| |
| /// Map from function name to Function *. Used to find the function from |
| /// the function name. If the function name contains suffix, additional |
| /// entry is added to map from the stripped name to the function if there |
| /// is one-to-one mapping. |
| StringMap<Function *> SymbolMap; |
| |
| /// Dominance, post-dominance and loop information. |
| std::unique_ptr<DominatorTree> DT; |
| std::unique_ptr<PostDominatorTree> PDT; |
| std::unique_ptr<LoopInfo> LI; |
| |
| std::function<AssumptionCache &(Function &)> GetAC; |
| std::function<TargetTransformInfo &(Function &)> GetTTI; |
| |
| /// Predecessors for each basic block in the CFG. |
| BlockEdgeMap Predecessors; |
| |
| /// Successors for each basic block in the CFG. |
| BlockEdgeMap Successors; |
| |
| SampleCoverageTracker CoverageTracker; |
| |
| /// Profile reader object. |
| std::unique_ptr<SampleProfileReader> Reader; |
| |
| /// Samples collected for the body of this function. |
| FunctionSamples *Samples = nullptr; |
| |
| /// Name of the profile file to load. |
| std::string Filename; |
| |
| /// Name of the profile remapping file to load. |
| std::string RemappingFilename; |
| |
| /// Flag indicating whether the profile input loaded successfully. |
| bool ProfileIsValid = false; |
| |
| /// Flag indicating if the pass is invoked in ThinLTO compile phase. |
| /// |
| /// In this phase, in annotation, we should not promote indirect calls. |
| /// Instead, we will mark GUIDs that needs to be annotated to the function. |
| bool IsThinLTOPreLink; |
| |
| /// Profile Summary Info computed from sample profile. |
| ProfileSummaryInfo *PSI = nullptr; |
| |
| /// Total number of samples collected in this profile. |
| /// |
| /// This is the sum of all the samples collected in all the functions executed |
| /// at runtime. |
| uint64_t TotalCollectedSamples = 0; |
| |
| /// Optimization Remark Emitter used to emit diagnostic remarks. |
| OptimizationRemarkEmitter *ORE = nullptr; |
| |
| // Information recorded when we declined to inline a call site |
| // because we have determined it is too cold is accumulated for |
| // each callee function. Initially this is just the entry count. |
| struct NotInlinedProfileInfo { |
| uint64_t entryCount; |
| }; |
| DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo; |
| }; |
| |
| class SampleProfileLoaderLegacyPass : public ModulePass { |
| public: |
| // Class identification, replacement for typeinfo |
| static char ID; |
| |
| SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile, |
| bool IsThinLTOPreLink = false) |
| : ModulePass(ID), |
| SampleLoader(Name, SampleProfileRemappingFile, IsThinLTOPreLink, |
| [&](Function &F) -> AssumptionCache & { |
| return ACT->getAssumptionCache(F); |
| }, |
| [&](Function &F) -> TargetTransformInfo & { |
| return TTIWP->getTTI(F); |
| }) { |
| initializeSampleProfileLoaderLegacyPassPass( |
| *PassRegistry::getPassRegistry()); |
| } |
| |
| void dump() { SampleLoader.dump(); } |
| |
| bool doInitialization(Module &M) override { |
| return SampleLoader.doInitialization(M); |
| } |
| |
| StringRef getPassName() const override { return "Sample profile pass"; } |
| bool runOnModule(Module &M) override; |
| |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<AssumptionCacheTracker>(); |
| AU.addRequired<TargetTransformInfoWrapperPass>(); |
| AU.addRequired<ProfileSummaryInfoWrapperPass>(); |
| } |
| |
| private: |
| SampleProfileLoader SampleLoader; |
| AssumptionCacheTracker *ACT = nullptr; |
| TargetTransformInfoWrapperPass *TTIWP = nullptr; |
| }; |
| |
| } // end anonymous namespace |
| |
| /// Return true if the given callsite is hot wrt to hot cutoff threshold. |
| /// |
| /// Functions that were inlined in the original binary will be represented |
| /// in the inline stack in the sample profile. If the profile shows that |
| /// the original inline decision was "good" (i.e., the callsite is executed |
| /// frequently), then we will recreate the inline decision and apply the |
| /// profile from the inlined callsite. |
| /// |
| /// To decide whether an inlined callsite is hot, we compare the callsite |
| /// sample count with the hot cutoff computed by ProfileSummaryInfo, it is |
| /// regarded as hot if the count is above the cutoff value. |
| static bool callsiteIsHot(const FunctionSamples *CallsiteFS, |
| ProfileSummaryInfo *PSI) { |
| if (!CallsiteFS) |
| return false; // The callsite was not inlined in the original binary. |
| |
| assert(PSI && "PSI is expected to be non null"); |
| uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples(); |
| return PSI->isHotCount(CallsiteTotalSamples); |
| } |
| |
| /// Mark as used the sample record for the given function samples at |
| /// (LineOffset, Discriminator). |
| /// |
| /// \returns true if this is the first time we mark the given record. |
| bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS, |
| uint32_t LineOffset, |
| uint32_t Discriminator, |
| uint64_t Samples) { |
| LineLocation Loc(LineOffset, Discriminator); |
| unsigned &Count = SampleCoverage[FS][Loc]; |
| bool FirstTime = (++Count == 1); |
| if (FirstTime) |
| TotalUsedSamples += Samples; |
| return FirstTime; |
| } |
| |
| /// Return the number of sample records that were applied from this profile. |
| /// |
| /// This count does not include records from cold inlined callsites. |
| unsigned |
| SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS, |
| ProfileSummaryInfo *PSI) const { |
| auto I = SampleCoverage.find(FS); |
| |
| // The size of the coverage map for FS represents the number of records |
| // that were marked used at least once. |
| unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0; |
| |
| // If there are inlined callsites in this function, count the samples found |
| // in the respective bodies. However, do not bother counting callees with 0 |
| // total samples, these are callees that were never invoked at runtime. |
| for (const auto &I : FS->getCallsiteSamples()) |
| for (const auto &J : I.second) { |
| const FunctionSamples *CalleeSamples = &J.second; |
| if (callsiteIsHot(CalleeSamples, PSI)) |
| Count += countUsedRecords(CalleeSamples, PSI); |
| } |
| |
| return Count; |
| } |
| |
| /// Return the number of sample records in the body of this profile. |
| /// |
| /// This count does not include records from cold inlined callsites. |
| unsigned |
| SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS, |
| ProfileSummaryInfo *PSI) const { |
| unsigned Count = FS->getBodySamples().size(); |
| |
| // Only count records in hot callsites. |
| for (const auto &I : FS->getCallsiteSamples()) |
| for (const auto &J : I.second) { |
| const FunctionSamples *CalleeSamples = &J.second; |
| if (callsiteIsHot(CalleeSamples, PSI)) |
