| //===- ReifyResultShapes.cpp - Reify result shapes ------------------------===// |
| // |
| // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| // See https://llvm.org/LICENSE.txt for license information. |
| // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This transform reifies result shapes of `ReifyRankedShapedTypeOpInterface` |
| // operations with ranked `memref` and `tensor` results. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "mlir/Dialect/MemRef/Transforms/Passes.h" |
| |
| #include "mlir/Dialect/Affine/IR/AffineOps.h" |
| #include "mlir/Dialect/MemRef/IR/MemRef.h" |
| #include "mlir/Dialect/MemRef/Transforms/Transforms.h" |
| #include "mlir/Dialect/Tensor/IR/Tensor.h" |
| #include "mlir/Interfaces/InferTypeOpInterface.h" |
| #include "llvm/Support/InterleavedRange.h" |
| |
| #define DEBUG_TYPE "reify-result-shapes" |
| #define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE << "]: ") |
| |
| namespace mlir { |
| namespace memref { |
| #define GEN_PASS_DEF_REIFYRESULTSHAPESPASS |
| #include "mlir/Dialect/MemRef/Transforms/Passes.h.inc" |
| } // namespace memref |
| } // namespace mlir |
| |
| using namespace mlir; |
| |
| /// Reifies the results of `op`, potentially replacing `op` with a reified |
| /// version. Returns `failure` if `mlir::reifyResultShapes` returned failure, |
| /// otherwise it always succeeds. Users of this transform should always expect |
| /// it to modify the IR, even when it fails. If any of the result types changes, |
| /// the transform will insert cast operations to the old type to keep the IR |
| /// consistent. |
| static LogicalResult reifyOpResultShapes(RewriterBase &rewriter, |
| ReifyRankedShapedTypeOpInterface op) { |
| LLVM_DEBUG({ DBGS() << " reifying op: " << op << "\n"; }); |
| // Get the reified out shapes. |
| ReifiedRankedShapedTypeDims reifiedResultShapes; |
| if (failed(mlir::reifyResultShapes(rewriter, op, reifiedResultShapes)) || |
| reifiedResultShapes.empty()) { |
| return op->emitWarning() << "failed to get the reified shapes"; |
| } |
| |
| bool modified = false; |
| // Compute the new output types. |
| SmallVector<Type> outTypes; |
| for (const auto &[oldTy, reifiedShape] : |
| llvm::zip(op->getResultTypes(), reifiedResultShapes)) { |
| // Skip if it's not a memref or tensor type. |
| if (!isa<RankedTensorType, MemRefType>(oldTy)) { |
| outTypes.push_back(oldTy); |
| continue; |
| } |
| |
| ShapedType shapedTy = dyn_cast<ShapedType>(oldTy); |
| |
| SmallVector<int64_t> shape = llvm::to_vector(shapedTy.getShape()); |
| for (auto &&[dim, ofr] : llvm::zip_equal(shape, reifiedShape)) { |
| std::optional<int64_t> maybeCst = getConstantIntValue(ofr); |
| // If the reified dim is dynamic set it appropriately. |
| if (!maybeCst.has_value()) { |
| dim = ShapedType::kDynamic; |
| continue; |
| } |
| // Set the static dim. |
| dim = *maybeCst; |
| } |
| |
| // If the shape didn't change continue. |
| if (shape == shapedTy.getShape()) { |
| outTypes.push_back(oldTy); |
| continue; |
| } |
| modified = true; |
| outTypes.push_back(shapedTy.cloneWith(shape, shapedTy.getElementType())); |
| } |
| |
| // Return if we don't need to update. |
| if (!modified) { |
| LLVM_DEBUG({ DBGS() << "- op doesn't require update\n"; }); |
| return success(); |
| } |
| |
| LLVM_DEBUG({ |
| DBGS() << "- oldTypes: " << llvm::interleaved_array(op->getResultTypes()) |
| << " \n"; |
| DBGS() << "- outTypes: " << llvm::interleaved_array(outTypes) << " \n"; |
| }); |
| |
| // We now have outTypes that need to be turned to cast ops. |
| Location loc = op->getLoc(); |
| SmallVector<Value> newResults; |
| // TODO: `mlir::reifyResultShapes` and op verifiers may not agree atm. |
| // This is a confluence problem that will need to be addressed. |
| // For now, we know PadOp and ConcatOp are fine. |
| assert((isa<tensor::PadOp, tensor::ConcatOp>(op.getOperation())) && |
| "incorrect op"); |
| Operation *newOp = rewriter.clone(*op); |
| for (auto [reifiedTy, oldRes] : llvm::zip(outTypes, op->getResults())) { |
| OpResult newRes = newOp->getResult(oldRes.getResultNumber()); |
| Type oldTy = oldRes.getType(); |
| // Continue if the type remained invariant or is not shaped. |
| if (oldTy == reifiedTy || !isa<MemRefType, RankedTensorType>(oldTy)) { |
| newResults.push_back(newRes); |
| continue; |
| } |
| |
| // Update the type. |
| newRes.setType(reifiedTy); |
| if (isa<RankedTensorType>(reifiedTy)) { |
| newResults.push_back( |
| tensor::CastOp::create(rewriter, loc, oldTy, newRes)); |
| } else { |
| assert(isa<MemRefType>(reifiedTy) && "expected a memref type"); |
| newResults.push_back( |
| memref::CastOp::create(rewriter, loc, oldTy, newRes)); |
| } |
| } |
| |
| LLVM_DEBUG({ |
| DBGS() << "- reified results " << llvm::interleaved_array(newResults) |
| << "\n"; |
| }); |
| rewriter.replaceOp(op, newResults); |
| return success(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Pass registration |
| //===----------------------------------------------------------------------===// |
| |
| namespace { |
| struct ReifyResultShapesPass final |
| : public memref::impl::ReifyResultShapesPassBase<ReifyResultShapesPass> { |
| void runOnOperation() override; |
| }; |
| } // namespace |
| |
| void ReifyResultShapesPass::runOnOperation() { |
| SmallVector<ReifyRankedShapedTypeOpInterface> ops; |
| getOperation()->walk([&](ReifyRankedShapedTypeOpInterface op) { |
| // Handle ops that are not DPS and that do not carry an tied operand shapes. |
| // For now, limit to tensor::PadOp and tensor::ConcatOp. |
| if (!isa<tensor::PadOp, tensor::ConcatOp>(op.getOperation())) |
| return; |
| ops.push_back(op); |
| }); |
| IRRewriter rewriter(&getContext()); |
| for (ReifyRankedShapedTypeOpInterface op : ops) { |
| rewriter.setInsertionPoint(op); |
| (void)reifyOpResultShapes(rewriter, op); |
| } |
| } |