| //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===// | 
 | // | 
 | //                     The LLVM Compiler Infrastructure | 
 | // | 
 | // This file is distributed under the University of Illinois Open Source | 
 | // License. See LICENSE.TXT for details. | 
 | // | 
 | //===----------------------------------------------------------------------===// | 
 | // | 
 | // Pass to verify generated machine code. The following is checked: | 
 | // | 
 | // Operand counts: All explicit operands must be present. | 
 | // | 
 | // Register classes: All physical and virtual register operands must be | 
 | // compatible with the register class required by the instruction descriptor. | 
 | // | 
 | // Register live intervals: Registers must be defined only once, and must be | 
 | // defined before use. | 
 | // | 
 | // The machine code verifier is enabled from LLVMTargetMachine.cpp with the | 
 | // command-line option -verify-machineinstrs, or by defining the environment | 
 | // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive | 
 | // the verifier errors. | 
 | //===----------------------------------------------------------------------===// | 
 |  | 
 | #include "llvm/Instructions.h" | 
 | #include "llvm/Function.h" | 
 | #include "llvm/CodeGen/LiveIntervalAnalysis.h" | 
 | #include "llvm/CodeGen/LiveVariables.h" | 
 | #include "llvm/CodeGen/LiveStackAnalysis.h" | 
 | #include "llvm/CodeGen/MachineInstrBundle.h" | 
 | #include "llvm/CodeGen/MachineFunctionPass.h" | 
 | #include "llvm/CodeGen/MachineFrameInfo.h" | 
 | #include "llvm/CodeGen/MachineMemOperand.h" | 
 | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
 | #include "llvm/CodeGen/Passes.h" | 
 | #include "llvm/MC/MCAsmInfo.h" | 
 | #include "llvm/Target/TargetMachine.h" | 
 | #include "llvm/Target/TargetRegisterInfo.h" | 
 | #include "llvm/Target/TargetInstrInfo.h" | 
 | #include "llvm/ADT/DenseSet.h" | 
 | #include "llvm/ADT/SetOperations.h" | 
 | #include "llvm/ADT/SmallVector.h" | 
 | #include "llvm/Support/Debug.h" | 
 | #include "llvm/Support/ErrorHandling.h" | 
 | #include "llvm/Support/raw_ostream.h" | 
 | using namespace llvm; | 
 |  | 
 | namespace { | 
 |   struct MachineVerifier { | 
 |  | 
 |     MachineVerifier(Pass *pass, const char *b) : | 
 |       PASS(pass), | 
 |       Banner(b), | 
 |       OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS")) | 
 |       {} | 
 |  | 
 |     bool runOnMachineFunction(MachineFunction &MF); | 
 |  | 
 |     Pass *const PASS; | 
 |     const char *Banner; | 
 |     const char *const OutFileName; | 
 |     raw_ostream *OS; | 
 |     const MachineFunction *MF; | 
 |     const TargetMachine *TM; | 
 |     const TargetInstrInfo *TII; | 
 |     const TargetRegisterInfo *TRI; | 
 |     const MachineRegisterInfo *MRI; | 
 |  | 
 |     unsigned foundErrors; | 
 |  | 
 |     typedef SmallVector<unsigned, 16> RegVector; | 
 |     typedef SmallVector<const uint32_t*, 4> RegMaskVector; | 
 |     typedef DenseSet<unsigned> RegSet; | 
 |     typedef DenseMap<unsigned, const MachineInstr*> RegMap; | 
 |  | 
 |     const MachineInstr *FirstTerminator; | 
 |  | 
 |     BitVector regsReserved; | 
 |     BitVector regsAllocatable; | 
 |     RegSet regsLive; | 
 |     RegVector regsDefined, regsDead, regsKilled; | 
 |     RegMaskVector regMasks; | 
 |     RegSet regsLiveInButUnused; | 
 |  | 
 |     SlotIndex lastIndex; | 
 |  | 
 |     // Add Reg and any sub-registers to RV | 
 |     void addRegWithSubRegs(RegVector &RV, unsigned Reg) { | 
 |       RV.push_back(Reg); | 
 |       if (TargetRegisterInfo::isPhysicalRegister(Reg)) | 
 |         for (const uint16_t *R = TRI->getSubRegisters(Reg); *R; R++) | 
 |           RV.push_back(*R); | 
 |     } | 
 |  | 
 |     struct BBInfo { | 
 |       // Is this MBB reachable from the MF entry point? | 
 |       bool reachable; | 
 |  | 
 |       // Vregs that must be live in because they are used without being | 
 |       // defined. Map value is the user. | 
 |       RegMap vregsLiveIn; | 
 |  | 
 |       // Regs killed in MBB. They may be defined again, and will then be in both | 
 |       // regsKilled and regsLiveOut. | 
 |       RegSet regsKilled; | 
 |  | 
 |       // Regs defined in MBB and live out. Note that vregs passing through may | 
 |       // be live out without being mentioned here. | 
 |       RegSet regsLiveOut; | 
 |  | 
 |       // Vregs that pass through MBB untouched. This set is disjoint from | 
 |       // regsKilled and regsLiveOut. | 
 |       RegSet vregsPassed; | 
 |  | 
 |       // Vregs that must pass through MBB because they are needed by a successor | 
 |       // block. This set is disjoint from regsLiveOut. | 
 |       RegSet vregsRequired; | 
 |  | 
 |       BBInfo() : reachable(false) {} | 
 |  | 
 |       // Add register to vregsPassed if it belongs there. Return true if | 
 |       // anything changed. | 
 |       bool addPassed(unsigned Reg) { | 
 |         if (!TargetRegisterInfo::isVirtualRegister(Reg)) | 
 |           return false; | 
 |         if (regsKilled.count(Reg) || regsLiveOut.count(Reg)) | 
 |           return false; | 
 |         return vregsPassed.insert(Reg).second; | 
 |       } | 
 |  | 
 |       // Same for a full set. | 
 |       bool addPassed(const RegSet &RS) { | 
 |         bool changed = false; | 
 |         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) | 
 |           if (addPassed(*I)) | 
 |             changed = true; | 
 |         return changed; | 
 |       } | 
 |  | 
 |       // Add register to vregsRequired if it belongs there. Return true if | 
 |       // anything changed. | 
 |       bool addRequired(unsigned Reg) { | 
 |         if (!TargetRegisterInfo::isVirtualRegister(Reg)) | 
 |           return false; | 
 |         if (regsLiveOut.count(Reg)) | 
 |           return false; | 
 |         return vregsRequired.insert(Reg).second; | 
 |       } | 
 |  | 
 |       // Same for a full set. | 
 |       bool addRequired(const RegSet &RS) { | 
 |         bool changed = false; | 
 |         for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I) | 
 |           if (addRequired(*I)) | 
 |             changed = true; | 
 |         return changed; | 
 |       } | 
 |  | 
 |       // Same for a full map. | 
 |       bool addRequired(const RegMap &RM) { | 
 |         bool changed = false; | 
 |         for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I) | 
 |           if (addRequired(I->first)) | 
 |             changed = true; | 
 |         return changed; | 
 |       } | 
 |  | 
 |       // Live-out registers are either in regsLiveOut or vregsPassed. | 
 |       bool isLiveOut(unsigned Reg) const { | 
 |         return regsLiveOut.count(Reg) || vregsPassed.count(Reg); | 
 |       } | 
 |     }; | 
 |  | 
 |     // Extra register info per MBB. | 
 |     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; | 
 |  | 
 |     bool isReserved(unsigned Reg) { | 
 |       return Reg < regsReserved.size() && regsReserved.test(Reg); | 
