blob: 92591cd59fb403c3ec998fa1cdaad17dcbe43e16 [file] [log] [blame] [edit]
# RUN: %PYTHON %s | FileCheck %s
from mlir.dialects import arith, func, linalg, tensor, memref, builtin
from mlir.dialects.linalg.opdsl.lang import *
from mlir.extras import types as T
from mlir.ir import *
def run(f):
print("\nTEST:", f.__name__)
f()
return f
# CHECK-LABEL: TEST: testFill
@run
def testFill():
with Context() as ctx, Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
# CHECK-LABEL: func @fill_tensor
# CHECK-SAME: %[[OUT:[0-9a-z]+]]: tensor<12x?xf32>
# CHECK-NEXT: %[[CST:.*]] = arith.constant 0.0{{.*}} : f32
# CHECK-NEXT: %[[RES:.*]] = linalg.fill ins(%[[CST]] : f32) outs(%[[OUT]] : tensor<12x?xf32>) -> tensor<12x?xf32>
# CHECK-NEXT: return %[[RES]] : tensor<12x?xf32>
@func.FuncOp.from_py_func(
RankedTensorType.get((12, ShapedType.get_dynamic_size()), f32)
)
def fill_tensor(out):
zero = arith.ConstantOp(
value=FloatAttr.get(f32, 0.0), result=f32
).result
return linalg.fill(zero, outs=[out])
# CHECK-LABEL: func @fill_buffer
# CHECK-SAME: %[[OUT:[0-9a-z]+]]: memref<12x?xf32>
# CHECK-NEXT: %[[CST:.*]] = arith.constant 0.0{{.*}} : f32
# CHECK-NEXT: linalg.fill ins(%[[CST]] : f32) outs(%[[OUT]] : memref<12x?xf32>)
# CHECK-NEXT: return
@func.FuncOp.from_py_func(
MemRefType.get((12, ShapedType.get_dynamic_size()), f32)
)
def fill_buffer(out):
zero = arith.ConstantOp(
value=FloatAttr.get(f32, 0.0), result=f32
).result
linalg.fill(zero, outs=[out])
print(module)
# CHECK-LABEL: TEST: testIdentityRegionOps
@run
def testIdentityRegionOps():
with Context(), Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
# CHECK: %[[VAL_0:.*]] = tensor.empty() : tensor<1x13xf32>
# CHECK: %[[VAL_1:.*]] = tensor.empty() : tensor<13x1xf32>
op1 = tensor.EmptyOp([1, 13], f32)
op2 = tensor.EmptyOp([13, 1], f32)
# CHECK: %[[VAL_2:.*]] = linalg.transpose ins(%[[VAL_0]] : tensor<1x13xf32>) outs(%[[VAL_1]] : tensor<13x1xf32>) permutation = [1, 0]
op3 = linalg.TransposeOp(
result=[RankedTensorType.get((13, 1), f32)],
input=op1,
init=op2,
permutation=[1, 0],
)
linalg.fill_builtin_region(op3.operation)
# CHECK: %[[VAL_3:.*]] = linalg.transpose ins(%[[VAL_1]] : tensor<13x1xf32>) outs(%[[VAL_0]] : tensor<1x13xf32>) permutation = [1, 0]
op4 = linalg.transpose(op2, outs=[op1], permutation=[1, 0])
# CHECK: func.func @transpose_op(%[[VAL_4:.*]]: memref<1x13xf32>, %[[VAL_5:.*]]: memref<13x1xf32>)
@func.FuncOp.from_py_func(
MemRefType.get((1, 13), f32),
MemRefType.get((13, 1), f32),
)
def transpose_op(op1, op2):
# CHECK: linalg.transpose ins(%[[VAL_4]] : memref<1x13xf32>) outs(%[[VAL_5]] : memref<13x1xf32>) permutation = [1, 0]
op3 = linalg.TransposeOp(
result=[],
input=op1,
init=op2,
permutation=[1, 0],
)
linalg.fill_builtin_region(op3.operation)
# CHECK: linalg.transpose ins(%[[VAL_5]] : memref<13x1xf32>) outs(%[[VAL_4]] : memref<1x13xf32>) permutation = [1, 0]
op4 = linalg.transpose(op2, outs=[op1], permutation=[1, 0])
# CHECK: %[[VAL_6:.*]] = tensor.empty() : tensor<16xf32>
# CHECK: %[[VAL_7:.*]] = tensor.empty() : tensor<16x64xf32>
op1 = tensor.EmptyOp([16], f32)
op2 = tensor.EmptyOp([16, 64], f32)
# CHECK: %[[VAL_8:.*]] = linalg.broadcast ins(%[[VAL_6]] : tensor<16xf32>) outs(%[[VAL_7]] : tensor<16x64xf32>) dimensions = [1]
op3 = linalg.BroadcastOp(
result=[RankedTensorType.get((16, 64), f32)],
input=op1,
init=op2,
dimensions=[1],
)
linalg.fill_builtin_region(op3.operation)
# CHECK: %[[VAL_9:.*]] = tensor.empty() : tensor<64xf32>
op4 = tensor.EmptyOp([64], f32)
# CHECK: %[[VAL_10:.*]] = linalg.broadcast ins(%[[VAL_9]] : tensor<64xf32>) outs(%[[VAL_7]] : tensor<16x64xf32>) dimensions = [0]
op5 = linalg.broadcast(op4, outs=[op2], dimensions=[0])
# CHECK: func.func @broadcast_op(%[[VAL_11:.*]]: memref<16xf32>, %[[VAL_12:.*]]: memref<16x64xf32>, %[[VAL_13:.*]]: memref<64xf32>)
@func.FuncOp.from_py_func(