| Count += countBodyRecords(CalleeSamples, PSI); |
| } |
| |
| return Count; |
| } |
| |
| /// Return the number of samples collected in the body of this profile. |
| /// |
| /// This count does not include samples from cold inlined callsites. |
| uint64_t |
| SampleCoverageTracker::countBodySamples(const FunctionSamples *FS, |
| ProfileSummaryInfo *PSI) const { |
| uint64_t Total = 0; |
| for (const auto &I : FS->getBodySamples()) |
| Total += I.second.getSamples(); |
| |
| // Only count samples in hot callsites. |
| for (const auto &I : FS->getCallsiteSamples()) |
| for (const auto &J : I.second) { |
| const FunctionSamples *CalleeSamples = &J.second; |
| if (callsiteIsHot(CalleeSamples, PSI)) |
| Total += countBodySamples(CalleeSamples, PSI); |
| } |
| |
| return Total; |
| } |
| |
| /// Return the fraction of sample records used in this profile. |
| /// |
| /// The returned value is an unsigned integer in the range 0-100 indicating |
| /// the percentage of sample records that were used while applying this |
| /// profile to the associated function. |
| unsigned SampleCoverageTracker::computeCoverage(unsigned Used, |
| unsigned Total) const { |
| assert(Used <= Total && |
| "number of used records cannot exceed the total number of records"); |
| return Total > 0 ? Used * 100 / Total : 100; |
| } |
| |
| /// Clear all the per-function data used to load samples and propagate weights. |
| void SampleProfileLoader::clearFunctionData() { |
| BlockWeights.clear(); |
| EdgeWeights.clear(); |
| VisitedBlocks.clear(); |
| VisitedEdges.clear(); |
| EquivalenceClass.clear(); |
| DT = nullptr; |
| PDT = nullptr; |
| LI = nullptr; |
| Predecessors.clear(); |
| Successors.clear(); |
| CoverageTracker.clear(); |
| } |
| |
| #ifndef NDEBUG |
| /// Print the weight of edge \p E on stream \p OS. |
| /// |
| /// \param OS Stream to emit the output to. |
| /// \param E Edge to print. |
| void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) { |
| OS << "weight[" << E.first->getName() << "->" << E.second->getName() |
| << "]: " << EdgeWeights[E] << "\n"; |
| } |
| |
| /// Print the equivalence class of block \p BB on stream \p OS. |
| /// |
| /// \param OS Stream to emit the output to. |
| /// \param BB Block to print. |
| void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS, |
| const BasicBlock *BB) { |
| const BasicBlock *Equiv = EquivalenceClass[BB]; |
| OS << "equivalence[" << BB->getName() |
| << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n"; |
| } |
| |
| /// Print the weight of block \p BB on stream \p OS. |
| /// |
| /// \param OS Stream to emit the output to. |
| /// \param BB Block to print. |
| void SampleProfileLoader::printBlockWeight(raw_ostream &OS, |
| const BasicBlock *BB) const { |
| const auto &I = BlockWeights.find(BB); |
| uint64_t W = (I == BlockWeights.end() ? 0 : I->second); |
| OS << "weight[" << BB->getName() << "]: " << W << "\n"; |
| } |
| #endif |
| |
| /// Get the weight for an instruction. |
| /// |
| /// The "weight" of an instruction \p Inst is the number of samples |
| /// collected on that instruction at runtime. To retrieve it, we |
| /// need to compute the line number of \p Inst relative to the start of its |
| /// function. We use HeaderLineno to compute the offset. We then |
| /// look up the samples collected for \p Inst using BodySamples. |
| /// |
| /// \param Inst Instruction to query. |
| /// |
| /// \returns the weight of \p Inst. |
| ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) { |
| const DebugLoc &DLoc = Inst.getDebugLoc(); |
| if (!DLoc) |
| return std::error_code(); |
| |
| const FunctionSamples *FS = findFunctionSamples(Inst); |
| if (!FS) |
| return std::error_code(); |
| |
| // Ignore all intrinsics, phinodes and branch instructions. |
| // Branch and phinodes instruction usually contains debug info from sources outside of |
| // the residing basic block, thus we ignore them during annotation. |
| if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst)) |
| return std::error_code(); |
| |
| // If a direct call/invoke instruction is inlined in profile |
| // (findCalleeFunctionSamples returns non-empty result), but not inlined here, |
| // it means that the inlined callsite has no sample, thus the call |
| // instruction should have 0 count. |
| if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) && |
| !ImmutableCallSite(&Inst).isIndirectCall() && |
| findCalleeFunctionSamples(Inst)) |
| return 0; |
| |
| const DILocation *DIL = DLoc; |
| uint32_t LineOffset = FunctionSamples::getOffset(DIL); |
| uint32_t Discriminator = DIL->getBaseDiscriminator(); |
| ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator); |
| if (R) { |
| bool FirstMark = |
| CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get()); |
| if (FirstMark) { |
| ORE->emit([&]() { |
| OptimizationRemarkAnalysis Remark(DEBUG_TYPE, "AppliedSamples", &Inst); |
| Remark << "Applied " << ore::NV("NumSamples", *R); |
| Remark << " samples from profile (offset: "; |
| Remark << ore::NV("LineOffset", LineOffset); |
| if (Discriminator) { |
| Remark << "."; |
| Remark << ore::NV("Discriminator", Discriminator); |
| } |
| Remark << ")"; |
| return Remark; |
| }); |
| } |
| LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "." |
| << DIL->getBaseDiscriminator() << ":" << Inst |
| << " (line offset: " << LineOffset << "." |
| << DIL->getBaseDiscriminator() << " - weight: " << R.get() |
| << ")\n"); |
| } |
| return R; |
| } |
| |
| /// Compute the weight of a basic block. |
| /// |
| /// The weight of basic block \p BB is the maximum weight of all the |
| /// instructions in BB. |
| /// |
| /// \param BB The basic block to query. |
| /// |
| /// \returns the weight for \p BB. |
| ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) { |
| uint64_t Max = 0; |
| bool HasWeight = false; |
| for (auto &I : BB->getInstList()) { |
| const ErrorOr<uint64_t> &R = getInstWeight(I); |
| if (R) { |
| Max = std::max(Max, R.get()); |
| HasWeight = true; |
| } |
| } |
| return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code(); |
| } |
| |
| /// Compute and store the weights of every basic block. |
| /// |
| /// This populates the BlockWeights map by computing |
| /// the weights of every basic block in the CFG. |
| /// |
| /// \param F The function to query. |
| bool SampleProfileLoader::computeBlockWeights(Function &F) { |
| bool Changed = false; |
| LLVM_DEBUG(dbgs() << "Block weights\n"); |
| for (const auto &BB : F) { |
| ErrorOr<uint64_t> Weight = getBlockWeight(&BB); |
| if (Weight) { |
| BlockWeights[&BB] = Weight.get(); |
| VisitedBlocks.insert(&BB); |
| Changed = true; |
| } |
| LLVM_DEBUG(printBlockWeight(dbgs(), &BB)); |
| } |
| |
| return Changed; |
| } |
| |