 |     } | 
 |  | 
 |     bool isAllocatable(unsigned Reg) { | 
 |       return Reg < regsAllocatable.size() && regsAllocatable.test(Reg); | 
 |     } | 
 |  | 
 |     // Analysis information if available | 
 |     LiveVariables *LiveVars; | 
 |     LiveIntervals *LiveInts; | 
 |     LiveStacks *LiveStks; | 
 |     SlotIndexes *Indexes; | 
 |  | 
 |     void visitMachineFunctionBefore(); | 
 |     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); | 
 |     void visitMachineInstrBefore(const MachineInstr *MI); | 
 |     void visitMachineOperand(const MachineOperand *MO, unsigned MONum); | 
 |     void visitMachineInstrAfter(const MachineInstr *MI); | 
 |     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); | 
 |     void visitMachineFunctionAfter(); | 
 |  | 
 |     void report(const char *msg, const MachineFunction *MF); | 
 |     void report(const char *msg, const MachineBasicBlock *MBB); | 
 |     void report(const char *msg, const MachineInstr *MI); | 
 |     void report(const char *msg, const MachineOperand *MO, unsigned MONum); | 
 |  | 
 |     void checkLiveness(const MachineOperand *MO, unsigned MONum); | 
 |     void markReachable(const MachineBasicBlock *MBB); | 
 |     void calcRegsPassed(); | 
 |     void checkPHIOps(const MachineBasicBlock *MBB); | 
 |  | 
 |     void calcRegsRequired(); | 
 |     void verifyLiveVariables(); | 
 |     void verifyLiveIntervals(); | 
 |   }; | 
 |  | 
 |   struct MachineVerifierPass : public MachineFunctionPass { | 
 |     static char ID; // Pass ID, replacement for typeid | 
 |     const char *const Banner; | 
 |  | 
 |     MachineVerifierPass(const char *b = 0) | 
 |       : MachineFunctionPass(ID), Banner(b) { | 
 |         initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry()); | 
 |       } | 
 |  | 
 |     void getAnalysisUsage(AnalysisUsage &AU) const { | 
 |       AU.setPreservesAll(); | 
 |       MachineFunctionPass::getAnalysisUsage(AU); | 
 |     } | 
 |  | 
 |     bool runOnMachineFunction(MachineFunction &MF) { | 
 |       MF.verify(this, Banner); | 
 |       return false; | 
 |     } | 
 |   }; | 
 |  | 
 | } | 
 |  | 
 | char MachineVerifierPass::ID = 0; | 
 | INITIALIZE_PASS(MachineVerifierPass, "machineverifier", | 
 |                 "Verify generated machine code", false, false) | 
 |  | 
 | FunctionPass *llvm::createMachineVerifierPass(const char *Banner) { | 
 |   return new MachineVerifierPass(Banner); | 
 | } | 
 |  | 
 | void MachineFunction::verify(Pass *p, const char *Banner) const { | 
 |   MachineVerifier(p, Banner) | 
 |     .runOnMachineFunction(const_cast<MachineFunction&>(*this)); | 
 | } | 
 |  | 
 | bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) { | 
 |   raw_ostream *OutFile = 0; | 
 |   if (OutFileName) { | 
 |     std::string ErrorInfo; | 
 |     OutFile = new raw_fd_ostream(OutFileName, ErrorInfo, | 
 |                                  raw_fd_ostream::F_Append); | 
 |     if (!ErrorInfo.empty()) { | 
 |       errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n'; | 
 |       exit(1); | 
 |     } | 
 |  | 
 |     OS = OutFile; | 
 |   } else { | 
 |     OS = &errs(); | 
 |   } | 
 |  | 
 |   foundErrors = 0; | 
 |  | 
 |   this->MF = &MF; | 
 |   TM = &MF.getTarget(); | 
 |   TII = TM->getInstrInfo(); | 
 |   TRI = TM->getRegisterInfo(); | 
 |   MRI = &MF.getRegInfo(); | 
 |  | 
 |   LiveVars = NULL; | 
 |   LiveInts = NULL; | 
 |   LiveStks = NULL; | 
 |   Indexes = NULL; | 
 |   if (PASS) { | 
 |     LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>(); | 
 |     // We don't want to verify LiveVariables if LiveIntervals is available. | 
 |     if (!LiveInts) | 
 |       LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>(); | 
 |     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); | 
 |     Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>(); | 
 |   } | 
 |  | 
 |   visitMachineFunctionBefore(); | 
 |   for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end(); | 
 |        MFI!=MFE; ++MFI) { | 
 |     visitMachineBasicBlockBefore(MFI); | 
 |     for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(), | 
 |            MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) { | 
 |       if (MBBI->getParent() != MFI) { | 
 |         report("Bad instruction parent pointer", MFI); | 
 |         *OS << "Instruction: " << *MBBI; | 
 |         continue; | 
 |       } | 
 |       // Skip BUNDLE instruction for now. FIXME: We should add code to verify | 
 |       // the BUNDLE's specifically. | 
 |       if (MBBI->isBundle()) | 
 |         continue; | 
 |       visitMachineInstrBefore(MBBI); | 
 |       for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) | 
 |         visitMachineOperand(&MBBI->getOperand(I), I); | 
 |       visitMachineInstrAfter(MBBI); | 
 |     } | 
 |     visitMachineBasicBlockAfter(MFI); | 
 |   } | 
 |   visitMachineFunctionAfter(); | 
 |  | 
 |   if (OutFile) | 
 |     delete OutFile; | 
 |   else if (foundErrors) | 
 |     report_fatal_error("Found "+Twine(foundErrors)+" machine code errors."); | 
 |  | 
 |   // Clean up. | 
 |   regsLive.clear(); | 
 |   regsDefined.clear(); | 
 |   regsDead.clear(); | 
 |   regsKilled.clear(); | 
 |   regMasks.clear(); | 
 |   regsLiveInButUnused.clear(); | 
 |   MBBInfoMap.clear(); | 
 |  | 
 |   return false;                 // no changes | 
 | } | 
 |  | 
 | void MachineVerifier::report(const char *msg, const MachineFunction *MF) { | 
 |   assert(MF); | 
 |   *OS << '\n'; | 
 |   if (!foundErrors++) { | 
 |     if (Banner) | 
 |       *OS << "# " << Banner << '\n'; | 
 |     MF->print(*OS, Indexes); | 
 |   } | 
 |   *OS << "*** Bad machine code: " << msg << " ***\n" | 
 |       << "- function:    " << MF->getFunction()->getName() << "\n"; | 
 | } | 
 |  | 
 | void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { | 
 |   assert(MBB); | 
 |   report(msg, MBB->getParent()); | 
 |   *OS << "- basic block: " << MBB->getName() | 
 |       << " " << (void*)MBB | 
 |       << " (BB#" << MBB->getNumber() << ")"; | 
 |   if (Indexes) | 
 |     *OS << " [" << Indexes->getMBBStartIdx(MBB) | 
 |         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')'; | 
 |   *OS << '\n'; | 
 | } | 
 |  | 
 | void MachineVerifier::report(const char *msg, const MachineInstr *MI) { | 
 |   assert(MI); | 
 |   report(msg, MI->getParent()); | 
 |   *OS << "- instruction: "; | 
 |   if (Indexes && Indexes->hasIndex(MI)) | 
 |     *OS << Indexes->getInstructionIndex(MI) << '\t'; | 
 |   MI->print(*OS, TM); | 
 | } | 
 |  | 
 | void MachineVerifier::report(const char *msg, | 
 |                              const MachineOperand *MO, unsigned MONum) { | 
 |   assert(MO); | 
 |   report(msg, MO->getParent()); | 
 |   *OS << "- operand " << MONum << ":   "; | 
 |   MO->print(*OS, TM); | 
 |   *OS << "\n"; | 
 | } | 
 |  | 
 | void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { | 
 |   BBInfo &MInfo = MBBInfoMap[MBB]; | 
 |   if (!MInfo.reachable) { | 
 |     MInfo.reachable = true; | 