MemRefType.get((16,), f32),
MemRefType.get((16, 64), f32),
MemRefType.get((64,), f32),
)
def broadcast_op(op1, op2, op3):
# CHECK: linalg.broadcast ins(%[[VAL_11]] : memref<16xf32>) outs(%[[VAL_12]] : memref<16x64xf32>) dimensions = [1]
op4 = linalg.BroadcastOp(
result=[],
input=op1,
init=op2,
dimensions=[1],
)
linalg.fill_builtin_region(op4.operation)
# CHECK: linalg.broadcast ins(%[[VAL_13]] : memref<64xf32>) outs(%[[VAL_12]] : memref<16x64xf32>) dimensions = [0]
op5 = linalg.broadcast(op3, outs=[op2], dimensions=[0])
print(module)
# CHECK-LABEL: TEST: testGenericOp
@run
def testGenericOp():
with Context(), Location.unknown():
module = Module.create()
f32 = F32Type.get()
memref_t = MemRefType.get([10, 10], f32)
with InsertionPoint(module.body):
id_map_1 = AffineMap.get_identity(2)
# CHECK: %[[VAL_0:.*]] = tensor.empty() : tensor<16x16xf32>
# CHECK: %[[VAL_1:.*]] = tensor.empty() : tensor<16x16xf32>
x = tensor.empty((16, 16), f32)
y = tensor.empty((16, 16), f32)
# CHECK: %[[VAL_2:.*]] = linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel", "parallel"]} ins(%[[VAL_0]] : tensor<16x16xf32>) outs(%[[VAL_1]] : tensor<16x16xf32>) {
# CHECK: ^bb0(%in: f32, %out: f32):
# CHECK: linalg.yield %in : f32
# CHECK: } -> tensor<16x16xf32>
@linalg.generic(
[x],
[y],
[id_map_1, id_map_1],
[linalg.IteratorType.parallel, linalg.IteratorType.parallel],
)
def f(a, b):
assert isinstance(a, Value)
assert isinstance(a.type, F32Type)
assert isinstance(b, Value)
assert isinstance(b.type, F32Type)
return a
assert isinstance(f, Value)
assert isinstance(f.type, RankedTensorType)
# CHECK: %[[VAL_3:.*]] = tensor.empty() : tensor<16x16x16xf32>
z = tensor.empty((16, 16, 16), f32)
minor_id = AffineMap.get_minor_identity(3, 2)
id_map_2 = AffineMap.get_identity(3)
# CHECK: %[[VAL_4:.+]]:2 = linalg.generic {indexing_maps = [#map1, #map2, #map2], iterator_types = ["parallel", "parallel", "parallel"]} ins(%[[VAL_0]] : tensor<16x16xf32>) outs(%[[VAL_3]], %[[VAL_3]] : tensor<16x16x16xf32>, tensor<16x16x16xf32>) {
# CHECK: ^bb0(%in: f32, %out: f32, %out_1: f32):
# CHECK: linalg.yield %in, %out : f32, f32
# CHECK: } -> (tensor<16x16x16xf32>, tensor<16x16x16xf32>)
@linalg.generic(
[x],
[z, z],
[minor_id, id_map_2, id_map_2],
[
linalg.IteratorType.parallel,
linalg.IteratorType.parallel,
linalg.IteratorType.parallel,
],
)
def g(a, b, c):
assert isinstance(a, Value)
assert isinstance(a.type, F32Type)
assert isinstance(b, Value)
assert isinstance(b.type, F32Type)
assert isinstance(c, Value)
assert isinstance(c.type, F32Type)
return a, b
assert isinstance(g, OpResultList)
assert len(g) == 2
assert isinstance(g[0].type, RankedTensorType)
assert isinstance(g[1].type, RankedTensorType)
# CHECK: %[[VAL_5:.*]] = memref.alloc() : memref<10x10xf32>
# CHECK: %[[VAL_6:.*]] = memref.alloc() : memref<10x10xf32>
xx = memref.alloc(memref_t, [], [])
yy = memref.alloc(memref_t, [], [])
# CHECK: linalg.generic {indexing_maps = [#map, #map], iterator_types = ["parallel", "parallel"]} ins(%[[VAL_5]] : memref<10x10xf32>) outs(%[[VAL_6]] : memref<10x10xf32>) {
# CHECK: ^bb0(%in: f32, %out: f32):
# CHECK: linalg.yield %in : f32
# CHECK: }
@linalg.generic(
[xx],
[yy],
[id_map_1, id_map_1],
[linalg.IteratorType.parallel, linalg.IteratorType.parallel],
)
def f(a, b):
assert isinstance(a, Value)
assert isinstance(a.type, F32Type)
assert isinstance(b, Value)
assert isinstance(b.type, F32Type)
return a
module.operation.verify()
print(module)
# CHECK-LABEL: TEST: testMatmulOp
@run
def testMatmulOp():
with Context(), Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
a_shape = (4, 8)
b_shape = (8, 12)
b_transposed_shape = (12, 8)
c_shape = (4, 12)
dimM = ir.AffineDimExpr.get(0)
dimN = ir.AffineDimExpr.get(1)
dimK = ir.AffineDimExpr.get(2)