| /// Get the FunctionSamples for a call instruction. |
| /// |
| /// The FunctionSamples of a call/invoke instruction \p Inst is the inlined |
| /// instance in which that call instruction is calling to. It contains |
| /// all samples that resides in the inlined instance. We first find the |
| /// inlined instance in which the call instruction is from, then we |
| /// traverse its children to find the callsite with the matching |
| /// location. |
| /// |
| /// \param Inst Call/Invoke instruction to query. |
| /// |
| /// \returns The FunctionSamples pointer to the inlined instance. |
| const FunctionSamples * |
| SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const { |
| const DILocation *DIL = Inst.getDebugLoc(); |
| if (!DIL) { |
| return nullptr; |
| } |
| |
| StringRef CalleeName; |
| if (const CallInst *CI = dyn_cast<CallInst>(&Inst)) |
| if (Function *Callee = CI->getCalledFunction()) |
| CalleeName = Callee->getName(); |
| |
| const FunctionSamples *FS = findFunctionSamples(Inst); |
| if (FS == nullptr) |
| return nullptr; |
| |
| return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL), |
| DIL->getBaseDiscriminator()), |
| CalleeName); |
| } |
| |
| /// Returns a vector of FunctionSamples that are the indirect call targets |
| /// of \p Inst. The vector is sorted by the total number of samples. Stores |
| /// the total call count of the indirect call in \p Sum. |
| std::vector<const FunctionSamples *> |
| SampleProfileLoader::findIndirectCallFunctionSamples( |
| const Instruction &Inst, uint64_t &Sum) const { |
| const DILocation *DIL = Inst.getDebugLoc(); |
| std::vector<const FunctionSamples *> R; |
| |
| if (!DIL) { |
| return R; |
| } |
| |
| const FunctionSamples *FS = findFunctionSamples(Inst); |
| if (FS == nullptr) |
| return R; |
| |
| uint32_t LineOffset = FunctionSamples::getOffset(DIL); |
| uint32_t Discriminator = DIL->getBaseDiscriminator(); |
| |
| auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); |
| Sum = 0; |
| if (T) |
| for (const auto &T_C : T.get()) |
| Sum += T_C.second; |
| if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation( |
| FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) { |
| if (M->empty()) |
| return R; |
| for (const auto &NameFS : *M) { |
| Sum += NameFS.second.getEntrySamples(); |
| R.push_back(&NameFS.second); |
| } |
| llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) { |
| if (L->getEntrySamples() != R->getEntrySamples()) |
| return L->getEntrySamples() > R->getEntrySamples(); |
| return FunctionSamples::getGUID(L->getName()) < |
| FunctionSamples::getGUID(R->getName()); |
| }); |
| } |
| return R; |
| } |
| |
| /// Get the FunctionSamples for an instruction. |
| /// |
| /// The FunctionSamples of an instruction \p Inst is the inlined instance |
| /// in which that instruction is coming from. We traverse the inline stack |
| /// of that instruction, and match it with the tree nodes in the profile. |
| /// |
| /// \param Inst Instruction to query. |
| /// |
| /// \returns the FunctionSamples pointer to the inlined instance. |
| const FunctionSamples * |
| SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const { |
| const DILocation *DIL = Inst.getDebugLoc(); |
| if (!DIL) |
| return Samples; |
| |
| auto it = DILocation2SampleMap.try_emplace(DIL,nullptr); |
| if (it.second) |
| it.first->second = Samples->findFunctionSamples(DIL); |
| return it.first->second; |
| } |
| |
| bool SampleProfileLoader::inlineCallInstruction(Instruction *I) { |
| assert(isa<CallInst>(I) || isa<InvokeInst>(I)); |
| CallSite CS(I); |
| Function *CalledFunction = CS.getCalledFunction(); |
| assert(CalledFunction); |
| DebugLoc DLoc = I->getDebugLoc(); |
| BasicBlock *BB = I->getParent(); |
| InlineParams Params = getInlineParams(); |
| Params.ComputeFullInlineCost = true; |
| // Checks if there is anything in the reachable portion of the callee at |
| // this callsite that makes this inlining potentially illegal. Need to |
| // set ComputeFullInlineCost, otherwise getInlineCost may return early |
| // when cost exceeds threshold without checking all IRs in the callee. |
| // The acutal cost does not matter because we only checks isNever() to |
| // see if it is legal to inline the callsite. |
| InlineCost Cost = getInlineCost(CS, Params, GetTTI(*CalledFunction), GetAC, |
| None, nullptr, nullptr); |
| if (Cost.isNever()) { |
| ORE->emit(OptimizationRemark(DEBUG_TYPE, "Not inline", DLoc, BB) |
| << "incompatible inlining"); |
| return false; |
| } |
| InlineFunctionInfo IFI(nullptr, &GetAC); |
| if (InlineFunction(CS, IFI)) { |
| // The call to InlineFunction erases I, so we can't pass it here. |
| ORE->emit(OptimizationRemark(DEBUG_TYPE, "HotInline", DLoc, BB) |
| << "inlined hot callee '" << ore::NV("Callee", CalledFunction) |
| << "' into '" << ore::NV("Caller", BB->getParent()) << "'"); |
| return true; |
| } |
| return false; |
| } |
| |
| /// Iteratively inline hot callsites of a function. |
| /// |
| /// Iteratively traverse all callsites of the function \p F, and find if |
| /// the corresponding inlined instance exists and is hot in profile. If |
| /// it is hot enough, inline the callsites and adds new callsites of the |
| /// callee into the caller. If the call is an indirect call, first promote |
| /// it to direct call. Each indirect call is limited with a single target. |
| /// |
| /// \param F function to perform iterative inlining. |
| /// \param InlinedGUIDs a set to be updated to include all GUIDs that are |
| /// inlined in the profiled binary. |
| /// |
| /// \returns True if there is any inline happened. |
| bool SampleProfileLoader::inlineHotFunctions( |
| Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) { |
| DenseSet<Instruction *> PromotedInsns; |
| |
| DenseMap<Instruction *, const FunctionSamples *> localNotInlinedCallSites; |
| bool Changed = false; |
| while (true) { |
| bool LocalChanged = false; |
| SmallVector<Instruction *, 10> CIS; |
| for (auto &BB : F) { |
| bool Hot = false; |
| SmallVector<Instruction *, 10> Candidates; |
| for (auto &I : BB.getInstList()) { |
| const FunctionSamples *FS = nullptr; |
| if ((isa<CallInst>(I) || isa<InvokeInst>(I)) && |
| !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) { |
| Candidates.push_back(&I); |
| if (FS->getEntrySamples() > 0) |
| localNotInlinedCallSites.try_emplace(&I, FS); |
| if (callsiteIsHot(FS, PSI)) |
| Hot = true; |
| } |
| } |
| if (Hot) { |
| CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end()); |
| } |
| } |
| for (auto I : CIS) { |
| Function *CalledFunction = CallSite(I).getCalledFunction(); |
| // Do not inline recursive calls. |
| if (CalledFunction == &F) |
| continue; |
| if (CallSite(I).isIndirectCall()) { |
| if (PromotedInsns.count(I)) |
| continue; |