 |     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), | 
 |            SuE = MBB->succ_end(); SuI != SuE; ++SuI) | 
 |       markReachable(*SuI); | 
 |   } | 
 | } | 
 |  | 
 | void MachineVerifier::visitMachineFunctionBefore() { | 
 |   lastIndex = SlotIndex(); | 
 |   regsReserved = TRI->getReservedRegs(*MF); | 
 |  | 
 |   // A sub-register of a reserved register is also reserved | 
 |   for (int Reg = regsReserved.find_first(); Reg>=0; | 
 |        Reg = regsReserved.find_next(Reg)) { | 
 |     for (const uint16_t *Sub = TRI->getSubRegisters(Reg); *Sub; ++Sub) { | 
 |       // FIXME: This should probably be: | 
 |       // assert(regsReserved.test(*Sub) && "Non-reserved sub-register"); | 
 |       regsReserved.set(*Sub); | 
 |     } | 
 |   } | 
 |  | 
 |   regsAllocatable = TRI->getAllocatableSet(*MF); | 
 |  | 
 |   markReachable(&MF->front()); | 
 | } | 
 |  | 
 | // Does iterator point to a and b as the first two elements? | 
 | static bool matchPair(MachineBasicBlock::const_succ_iterator i, | 
 |                       const MachineBasicBlock *a, const MachineBasicBlock *b) { | 
 |   if (*i == a) | 
 |     return *++i == b; | 
 |   if (*i == b) | 
 |     return *++i == a; | 
 |   return false; | 
 | } | 
 |  | 
 | void | 
 | MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { | 
 |   FirstTerminator = 0; | 
 |  | 
 |   if (MRI->isSSA()) { | 
 |     // If this block has allocatable physical registers live-in, check that | 
 |     // it is an entry block or landing pad. | 
 |     for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(), | 
 |            LE = MBB->livein_end(); | 
 |          LI != LE; ++LI) { | 
 |       unsigned reg = *LI; | 
 |       if (isAllocatable(reg) && !MBB->isLandingPad() && | 
 |           MBB != MBB->getParent()->begin()) { | 
 |         report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Count the number of landing pad successors. | 
 |   SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs; | 
 |   for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(), | 
 |        E = MBB->succ_end(); I != E; ++I) { | 
 |     if ((*I)->isLandingPad()) | 
 |       LandingPadSuccs.insert(*I); | 
 |   } | 
 |  | 
 |   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); | 
 |   const BasicBlock *BB = MBB->getBasicBlock(); | 
 |   if (LandingPadSuccs.size() > 1 && | 
 |       !(AsmInfo && | 
 |         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && | 
 |         BB && isa<SwitchInst>(BB->getTerminator()))) | 
 |     report("MBB has more than one landing pad successor", MBB); | 
 |  | 
 |   // Call AnalyzeBranch. If it succeeds, there several more conditions to check. | 
 |   MachineBasicBlock *TBB = 0, *FBB = 0; | 
 |   SmallVector<MachineOperand, 4> Cond; | 
 |   if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB), | 
 |                           TBB, FBB, Cond)) { | 
 |     // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's | 
 |     // check whether its answers match up with reality. | 
 |     if (!TBB && !FBB) { | 
 |       // Block falls through to its successor. | 
 |       MachineFunction::const_iterator MBBI = MBB; | 
 |       ++MBBI; | 
 |       if (MBBI == MF->end()) { | 
 |         // It's possible that the block legitimately ends with a noreturn | 
 |         // call or an unreachable, in which case it won't actually fall | 
 |         // out the bottom of the function. | 
 |       } else if (MBB->succ_size() == LandingPadSuccs.size()) { | 
 |         // It's possible that the block legitimately ends with a noreturn | 
 |         // call or an unreachable, in which case it won't actuall fall | 
 |         // out of the block. | 
 |       } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) { | 
 |         report("MBB exits via unconditional fall-through but doesn't have " | 
 |                "exactly one CFG successor!", MBB); | 
 |       } else if (!MBB->isSuccessor(MBBI)) { | 
 |         report("MBB exits via unconditional fall-through but its successor " | 
 |                "differs from its CFG successor!", MBB); | 
 |       } | 
 |       if (!MBB->empty() && MBB->back().isBarrier() && | 
 |           !TII->isPredicated(&MBB->back())) { | 
 |         report("MBB exits via unconditional fall-through but ends with a " | 
 |                "barrier instruction!", MBB); | 
 |       } | 
 |       if (!Cond.empty()) { | 
 |         report("MBB exits via unconditional fall-through but has a condition!", | 
 |                MBB); | 
 |       } | 
 |     } else if (TBB && !FBB && Cond.empty()) { | 
 |       // Block unconditionally branches somewhere. | 
 |       if (MBB->succ_size() != 1+LandingPadSuccs.size()) { | 
 |         report("MBB exits via unconditional branch but doesn't have " | 
 |                "exactly one CFG successor!", MBB); | 
 |       } else if (!MBB->isSuccessor(TBB)) { | 
 |         report("MBB exits via unconditional branch but the CFG " | 
 |                "successor doesn't match the actual successor!", MBB); | 
 |       } | 
 |       if (MBB->empty()) { | 
 |         report("MBB exits via unconditional branch but doesn't contain " | 
 |                "any instructions!", MBB); | 
 |       } else if (!MBB->back().isBarrier()) { | 
 |         report("MBB exits via unconditional branch but doesn't end with a " | 
 |                "barrier instruction!", MBB); | 
 |       } else if (!MBB->back().isTerminator()) { | 
 |         report("MBB exits via unconditional branch but the branch isn't a " | 
 |                "terminator instruction!", MBB); | 
 |       } | 
 |     } else if (TBB && !FBB && !Cond.empty()) { | 
 |       // Block conditionally branches somewhere, otherwise falls through. | 
 |       MachineFunction::const_iterator MBBI = MBB; | 
 |       ++MBBI; | 
 |       if (MBBI == MF->end()) { | 
 |         report("MBB conditionally falls through out of function!", MBB); | 
 |       } if (MBB->succ_size() != 2) { | 
 |         report("MBB exits via conditional branch/fall-through but doesn't have " | 
 |                "exactly two CFG successors!", MBB); | 
 |       } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) { | 
 |         report("MBB exits via conditional branch/fall-through but the CFG " | 
 |                "successors don't match the actual successors!", MBB); | 
 |       } | 
 |       if (MBB->empty()) { | 
 |         report("MBB exits via conditional branch/fall-through but doesn't " | 
 |                "contain any instructions!", MBB); | 
 |       } else if (MBB->back().isBarrier()) { | 
 |         report("MBB exits via conditional branch/fall-through but ends with a " | 
 |                "barrier instruction!", MBB); | 
 |       } else if (!MBB->back().isTerminator()) { | 
 |         report("MBB exits via conditional branch/fall-through but the branch " | 
 |                "isn't a terminator instruction!", MBB); | 
 |       } | 
 |     } else if (TBB && FBB) { | 
 |       // Block conditionally branches somewhere, otherwise branches | 