# CHECK: #[[$A_MAP:.*]] = affine_map<(d0, d1, d2) -> (d0, d2)>
# CHECK: #[[$BTrans_MAP:.*]] = affine_map<(d0, d1, d2) -> (d1, d2)>
# CHECK: #[[$C_MAP:.*]] = affine_map<(d0, d1, d2) -> (d0, d1)>
a_map = ir.AffineMap.get(3, 0, [dimM, dimK])
b_map = ir.AffineMap.get(3, 0, [dimK, dimN])
c_map = ir.AffineMap.get(3, 0, [dimM, dimN])
b_transposed_map = ir.AffineMap.get(3, 0, [dimN, dimK])
# CHECK: func.func @matmul_op(
@func.FuncOp.from_py_func(
# CHECK-SAME: %[[A:.*]]: tensor<4x8xf32>,
RankedTensorType.get(a_shape, f32),
# CHECK-SAME: %[[Amem:.*]]: memref<4x8xf32>,
MemRefType.get(a_shape, f32),
# CHECK-SAME: %[[B:.*]]: tensor<8x12xf32>,
RankedTensorType.get(b_shape, f32),
# CHECK-SAME: %[[Bmem:.*]]: memref<8x12xf32>,
MemRefType.get(b_shape, f32),
# CHECK-SAME: %[[BTrans:.*]]: tensor<12x8xf32>,
RankedTensorType.get(b_transposed_shape, f32),
# CHECK-SAME: %[[BTransmem:.*]]: memref<12x8xf32>,
MemRefType.get(b_transposed_shape, f32),
# CHECK-SAME: %[[C:.*]]: tensor<4x12xf32>,
RankedTensorType.get(c_shape, f32),
# CHECK-SAME: %[[Cmem:.*]]: memref<4x12xf32>)
MemRefType.get(c_shape, f32),
)
def matmul_op(A, Amem, B, Bmem, Btransposed, Btransposedmem, C, Cmem):
# CHECK: linalg.matmul ins(%[[A]], %[[B]] : tensor<4x8xf32>, tensor<8x12xf32>) outs(%[[C]] : tensor<4x12xf32>)
res = linalg.MatmulOp(
result_tensors=(C.type,),
inputs=(A, B),
outputs=(C,),
)
linalg.fill_builtin_region(res.operation)
# CHECK: linalg.matmul ins(%[[A]], %[[B]] : tensor<4x8xf32>, tensor<8x12xf32>) outs(%[[C]] : tensor<4x12xf32>)
res = linalg.matmul(A, B, outs=(C,))
# CHECK: linalg.matmul indexing_maps = [#[[$A_MAP]], #[[$BTrans_MAP]], #[[$C_MAP]]] ins(%[[A]], %[[BTrans]] : tensor<4x8xf32>, tensor<12x8xf32>) outs(%[[C]] : tensor<4x12xf32>)
res = linalg.MatmulOp(
result_tensors=(C.type,),
inputs=(A, Btransposed),
outputs=(C,),
indexing_maps=[a_map, b_transposed_map, c_map],
)
linalg.fill_builtin_region(res.operation)
# CHECK: linalg.matmul indexing_maps = [#[[$A_MAP]], #[[$BTrans_MAP]], #[[$C_MAP]]] ins(%[[A]], %[[BTrans]] : tensor<4x8xf32>, tensor<12x8xf32>) outs(%[[C]] : tensor<4x12xf32>)
res = linalg.matmul(
A,
Btransposed,
outs=(C,),
indexing_maps=[a_map, b_transposed_map, c_map],
)
# And now with memrefs...
# CHECK: linalg.matmul ins(%[[Amem]], %[[Bmem]] : memref<4x8xf32>, memref<8x12xf32>) outs(%[[Cmem]] : memref<4x12xf32>)
res = linalg.MatmulOp(
result_tensors=[],
inputs=(Amem, Bmem),
outputs=(Cmem,),
)
linalg.fill_builtin_region(res.operation)
# CHECK: linalg.matmul ins(%[[Amem]], %[[Bmem]] : memref<4x8xf32>, memref<8x12xf32>) outs(%[[Cmem]] : memref<4x12xf32>)
linalg.matmul(Amem, Bmem, outs=(Cmem,))
# CHECK: linalg.matmul indexing_maps = [#[[$A_MAP]], #[[$BTrans_MAP]], #[[$C_MAP]]] ins(%[[Amem]], %[[BTransmem]] : memref<4x8xf32>, memref<12x8xf32>) outs(%[[Cmem]] : memref<4x12xf32>)
res = linalg.MatmulOp(
result_tensors=[],
inputs=(Amem, Btransposedmem),
outputs=(Cmem,),
indexing_maps=[a_map, b_transposed_map, c_map],
)
linalg.fill_builtin_region(res.operation)
# CHECK: linalg.matmul indexing_maps = [#[[$A_MAP]], #[[$BTrans_MAP]], #[[$C_MAP]]] ins(%[[Amem]], %[[BTransmem]] : memref<4x8xf32>, memref<12x8xf32>) outs(%[[Cmem]] : memref<4x12xf32>)
linalg.matmul(
Amem,
Btransposedmem,
outs=(Cmem,),
indexing_maps=[a_map, b_transposed_map, c_map],
)
print(module)
# CHECK-LABEL: TEST: testContractOp
@run
def testContractOp():
with Context(), Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
a_shape = (4, 8)
b_shape = (8, 12)
b_transposed_shape = (12, 8)
c_shape = (4, 12)
dimM = ir.AffineDimExpr.get(0)
dimN = ir.AffineDimExpr.get(1)
dimK = ir.AffineDimExpr.get(2)
# CHECK: #[[$A_MAP:.*]] = affine_map<(d0, d1, d2) -> (d0, d2)>
# CHECK: #[[$B_MAP:.*]] = affine_map<(d0, d1, d2) -> (d2, d1)>
# CHECK: #[[$C_MAP:.*]] = affine_map<(d0, d1, d2) -> (d0, d1)>
# CHECK: #[[$BTrans_MAP:.*]] = affine_map<(d0, d1, d2) -> (d1, d2)>
a_map = ir.AffineMap.get(3, 0, [dimM, dimK])