| uint64_t Sum; |
| for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) { |
| if (IsThinLTOPreLink) { |
| FS->findInlinedFunctions(InlinedGUIDs, F.getParent(), |
| PSI->getOrCompHotCountThreshold()); |
| continue; |
| } |
| auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent()); |
| // If it is a recursive call, we do not inline it as it could bloat |
| // the code exponentially. There is way to better handle this, e.g. |
| // clone the caller first, and inline the cloned caller if it is |
| // recursive. As llvm does not inline recursive calls, we will |
| // simply ignore it instead of handling it explicitly. |
| if (CalleeFunctionName == F.getName()) |
| continue; |
| |
| const char *Reason = "Callee function not available"; |
| auto R = SymbolMap.find(CalleeFunctionName); |
| if (R != SymbolMap.end() && R->getValue() && |
| !R->getValue()->isDeclaration() && |
| R->getValue()->getSubprogram() && |
| isLegalToPromote(CallSite(I), R->getValue(), &Reason)) { |
| uint64_t C = FS->getEntrySamples(); |
| Instruction *DI = |
| pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE); |
| Sum -= C; |
| PromotedInsns.insert(I); |
| // If profile mismatches, we should not attempt to inline DI. |
| if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) && |
| inlineCallInstruction(DI)) { |
| localNotInlinedCallSites.erase(I); |
| LocalChanged = true; |
| } |
| } else { |
| LLVM_DEBUG(dbgs() |
| << "\nFailed to promote indirect call to " |
| << CalleeFunctionName << " because " << Reason << "\n"); |
| } |
| } |
| } else if (CalledFunction && CalledFunction->getSubprogram() && |
| !CalledFunction->isDeclaration()) { |
| if (inlineCallInstruction(I)) { |
| localNotInlinedCallSites.erase(I); |
| LocalChanged = true; |
| } |
| } else if (IsThinLTOPreLink) { |
| findCalleeFunctionSamples(*I)->findInlinedFunctions( |
| InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold()); |
| } |
| } |
| if (LocalChanged) { |
| Changed = true; |
| } else { |
| break; |
| } |
| } |
| |
| // Accumulate not inlined callsite information into notInlinedSamples |
| for (const auto &Pair : localNotInlinedCallSites) { |
| Instruction *I = Pair.getFirst(); |
| Function *Callee = CallSite(I).getCalledFunction(); |
| if (!Callee || Callee->isDeclaration()) |
| continue; |
| const FunctionSamples *FS = Pair.getSecond(); |
| auto pair = |
| notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0}); |
| pair.first->second.entryCount += FS->getEntrySamples(); |
| } |
| return Changed; |
| } |
| |
| /// Find equivalence classes for the given block. |
| /// |
| /// This finds all the blocks that are guaranteed to execute the same |
| /// number of times as \p BB1. To do this, it traverses all the |
| /// descendants of \p BB1 in the dominator or post-dominator tree. |
| /// |
| /// A block BB2 will be in the same equivalence class as \p BB1 if |
| /// the following holds: |
| /// |
| /// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2 |
| /// is a descendant of \p BB1 in the dominator tree, then BB2 should |
| /// dominate BB1 in the post-dominator tree. |
| /// |
| /// 2- Both BB2 and \p BB1 must be in the same loop. |
| /// |
| /// For every block BB2 that meets those two requirements, we set BB2's |
| /// equivalence class to \p BB1. |
| /// |
| /// \param BB1 Block to check. |
| /// \param Descendants Descendants of \p BB1 in either the dom or pdom tree. |
| /// \param DomTree Opposite dominator tree. If \p Descendants is filled |
| /// with blocks from \p BB1's dominator tree, then |
| /// this is the post-dominator tree, and vice versa. |
| template <bool IsPostDom> |
| void SampleProfileLoader::findEquivalencesFor( |
| BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants, |
| DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) { |
| const BasicBlock *EC = EquivalenceClass[BB1]; |
| uint64_t Weight = BlockWeights[EC]; |
| for (const auto *BB2 : Descendants) { |
| bool IsDomParent = DomTree->dominates(BB2, BB1); |
| bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2); |
| if (BB1 != BB2 && IsDomParent && IsInSameLoop) { |
| EquivalenceClass[BB2] = EC; |
| // If BB2 is visited, then the entire EC should be marked as visited. |
| if (VisitedBlocks.count(BB2)) { |
| VisitedBlocks.insert(EC); |
| } |
| |
| // If BB2 is heavier than BB1, make BB2 have the same weight |
| // as BB1. |
| // |
| // Note that we don't worry about the opposite situation here |
| // (when BB2 is lighter than BB1). We will deal with this |
| // during the propagation phase. Right now, we just want to |
| // make sure that BB1 has the largest weight of all the |
| // members of its equivalence set. |
| Weight = std::max(Weight, BlockWeights[BB2]); |
| } |
| } |
| if (EC == &EC->getParent()->getEntryBlock()) { |
| BlockWeights[EC] = Samples->getHeadSamples() + 1; |
| } else { |
| BlockWeights[EC] = Weight; |
| } |
| } |
| |
| /// Find equivalence classes. |
| /// |
| /// Since samples may be missing from blocks, we can fill in the gaps by setting |
| /// the weights of all the blocks in the same equivalence class to the same |
| /// weight. To compute the concept of equivalence, we use dominance and loop |
| /// information. Two blocks B1 and B2 are in the same equivalence class if B1 |
| /// dominates B2, B2 post-dominates B1 and both are in the same loop. |
| /// |
| /// \param F The function to query. |
| void SampleProfileLoader::findEquivalenceClasses(Function &F) { |
| SmallVector<BasicBlock *, 8> DominatedBBs; |
| LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n"); |
| // Find equivalence sets based on dominance and post-dominance information. |
| for (auto &BB : F) { |
| BasicBlock *BB1 = &BB; |
| |
| // Compute BB1's equivalence class once. |
| if (EquivalenceClass.count(BB1)) { |
| LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); |
| continue; |
| } |
| |
| // By default, blocks are in their own equivalence class. |
| EquivalenceClass[BB1] = BB1; |
| |
| // Traverse all the blocks dominated by BB1. We are looking for |
| // every basic block BB2 such that: |
| // |
| // 1- BB1 dominates BB2. |
| // 2- BB2 post-dominates BB1. |
| // 3- BB1 and BB2 are in the same loop nest. |
| // |
| // If all those conditions hold, it means that BB2 is executed |
| // as many times as BB1, so they are placed in the same equivalence |
| // class by making BB2's equivalence class be BB1. |
| DominatedBBs.clear(); |
| DT->getDescendants(BB1, DominatedBBs); |
| findEquivalencesFor(BB1, DominatedBBs, PDT.get()); |
| |
| LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1)); |
| } |
| |
| // Assign weights to equivalence classes. |
| // |
| // All the basic blocks in the same equivalence class will execute |
| // the same number of times. Since we know that the head block in |