 |       // somewhere else. | 
 |       if (MBB->succ_size() != 2) { | 
 |         report("MBB exits via conditional branch/branch but doesn't have " | 
 |                "exactly two CFG successors!", MBB); | 
 |       } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) { | 
 |         report("MBB exits via conditional branch/branch but the CFG " | 
 |                "successors don't match the actual successors!", MBB); | 
 |       } | 
 |       if (MBB->empty()) { | 
 |         report("MBB exits via conditional branch/branch but doesn't " | 
 |                "contain any instructions!", MBB); | 
 |       } else if (!MBB->back().isBarrier()) { | 
 |         report("MBB exits via conditional branch/branch but doesn't end with a " | 
 |                "barrier instruction!", MBB); | 
 |       } else if (!MBB->back().isTerminator()) { | 
 |         report("MBB exits via conditional branch/branch but the branch " | 
 |                "isn't a terminator instruction!", MBB); | 
 |       } | 
 |       if (Cond.empty()) { | 
 |         report("MBB exits via conditinal branch/branch but there's no " | 
 |                "condition!", MBB); | 
 |       } | 
 |     } else { | 
 |       report("AnalyzeBranch returned invalid data!", MBB); | 
 |     } | 
 |   } | 
 |  | 
 |   regsLive.clear(); | 
 |   for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), | 
 |          E = MBB->livein_end(); I != E; ++I) { | 
 |     if (!TargetRegisterInfo::isPhysicalRegister(*I)) { | 
 |       report("MBB live-in list contains non-physical register", MBB); | 
 |       continue; | 
 |     } | 
 |     regsLive.insert(*I); | 
 |     for (const uint16_t *R = TRI->getSubRegisters(*I); *R; R++) | 
 |       regsLive.insert(*R); | 
 |   } | 
 |   regsLiveInButUnused = regsLive; | 
 |  | 
 |   const MachineFrameInfo *MFI = MF->getFrameInfo(); | 
 |   assert(MFI && "Function has no frame info"); | 
 |   BitVector PR = MFI->getPristineRegs(MBB); | 
 |   for (int I = PR.find_first(); I>0; I = PR.find_next(I)) { | 
 |     regsLive.insert(I); | 
 |     for (const uint16_t *R = TRI->getSubRegisters(I); *R; R++) | 
 |       regsLive.insert(*R); | 
 |   } | 
 |  | 
 |   regsKilled.clear(); | 
 |   regsDefined.clear(); | 
 |  | 
 |   if (Indexes) | 
 |     lastIndex = Indexes->getMBBStartIdx(MBB); | 
 | } | 
 |  | 
 | void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { | 
 |   const MCInstrDesc &MCID = MI->getDesc(); | 
 |   if (MI->getNumOperands() < MCID.getNumOperands()) { | 
 |     report("Too few operands", MI); | 
 |     *OS << MCID.getNumOperands() << " operands expected, but " | 
 |         << MI->getNumExplicitOperands() << " given.\n"; | 
 |   } | 
 |  | 
 |   // Check the MachineMemOperands for basic consistency. | 
 |   for (MachineInstr::mmo_iterator I = MI->memoperands_begin(), | 
 |        E = MI->memoperands_end(); I != E; ++I) { | 
 |     if ((*I)->isLoad() && !MI->mayLoad()) | 
 |       report("Missing mayLoad flag", MI); | 
 |     if ((*I)->isStore() && !MI->mayStore()) | 
 |       report("Missing mayStore flag", MI); | 
 |   } | 
 |  | 
 |   // Debug values must not have a slot index. | 
 |   // Other instructions must have one, unless they are inside a bundle. | 
 |   if (LiveInts) { | 
 |     bool mapped = !LiveInts->isNotInMIMap(MI); | 
 |     if (MI->isDebugValue()) { | 
 |       if (mapped) | 
 |         report("Debug instruction has a slot index", MI); | 
 |     } else if (MI->isInsideBundle()) { | 
 |       if (mapped) | 
 |         report("Instruction inside bundle has a slot index", MI); | 
 |     } else { | 
 |       if (!mapped) | 
 |         report("Missing slot index", MI); | 
 |     } | 
 |   } | 
 |  | 
 |   // Ensure non-terminators don't follow terminators. | 
 |   // Ignore predicated terminators formed by if conversion. | 
 |   // FIXME: If conversion shouldn't need to violate this rule. | 
 |   if (MI->isTerminator() && !TII->isPredicated(MI)) { | 
 |     if (!FirstTerminator) | 
 |       FirstTerminator = MI; | 
 |   } else if (FirstTerminator) { | 
 |     report("Non-terminator instruction after the first terminator", MI); | 
 |     *OS << "First terminator was:\t" << *FirstTerminator; | 
 |   } | 
 |  | 
 |   StringRef ErrorInfo; | 
 |   if (!TII->verifyInstruction(MI, ErrorInfo)) | 
 |     report(ErrorInfo.data(), MI); | 
 | } | 
 |  | 
 | void | 
 | MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { | 
 |   const MachineInstr *MI = MO->getParent(); | 
 |   const MCInstrDesc &MCID = MI->getDesc(); | 
 |   const MCOperandInfo &MCOI = MCID.OpInfo[MONum]; | 
 |  | 
 |   // The first MCID.NumDefs operands must be explicit register defines | 
 |   if (MONum < MCID.getNumDefs()) { | 
 |     if (!MO->isReg()) | 
 |       report("Explicit definition must be a register", MO, MONum); | 
 |     else if (!MO->isDef()) | 
 |       report("Explicit definition marked as use", MO, MONum); | 
 |     else if (MO->isImplicit()) | 
 |       report("Explicit definition marked as implicit", MO, MONum); | 
 |   } else if (MONum < MCID.getNumOperands()) { | 
 |     // Don't check if it's the last operand in a variadic instruction. See, | 
 |     // e.g., LDM_RET in the arm back end. | 
 |     if (MO->isReg() && | 
 |         !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) { | 
 |       if (MO->isDef() && !MCOI.isOptionalDef()) | 
 |           report("Explicit operand marked as def", MO, MONum); | 
 |       if (MO->isImplicit()) | 
 |         report("Explicit operand marked as implicit", MO, MONum); | 
 |     } | 
 |   } else { | 
 |     // ARM adds %reg0 operands to indicate predicates. We'll allow that. | 
 |     if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg()) | 
 |       report("Extra explicit operand on non-variadic instruction", MO, MONum); | 
 |   } | 
 |  | 
 |   switch (MO->getType()) { | 
 |   case MachineOperand::MO_Register: { | 
 |     const unsigned Reg = MO->getReg(); | 
 |     if (!Reg) | 
 |       return; | 
 |     if (MRI->tracksLiveness() && !MI->isDebugValue()) | 
 |       checkLiveness(MO, MONum); | 
 |  | 
 |  | 
 |     // Check register classes. | 
 |     if (MONum < MCID.getNumOperands() && !MO->isImplicit()) { | 
 |       unsigned SubIdx = MO->getSubReg(); | 
 |  | 
 |       if (TargetRegisterInfo::isPhysicalRegister(Reg)) { | 
 |         if (SubIdx) { | 
 |           report("Illegal subregister index for physical register", MO, MONum); | 
 |           return; | 
 |         } | 
 |         if (const TargetRegisterClass *DRC = TII->getRegClass(MCID,MONum,TRI)) { | 
 |           if (!DRC->contains(Reg)) { | 
 |             report("Illegal physical register for instruction", MO, MONum); | 
 |             *OS << TRI->getName(Reg) << " is not a " | 
 |                 << DRC->getName() << " register.\n"; | 
 |           } | 
 |         } | 
 |       } else { | 
 |         // Virtual register. | 
 |         const TargetRegisterClass *RC = MRI->getRegClass(Reg); | 
 |         if (SubIdx) { | 