b_map = ir.AffineMap.get(3, 0, [dimK, dimN])
c_map = ir.AffineMap.get(3, 0, [dimM, dimN])
b_transposed_map = ir.AffineMap.get(3, 0, [dimN, dimK])
# CHECK: func.func @matmul_as_contract_op(
@func.FuncOp.from_py_func(
# CHECK-SAME: %[[A:.*]]: tensor<4x8xf32>,
RankedTensorType.get(a_shape, f32),
# CHECK-SAME: %[[Amem:.*]]: memref<4x8xf32>,
MemRefType.get(a_shape, f32),
# CHECK-SAME: %[[B:.*]]: tensor<8x12xf32>,
RankedTensorType.get(b_shape, f32),
# CHECK-SAME: %[[Bmem:.*]]: memref<8x12xf32>,
MemRefType.get(b_shape, f32),
# CHECK-SAME: %[[BTrans:.*]]: tensor<12x8xf32>,
RankedTensorType.get(b_transposed_shape, f32),
# CHECK-SAME: %[[BTransmem:.*]]: memref<12x8xf32>,
MemRefType.get(b_transposed_shape, f32),
# CHECK-SAME: %[[C:.*]]: tensor<4x12xf32>,
RankedTensorType.get(c_shape, f32),
# CHECK-SAME: %[[Cmem:.*]]: memref<4x12xf32>)
MemRefType.get(c_shape, f32),
)
def matmul_as_contract_op(
A, Amem, B, Bmem, Btransposed, Btransposedmem, C, Cmem
):
# CHECK: linalg.contract indexing_maps = [#[[$A_MAP]], #[[$B_MAP]], #[[$C_MAP]]] ins(%[[A]], %[[B]] : tensor<4x8xf32>, tensor<8x12xf32>) outs(%[[C]] : tensor<4x12xf32>)
op4 = linalg.ContractOp(
result_tensors=(C.type,),
inputs=(A, B),
outputs=(C,),
indexing_maps=[a_map, b_map, c_map],
)
linalg.fill_builtin_region(op4.operation)
# CHECK: linalg.contract indexing_maps = [#[[$A_MAP]], #[[$B_MAP]], #[[$C_MAP]]] ins(%[[A]], %[[B]] : tensor<4x8xf32>, tensor<8x12xf32>) outs(%[[C]] : tensor<4x12xf32>)
op5 = linalg.contract(
A, B, outs=(C,), indexing_maps=[a_map, b_map, c_map]
)
# CHECK: linalg.contract indexing_maps = [#[[$A_MAP]], #[[$BTrans_MAP]], #[[$C_MAP]]] ins(%[[A]], %[[BTrans]] : tensor<4x8xf32>, tensor<12x8xf32>) outs(%[[C]] : tensor<4x12xf32>)
op4 = linalg.ContractOp(
result_tensors=(C.type,),
inputs=(A, Btransposed),
outputs=(C,),
indexing_maps=[a_map, b_transposed_map, c_map],
)
linalg.fill_builtin_region(op4.operation)
# CHECK: linalg.contract indexing_maps = [#[[$A_MAP]], #[[$BTrans_MAP]], #[[$C_MAP]]] ins(%[[A]], %[[BTrans]] : tensor<4x8xf32>, tensor<12x8xf32>) outs(%[[C]] : tensor<4x12xf32>)
op5 = linalg.contract(
A,
Btransposed,
outs=(C,),
indexing_maps=[a_map, b_transposed_map, c_map],
)
# And now with memrefs...
# CHECK: linalg.contract indexing_maps = [#[[$A_MAP]], #[[$B_MAP]], #[[$C_MAP]]] ins(%[[Amem]], %[[Bmem]] : memref<4x8xf32>, memref<8x12xf32>) outs(%[[Cmem]] : memref<4x12xf32>)
op4 = linalg.ContractOp(
result_tensors=[],
inputs=(Amem, Bmem),
outputs=(Cmem,),
indexing_maps=[a_map, b_map, c_map],
)
linalg.fill_builtin_region(op4.operation)
# CHECK: linalg.contract indexing_maps = [#[[$A_MAP]], #[[$B_MAP]], #[[$C_MAP]]] ins(%[[Amem]], %[[Bmem]] : memref<4x8xf32>, memref<8x12xf32>) outs(%[[Cmem]] : memref<4x12xf32>)
linalg.contract(
Amem, Bmem, outs=(Cmem,), indexing_maps=[a_map, b_map, c_map]
)
# CHECK: linalg.contract indexing_maps = [#[[$A_MAP]], #[[$BTrans_MAP]], #[[$C_MAP]]] ins(%[[Amem]], %[[BTransmem]] : memref<4x8xf32>, memref<12x8xf32>) outs(%[[Cmem]] : memref<4x12xf32>)
op4 = linalg.ContractOp(
result_tensors=[],
inputs=(Amem, Btransposedmem),
outputs=(Cmem,),
indexing_maps=[a_map, b_transposed_map, c_map],
)
linalg.fill_builtin_region(op4.operation)
# CHECK: linalg.contract indexing_maps = [#[[$A_MAP]], #[[$BTrans_MAP]], #[[$C_MAP]]] ins(%[[Amem]], %[[BTransmem]] : memref<4x8xf32>, memref<12x8xf32>) outs(%[[Cmem]] : memref<4x12xf32>)
linalg.contract(
Amem,
Btransposedmem,
outs=(Cmem,),
indexing_maps=[a_map, b_transposed_map, c_map],
)
print(module)
# CHECK-LABEL: TEST: testBatchMatmulOp
@run
def testBatchMatmulOp():
with Context(), Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
a_shape = (2, 4, 8)
b_shape = (2, 8, 12)
b_transposed_shape = (2, 12, 8)
c_shape = (2, 4, 12)
dimBatch = ir.AffineDimExpr.get(0)
dimM = ir.AffineDimExpr.get(1)