| // each equivalence class has the largest weight, assign that weight |
| // to all the blocks in that equivalence class. |
| LLVM_DEBUG( |
| dbgs() << "\nAssign the same weight to all blocks in the same class\n"); |
| for (auto &BI : F) { |
| const BasicBlock *BB = &BI; |
| const BasicBlock *EquivBB = EquivalenceClass[BB]; |
| if (BB != EquivBB) |
| BlockWeights[BB] = BlockWeights[EquivBB]; |
| LLVM_DEBUG(printBlockWeight(dbgs(), BB)); |
| } |
| } |
| |
| /// Visit the given edge to decide if it has a valid weight. |
| /// |
| /// If \p E has not been visited before, we copy to \p UnknownEdge |
| /// and increment the count of unknown edges. |
| /// |
| /// \param E Edge to visit. |
| /// \param NumUnknownEdges Current number of unknown edges. |
| /// \param UnknownEdge Set if E has not been visited before. |
| /// |
| /// \returns E's weight, if known. Otherwise, return 0. |
| uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges, |
| Edge *UnknownEdge) { |
| if (!VisitedEdges.count(E)) { |
| (*NumUnknownEdges)++; |
| *UnknownEdge = E; |
| return 0; |
| } |
| |
| return EdgeWeights[E]; |
| } |
| |
| /// Propagate weights through incoming/outgoing edges. |
| /// |
| /// If the weight of a basic block is known, and there is only one edge |
| /// with an unknown weight, we can calculate the weight of that edge. |
| /// |
| /// Similarly, if all the edges have a known count, we can calculate the |
| /// count of the basic block, if needed. |
| /// |
| /// \param F Function to process. |
| /// \param UpdateBlockCount Whether we should update basic block counts that |
| /// has already been annotated. |
| /// |
| /// \returns True if new weights were assigned to edges or blocks. |
| bool SampleProfileLoader::propagateThroughEdges(Function &F, |
| bool UpdateBlockCount) { |
| bool Changed = false; |
| LLVM_DEBUG(dbgs() << "\nPropagation through edges\n"); |
| for (const auto &BI : F) { |
| const BasicBlock *BB = &BI; |
| const BasicBlock *EC = EquivalenceClass[BB]; |
| |
| // Visit all the predecessor and successor edges to determine |
| // which ones have a weight assigned already. Note that it doesn't |
| // matter that we only keep track of a single unknown edge. The |
| // only case we are interested in handling is when only a single |
| // edge is unknown (see setEdgeOrBlockWeight). |
| for (unsigned i = 0; i < 2; i++) { |
| uint64_t TotalWeight = 0; |
| unsigned NumUnknownEdges = 0, NumTotalEdges = 0; |
| Edge UnknownEdge, SelfReferentialEdge, SingleEdge; |
| |
| if (i == 0) { |
| // First, visit all predecessor edges. |
| NumTotalEdges = Predecessors[BB].size(); |
| for (auto *Pred : Predecessors[BB]) { |
| Edge E = std::make_pair(Pred, BB); |
| TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); |
| if (E.first == E.second) |
| SelfReferentialEdge = E; |
| } |
| if (NumTotalEdges == 1) { |
| SingleEdge = std::make_pair(Predecessors[BB][0], BB); |
| } |
| } else { |
| // On the second round, visit all successor edges. |
| NumTotalEdges = Successors[BB].size(); |
| for (auto *Succ : Successors[BB]) { |
| Edge E = std::make_pair(BB, Succ); |
| TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge); |
| } |
| if (NumTotalEdges == 1) { |
| SingleEdge = std::make_pair(BB, Successors[BB][0]); |
| } |
| } |
| |
| // After visiting all the edges, there are three cases that we |
| // can handle immediately: |
| // |
| // - All the edge weights are known (i.e., NumUnknownEdges == 0). |
| // In this case, we simply check that the sum of all the edges |
| // is the same as BB's weight. If not, we change BB's weight |
| // to match. Additionally, if BB had not been visited before, |
| // we mark it visited. |
| // |
| // - Only one edge is unknown and BB has already been visited. |
| // In this case, we can compute the weight of the edge by |
| // subtracting the total block weight from all the known |
| // edge weights. If the edges weight more than BB, then the |
| // edge of the last remaining edge is set to zero. |
| // |
| // - There exists a self-referential edge and the weight of BB is |
| // known. In this case, this edge can be based on BB's weight. |
| // We add up all the other known edges and set the weight on |
| // the self-referential edge as we did in the previous case. |
| // |
| // In any other case, we must continue iterating. Eventually, |
| // all edges will get a weight, or iteration will stop when |
| // it reaches SampleProfileMaxPropagateIterations. |
| if (NumUnknownEdges <= 1) { |
| uint64_t &BBWeight = BlockWeights[EC]; |
| if (NumUnknownEdges == 0) { |
| if (!VisitedBlocks.count(EC)) { |
| // If we already know the weight of all edges, the weight of the |
| // basic block can be computed. It should be no larger than the sum |
| // of all edge weights. |
| if (TotalWeight > BBWeight) { |
| BBWeight = TotalWeight; |
| Changed = true; |
| LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName() |
| << " known. Set weight for block: "; |
| printBlockWeight(dbgs(), BB);); |
| } |
| } else if (NumTotalEdges == 1 && |
| EdgeWeights[SingleEdge] < BlockWeights[EC]) { |
| // If there is only one edge for the visited basic block, use the |
| // block weight to adjust edge weight if edge weight is smaller. |
| EdgeWeights[SingleEdge] = BlockWeights[EC]; |
| Changed = true; |
| } |
| } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) { |
| // If there is a single unknown edge and the block has been |
| // visited, then we can compute E's weight. |
| if (BBWeight >= TotalWeight) |
| EdgeWeights[UnknownEdge] = BBWeight - TotalWeight; |
| else |
| EdgeWeights[UnknownEdge] = 0; |
| const BasicBlock *OtherEC; |
| if (i == 0) |
| OtherEC = EquivalenceClass[UnknownEdge.first]; |
| else |
| OtherEC = EquivalenceClass[UnknownEdge.second]; |
| // Edge weights should never exceed the BB weights it connects. |
| if (VisitedBlocks.count(OtherEC) && |
| EdgeWeights[UnknownEdge] > BlockWeights[OtherEC]) |
| EdgeWeights[UnknownEdge] = BlockWeights[OtherEC]; |
| VisitedEdges.insert(UnknownEdge); |
| Changed = true; |
| LLVM_DEBUG(dbgs() << "Set weight for edge: "; |
| printEdgeWeight(dbgs(), UnknownEdge)); |
| } |
| } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) { |
| // If a block Weights 0, all its in/out edges should weight 0. |
| if (i == 0) { |
| for (auto *Pred : Predecessors[BB]) { |
| Edge E = std::make_pair(Pred, BB); |
| EdgeWeights[E] = 0; |
| VisitedEdges.insert(E); |
| } |
| } else { |
| for (auto *Succ : Successors[BB]) { |
| Edge E = std::make_pair(BB, Succ); |
| EdgeWeights[E] = 0; |
| VisitedEdges.insert(E); |
| } |
| } |
| } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) { |
| uint64_t &BBWeight = BlockWeights[BB]; |
| // We have a self-referential edge and the weight of BB is known. |
