blob: f944d1f97dabf622c741bea61f6d9d5644ee2847 [file] [log] [blame]
; RUN: opt -loop-vectorize -S < %s | FileCheck %s
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128-ni:1"
target triple = "x86_64-unknown-linux-gnu"
; PR34965/D39346
; LV retains the original scalar loop intact as remainder loop. However,
; after this transformation, analysis information concerning the remainder
; loop may differ from the original scalar loop. This test is an example of
; that behaviour, where values inside the remainder loop which SCEV could
; originally analyze now require flow-sensitive analysis currently not
; supported in SCEV. In particular, during LV code generation, after turning
; the original scalar loop into the remainder loop, LV expected
; Legal->isConsecutivePtr() to be consistent and return the same output as
; during legal/cost model phases (original scalar loop). Unfortunately, that
; condition was not satisfied because of the aforementioned SCEV limitation.
; After D39346, LV code generation doesn't rely on Legal->isConsecutivePtr(),
; i.e., SCEV. This test verifies that LV is able to handle the described cases.
;
; TODO: The SCEV limitation described before may affect plans to further
; optimize the remainder loop of this particular test case. One tentative
; solution is to detect the problematic IVs in LV (%7 and %8) and perform an
; in-place IV optimization by replacing:
; %8 = phi i32 [ %.ph2, %.outer ], [ %7, %6 ] with
; with
; %8 = sub i32 %7, 1.
; Verify that store is vectorized as stride-1 memory access.
; CHECK-LABEL: @test_01(
; CHECK-NOT: vector.body:
; This test was originally vectorized, but now SCEV is smart enough to prove
; that its trip count is 1, so it gets ignored by vectorizer.
; Function Attrs: uwtable
define void @test_01() {
br label %.outer
; <label>:1: ; preds = %2
ret void
; <label>:2: ; preds = %._crit_edge.loopexit
%3 = add nsw i32 %.ph, -2
br i1 undef, label %1, label %.outer
.outer: ; preds = %2, %0
%.ph = phi i32 [ %3, %2 ], [ 336, %0 ]
%.ph2 = phi i32 [ 62, %2 ], [ 110, %0 ]
%4 = and i32 %.ph, 30
%5 = add i32 %.ph2, 1
br label %6
; <label>:6: ; preds = %6, %.outer
%7 = phi i32 [ %5, %.outer ], [ %13, %6 ]
%8 = phi i32 [ %.ph2, %.outer ], [ %7, %6 ]
%9 = add i32 %8, 2
%10 = zext i32 %9 to i64
%11 = getelementptr inbounds i32, i32 addrspace(1)* undef, i64 %10
%12 = ashr i32 undef, %4
store i32 %12, i32 addrspace(1)* %11, align 4
%13 = add i32 %7, 1
%14 = icmp sgt i32 %13, 61
br i1 %14, label %._crit_edge.loopexit, label %6
._crit_edge.loopexit: ; preds = %._crit_edge.loopexit, %6
br i1 undef, label %2, label %._crit_edge.loopexit
}
; After trip count is increased, the test gets vectorized.
; CHECK-LABEL: @test_02(
; CHECK: vector.body:
; CHECK: store <4 x i32>
; Function Attrs: uwtable
define void @test_02() {
br label %.outer
; <label>:1: ; preds = %2
ret void
; <label>:2: ; preds = %._crit_edge.loopexit
%3 = add nsw i32 %.ph, -2
br i1 undef, label %1, label %.outer
.outer: ; preds = %2, %0
%.ph = phi i32 [ %3, %2 ], [ 336, %0 ]
%.ph2 = phi i32 [ 62, %2 ], [ 110, %0 ]
%4 = and i32 %.ph, 30
%5 = add i32 %.ph2, 1
br label %6
; <label>:6: ; preds = %6, %.outer
%7 = phi i32 [ %5, %.outer ], [ %13, %6 ]
%8 = phi i32 [ %.ph2, %.outer ], [ %7, %6 ]
%9 = add i32 %8, 2
%10 = zext i32 %9 to i64
%11 = getelementptr inbounds i32, i32 addrspace(1)* undef, i64 %10
%12 = ashr i32 undef, %4
store i32 %12, i32 addrspace(1)* %11, align 4
%13 = add i32 %7, 1
%14 = icmp sgt i32 %13, 610
br i1 %14, label %._crit_edge.loopexit, label %6
._crit_edge.loopexit: ; preds = %._crit_edge.loopexit, %6
br i1 undef, label %2, label %._crit_edge.loopexit
}