 |           const TargetRegisterClass *SRC = | 
 |             TRI->getSubClassWithSubReg(RC, SubIdx); | 
 |           if (!SRC) { | 
 |             report("Invalid subregister index for virtual register", MO, MONum); | 
 |             *OS << "Register class " << RC->getName() | 
 |                 << " does not support subreg index " << SubIdx << "\n"; | 
 |             return; | 
 |           } | 
 |           if (RC != SRC) { | 
 |             report("Invalid register class for subregister index", MO, MONum); | 
 |             *OS << "Register class " << RC->getName() | 
 |                 << " does not fully support subreg index " << SubIdx << "\n"; | 
 |             return; | 
 |           } | 
 |         } | 
 |         if (const TargetRegisterClass *DRC = TII->getRegClass(MCID,MONum,TRI)) { | 
 |           if (SubIdx) { | 
 |             const TargetRegisterClass *SuperRC = | 
 |               TRI->getLargestLegalSuperClass(RC); | 
 |             if (!SuperRC) { | 
 |               report("No largest legal super class exists.", MO, MONum); | 
 |               return; | 
 |             } | 
 |             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); | 
 |             if (!DRC) { | 
 |               report("No matching super-reg register class.", MO, MONum); | 
 |               return; | 
 |             } | 
 |           } | 
 |           if (!RC->hasSuperClassEq(DRC)) { | 
 |             report("Illegal virtual register for instruction", MO, MONum); | 
 |             *OS << "Expected a " << DRC->getName() << " register, but got a " | 
 |                 << RC->getName() << " register\n"; | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |     break; | 
 |   } | 
 |  | 
 |   case MachineOperand::MO_RegisterMask: | 
 |     regMasks.push_back(MO->getRegMask()); | 
 |     break; | 
 |  | 
 |   case MachineOperand::MO_MachineBasicBlock: | 
 |     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) | 
 |       report("PHI operand is not in the CFG", MO, MONum); | 
 |     break; | 
 |  | 
 |   case MachineOperand::MO_FrameIndex: | 
 |     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && | 
 |         LiveInts && !LiveInts->isNotInMIMap(MI)) { | 
 |       LiveInterval &LI = LiveStks->getInterval(MO->getIndex()); | 
 |       SlotIndex Idx = LiveInts->getInstructionIndex(MI); | 
 |       if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) { | 
 |         report("Instruction loads from dead spill slot", MO, MONum); | 
 |         *OS << "Live stack: " << LI << '\n'; | 
 |       } | 
 |       if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) { | 
 |         report("Instruction stores to dead spill slot", MO, MONum); | 
 |         *OS << "Live stack: " << LI << '\n'; | 
 |       } | 
 |     } | 
 |     break; | 
 |  | 
 |   default: | 
 |     break; | 
 |   } | 
 | } | 
 |  | 
 | void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { | 
 |   const MachineInstr *MI = MO->getParent(); | 
 |   const unsigned Reg = MO->getReg(); | 
 |  | 
 |   // Both use and def operands can read a register. | 
 |   if (MO->readsReg()) { | 
 |     regsLiveInButUnused.erase(Reg); | 
 |  | 
 |     bool isKill = false; | 
 |     unsigned defIdx; | 
 |     if (MI->isRegTiedToDefOperand(MONum, &defIdx)) { | 
 |       // A two-addr use counts as a kill if use and def are the same. | 
 |       unsigned DefReg = MI->getOperand(defIdx).getReg(); | 
 |       if (Reg == DefReg) | 
 |         isKill = true; | 
 |       else if (TargetRegisterInfo::isPhysicalRegister(Reg)) { | 
 |         report("Two-address instruction operands must be identical", MO, MONum); | 
 |       } | 
 |     } else | 
 |       isKill = MO->isKill(); | 
 |  | 
 |     if (isKill) | 
 |       addRegWithSubRegs(regsKilled, Reg); | 
 |  | 
 |     // Check that LiveVars knows this kill. | 
 |     if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) && | 
 |         MO->isKill()) { | 
 |       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); | 
 |       if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end()) | 
 |         report("Kill missing from LiveVariables", MO, MONum); | 
 |     } | 
 |  | 
 |     // Check LiveInts liveness and kill. | 
 |     if (TargetRegisterInfo::isVirtualRegister(Reg) && | 
 |         LiveInts && !LiveInts->isNotInMIMap(MI)) { | 
 |       SlotIndex UseIdx = LiveInts->getInstructionIndex(MI).getRegSlot(true); | 
 |       if (LiveInts->hasInterval(Reg)) { | 
 |         const LiveInterval &LI = LiveInts->getInterval(Reg); | 
 |         if (!LI.liveAt(UseIdx)) { | 
 |           report("No live range at use", MO, MONum); | 
 |           *OS << UseIdx << " is not live in " << LI << '\n'; | 
 |         } | 
 |         // Check for extra kill flags. | 
 |         // Note that we allow missing kill flags for now. | 
 |         if (MO->isKill() && !LI.killedAt(UseIdx.getRegSlot())) { | 
 |           report("Live range continues after kill flag", MO, MONum); | 
 |           *OS << "Live range: " << LI << '\n'; | 
 |         } | 
 |       } else { | 
 |         report("Virtual register has no Live interval", MO, MONum); | 
 |       } | 
 |     } | 
 |  | 
 |     // Use of a dead register. | 
 |     if (!regsLive.count(Reg)) { | 
 |       if (TargetRegisterInfo::isPhysicalRegister(Reg)) { | 
 |         // Reserved registers may be used even when 'dead'. | 
 |         if (!isReserved(Reg)) | 
 |           report("Using an undefined physical register", MO, MONum); | 
 |       } else { | 
 |         BBInfo &MInfo = MBBInfoMap[MI->getParent()]; | 
 |         // We don't know which virtual registers are live in, so only complain | 
 |         // if vreg was killed in this MBB. Otherwise keep track of vregs that | 
 |         // must be live in. PHI instructions are handled separately. | 
 |         if (MInfo.regsKilled.count(Reg)) | 
 |           report("Using a killed virtual register", MO, MONum); | 
 |         else if (!MI->isPHI()) | 
 |           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   if (MO->isDef()) { | 
 |     // Register defined. | 
 |     // TODO: verify that earlyclobber ops are not used. | 
 |     if (MO->isDead()) | 
 |       addRegWithSubRegs(regsDead, Reg); | 
 |     else | 
 |       addRegWithSubRegs(regsDefined, Reg); | 
 |  | 
 |     // Verify SSA form. | 
 |     if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) && | 
 |         llvm::next(MRI->def_begin(Reg)) != MRI->def_end()) | 
 |       report("Multiple virtual register defs in SSA form", MO, MONum); | 
 |  | 
 |     // Check LiveInts for a live range, but only for virtual registers. | 
 |     if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) && | 
 |         !LiveInts->isNotInMIMap(MI)) { | 
 |       SlotIndex DefIdx = LiveInts->getInstructionIndex(MI).getRegSlot(); | 
 |       if (LiveInts->hasInterval(Reg)) { | 
 |         const LiveInterval &LI = LiveInts->getInterval(Reg); | 
 |         if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) { | 