| if (BBWeight >= TotalWeight) |
| EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight; |
| else |
| EdgeWeights[SelfReferentialEdge] = 0; |
| VisitedEdges.insert(SelfReferentialEdge); |
| Changed = true; |
| LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: "; |
| printEdgeWeight(dbgs(), SelfReferentialEdge)); |
| } |
| if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) { |
| BlockWeights[EC] = TotalWeight; |
| VisitedBlocks.insert(EC); |
| Changed = true; |
| } |
| } |
| } |
| |
| return Changed; |
| } |
| |
| /// Build in/out edge lists for each basic block in the CFG. |
| /// |
| /// We are interested in unique edges. If a block B1 has multiple |
| /// edges to another block B2, we only add a single B1->B2 edge. |
| void SampleProfileLoader::buildEdges(Function &F) { |
| for (auto &BI : F) { |
| BasicBlock *B1 = &BI; |
| |
| // Add predecessors for B1. |
| SmallPtrSet<BasicBlock *, 16> Visited; |
| if (!Predecessors[B1].empty()) |
| llvm_unreachable("Found a stale predecessors list in a basic block."); |
| for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) { |
| BasicBlock *B2 = *PI; |
| if (Visited.insert(B2).second) |
| Predecessors[B1].push_back(B2); |
| } |
| |
| // Add successors for B1. |
| Visited.clear(); |
| if (!Successors[B1].empty()) |
| llvm_unreachable("Found a stale successors list in a basic block."); |
| for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) { |
| BasicBlock *B2 = *SI; |
| if (Visited.insert(B2).second) |
| Successors[B1].push_back(B2); |
| } |
| } |
| } |
| |
| /// Returns the sorted CallTargetMap \p M by count in descending order. |
| static SmallVector<InstrProfValueData, 2> SortCallTargets( |
| const SampleRecord::CallTargetMap &M) { |
| SmallVector<InstrProfValueData, 2> R; |
| for (auto I = M.begin(); I != M.end(); ++I) |
| R.push_back({FunctionSamples::getGUID(I->getKey()), I->getValue()}); |
| llvm::sort(R, [](const InstrProfValueData &L, const InstrProfValueData &R) { |
| if (L.Count == R.Count) |
| return L.Value > R.Value; |
| else |
| return L.Count > R.Count; |
| }); |
| return R; |
| } |
| |
| /// Propagate weights into edges |
| /// |
| /// The following rules are applied to every block BB in the CFG: |
| /// |
| /// - If BB has a single predecessor/successor, then the weight |
| /// of that edge is the weight of the block. |
| /// |
| /// - If all incoming or outgoing edges are known except one, and the |
| /// weight of the block is already known, the weight of the unknown |
| /// edge will be the weight of the block minus the sum of all the known |
| /// edges. If the sum of all the known edges is larger than BB's weight, |
| /// we set the unknown edge weight to zero. |
| /// |
| /// - If there is a self-referential edge, and the weight of the block is |
| /// known, the weight for that edge is set to the weight of the block |
| /// minus the weight of the other incoming edges to that block (if |
| /// known). |
| void SampleProfileLoader::propagateWeights(Function &F) { |
| bool Changed = true; |
| unsigned I = 0; |
| |
| // If BB weight is larger than its corresponding loop's header BB weight, |
| // use the BB weight to replace the loop header BB weight. |
| for (auto &BI : F) { |
| BasicBlock *BB = &BI; |
| Loop *L = LI->getLoopFor(BB); |
| if (!L) { |
| continue; |
| } |
| BasicBlock *Header = L->getHeader(); |
| if (Header && BlockWeights[BB] > BlockWeights[Header]) { |
| BlockWeights[Header] = BlockWeights[BB]; |
| } |
| } |
| |
| // Before propagation starts, build, for each block, a list of |
| // unique predecessors and successors. This is necessary to handle |
| // identical edges in multiway branches. Since we visit all blocks and all |
| // edges of the CFG, it is cleaner to build these lists once at the start |
| // of the pass. |
| buildEdges(F); |
| |
| // Propagate until we converge or we go past the iteration limit. |
| while (Changed && I++ < SampleProfileMaxPropagateIterations) { |
| Changed = propagateThroughEdges(F, false); |
| } |
| |
| // The first propagation propagates BB counts from annotated BBs to unknown |
| // BBs. The 2nd propagation pass resets edges weights, and use all BB weights |
| // to propagate edge weights. |
| VisitedEdges.clear(); |
| Changed = true; |
| while (Changed && I++ < SampleProfileMaxPropagateIterations) { |
| Changed = propagateThroughEdges(F, false); |
| } |
| |
| // The 3rd propagation pass allows adjust annotated BB weights that are |
| // obviously wrong. |
| Changed = true; |
| while (Changed && I++ < SampleProfileMaxPropagateIterations) { |
| Changed = propagateThroughEdges(F, true); |
| } |
| |
| // Generate MD_prof metadata for every branch instruction using the |
| // edge weights computed during propagation. |
| LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n"); |
| LLVMContext &Ctx = F.getContext(); |
| MDBuilder MDB(Ctx); |
| for (auto &BI : F) { |
| BasicBlock *BB = &BI; |
| |
| if (BlockWeights[BB]) { |
| for (auto &I : BB->getInstList()) { |
| if (!isa<CallInst>(I) && !isa<InvokeInst>(I)) |
| continue; |
| CallSite CS(&I); |
| if (!CS.getCalledFunction()) { |
| const DebugLoc &DLoc = I.getDebugLoc(); |
| if (!DLoc) |
| continue; |
| const DILocation *DIL = DLoc; |
| uint32_t LineOffset = FunctionSamples::getOffset(DIL); |
| uint32_t Discriminator = DIL->getBaseDiscriminator(); |
| |
| const FunctionSamples *FS = findFunctionSamples(I); |
| if (!FS) |
| continue; |
| auto T = FS->findCallTargetMapAt(LineOffset, Discriminator); |
| if (!T || T.get().empty()) |
| continue; |
| SmallVector<InstrProfValueData, 2> SortedCallTargets = |
| SortCallTargets(T.get()); |
| uint64_t Sum; |
| findIndirectCallFunctionSamples(I, Sum); |
| annotateValueSite(*I.getParent()->getParent()->getParent(), I, |
| SortedCallTargets, Sum, IPVK_IndirectCallTarget, |
| SortedCallTargets.size()); |
| } else if (!dyn_cast<IntrinsicInst>(&I)) { |
| I.setMetadata(LLVMContext::MD_prof, |
| MDB.createBranchWeights( |
| {static_cast<uint32_t>(BlockWeights[BB])})); |
| } |
| } |
| } |
| Instruction *TI = BB->getTerminator(); |
| if (TI->getNumSuccessors() == 1) |
| continue; |
| if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI)) |
| continue; |
| |
| DebugLoc BranchLoc = TI->getDebugLoc(); |
| LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line " |
| << ((BranchLoc) ? Twine(BranchLoc.getLine()) |
| : Twine("<UNKNOWN LOCATION>")) |
| << ".\n"); |
| SmallVector<uint32_t, 4> Weights; |
| uint32_t MaxWeight = 0; |
| Instruction *MaxDestInst; |
| for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) { |
| BasicBlock *Succ = TI->getSuccessor(I); |
| Edge E = std::make_pair(BB, Succ); |
| uint64_t Weight = EdgeWeights[E]; |
| LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E)); |
