| // RUN: mlir-opt %s -split-input-file -test-bit-width-constrained-vector-linearize=target-vector-bitwidth=128 | FileCheck %s --check-prefixes=ALL,BW-128 |
| // RUN: mlir-opt %s -split-input-file -test-bit-width-constrained-vector-linearize=target-vector-bitwidth=0 | FileCheck %s --check-prefixes=ALL,BW-0 |
| |
| // A vector<2x2xf32> has inner-most dimension with 64-bits. Check that at |
| // bitwidth threshold 128 (>= 64), operations are linearized, and at |
| // bitwidth threshold 0 (< 64), operations are not linearized. |
| |
| // ALL-LABEL: test_result_bitwidth_64 |
| func.func @test_result_bitwidth_64(%arg0: vector<2x2xf32>) -> vector<2x2xf32> { |
| |
| // BW-128: arith.constant {{.*}} vector<4xf32> |
| // BW-0: arith.constant {{.*}} vector<2x2xf32> |
| %0 = arith.constant dense<[[1.0, 2.0], [3.0, 4.0]]> : vector<2x2xf32> |
| |
| // BW-128: math.sin {{.*}} vector<4xf32> |
| // BW-0: math.sin {{.*}} vector<2x2xf32> |
| %1 = math.sin %arg0 : vector<2x2xf32> |
| |
| return %0 : vector<2x2xf32> |
| } |
| |
| // ----- |
| |
| // The size of the 'index' type is backend specific, so we cannot guarantee that |
| // the inner-most dimension below (of size 2*nbBits(index)) is below any bitwidth |
| // threshold. Test that operations with vectors of index type are not linearized. |
| |
| // ALL-LABEL: test_index_no_linearize |
| func.func @test_index_no_linearize(%arg0: vector<2x2xindex>, %arg1: vector<2x2xindex>) -> vector<2x2xindex> { |
| |
| // BW-128: %[[ADD:.*]] = arith.addi {{.*}} : vector<2x2xindex> |
| // BW-0: %[[ADD:.*]] = arith.addi {{.*}} : vector<2x2xindex> |
| %0 = arith.addi %arg0, %arg1 : vector<2x2xindex> |
| return %0 : vector<2x2xindex> |
| } |
| |
| // ----- |
| |
| // The logic for the insert op with regards to the bitwidth threshold is |
| // different to the other ops, so we test it here. Specifically, the logic |
| // is based on the bitwidth of the value to store. |
| |
| // ALL-LABEL: test_vector_insert |
| // ALL-SAME: (%[[DEST:.*]]: vector<2x8x4xf32>, %[[SRC:.*]]: vector<8x4xf32>) -> vector<2x8x4xf32> { |
| func.func @test_vector_insert(%arg0: vector<2x8x4xf32>, %arg1: vector<8x4xf32>) -> vector<2x8x4xf32> { |
| |
| // BW-128-DAG: %[[ARG_SRC:.*]] = vector.shape_cast %[[SRC]] : vector<8x4xf32> to vector<32xf32> |
| // BW-128-DAG: %[[ARG_DEST:.*]] = vector.shape_cast %[[DEST]] : vector<2x8x4xf32> to vector<64xf32> |
| // BW-128: %[[SHUFFLE:.*]] = vector.shuffle %[[ARG_DEST]], %[[ARG_SRC]] |
| // BW-128: %[[RES:.*]] = vector.shape_cast %[[SHUFFLE]] : vector<64xf32> to vector<2x8x4xf32> |
| // BW-128: return %[[RES]] : vector<2x8x4xf32> |
| |
| // BW-0: %[[RES:.*]] = vector.insert %[[SRC]], %[[DEST]] [0] : vector<8x4xf32> into vector<2x8x4xf32> |
| // BW-0: return %[[RES]] : vector<2x8x4xf32> |
| |
| %0 = vector.insert %arg1, %arg0[0]: vector<8x4xf32> into vector<2x8x4xf32> |
| return %0 : vector<2x8x4xf32> |
| } |