 |           assert(VNI && "NULL valno is not allowed"); | 
 |           if (VNI->def != DefIdx && !MO->isEarlyClobber()) { | 
 |             report("Inconsistent valno->def", MO, MONum); | 
 |             *OS << "Valno " << VNI->id << " is not defined at " | 
 |               << DefIdx << " in " << LI << '\n'; | 
 |           } | 
 |         } else { | 
 |           report("No live range at def", MO, MONum); | 
 |           *OS << DefIdx << " is not live in " << LI << '\n'; | 
 |         } | 
 |       } else { | 
 |         report("Virtual register has no Live interval", MO, MONum); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) { | 
 |   BBInfo &MInfo = MBBInfoMap[MI->getParent()]; | 
 |   set_union(MInfo.regsKilled, regsKilled); | 
 |   set_subtract(regsLive, regsKilled); regsKilled.clear(); | 
 |   // Kill any masked registers. | 
 |   while (!regMasks.empty()) { | 
 |     const uint32_t *Mask = regMasks.pop_back_val(); | 
 |     for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I) | 
 |       if (TargetRegisterInfo::isPhysicalRegister(*I) && | 
 |           MachineOperand::clobbersPhysReg(Mask, *I)) | 
 |         regsDead.push_back(*I); | 
 |   } | 
 |   set_subtract(regsLive, regsDead);   regsDead.clear(); | 
 |   set_union(regsLive, regsDefined);   regsDefined.clear(); | 
 |  | 
 |   if (Indexes && Indexes->hasIndex(MI)) { | 
 |     SlotIndex idx = Indexes->getInstructionIndex(MI); | 
 |     if (!(idx > lastIndex)) { | 
 |       report("Instruction index out of order", MI); | 
 |       *OS << "Last instruction was at " << lastIndex << '\n'; | 
 |     } | 
 |     lastIndex = idx; | 
 |   } | 
 | } | 
 |  | 
 | void | 
 | MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { | 
 |   MBBInfoMap[MBB].regsLiveOut = regsLive; | 
 |   regsLive.clear(); | 
 |  | 
 |   if (Indexes) { | 
 |     SlotIndex stop = Indexes->getMBBEndIdx(MBB); | 
 |     if (!(stop > lastIndex)) { | 
 |       report("Block ends before last instruction index", MBB); | 
 |       *OS << "Block ends at " << stop | 
 |           << " last instruction was at " << lastIndex << '\n'; | 
 |     } | 
 |     lastIndex = stop; | 
 |   } | 
 | } | 
 |  | 
 | // Calculate the largest possible vregsPassed sets. These are the registers that | 
 | // can pass through an MBB live, but may not be live every time. It is assumed | 
 | // that all vregsPassed sets are empty before the call. | 
 | void MachineVerifier::calcRegsPassed() { | 
 |   // First push live-out regs to successors' vregsPassed. Remember the MBBs that | 
 |   // have any vregsPassed. | 
 |   SmallPtrSet<const MachineBasicBlock*, 8> todo; | 
 |   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); | 
 |        MFI != MFE; ++MFI) { | 
 |     const MachineBasicBlock &MBB(*MFI); | 
 |     BBInfo &MInfo = MBBInfoMap[&MBB]; | 
 |     if (!MInfo.reachable) | 
 |       continue; | 
 |     for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(), | 
 |            SuE = MBB.succ_end(); SuI != SuE; ++SuI) { | 
 |       BBInfo &SInfo = MBBInfoMap[*SuI]; | 
 |       if (SInfo.addPassed(MInfo.regsLiveOut)) | 
 |         todo.insert(*SuI); | 
 |     } | 
 |   } | 
 |  | 
 |   // Iteratively push vregsPassed to successors. This will converge to the same | 
 |   // final state regardless of DenseSet iteration order. | 
 |   while (!todo.empty()) { | 
 |     const MachineBasicBlock *MBB = *todo.begin(); | 
 |     todo.erase(MBB); | 
 |     BBInfo &MInfo = MBBInfoMap[MBB]; | 
 |     for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(), | 
 |            SuE = MBB->succ_end(); SuI != SuE; ++SuI) { | 
 |       if (*SuI == MBB) | 
 |         continue; | 
 |       BBInfo &SInfo = MBBInfoMap[*SuI]; | 
 |       if (SInfo.addPassed(MInfo.vregsPassed)) | 
 |         todo.insert(*SuI); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Calculate the set of virtual registers that must be passed through each basic | 
 | // block in order to satisfy the requirements of successor blocks. This is very | 
 | // similar to calcRegsPassed, only backwards. | 
 | void MachineVerifier::calcRegsRequired() { | 
 |   // First push live-in regs to predecessors' vregsRequired. | 
 |   SmallPtrSet<const MachineBasicBlock*, 8> todo; | 
 |   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); | 
 |        MFI != MFE; ++MFI) { | 
 |     const MachineBasicBlock &MBB(*MFI); | 
 |     BBInfo &MInfo = MBBInfoMap[&MBB]; | 
 |     for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(), | 
 |            PrE = MBB.pred_end(); PrI != PrE; ++PrI) { | 
 |       BBInfo &PInfo = MBBInfoMap[*PrI]; | 
 |       if (PInfo.addRequired(MInfo.vregsLiveIn)) | 
 |         todo.insert(*PrI); | 
 |     } | 
 |   } | 
 |  | 
 |   // Iteratively push vregsRequired to predecessors. This will converge to the | 
 |   // same final state regardless of DenseSet iteration order. | 
 |   while (!todo.empty()) { | 
 |     const MachineBasicBlock *MBB = *todo.begin(); | 
 |     todo.erase(MBB); | 
 |     BBInfo &MInfo = MBBInfoMap[MBB]; | 
 |     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), | 
 |            PrE = MBB->pred_end(); PrI != PrE; ++PrI) { | 
 |       if (*PrI == MBB) | 
 |         continue; | 
 |       BBInfo &SInfo = MBBInfoMap[*PrI]; | 
 |       if (SInfo.addRequired(MInfo.vregsRequired)) | 
 |         todo.insert(*PrI); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | // Check PHI instructions at the beginning of MBB. It is assumed that | 
 | // calcRegsPassed has been run so BBInfo::isLiveOut is valid. | 
 | void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) { | 
 |   SmallPtrSet<const MachineBasicBlock*, 8> seen; | 
 |   for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end(); | 
 |        BBI != BBE && BBI->isPHI(); ++BBI) { | 
 |     seen.clear(); | 
 |  | 
 |     for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { | 
 |       unsigned Reg = BBI->getOperand(i).getReg(); | 
 |       const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB(); | 
 |       if (!Pre->isSuccessor(MBB)) | 
 |         continue; | 
 |       seen.insert(Pre); | 
 |       BBInfo &PrInfo = MBBInfoMap[Pre]; | 
 |       if (PrInfo.reachable && !PrInfo.isLiveOut(Reg)) | 
 |         report("PHI operand is not live-out from predecessor", | 
 |                &BBI->getOperand(i), i); | 
 |     } | 
 |  | 
 |     // Did we see all predecessors? | 
 |     for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(), | 
 |            PrE = MBB->pred_end(); PrI != PrE; ++PrI) { | 
 |       if (!seen.count(*PrI)) { | 
 |         report("Missing PHI operand", BBI); | 
 |         *OS << "BB#" << (*PrI)->getNumber() | 
 |             << " is a predecessor according to the CFG.\n"; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void MachineVerifier::visitMachineFunctionAfter() { | 
 |   calcRegsPassed(); | 
 |  | 
 |   for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); | 
 |        MFI != MFE; ++MFI) { | 
 |     BBInfo &MInfo = MBBInfoMap[MFI]; | 
 |  | 