| // Use uint32_t saturated arithmetic to adjust the incoming weights, |
| // if needed. Sample counts in profiles are 64-bit unsigned values, |
| // but internally branch weights are expressed as 32-bit values. |
| if (Weight > std::numeric_limits<uint32_t>::max()) { |
| LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)"); |
| Weight = std::numeric_limits<uint32_t>::max(); |
| } |
| // Weight is added by one to avoid propagation errors introduced by |
| // 0 weights. |
| Weights.push_back(static_cast<uint32_t>(Weight + 1)); |
| if (Weight != 0) { |
| if (Weight > MaxWeight) { |
| MaxWeight = Weight; |
| MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime(); |
| } |
| } |
| } |
| |
| uint64_t TempWeight; |
| // Only set weights if there is at least one non-zero weight. |
| // In any other case, let the analyzer set weights. |
| // Do not set weights if the weights are present. In ThinLTO, the profile |
| // annotation is done twice. If the first annotation already set the |
| // weights, the second pass does not need to set it. |
| if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) { |
| LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n"); |
| TI->setMetadata(LLVMContext::MD_prof, |
| MDB.createBranchWeights(Weights)); |
| ORE->emit([&]() { |
| return OptimizationRemark(DEBUG_TYPE, "PopularDest", MaxDestInst) |
| << "most popular destination for conditional branches at " |
| << ore::NV("CondBranchesLoc", BranchLoc); |
| }); |
| } else { |
| LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n"); |
| } |
| } |
| } |
| |
| /// Get the line number for the function header. |
| /// |
| /// This looks up function \p F in the current compilation unit and |
| /// retrieves the line number where the function is defined. This is |
| /// line 0 for all the samples read from the profile file. Every line |
| /// number is relative to this line. |
| /// |
| /// \param F Function object to query. |
| /// |
| /// \returns the line number where \p F is defined. If it returns 0, |
| /// it means that there is no debug information available for \p F. |
| unsigned SampleProfileLoader::getFunctionLoc(Function &F) { |
| if (DISubprogram *S = F.getSubprogram()) |
| return S->getLine(); |
| |
| if (NoWarnSampleUnused) |
| return 0; |
| |
| // If the start of \p F is missing, emit a diagnostic to inform the user |
| // about the missed opportunity. |
| F.getContext().diagnose(DiagnosticInfoSampleProfile( |
| "No debug information found in function " + F.getName() + |
| ": Function profile not used", |
| DS_Warning)); |
| return 0; |
| } |
| |
| void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) { |
| DT.reset(new DominatorTree); |
| DT->recalculate(F); |
| |
| PDT.reset(new PostDominatorTree(F)); |
| |
| LI.reset(new LoopInfo); |
| LI->analyze(*DT); |
| } |
| |
| /// Generate branch weight metadata for all branches in \p F. |
| /// |
| /// Branch weights are computed out of instruction samples using a |
| /// propagation heuristic. Propagation proceeds in 3 phases: |
| /// |
| /// 1- Assignment of block weights. All the basic blocks in the function |
| /// are initial assigned the same weight as their most frequently |
| /// executed instruction. |
| /// |
| /// 2- Creation of equivalence classes. Since samples may be missing from |
| /// blocks, we can fill in the gaps by setting the weights of all the |
| /// blocks in the same equivalence class to the same weight. To compute |
| /// the concept of equivalence, we use dominance and loop information. |
| /// Two blocks B1 and B2 are in the same equivalence class if B1 |
| /// dominates B2, B2 post-dominates B1 and both are in the same loop. |
| /// |
| /// 3- Propagation of block weights into edges. This uses a simple |
| /// propagation heuristic. The following rules are applied to every |
| /// block BB in the CFG: |
| /// |
| /// - If BB has a single predecessor/successor, then the weight |
| /// of that edge is the weight of the block. |
| /// |
| /// - If all the edges are known except one, and the weight of the |
| /// block is already known, the weight of the unknown edge will |
| /// be the weight of the block minus the sum of all the known |
| /// edges. If the sum of all the known edges is larger than BB's weight, |
| /// we set the unknown edge weight to zero. |
| /// |
| /// - If there is a self-referential edge, and the weight of the block is |
| /// known, the weight for that edge is set to the weight of the block |
| /// minus the weight of the other incoming edges to that block (if |
| /// known). |
| /// |
| /// Since this propagation is not guaranteed to finalize for every CFG, we |
| /// only allow it to proceed for a limited number of iterations (controlled |
| /// by -sample-profile-max-propagate-iterations). |
| /// |
| /// FIXME: Try to replace this propagation heuristic with a scheme |
| /// that is guaranteed to finalize. A work-list approach similar to |
| /// the standard value propagation algorithm used by SSA-CCP might |
| /// work here. |
| /// |
| /// Once all the branch weights are computed, we emit the MD_prof |
| /// metadata on BB using the computed values for each of its branches. |
| /// |
| /// \param F The function to query. |
| /// |
| /// \returns true if \p F was modified. Returns false, otherwise. |
| bool SampleProfileLoader::emitAnnotations(Function &F) { |
| bool Changed = false; |
| |
| if (getFunctionLoc(F) == 0) |
| return false; |
| |
| LLVM_DEBUG(dbgs() << "Line number for the first instruction in " |
| << F.getName() << ": " << getFunctionLoc(F) << "\n"); |
| |
| DenseSet<GlobalValue::GUID> InlinedGUIDs; |
| Changed |= inlineHotFunctions(F, InlinedGUIDs); |
| |
| // Compute basic block weights. |
| Changed |= computeBlockWeights(F); |
| |
| if (Changed) { |
| // Add an entry count to the function using the samples gathered at the |
| // function entry. |
| // Sets the GUIDs that are inlined in the profiled binary. This is used |
| // for ThinLink to make correct liveness analysis, and also make the IR |
| // match the profiled binary before annotation. |
| F.setEntryCount( |
| ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real), |
| &InlinedGUIDs); |
| |
| // Compute dominance and loop info needed for propagation. |
| computeDominanceAndLoopInfo(F); |
| |
| // Find equivalence classes. |
| findEquivalenceClasses(F); |
| |
| // Propagate weights to all edges. |
| propagateWeights(F); |
| } |
| |
| // If coverage checking was requested, compute it now. |
| if (SampleProfileRecordCoverage) { |
| unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI); |
| unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI); |
| unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); |