dimN = ir.AffineDimExpr.get(2)
dimK = ir.AffineDimExpr.get(3)
# CHECK: #[[$A_MAP:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d3)>
# CHECK: #[[$BTrans_MAP:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)>
# CHECK: #[[$C_MAP:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2)>
a_map = ir.AffineMap.get(4, 0, [dimBatch, dimM, dimK])
b_transposed_map = ir.AffineMap.get(4, 0, [dimBatch, dimN, dimK])
c_map = ir.AffineMap.get(4, 0, [dimBatch, dimM, dimN])
# CHECK: func.func @batch_matmul_op(
@func.FuncOp.from_py_func(
# CHECK-SAME: %[[A:.*]]: tensor<2x4x8xf32>,
RankedTensorType.get(a_shape, f32),
# CHECK-SAME: %[[Amem:.*]]: memref<2x4x8xf32>,
MemRefType.get(a_shape, f32),
# CHECK-SAME: %[[B:.*]]: tensor<2x8x12xf32>,
RankedTensorType.get(b_shape, f32),
# CHECK-SAME: %[[Bmem:.*]]: memref<2x8x12xf32>,
MemRefType.get(b_shape, f32),
# CHECK-SAME: %[[BTrans:.*]]: tensor<2x12x8xf32>,
RankedTensorType.get(b_transposed_shape, f32),
# CHECK-SAME: %[[BTransmem:.*]]: memref<2x12x8xf32>,
MemRefType.get(b_transposed_shape, f32),
# CHECK-SAME: %[[C:.*]]: tensor<2x4x12xf32>,
RankedTensorType.get(c_shape, f32),
# CHECK-SAME: %[[Cmem:.*]]: memref<2x4x12xf32>)
MemRefType.get(c_shape, f32),
)
def batch_matmul_op(A, Amem, B, Bmem, Btransposed, Btransposedmem, C, Cmem):
# CHECK: linalg.batch_matmul ins(%[[A]], %[[B]] : tensor<2x4x8xf32>, tensor<2x8x12xf32>) outs(%[[C]] : tensor<2x4x12xf32>)
res = linalg.BatchMatmulOp(
result_tensors=(C.type,),
inputs=(A, B),
outputs=(C,),
)
linalg.fill_builtin_region(res.operation)
# CHECK: linalg.batch_matmul ins(%[[A]], %[[B]] : tensor<2x4x8xf32>, tensor<2x8x12xf32>) outs(%[[C]] : tensor<2x4x12xf32>)
res = linalg.batch_matmul(A, B, outs=(C,))
# CHECK: linalg.batch_matmul indexing_maps = [#[[$A_MAP]], #[[$BTrans_MAP]], #[[$C_MAP]]] ins(%[[A]], %[[BTrans]] : tensor<2x4x8xf32>, tensor<2x12x8xf32>) outs(%[[C]] : tensor<2x4x12xf32>)
res = linalg.BatchMatmulOp(
result_tensors=(C.type,),
inputs=(A, Btransposed),
outputs=(C,),
indexing_maps=[a_map, b_transposed_map, c_map],
)
linalg.fill_builtin_region(res.operation)
# CHECK: linalg.batch_matmul indexing_maps = [#[[$A_MAP]], #[[$BTrans_MAP]], #[[$C_MAP]]] ins(%[[A]], %[[BTrans]] : tensor<2x4x8xf32>, tensor<2x12x8xf32>) outs(%[[C]] : tensor<2x4x12xf32>)
res = linalg.batch_matmul(
A,
Btransposed,
outs=(C,),
indexing_maps=[a_map, b_transposed_map, c_map],
)
# CHECK: linalg.batch_matmul ins(%[[Amem]], %[[Bmem]] : memref<2x4x8xf32>, memref<2x8x12xf32>) outs(%[[Cmem]] : memref<2x4x12xf32>)
res = linalg.BatchMatmulOp(
result_tensors=[],
inputs=(Amem, Bmem),
outputs=(Cmem,),
)
linalg.fill_builtin_region(res.operation)
# CHECK: linalg.batch_matmul ins(%[[Amem]], %[[Bmem]] : memref<2x4x8xf32>, memref<2x8x12xf32>) outs(%[[Cmem]] : memref<2x4x12xf32>)
linalg.batch_matmul(Amem, Bmem, outs=(Cmem,))
# CHECK: linalg.batch_matmul indexing_maps = [#[[$A_MAP]], #[[$BTrans_MAP]], #[[$C_MAP]]] ins(%[[Amem]], %[[BTransmem]] : memref<2x4x8xf32>, memref<2x12x8xf32>) outs(%[[Cmem]] : memref<2x4x12xf32>)
res = linalg.BatchMatmulOp(
result_tensors=[],
inputs=(Amem, Btransposedmem),
outputs=(Cmem,),
indexing_maps=[a_map, b_transposed_map, c_map],
)
linalg.fill_builtin_region(res.operation)
# CHECK: linalg.batch_matmul indexing_maps = [#[[$A_MAP]], #[[$BTrans_MAP]], #[[$C_MAP]]] ins(%[[Amem]], %[[BTransmem]] : memref<2x4x8xf32>, memref<2x12x8xf32>) outs(%[[Cmem]] : memref<2x4x12xf32>)
linalg.batch_matmul(
Amem,
Btransposedmem,
outs=(Cmem,),
indexing_maps=[a_map, b_transposed_map, c_map],
)
print(module)
# CHECK-LABEL: TEST: testBatchReduceMatmulOp
@run
def testBatchReduceMatmulOp():
with Context(), Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
a_shape = (5, 4, 8)
b_shape = (5, 8, 12)
b_transposed_shape = (5, 12, 8)
c_shape = (4, 12)
dimBatch = ir.AffineDimExpr.get(0)
dimM = ir.AffineDimExpr.get(1)