 |     // Skip unreachable MBBs. | 
 |     if (!MInfo.reachable) | 
 |       continue; | 
 |  | 
 |     checkPHIOps(MFI); | 
 |   } | 
 |  | 
 |   // Now check liveness info if available | 
 |   calcRegsRequired(); | 
 |  | 
 |   if (MRI->isSSA() && !MF->empty()) { | 
 |     BBInfo &MInfo = MBBInfoMap[&MF->front()]; | 
 |     for (RegSet::iterator | 
 |          I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E; | 
 |          ++I) | 
 |       report("Virtual register def doesn't dominate all uses.", | 
 |              MRI->getVRegDef(*I)); | 
 |   } | 
 |  | 
 |   if (LiveVars) | 
 |     verifyLiveVariables(); | 
 |   if (LiveInts) | 
 |     verifyLiveIntervals(); | 
 | } | 
 |  | 
 | void MachineVerifier::verifyLiveVariables() { | 
 |   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); | 
 |   for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { | 
 |     unsigned Reg = TargetRegisterInfo::index2VirtReg(i); | 
 |     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); | 
 |     for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end(); | 
 |          MFI != MFE; ++MFI) { | 
 |       BBInfo &MInfo = MBBInfoMap[MFI]; | 
 |  | 
 |       // Our vregsRequired should be identical to LiveVariables' AliveBlocks | 
 |       if (MInfo.vregsRequired.count(Reg)) { | 
 |         if (!VI.AliveBlocks.test(MFI->getNumber())) { | 
 |           report("LiveVariables: Block missing from AliveBlocks", MFI); | 
 |           *OS << "Virtual register " << PrintReg(Reg) | 
 |               << " must be live through the block.\n"; | 
 |         } | 
 |       } else { | 
 |         if (VI.AliveBlocks.test(MFI->getNumber())) { | 
 |           report("LiveVariables: Block should not be in AliveBlocks", MFI); | 
 |           *OS << "Virtual register " << PrintReg(Reg) | 
 |               << " is not needed live through the block.\n"; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void MachineVerifier::verifyLiveIntervals() { | 
 |   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); | 
 |   for (LiveIntervals::const_iterator LVI = LiveInts->begin(), | 
 |        LVE = LiveInts->end(); LVI != LVE; ++LVI) { | 
 |     const LiveInterval &LI = *LVI->second; | 
 |  | 
 |     // Spilling and splitting may leave unused registers around. Skip them. | 
 |     if (MRI->use_empty(LI.reg)) | 
 |       continue; | 
 |  | 
 |     // Physical registers have much weirdness going on, mostly from coalescing. | 
 |     // We should probably fix it, but for now just ignore them. | 
 |     if (TargetRegisterInfo::isPhysicalRegister(LI.reg)) | 
 |       continue; | 
 |  | 
 |     assert(LVI->first == LI.reg && "Invalid reg to interval mapping"); | 
 |  | 
 |     for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end(); | 
 |          I!=E; ++I) { | 
 |       VNInfo *VNI = *I; | 
 |       const VNInfo *DefVNI = LI.getVNInfoAt(VNI->def); | 
 |  | 
 |       if (!DefVNI) { | 
 |         if (!VNI->isUnused()) { | 
 |           report("Valno not live at def and not marked unused", MF); | 
 |           *OS << "Valno #" << VNI->id << " in " << LI << '\n'; | 
 |         } | 
 |         continue; | 
 |       } | 
 |  | 
 |       if (VNI->isUnused()) | 
 |         continue; | 
 |  | 
 |       if (DefVNI != VNI) { | 
 |         report("Live range at def has different valno", MF); | 
 |         *OS << "Valno #" << VNI->id << " is defined at " << VNI->def | 
 |             << " where valno #" << DefVNI->id << " is live in " << LI << '\n'; | 
 |         continue; | 
 |       } | 
 |  | 
 |       const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); | 
 |       if (!MBB) { | 
 |         report("Invalid definition index", MF); | 
 |         *OS << "Valno #" << VNI->id << " is defined at " << VNI->def | 
 |             << " in " << LI << '\n'; | 
 |         continue; | 
 |       } | 
 |  | 
 |       if (VNI->isPHIDef()) { | 
 |         if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { | 
 |           report("PHIDef value is not defined at MBB start", MF); | 
 |           *OS << "Valno #" << VNI->id << " is defined at " << VNI->def | 
 |               << ", not at the beginning of BB#" << MBB->getNumber() | 
 |               << " in " << LI << '\n'; | 
 |         } | 
 |       } else { | 
 |         // Non-PHI def. | 
 |         const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); | 
 |         if (!MI) { | 
 |           report("No instruction at def index", MF); | 
 |           *OS << "Valno #" << VNI->id << " is defined at " << VNI->def | 
 |               << " in " << LI << '\n'; | 
 |           continue; | 
 |         } | 
 |  | 
 |         bool hasDef = false; | 
 |         bool isEarlyClobber = false; | 
 |         for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) { | 
 |           if (!MOI->isReg() || !MOI->isDef()) | 
 |             continue; | 
 |           if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { | 
 |             if (MOI->getReg() != LI.reg) | 
 |               continue; | 
 |           } else { | 
 |             if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) || | 
 |                 !TRI->regsOverlap(LI.reg, MOI->getReg())) | 
 |               continue; | 
 |           } | 
 |           hasDef = true; | 
 |           if (MOI->isEarlyClobber()) | 
 |             isEarlyClobber = true; | 
 |         } | 
 |  | 
 |         if (!hasDef) { | 
 |           report("Defining instruction does not modify register", MI); | 
 |           *OS << "Valno #" << VNI->id << " in " << LI << '\n'; | 
 |         } | 
 |  | 
 |         // Early clobber defs begin at USE slots, but other defs must begin at | 
 |         // DEF slots. | 
 |         if (isEarlyClobber) { | 
 |           if (!VNI->def.isEarlyClobber()) { | 
 |             report("Early clobber def must be at an early-clobber slot", MF); | 
 |             *OS << "Valno #" << VNI->id << " is defined at " << VNI->def | 
 |                 << " in " << LI << '\n'; | 
 |           } | 
 |         } else if (!VNI->def.isRegister()) { | 
 |           report("Non-PHI, non-early clobber def must be at a register slot", | 
 |                  MF); | 
 |           *OS << "Valno #" << VNI->id << " is defined at " << VNI->def | 
 |               << " in " << LI << '\n'; | 
 |         } | 
 |       } | 
 |     } | 
 |  | 
 |     for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I) { | 
 |       const VNInfo *VNI = I->valno; | 
 |       assert(VNI && "Live range has no valno"); | 
 |  | 
 |       if (VNI->id >= LI.getNumValNums() || VNI != LI.getValNumInfo(VNI->id)) { | 
 |         report("Foreign valno in live range", MF); | 
 |         I->print(*OS); | 
 |         *OS << " has a valno not in " << LI << '\n'; | 
 |       } | 
 |  | 
 |       if (VNI->isUnused()) { | 
 |         report("Live range valno is marked unused", MF); | 
 |         I->print(*OS); | 
 |         *OS << " in " << LI << '\n'; | 
 |       } | 
 |  | 
 |       const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(I->start); | 