| if (Coverage < SampleProfileRecordCoverage) { |
| F.getContext().diagnose(DiagnosticInfoSampleProfile( |
| F.getSubprogram()->getFilename(), getFunctionLoc(F), |
| Twine(Used) + " of " + Twine(Total) + " available profile records (" + |
| Twine(Coverage) + "%) were applied", |
| DS_Warning)); |
| } |
| } |
| |
| if (SampleProfileSampleCoverage) { |
| uint64_t Used = CoverageTracker.getTotalUsedSamples(); |
| uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI); |
| unsigned Coverage = CoverageTracker.computeCoverage(Used, Total); |
| if (Coverage < SampleProfileSampleCoverage) { |
| F.getContext().diagnose(DiagnosticInfoSampleProfile( |
| F.getSubprogram()->getFilename(), getFunctionLoc(F), |
| Twine(Used) + " of " + Twine(Total) + " available profile samples (" + |
| Twine(Coverage) + "%) were applied", |
| DS_Warning)); |
| } |
| } |
| return Changed; |
| } |
| |
| char SampleProfileLoaderLegacyPass::ID = 0; |
| |
| INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile", |
| "Sample Profile loader", false, false) |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) |
| INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile", |
| "Sample Profile loader", false, false) |
| |
| bool SampleProfileLoader::doInitialization(Module &M) { |
| auto &Ctx = M.getContext(); |
| auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx); |
| if (std::error_code EC = ReaderOrErr.getError()) { |
| std::string Msg = "Could not open profile: " + EC.message(); |
| Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); |
| return false; |
| } |
| Reader = std::move(ReaderOrErr.get()); |
| Reader->collectFuncsToUse(M); |
| ProfileIsValid = (Reader->read() == sampleprof_error::success); |
| |
| if (!RemappingFilename.empty()) { |
| // Apply profile remappings to the loaded profile data if requested. |
| // For now, we only support remapping symbols encoded using the Itanium |
| // C++ ABI's name mangling scheme. |
| ReaderOrErr = SampleProfileReaderItaniumRemapper::create( |
| RemappingFilename, Ctx, std::move(Reader)); |
| if (std::error_code EC = ReaderOrErr.getError()) { |
| std::string Msg = "Could not open profile remapping file: " + EC.message(); |
| Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg)); |
| return false; |
| } |
| Reader = std::move(ReaderOrErr.get()); |
| ProfileIsValid = (Reader->read() == sampleprof_error::success); |
| } |
| return true; |
| } |
| |
| ModulePass *llvm::createSampleProfileLoaderPass() { |
| return new SampleProfileLoaderLegacyPass(); |
| } |
| |
| ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) { |
| return new SampleProfileLoaderLegacyPass(Name); |
| } |
| |
| bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM, |
| ProfileSummaryInfo *_PSI) { |
| FunctionSamples::GUIDToFuncNameMapper Mapper(M); |
| if (!ProfileIsValid) |
| return false; |
| |
| PSI = _PSI; |
| if (M.getProfileSummary() == nullptr) |
| M.setProfileSummary(Reader->getSummary().getMD(M.getContext())); |
| |
| // Compute the total number of samples collected in this profile. |
| for (const auto &I : Reader->getProfiles()) |
| TotalCollectedSamples += I.second.getTotalSamples(); |
| |
| // Populate the symbol map. |
| for (const auto &N_F : M.getValueSymbolTable()) { |
| StringRef OrigName = N_F.getKey(); |
| Function *F = dyn_cast<Function>(N_F.getValue()); |
| if (F == nullptr) |
| continue; |
| SymbolMap[OrigName] = F; |
| auto pos = OrigName.find('.'); |
| if (pos != StringRef::npos) { |
| StringRef NewName = OrigName.substr(0, pos); |
| auto r = SymbolMap.insert(std::make_pair(NewName, F)); |
| // Failiing to insert means there is already an entry in SymbolMap, |
| // thus there are multiple functions that are mapped to the same |
| // stripped name. In this case of name conflicting, set the value |
| // to nullptr to avoid confusion. |
| if (!r.second) |
| r.first->second = nullptr; |
| } |
| } |
| |
| bool retval = false; |
| for (auto &F : M) |
| if (!F.isDeclaration()) { |
| clearFunctionData(); |
| retval |= runOnFunction(F, AM); |
| } |
| |
| // Account for cold calls not inlined.... |
| for (const std::pair<Function *, NotInlinedProfileInfo> &pair : |
| notInlinedCallInfo) |
| updateProfileCallee(pair.first, pair.second.entryCount); |
| |
| return retval; |
| } |
| |
| bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) { |
| ACT = &getAnalysis<AssumptionCacheTracker>(); |
| TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>(); |
| ProfileSummaryInfo *PSI = |
| &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); |
| return SampleLoader.runOnModule(M, nullptr, PSI); |
| } |
| |
| bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) { |
| |
| DILocation2SampleMap.clear(); |
| // By default the entry count is initialized to -1, which will be treated |
| // conservatively by getEntryCount as the same as unknown (None). This is |
| // to avoid newly added code to be treated as cold. If we have samples |
| // this will be overwritten in emitAnnotations. |
| // If ProfileSampleAccurate is true or F has profile-sample-accurate |
| // attribute, initialize the entry count to 0 so callsites or functions |
| // unsampled will be treated as cold. |
| uint64_t initialEntryCount = |
| (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) |
| ? 0 |
| : -1; |
| F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real)); |
| std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; |
| if (AM) { |
| auto &FAM = |
| AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent()) |
| .getManager(); |
| ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); |
| } else { |
| OwnedORE = make_unique<OptimizationRemarkEmitter>(&F); |
| ORE = OwnedORE.get(); |
| } |
| Samples = Reader->getSamplesFor(F); |
| if (Samples && !Samples->empty()) |
| return emitAnnotations(F); |
| return false; |
| } |
| |
| PreservedAnalyses SampleProfileLoaderPass::run(Module &M, |
| ModuleAnalysisManager &AM) { |
| FunctionAnalysisManager &FAM = |
| AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); |
| |
| auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & { |
| return FAM.getResult<AssumptionAnalysis>(F); |
| }; |
| auto GetTTI = [&](Function &F) -> TargetTransformInfo & { |
| return FAM.getResult<TargetIRAnalysis>(F); |
| }; |
| |
| SampleProfileLoader SampleLoader( |
| ProfileFileName.empty() ? SampleProfileFile : ProfileFileName, |
| ProfileRemappingFileName.empty() ? SampleProfileRemappingFile |
| : ProfileRemappingFileName, |
| IsThinLTOPreLink, GetAssumptionCache, GetTTI); |
| |
| SampleLoader.doInitialization(M); |
| |
| ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); |
| if (!SampleLoader.runOnModule(M, &AM, PSI)) |
| return PreservedAnalyses::all(); |
| |
| return PreservedAnalyses::none(); |
| } |