dimN = ir.AffineDimExpr.get(2)
dimK = ir.AffineDimExpr.get(3)
# CHECK: #[[$A_MAP:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d3)>
# CHECK: #[[$BTrans_MAP:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d2, d3)>
# CHECK: #[[$C_MAP:.*]] = affine_map<(d0, d1, d2, d3) -> (d1, d2)>
a_map = ir.AffineMap.get(4, 0, [dimBatch, dimM, dimK])
b_transposed_map = ir.AffineMap.get(4, 0, [dimBatch, dimN, dimK])
c_map = ir.AffineMap.get(4, 0, [dimM, dimN])
# CHECK: func.func @batch_reduce_matmul_op(
@func.FuncOp.from_py_func(
# CHECK-SAME: %[[A:.*]]: tensor<5x4x8xf32>,
RankedTensorType.get(a_shape, f32),
# CHECK-SAME: %[[Amem:.*]]: memref<5x4x8xf32>,
MemRefType.get(a_shape, f32),
# CHECK-SAME: %[[B:.*]]: tensor<5x8x12xf32>,
RankedTensorType.get(b_shape, f32),
# CHECK-SAME: %[[Bmem:.*]]: memref<5x8x12xf32>,
MemRefType.get(b_shape, f32),
# CHECK-SAME: %[[BTrans:.*]]: tensor<5x12x8xf32>,
RankedTensorType.get(b_transposed_shape, f32),
# CHECK-SAME: %[[BTransmem:.*]]: memref<5x12x8xf32>,
MemRefType.get(b_transposed_shape, f32),
# CHECK-SAME: %[[C:.*]]: tensor<4x12xf32>,
RankedTensorType.get(c_shape, f32),
# CHECK-SAME: %[[Cmem:.*]]: memref<4x12xf32>)
MemRefType.get(c_shape, f32),
)
def batch_reduce_matmul_op(
A, Amem, B, Bmem, Btransposed, Btransposedmem, C, Cmem
):
# CHECK: linalg.batch_reduce_matmul ins(%[[A]], %[[B]] : tensor<5x4x8xf32>, tensor<5x8x12xf32>) outs(%[[C]] : tensor<4x12xf32>)
res = linalg.BatchReduceMatmulOp(
result_tensors=(C.type,),
inputs=(A, B),
outputs=(C,),
)
linalg.fill_builtin_region(res.operation)
# CHECK: linalg.batch_reduce_matmul ins(%[[A]], %[[B]] : tensor<5x4x8xf32>, tensor<5x8x12xf32>) outs(%[[C]] : tensor<4x12xf32>)
res = linalg.batch_reduce_matmul(A, B, outs=(C,))
# CHECK: linalg.batch_reduce_matmul indexing_maps = [#[[$A_MAP]], #[[$BTrans_MAP]], #[[$C_MAP]]] ins(%[[A]], %[[BTrans]] : tensor<5x4x8xf32>, tensor<5x12x8xf32>) outs(%[[C]] : tensor<4x12xf32>)
res = linalg.BatchReduceMatmulOp(
result_tensors=(C.type,),
inputs=(A, Btransposed),
outputs=(C,),
indexing_maps=[a_map, b_transposed_map, c_map],
)
linalg.fill_builtin_region(res.operation)
# CHECK: linalg.batch_reduce_matmul indexing_maps = [#[[$A_MAP]], #[[$BTrans_MAP]], #[[$C_MAP]]] ins(%[[A]], %[[BTrans]] : tensor<5x4x8xf32>, tensor<5x12x8xf32>) outs(%[[C]] : tensor<4x12xf32>)
res = linalg.batch_reduce_matmul(
A,
Btransposed,
outs=(C,),
indexing_maps=[a_map, b_transposed_map, c_map],
)
# CHECK: linalg.batch_reduce_matmul ins(%[[Amem]], %[[Bmem]] : memref<5x4x8xf32>, memref<5x8x12xf32>) outs(%[[Cmem]] : memref<4x12xf32>)
res = linalg.BatchReduceMatmulOp(
result_tensors=[],
inputs=(Amem, Bmem),
outputs=(Cmem,),
)
linalg.fill_builtin_region(res.operation)
# CHECK: linalg.batch_reduce_matmul ins(%[[Amem]], %[[Bmem]] : memref<5x4x8xf32>, memref<5x8x12xf32>) outs(%[[Cmem]] : memref<4x12xf32>)
linalg.batch_reduce_matmul(Amem, Bmem, outs=(Cmem,))
# CHECK: linalg.batch_reduce_matmul indexing_maps = [#[[$A_MAP]], #[[$BTrans_MAP]], #[[$C_MAP]]] ins(%[[Amem]], %[[BTransmem]] : memref<5x4x8xf32>, memref<5x12x8xf32>) outs(%[[Cmem]] : memref<4x12xf32>)
res = linalg.BatchReduceMatmulOp(
result_tensors=[],
inputs=(Amem, Btransposedmem),
outputs=(Cmem,),
indexing_maps=[a_map, b_transposed_map, c_map],
)
linalg.fill_builtin_region(res.operation)
# CHECK: linalg.batch_reduce_matmul indexing_maps = [#[[$A_MAP]], #[[$BTrans_MAP]], #[[$C_MAP]]] ins(%[[Amem]], %[[BTransmem]] : memref<5x4x8xf32>, memref<5x12x8xf32>) outs(%[[Cmem]] : memref<4x12xf32>)
linalg.batch_reduce_matmul(
Amem,
Btransposedmem,
outs=(Cmem,),
indexing_maps=[a_map, b_transposed_map, c_map],
)
print(module)
# CHECK-LABEL: TEST: testPackUnPackOp
@run
def testPackUnPackOp():
with Context(), Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
@func.FuncOp.from_py_func(
RankedTensorType.get((128, 128), f32),