 |       if (!MBB) { | 
 |         report("Bad start of live segment, no basic block", MF); | 
 |         I->print(*OS); | 
 |         *OS << " in " << LI << '\n'; | 
 |         continue; | 
 |       } | 
 |       SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); | 
 |       if (I->start != MBBStartIdx && I->start != VNI->def) { | 
 |         report("Live segment must begin at MBB entry or valno def", MBB); | 
 |         I->print(*OS); | 
 |         *OS << " in " << LI << '\n' << "Basic block starts at " | 
 |             << MBBStartIdx << '\n'; | 
 |       } | 
 |  | 
 |       const MachineBasicBlock *EndMBB = | 
 |                                 LiveInts->getMBBFromIndex(I->end.getPrevSlot()); | 
 |       if (!EndMBB) { | 
 |         report("Bad end of live segment, no basic block", MF); | 
 |         I->print(*OS); | 
 |         *OS << " in " << LI << '\n'; | 
 |         continue; | 
 |       } | 
 |  | 
 |       // No more checks for live-out segments. | 
 |       if (I->end == LiveInts->getMBBEndIdx(EndMBB)) | 
 |         continue; | 
 |  | 
 |       // The live segment is ending inside EndMBB | 
 |       const MachineInstr *MI = | 
 |         LiveInts->getInstructionFromIndex(I->end.getPrevSlot()); | 
 |       if (!MI) { | 
 |         report("Live segment doesn't end at a valid instruction", EndMBB); | 
 |         I->print(*OS); | 
 |         *OS << " in " << LI << '\n' << "Basic block starts at " | 
 |           << MBBStartIdx << '\n'; | 
 |         continue; | 
 |       } | 
 |  | 
 |       // The block slot must refer to a basic block boundary. | 
 |       if (I->end.isBlock()) { | 
 |         report("Live segment ends at B slot of an instruction", MI); | 
 |         I->print(*OS); | 
 |         *OS << " in " << LI << '\n'; | 
 |       } | 
 |  | 
 |       if (I->end.isDead()) { | 
 |         // Segment ends on the dead slot. | 
 |         // That means there must be a dead def. | 
 |         if (!SlotIndex::isSameInstr(I->start, I->end)) { | 
 |           report("Live segment ending at dead slot spans instructions", MI); | 
 |           I->print(*OS); | 
 |           *OS << " in " << LI << '\n'; | 
 |         } | 
 |       } | 
 |  | 
 |       // A live segment can only end at an early-clobber slot if it is being | 
 |       // redefined by an early-clobber def. | 
 |       if (I->end.isEarlyClobber()) { | 
 |         if (I+1 == E || (I+1)->start != I->end) { | 
 |           report("Live segment ending at early clobber slot must be " | 
 |                  "redefined by an EC def in the same instruction", MI); | 
 |           I->print(*OS); | 
 |           *OS << " in " << LI << '\n'; | 
 |         } | 
 |       } | 
 |  | 
 |       // The following checks only apply to virtual registers. Physreg liveness | 
 |       // is too weird to check. | 
 |       if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { | 
 |         // A live range can end with either a redefinition, a kill flag on a | 
 |         // use, or a dead flag on a def. | 
 |         bool hasRead = false; | 
 |         bool hasDeadDef = false; | 
 |         for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) { | 
 |           if (!MOI->isReg() || MOI->getReg() != LI.reg) | 
 |             continue; | 
 |           if (MOI->readsReg()) | 
 |             hasRead = true; | 
 |           if (MOI->isDef() && MOI->isDead()) | 
 |             hasDeadDef = true; | 
 |         } | 
 |  | 
 |         if (I->end.isDead()) { | 
 |           if (!hasDeadDef) { | 
 |             report("Instruction doesn't have a dead def operand", MI); | 
 |             I->print(*OS); | 
 |             *OS << " in " << LI << '\n'; | 
 |           } | 
 |         } else { | 
 |           if (!hasRead) { | 
 |             report("Instruction ending live range doesn't read the register", | 
 |                    MI); | 
 |             I->print(*OS); | 
 |             *OS << " in " << LI << '\n'; | 
 |           } | 
 |         } | 
 |       } | 
 |  | 
 |       // Now check all the basic blocks in this live segment. | 
 |       MachineFunction::const_iterator MFI = MBB; | 
 |       // Is this live range the beginning of a non-PHIDef VN? | 
 |       if (I->start == VNI->def && !VNI->isPHIDef()) { | 
 |         // Not live-in to any blocks. | 
 |         if (MBB == EndMBB) | 
 |           continue; | 
 |         // Skip this block. | 
 |         ++MFI; | 
 |       } | 
 |       for (;;) { | 
 |         assert(LiveInts->isLiveInToMBB(LI, MFI)); | 
 |         // We don't know how to track physregs into a landing pad. | 
 |         if (TargetRegisterInfo::isPhysicalRegister(LI.reg) && | 
 |             MFI->isLandingPad()) { | 
 |           if (&*MFI == EndMBB) | 
 |             break; | 
 |           ++MFI; | 
 |           continue; | 
 |         } | 
 |         // Check that VNI is live-out of all predecessors. | 
 |         for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(), | 
 |              PE = MFI->pred_end(); PI != PE; ++PI) { | 
 |           SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI); | 
 |           const VNInfo *PVNI = LI.getVNInfoBefore(PEnd); | 
 |  | 
 |           if (VNI->isPHIDef() && VNI->def == LiveInts->getMBBStartIdx(MFI)) | 
 |             continue; | 
 |  | 
 |           if (!PVNI) { | 
 |             report("Register not marked live out of predecessor", *PI); | 
 |             *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber() | 
 |                 << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before " | 
 |                 << PEnd << " in " << LI << '\n'; | 
 |             continue; | 
 |           } | 
 |  | 
 |           if (PVNI != VNI) { | 
 |             report("Different value live out of predecessor", *PI); | 
 |             *OS << "Valno #" << PVNI->id << " live out of BB#" | 
 |                 << (*PI)->getNumber() << '@' << PEnd | 
 |                 << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber() | 
 |                 << '@' << LiveInts->getMBBStartIdx(MFI) << " in " << LI << '\n'; | 
 |           } | 
 |         } | 
 |         if (&*MFI == EndMBB) | 
 |           break; | 
 |         ++MFI; | 
 |       } | 
 |     } | 
 |  | 
 |     // Check the LI only has one connected component. | 
 |     if (TargetRegisterInfo::isVirtualRegister(LI.reg)) { | 
 |       ConnectedVNInfoEqClasses ConEQ(*LiveInts); | 
 |       unsigned NumComp = ConEQ.Classify(&LI); | 
 |       if (NumComp > 1) { | 
 |         report("Multiple connected components in live interval", MF); | 
 |         *OS << NumComp << " components in " << LI << '\n'; | 
 |         for (unsigned comp = 0; comp != NumComp; ++comp) { | 
 |           *OS << comp << ": valnos"; | 
 |           for (LiveInterval::const_vni_iterator I = LI.vni_begin(), | 
 |                E = LI.vni_end(); I!=E; ++I) | 
 |             if (comp == ConEQ.getEqClass(*I)) | 
 |               *OS << ' ' << (*I)->id; | 
 |           *OS << '\n'; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  |