blob: baccdc3f51c05fddcd9b606f1b996b787fa84f46 [file] [log] [blame]
// RUN: mlir-opt %s -split-input-file -test-single-fold | FileCheck %s
// The tests in this file verify that fold() methods can handle complex
// optimization scenarios without requiring multiple folding iterations.
// This is important because:
//
// 1. OpBuilder::createOrFold() only calls fold() once, so operations must
// be fully optimized in that single call
// 2. Multiple rounds of folding would incur higher performance costs,
// so it's more efficient to complete all optimizations in one pass
//
// These tests ensure that folding implementations are robust and complete,
// avoiding situations where operations are left in intermediate states
// that could be further optimized.
// CHECK-LABEL: fold_extract_in_single_pass
// CHECK-SAME: (%{{.*}}: vector<4xf16>, %[[ARG1:.+]]: f16)
func.func @fold_extract_in_single_pass(%arg0: vector<4xf16>, %arg1: f16) -> f16 {
%0 = vector.insert %arg1, %arg0 [1] : f16 into vector<4xf16>
%c1 = arith.constant 1 : index
// Verify that the fold is finished in a single pass even if the index is dynamic.
%1 = vector.extract %0[%c1] : f16 from vector<4xf16>
// CHECK: return %[[ARG1]] : f16
return %1 : f16
}
// -----
// CHECK-LABEL: fold_insert_in_single_pass
func.func @fold_insert_in_single_pass() -> vector<2xf16> {
%cst = arith.constant dense<0.000000e+00> : vector<2xf16>
%c1 = arith.constant 1 : index
%c2 = arith.constant 2.5 : f16
// Verify that the fold is finished in a single pass even if the index is dynamic.
// CHECK: arith.constant dense<[0.000000e+00, 2.500000e+00]> : vector<2xf16>
%0 = vector.insert %c2, %cst [%c1] : f16 into vector<2xf16>
return %0 : vector<2xf16>
}