RankedTensorType.get((16, 16, 8, 8), f32),
)
def tensor_pack(src, dst):
packed = linalg.pack(
src,
dst,
inner_dims_pos=[1, 0],
inner_tiles=[8, 8],
padding_value=arith.constant(f32, 0.0),
)
unpacked = linalg.unpack(
packed,
src,
inner_dims_pos=[0, 1],
inner_tiles=[8, 8],
)
return unpacked
# CHECK-LABEL: func.func @tensor_pack(
# CHECK-SAME: %[[VAL_0:.*]]: tensor<128x128xf32>, %[[VAL_1:.*]]: tensor<16x16x8x8xf32>) -> tensor<128x128xf32> {
# CHECK: %[[VAL_2:.*]] = arith.constant 0.000000e+00 : f32
# CHECK: %[[VAL_3:.*]] = linalg.pack %[[VAL_0]] padding_value(%[[VAL_2]] : f32) inner_dims_pos = [1, 0] inner_tiles = [8, 8] into %[[VAL_1]] : tensor<128x128xf32> -> tensor<16x16x8x8xf32>
# CHECK: %[[VAL_4:.*]] = linalg.unpack %[[VAL_3]] inner_dims_pos = [0, 1] inner_tiles = [8, 8] into %[[VAL_0]] : tensor<16x16x8x8xf32> -> tensor<128x128xf32>
# CHECK: return %[[VAL_4]] : tensor<128x128xf32>
# CHECK: }
print(module)
# CHECK-LABEL: TEST: testElementwiseOp
@run
def testElementwiseOp():
with Context(), Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
rect_shape = (8, 16)
vert_line_shape = (8,)
hor_line_shape = (16,)
transposed_rect_shape = (16, 8)
# CHECK-DAG: #[[$IdentMap2D:.*]] = affine_map<(d0, d1) -> (d0, d1)>
# CHECK-DAG: #[[$TransMap2D:.*]] = affine_map<(d0, d1) -> (d1, d0)>
# CHECK-DAG: #[[$VertLineBCastMap:.*]] = affine_map<(d0, d1) -> (d0)>
# CHECK-DAG: #[[$HorLineBCastMap:.*]] = affine_map<(d0, d1) -> (d1)>
ident_map_2d = AffineMap.get_identity(2)
transposed_map_2d = AffineMap.get_permutation((1, 0))
vert_line_bcast_map = AffineMap.get(2, 0, [AffineDimExpr.get(0)])
hor_line_bcast_map = AffineMap.get(2, 0, [AffineDimExpr.get(1)])
# CHECK: func.func @elementwise_op(
@func.FuncOp.from_py_func(
# CHECK-SAME: %[[Rect:.*]]: tensor<8x16xf32>,
RankedTensorType.get(rect_shape, f32),
# CHECK-SAME: %[[RectMem:.*]]: memref<8x16xf32>,
MemRefType.get(rect_shape, f32),
# CHECK-SAME: %[[VertLine:.*]]: tensor<8xf32>,
RankedTensorType.get(vert_line_shape, f32),
# CHECK-SAME: %[[VertLineMem:.*]]: memref<8xf32>,
MemRefType.get(vert_line_shape, f32),
# CHECK-SAME: %[[HorLine:.*]]: tensor<16xf32>,
RankedTensorType.get(hor_line_shape, f32),
# CHECK-SAME: %[[HorLineMem:.*]]: memref<16xf32>,
MemRefType.get(hor_line_shape, f32),
# CHECK-SAME: %[[TransRect:.*]]: tensor<16x8xf32>,
RankedTensorType.get(transposed_rect_shape, f32),
# CHECK-SAME: %[[TransRectMem:.*]]: memref<16x8xf32>)
MemRefType.get(transposed_rect_shape, f32),
)
def elementwise_op(
rect,
rect_mem,
vert_line,
vert_line_mem,
hor_line,
hor_line_mem,
trans_rect,
trans_rect_mem,
):
# CHECK: %[[OutRect:.*]] = tensor.empty() : tensor<8x16xf32>
out_rect = tensor.EmptyOp(rect_shape, f32)
# CHECK: %[[OutRectMem:.*]] = memref.alloca() : memref<8x16xf32>
out_rect_mem = memref.alloca(MemRefType.get(rect_shape, f32), [], [])
if _inferred_affine_maps := True:
# CHECK: linalg.elementwise
# CHECK-SAME: kind=#linalg.elementwise_kind<exp>
# CHECK-SAME: ins(%[[Rect]] : tensor<8x16xf32>)
# CHECK-SAME: outs(%[[OutRect]] : tensor<8x16xf32>) -> tensor<8x16xf32>
op1 = linalg.ElementwiseOp(
result_tensors=(out_rect.result.type,),
inputs=(rect,),
outputs=(out_rect,),
kind=linalg.ElementwiseKind.exp,
)
linalg.fill_builtin_region(op1.operation)
# CHECK: linalg.elementwise
# CHECK-SAME: kind=#linalg.elementwise_kind<exp>
# CHECK-SAME: ins(%[[Rect]] : tensor<8x16xf32>)
# CHECK-SAME: outs(%[[OutRect]] : tensor<8x16xf32>) -> tensor<8x16xf32>
linalg.elementwise(
rect,
outs=(out_rect,),
kind=linalg.ElementwiseKind.exp,
)
# CHECK: linalg.elementwise
# CHECK-SAME: kind=#linalg.elementwise_kind<exp>
# CHECK-SAME: ins(%[[RectMem]] : memref<8x16xf32>)
# CHECK-SAME: outs(%[[OutRectMem]] : memref<8x16xf32>)
linalg.elementwise(
rect_mem,
outs=(out_rect_mem,),
kind=linalg.ElementwiseKind.exp,
)
if _explicit_ident_affine_maps := True:
# Same as above but with default identity indexing_maps explicitly provided.
# CHECK: linalg.elementwise
# CHECK-SAME: kind=#linalg.elementwise_kind<exp>
# CHECK-SAME: ins(%[[Rect]] : tensor<8x16xf32>)
# CHECK-SAME: outs(%[[OutRect]] : tensor<8x16xf32>) -> tensor<8x16xf32>
op3 = linalg.ElementwiseOp(
result_tensors=(out_rect.result.type,),
inputs=(rect,),
outputs=(out_rect,),
kind=linalg.ElementwiseKind.exp,
indexing_maps=[ident_map_2d, ident_map_2d],
)
linalg.fill_builtin_region(op3.operation)
# CHECK: linalg.elementwise
# CHECK-SAME: kind=#linalg.elementwise_kind<exp>
# CHECK-SAME: ins(%[[RectMem]] : memref<8x16xf32>)
# CHECK-SAME: outs(%[[OutRectMem]] : memref<8x16xf32>)
linalg.elementwise(
rect_mem,
outs=(out_rect_mem,),
kind=linalg.ElementwiseKind.exp,
indexing_maps=[ident_map_2d, ident_map_2d],
)
if _ops_with_non_ident_input_maps := True:
# CHECK: linalg.elementwise kind=#linalg.elementwise_kind<exp>
# CHECK-SAME: indexing_maps = [#[[$VertLineBCastMap]], #[[$IdentMap2D]]]
# CHECK-SAME: ins(%[[VertLine]] : tensor<8xf32>)
# CHECK-SAME: outs(%[[OutRect]] : tensor<8x16xf32>) -> tensor<8x16xf32>
op4 = linalg.ElementwiseOp(
result_tensors=(out_rect.result.type,),
inputs=(vert_line,),
outputs=(out_rect,),
kind=linalg.ElementwiseKind.exp,
indexing_maps=[vert_line_bcast_map, ident_map_2d],
)
linalg.fill_builtin_region(op4.operation)
# CHECK: linalg.elementwise kind=#linalg.elementwise_kind<add>
# CHECK-SAME: indexing_maps = [#[[$IdentMap2D]], #[[$VertLineBCastMap]], #[[$IdentMap2D]]]
# CHECK-SAME: ins(%[[Rect]], %[[VertLine]] : tensor<8x16xf32>, tensor<8xf32>)
# CHECK-SAME: outs(%[[OutRect]] : tensor<8x16xf32>) -> tensor<8x16xf32>
op4 = linalg.ElementwiseOp(
result_tensors=(out_rect.result.type,),
inputs=(rect, vert_line),
outputs=(out_rect,),
kind=linalg.ElementwiseKind.add,
indexing_maps=[ident_map_2d, vert_line_bcast_map, ident_map_2d],
)
linalg.fill_builtin_region(op4.operation)
# CHECK: linalg.elementwise kind=#linalg.elementwise_kind<div>
# CHECK-SAME: indexing_maps = [#[[$VertLineBCastMap]], #[[$HorLineBCastMap]], #[[$IdentMap2D]]]
# CHECK-SAME: ins(%[[VertLine]], %[[HorLine]] : tensor<8xf32>, tensor<16xf32>)
# CHECK-SAME: outs(%[[OutRect]] : tensor<8x16xf32>) -> tensor<8x16xf32>
linalg.elementwise(
vert_line,
hor_line,
outs=(out_rect,),
kind=linalg.ElementwiseKind.div,
indexing_maps=[
vert_line_bcast_map,
hor_line_bcast_map,
ident_map_2d,
],
)
if _ops_with_non_ident_and_transposed_input_maps := True:
# CHECK: %[[VertLineBoolsMem:.*]] = memref.alloca() : memref<8xi1>
vert_line_bools_mem = memref.alloca(
MemRefType.get(vert_line_shape, IntegerType.get_signless(1)),
[],
[],
)
# CHECK: linalg.elementwise kind=#linalg.elementwise_kind<select>
# CHECK-SAME: indexing_maps = [#[[$VertLineBCastMap]], #[[$HorLineBCastMap]], #[[$TransMap2D]], #[[$IdentMap2D]]]
# CHECK-SAME: ins(%[[VertLineBoolsMem]], %[[HorLineMem]], %[[TransRectMem]] : memref<8xi1>, memref<16xf32>, memref<16x8xf32>)
# CHECK-SAME: outs(%[[OutRectMem]] : memref<8x16xf32>)
linalg.elementwise(
vert_line_bools_mem,
hor_line_mem,
trans_rect_mem,
outs=(out_rect_mem,),
kind=linalg.ElementwiseKind.select,
indexing_maps=[
vert_line_bcast_map,
hor_line_bcast_map,
transposed_map_2d,
ident_map_2d,
],
)
print(module)
@run
def testReduceOp():
with Context(), Location.unknown():
f32 = T.f32()
tensor_type = T.tensor(10, f32)
@builtin.module
def module():
@func.func(tensor_type)
def reduce_op(input):
c1 = arith.constant(f32, 1.0)
single_result = ir.RankedTensorType.get((), f32)
dims = ir.DenseI64ArrayAttr.get([0])
init = tensor.splat(single_result, c1, [])
@linalg.reduce(
result=[single_result],
inputs=[input],
inits=[init],
dimensions=dims,
)
def reduced(element: f32, acc: f32):
return arith.mulf(acc, element)
return tensor.extract(reduced, [])
print(module)
# CHECK-LABEL: func.func @reduce_op(
# CHECK-SAME: %[[ARG0:.*]]: tensor<10xf32>) -> f32 {
# CHECK: %[[CONSTANT_0:.*]] = arith.constant 1.000000e+00 : f32
# CHECK: %[[SPLAT_0:.*]] = tensor.splat %[[CONSTANT_0]] : tensor<f32>
# CHECK: %[[REDUCE_0:.*]] = linalg.reduce { arith.mulf } ins(%[[ARG0]] : tensor<10xf32>) outs(%[[SPLAT_0]] : tensor<f32>) dimensions = [0]
# CHECK: %[[EXTRACT_0:.*]] = tensor.extract %[[REDUCE_0]][] : tensor<f32>
# CHECK: return %[[EXTRACT_0]] : f32
# CHECK: }
@run
def testMapOp():
with Context(), Location.unknown():
f32 = T.f32()
tensor_type = T.tensor(10, f32)
@builtin.module
def module():
@func.func(tensor_type)
def map_op(input):
empty = tensor.empty(tensor_type.shape, f32)
@linalg.map(
result=[tensor_type],
inputs=[input, input],
init=empty,
)
def add(element: f32, acc: f32, init: f32):
return arith.addf(element, acc)
return add
module.verify()
print(module)
# CHECK-LABEL: func.func @map_op(
# CHECK-SAME: %[[ARG0:.*]]: tensor<10xf32>) -> tensor<10xf32> {
# CHECK: %[[EMPTY_0:.*]] = tensor.empty() : tensor<10xf32>
# CHECK: %[[MAP_0:.*]] = linalg.map { arith.addf } ins(%[[ARG0]], %[[ARG0]] : tensor<10xf32>, tensor<10xf32>) outs(%[[EMPTY_0]] : tensor<10xf32>)
# CHECK: return %[[MAP_0]] : tensor<10xf32>
# CHECK: }